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The search for continuous gravitational waves from unknown isolated sources is computationally

limited due to the enormous parameter space that needs to be covered and the weakness of the expected

signals. Therefore, semicoherent search strategies have been developed and applied in distributed

computing environments such as Einstein@Home, in order to narrow down the parameter space and

identify interesting candidates. However, in order to optimally confirm or dismiss a candidate as a possible

gravitational wave signal, a fully coherent follow-up using all the available data is required. We present a

general method and implementation of a direct (two-stage) transition to a fully coherent follow-up on

semicoherent candidates. This method is based on a gridless Mesh Adaptive Direct Search algorithm

using theF -statistic. We demonstrate the detection power and computing cost of this follow-up procedure

using extensive Monte Carlo simulations on (simulated) semicoherent candidates from a directed, as well

as from an all-sky search setup.
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I. INTRODUCTION

Continuous gravitational waves (CWs) are expected to
be emitted from rapidly spinning nonaxisymmetric com-
pact objects, e.g., neutron stars. The computational cost of
a coherent matched-filtering detection statistic, such as the
F -statistic [1], is small provided the parameters of the
source (i.e., sky position �, �, frequency f, frequency

derivatives _f, . . .) are known. However, wide parameter-
space searches for unknown sources quickly become com-
putationally prohibitive, due to the large number of points
in parameter space (templates) that need to be searched [2].

In order to first reduce the parameter space to smaller,
more promising regions, semicoherent search techniques
have been developed [3–6] and are currently being used
[7,8], for example, in the Einstein@Home distributed
computing environment [9]. In a semicoherent search,
the total amount of data T is divided into N shorter
segments of duration �T. The coherent statistics from
the individual segments are combined to produce a new
semicoherent statistic. At a fixed computing cost these
semicoherent methods are (typically) more sensitive than
fully coherent searches [10].

Structuring a wide parameter-space search into hierarch-
ical stages, which increasingly concentrate computational
power onto the more promising regions of parameter space,
was first described in Ref. [2] and elaborated further in
Ref. [3], where a two-stage semicoherent hierarchical
search was considered. An extended hierarchical scheme
with an arbitrary number of semicoherent stages and a final
fully coherent stage was studied numerically in Ref. [4],
which concluded that three semicoherent stages will typi-
cally be a good choice. In Refs. [11,12], the use of an
optimization procedure has been considered in the process
of estimation of the source parameters, once a candidate is
considered as a detection. In both cases, however, no

practical method or implementation was provided for the
systematic coherent follow-up of semicoherent candidates.
The aim of the present work is to introduce such a

coherent follow-up search strategy and implementation.
This is achieved by exploring the parameter space around
a semicoherent candidate using a Mesh Adaptive Direct
Search (MADS) algorithm. Using this method, we find that
a fully coherent follow-up (using all of the available data)
of initial semicoherent candidates is computationally
feasible.
This paper is organized as follows: in Sec. II we describe

the relevant basic concepts in CW searches, in Sec. III we
propose a search strategy for the systematic follow-up of
CW candidates, in Sec. IV we present a Monte Carlo study,
and in Sec. V we discuss the results.

A. Notation

We distinguish a quantity Q when referring to a fully

coherent stage using a tilde, ~Q, and when referring to a

semicoherent stage using an overhat, Q̂. Averaging over
segments is denoted by an overbar, �Q.

II. CONTINUOUS GRAVITATIONALWAVES

Continuous gravitational wave signals are quasi-
monochromatic and sinusoidal in the source frame and
undergo phase and amplitude modulation due to the diur-
nal and orbital motion of the detectors. The phase evolution
of the signal at a detector can be approximated as [1]

�ðtÞ � �0 þ 2�
Xs
k¼0

fðkÞðt0Þðt� t0Þkþ1

ðkþ 1Þ!

þ 2�
rðtÞ
c

n
Xs
k¼0

fðkÞðt0Þðt� t0Þk
k!

; (1)
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where �0 is the initial phase, f
ðkÞ � dkf

dtk
are the derivatives

of the signal frequency f at the solar system barycenter
(SSB) at reference time t0, c is the speed of light, rðtÞ is the
vector pointing from the SSB to the detector and n is the
unit vector pointing from the SSB to the gravitational wave
source.

A. Detection statistic

Following Refs. [1,13], the gravitational wave response
of a detector can be expressed as a sum over four (detector-
independent) amplitude parameters multiplying four
(detector-dependent) basis waveforms. The amplitude
parameters can be analytically maximized over, and the
resulting detection statistic, known as the F -statistic, is
therefore a function only of the template ‘‘phase parameters’’

� � f�; �; f; _f; . . .g, where � (right ascension) and �
(declination) denote the sky position of the source.

In the presence of a signal, the fully coherent detection
statistic 2F follows a noncentral �2 distribution with four
degrees of freedom and a noncentrality parameter given by
the squared signal-to-noise ratio (SNR), �2. The expecta-
tion value is therefore

E½2F � ¼ 4þ �2; (2)

with variance

�2½2F � ¼ 2ð4þ 2�2Þ: (3)

On the other hand, in the semicoherent approach, we
divide the available data into N segments of duration �T
and combine the individual coherent statistics of the seg-
ments to compute a semicoherent statistic, namely

2F ð�Þ ¼ 1

N

XN
k¼1

2F kð�Þ; (4)

where 2F k is the coherent F -statistic in segment k. The

quantityN2F follows a noncentral �2 distribution with 4N

degrees of freedom; thus the expectation value of 2F is

E½2F � ¼ 4þ �2; (5)

with variance

�2½2F � ¼ 2

N
ð4þ 2�2Þ; (6)

where �2 is the average SNR2 over all segments, i.e.,

�2 ¼ 1

N

XN
k¼1

�2
k; (7)

and �2
k denotes the SNR

2 in segment k.

B. Mismatch and Fisher matrix

A search for sources with unknown signal parameters
implies a loss of detection power compared to the perfectly

matched case. To quantify this, we use the notion of
mismatch �, as first introduced in Refs. [14,15]. This is
defined as the fractional loss of expected SNR2 at some
parameter-space point � compared to the expectation
�2ð�sÞ at the signal location �s, namely

� � �2ð�sÞ � �2ð�Þ
�2ð�sÞ

; (8)

such that � 2 ½0; 1�. Taylor expansion in small offsets
�� ¼ �� �s around the signal location yields

� � gijð�sÞ��i��j þOð��3Þ; (9)

where implicit summation over repeated parameter-space
indices i, j applies, and the symmetric positive-definite
matrix gij is commonly referred to as the parameter-space

metric.
Neglecting higher-order terms, one often uses the ‘‘met-

ric mismatch approximation,’’ namely

�� � gijð�sÞ��i��j; (10)

as a distance measure, with a range �� 2 ½0;1Þ. This
metric mismatch �� plays an important role in grid-based
searches, where one typically constructs template banks in
such a way that the mismatch of any putative signal and
the ‘‘closest’’ template is bounded by a maximal mismatch
m, i.e.,

�� � m; (11)

everywhere in the template bank.
In the presence of noise, � as defined in Eq. (8) is not

directly accessible, and we therefore introduce a related
quantity, namely the fractional loss of measured SNR2,
namely

�� � 2F ð�sÞ � 2F ð�Þ
2F ð�sÞ � 4

: (12)

Note that �� � 1, but contrary to Eq. (8), it can also be
(slightly) negative, as we can have 2F ð�sÞ< 2F ð�Þ due to
noise.
For semicoherent searches, the metric is found [3] as the

average of the fully coherent metrics over all the segments,
namely

ĝijð�Þ ¼ 1

N

XN
k¼1

gij;kð�Þ; (13)

where ~gij;k is the coherent metric [Eq. (9)] in segment k.

A standard tool for parameter estimation is provided by
the Fisher information matrix, which characterizes the
statistical uncertainty of the maximum likelihood estima-
tors (MLE) �i

MLE for the signal parameters �i
s. This can be

formulated [16–18] as the well-known Cramer-Ráo lower
bound on the variance of an unbiased MLE (i.e.,
E½�i

MLE� ¼ �i
s), namely
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�2½�i
MLE� � f��1gii; (14)

where the matrix f��1gij denotes the inverse of the Fisher
matrix �ij, which is closely related (e.g., Ref. [17]) to the

metric gij, namely

�ij ¼ �2gij: (15)

A semicoherent search over N segments can be considered
as N different measurements; thus the semicoherent Fisher
matrix yields [19]

�̂ ¼ XN
k¼1

�ij;k: (16)

Assuming constant SNR2 for the different segments, we
can rewrite Eq. (16) in terms of the semicoherent metric
[Eq. (13)], namely

�̂ ¼ N�2ĝij; (17)

and thus

f�̂�1gij ¼ ĝij

N�2
; (18)

where ĝij is the inverse matrix of ĝij.

C. Computing cost

The computing cost C of a fully coherent (or an ideal
semicoherent [10]) search is primarily due to the compu-
tation of the F -statistic over all the templates. For a search
over N templates using N segments of data from Ndet

detectors [10], the computing cost C is

C ¼ NN Ndet c1; (19)

where c1 is the implementation-dependent computing cost
for a single template, segment and detector. A method of
F -statistic computation based on short Fourier transforms
(SFTs) [20] of length TSFT is currently widely used in CW
searches and will be considered in the present work. The
cost per template in this case is proportional to the segment
duration, namely

cSFT1 ¼ cSFT0

�T

TSFT

; (20)

where cSFT0 is the implementation- and hardware-

dependent fundamental computing cost per SFT. Using
the total number of SFTs

NSFT ¼ NNdet

�T

TSFT

; (21)

we can write the total computing cost [Eq. (19)] of the SFT
method as

C ¼ N NSFTc
SFT
0 : (22)

In grid-based searches, the number of templates required
to cover the search parameter space P is given by the
general expression [21,22]

N � 	nm
�n=2

Z
P
dn�

ffiffiffiffiffiffiffiffiffiffi
detg

p
; (23)

where 	 is the normalized lattice thickness, n is the number
of search dimensions, m is the maximal template bank
mismatch [Eq. (11)] and det g is the determinant of the
parameter-space metric [Eq. (9)]. The normalized thick-
ness is a constant depending on the grid structure, e.g., for a

hypercubic lattice, 	Zn
¼ nn=22�n. The metric gij depends

strongly on the duration �T and the number of segments
N, in such a way that longer observation times typically
require a (vastly) increased number of templates [2].

III. COHERENT FOLLOW-UP OF
SEMICOHERENT CANDIDATES

A. Basic two-stage search strategy

Here we introduce a simple two-stage strategy for fol-
lowing up candidates from semicoherent searches. In the
first stage, called refinement, we employ a finer search

using the semicoherent statistic 2F to improve the initial
maximum likelihood estimator. In the second stage, called

zoom, we apply the fully coherent statisticg2F using all the
data T, in order to test whether the candidate is inconsistent
with Gaussian noise and if it further agrees with the signal
model.
The motivation for this two-stage approach can be seen

from an example 2D search grid shown in Fig. 1. The
search templates are generally placed such that a putative
signal �s will be recovered with a loss of SNR bounded by
a maximal mismatch m, as given in Eq. (11), namely

gij��
i��j � m; (24)

where equality defines an (n-dimensional) isomismatch
ellipse. The initial semicoherent search will yield ‘‘candi-

dates’’ �̂c for which the statistic 2F exceeds a certain
threshold and is higher than neighboring templates.
The initial refinement stage of our follow-up strategy

therefore consists in finding the (nearby) parameter-space

point �̂MLE of the actual (local) maximum in the statistic

2F ð�̂Þ (which is a smooth function of �̂), referred to as the
maximum likelihood estimator (MLE). This can be
achieved simply by a denser placement of templates using
the original statistic, i.e., by keeping the search setup
unchanged in terms of the number and length of segments.
In the zoom stage, we fully coherently search the Fisher

ellipse centered on the semicoherent MLE �̂MLE. This
defines the parameter-space region that should contain
the signal location �s with confidence corresponding to
nB standard deviations, i.e.,

�̂ ij��
i��j � n2B; (25)
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where ��i ¼ �̂i
MLE � �i

s. Note that the Fisher ellipse
actually describes the fluctuations of the maximum

likelihood estimator �̂MLE for a given signal location.
However, provided the likelihood manifold is not strongly
curved, this also describes our uncertainty of the signal

location for a given MLE �̂MLE, as indicated in Fig. 2. The
zoom stage will yield the fully coherent maximum like-

lihood estimator ~�MLE, which represents our best estimate
for the signal parameters �s. Thus, the two-stage search
strategy corresponds to the transition

�̂c ���!refinement
�̂MLE ���!zoom ~�MLE � �s:

In the following, we use a subscript R to denote quantities
in the refinement stage and a subscript Z for quantities in
the zoom stage.

The search volume for the refinement stage depends on
the template bank construction of the original semicoher-
ent search. Ideally, one isomismatch ellipse corresponding
to the original template bank construction (see Fig. 1)
should be sufficient. In practice, however, it might often
be necessary to use several grid spacings in each direction,
if the template bank was not originally constructed in a
strictly metric way. In this case, the exact number of grid
spacings will have to be empirically determined in a
Monte Carlo study.

1. Bounding box and volume of n-dimensional ellipses

In the following discussion, it will be useful to express
the bounding box and volume of an n-dimensional ellipse,

namely for the isomismatch ellipse of Eq. (24) and the
Fisher ellipse of Eq. (25). The general form of the
n-dimensional ellipse equation is

Gijd�
id�j ¼ R2; (26)

where Gij is a positive-definite symmetric matrix. The

extents ��i of a bounding box along coordinate axes �i

(as indicated in Fig. 2) can be obtained from the diagonal
elements of the inverse matrix, fG�1gij, namely

��i ¼ 2R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fG�1gii

q
: (27)

The ellipse coordinate volume is expressible via the matrix
determinant, det G, namely

V ¼ Rnffiffiffiffiffiffiffiffiffiffiffi
detG

p V n; (28)

where V n ¼ �n=2

�ð1þn=2Þ is the volume of the unit n-ball.

B. Classification of zoom outcomes

Assuming a real CW signal, we can estimate the range of
expected values of the fully coherent zoom F -statistic in
~�s. From Eq. (5), we can obtain a (rough) estimate of the
average SNR2 from the measured average SNR2 of the
semicoherent maximum likelihood estimator, namely

�2
MLE � 2FMLE � 4: (29)

The SNR2 of the fully coherent search is linear in the
number of segments N, i.e.,

~�2 ¼ N�2
MLE: (30)

FIG. 2. Two-dimensional example: Fisher ellipse [Eq. (25)]
defining the zoom search space, centered on the semicoherent
MLE �̂MLE. The extents f�f;� _fg of the bounding box are given
by Eq. (27).

FIG. 1. Two-dimensional search grid in ff; _fg space. The black
dots are the search templates, placed such that the loss of SNR on
any putative signal �s will be bounded by a maximal mismatch
m, which defines the semicoherent isomismatch ellipses. The
semicoherent Fisher ellipse centered on the MLE �̂MLE is used to
constrain the zoom parameter space. The aim of the zoom stage
is to find ~�MLE.
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Substitution of the above expression into Eq. (2) yields the

expectation for the fully coherent matched filter in ~�MLE,
namely

g2F o � E½g2F � � 4þ N�2
MLE: (31)

Further substitution of Eq. (30) into Eq. (3) yields the
corresponding variance as

�2
o � �2½g2F � � 2ð4þ 2N�2

MLEÞ: (32)

These quantities are useful for defining what we mean by
confirming a CW signal.

Note that the uncertainty in the original SNR estimation
in Eq. (29) results in a distribution around the final estimate
of Eq. (31) that is wider than estimated by Eq. (32). This
effect can be computed analytically and empirically, and is
found to amount to about a factor of 2.

Depending on the maximal g2F value found in the final
zoom stage, we can distinguish three possible outcomes:

(1) Consistency with Gaussian noise (G).—The fully

coherent g2F value does not exceed a threshold

g2F <g2F ðGÞ
th ; (33)

where g2F ðGÞ
th is chosen to correspond to some

(small) false-alarm probability pfA in Gaussian
noise.

For example, a threshold g2F ðGÞ
th ¼ 60 corresponds

to a very small false-alarm probability of order
10�12 in a single template, as given by Eq. (43).

(2) Non-Gaussian origin (:G).—The candidate is loud
enough to be inconsistent with Gaussian noise at the
false-alarm probability pfA, i.e.,

g2F � g2F ðGÞ
th : (34)

(3) Signal recovery (S).—A subclass of :G; the final

zoomed candidate g2F exceeds the Gaussian noise

threshold g2F ðGÞ
th and falls into the predicted signal

interval given by Eqs. (31) and (32) (at some con-
fidence level). We can write this as

g2F ðSÞ
th <g2F <g2F ðSÞ

max ; (35)

where g2F ðSÞ
th �maxfg2F ðGÞ

th ;g2F o�nu�og, andg2F ðSÞ
max�g2F oþnu�o, where nu determines the de-

sired confidence level. In this work we consider
nu ¼ 6, which corresponds roughly to a confidence
of �99:6%.

Note that there can be cases where a zoomed candidate
ends up in :G but does not make it into the signal recovery

(S) band, e.g., typically g2F ðGÞ
th <g2F <g2F ðSÞ

th . There can
be different reasons for this, e.g., the search algorithm

converged to a secondary maximum in the refinement or
zoom stage, the signal model deviates from reality and
requires modification, or the ‘‘signal’’ found is of non-
astrophysical origin (e.g., a detector noise artifact).
Generally, further investigation will be required for all
candidates falling into the non-Gaussian category (:G).

C. Grid-based computing cost of the zoom stage

We do not consider a grid-based follow-up method in
this paper, but it is instructive to estimate the correspond-
ing computing cost for later comparison. To estimate the
number of templates required for the fully coherent search,
we can use Eq. (28) to compute the volume of the follow-
up Fisher ellipse, Eq. (25), and divide it by the volume
covered by one coherent template, Eq. (24). Namely, the
Fisher ellipse volume is given by

V̂ ¼ nnB

ðN�2Þn=2 ffiffiffiffiffiffiffiffiffiffi
det ĝ

p V n; (36)

while the coherent template volume at mismatch m is

~V ¼ mn=2ffiffiffiffiffiffiffiffiffiffi
det ~g

p V n: (37)

Therefore, we can estimate the number of templates as

N � V̂
~V
¼ nnB

ðN�2Þn=2mn=2

ffiffiffiffiffiffiffiffiffiffi
det ~g

p
ffiffiffiffiffiffiffiffiffiffi
det ĝ

p : (38)

Consider a follow-up of a candidate from a directed n ¼ 2

search in ff; _fg (e.g., see Fig. 1). Assuming a semicoherent
search using N ¼ 200 segments of �T ¼ 1 d duration
without gaps, and a fully coherent observation time of T ¼
200 d. Using the expressions found in Ref. [23], the deter-
minants of the two-dimensional coherent and the semi-
coherent metrics are found as

ffiffiffiffiffiffiffiffiffiffi
det ~g

p ¼ �2T3 1

540
; (39)

ffiffiffiffiffiffiffiffiffiffi
det ĝ

p ¼ �2�T3 
ðNÞ
540

; (40)

where 
 � ffiffiffi
5

p
N is the spin-down refinement factor.

Putting everything together in Eq. (38), we obtain

N � n2BNffiffiffi
5

p
�2m

; (41)

where we used N ¼ T=�T. For a signal with �2 ¼ 1,
nB ¼ 24,1 and m ¼ 0:1, the number of templates is there-
fore N � 5:1	 105. Thus, using Eq. (22) for two detec-
tors and the SFT method with TSFT ¼ 1800 s, the zoom

1This large nB value is found to contain the signal location in
more than 98% of the cases even for weak signals, where the
Fisher matrix may be a poor predictor; see Ref. [16].
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computing cost isC � 11min per candidate, wherewe used
the fundamental computing cost cSFT0 ¼ 7	 10�8 s [10].

In the more general case where the sky position of the
source is also unknown, the number of sky points typically
scales at least quadratically with the observation time
[23,24] (for coherent integration longer than a few days),
thus generally resulting in completely prohibitive computa-
tional requirements for grid-based follow-up searches. In
particular, extending the directed search example from the
previous paragraph to an all-sky follow-up would require
N sky�1:3	106 sky points,2 or a total ofN � 6:8	 1011

templates.
For comparison, using the gridless search algorithm

discussed in the next sections, it is possible to coherently
follow up 2D directed candidates in less than 2 minutes
(see Fig. 4(d)), and all-sky candidates in about 1 hour per
candidate (see Fig. 5(d)).

D. Mesh Adaptive Direct Search (MADS)

A significant difference between the hierarchical search
strategies discussed in Refs. [2–4] and in this work is the
method of template bank construction at the different
stages. Namely, we consider a gridless method for explor-
ing the parameter space.

The MADS class of algorithms for derivative-free opti-
mization was first introduced in Ref. [26] and further
developed in Refs. [27,28], among others. In this subsec-
tion, we only introduce some of the control parameters of
the algorithm required in the construction of MADS-based
F -statistic searches; for an in-depth treatment and proofs,
we refer the reader to the cited publications.

MADS consists of the iteration of two steps, called
search and poll, in which trial points are constructed and
evaluated in order to find an extremum. In the search step,
any strategy can be applied to construct trial points. In this
work we use quadratic models (quadratic form) to approxi-
mate the objective function from a sample of objective
values [28]. If the local exploration in the search step fails
to generate a new solution, a set of poll points is generated
using a stochastic or deterministic method. Stochastic
means that the poll points are generated randomly [26],
whereas deterministic refers to the usage of pseudorandom
Halton sequences [27]. However, both methods generate
points which form a dense set in the unit sphere after an
infinite number of iterations. For a given starting point �c

with parameter-space boundaries��B, initial step sizes d�
and a method for generation of poll points, the discretiza-
tion of the parameter space�m

k at iteration k is governed by
a fixed rational number ub > 1 and the coarsening wþ � 0
and refining w� � �1 exponents. If the current iteration
generates a better solution, the discretization in the

next iteration is coarser, namely �m
kþ1 ¼ uw

þ
b �m

k ; other-

wise �m
kþ1 ¼ uw

�
b �m

k [26]. The algorithm stops if an im-

proved solution cannot be found or the total number of
evaluated parameter-space points p reaches some given
maximum pmax.

E. MADS-based follow-up algorithm

From the point of view of the MADS algorithm, the
function to optimize is a black box requiring some input to
produce a single output value. The black box in our case is
either the computation of the semicoherent F -statistic

2F of Eq. (4) in the refinement, or the fully coherent

F -statistic g2F in the zoom stage. In order to minimize
the possibility of convergence to secondary maxima, we
run multiple instances of the MADS search in each stage,
varying the mesh-coarsening exponent wþ. The minimal
wþ

min and maximal wþ
max coarsening exponents determine

the number of MADS steps in each pass, namely nsteps ¼
wþ

max � wþ
min þ 1. Thus, we consider our search algorithm

to be composed of several instances of MADS; see Fig. 3.
The inputs of the search algorithm are the candidate �c to
follow up, the search boundaries ��R=Z around the candi-

date, and a set of MADS input parameters, namely
fd�; ub; wþ

min ; w
þ
max ; w

�g. In the zoom stage, the search

boundaries (��Z) are estimated from the bounding box
of the Fisher ellipse, using Eq. (27). For the refinement
stage, the search boundaries (��R) generally have to be
determined depending on the template bank setup of the
original semicoherent search. Note, however, that the
bounding boxes �� only serve as a necessary input pa-
rameter to the MADS search algorithm, while the effective
search region can be further reduced by rejecting points
that do not satisfy a given constraint. For example, the
effective search region in the zoom stage always consists
of the Fisher ellipse [Eq. (25)].
The initial step sizes d�i are also empirically deter-

mined, typically as some fraction of the search boundary
��i

R=Z.

We propose a four-pass algorithm with an equal (for
simplicity) number of steps nsteps in each pass; however,

with different starting point and method of trial point
generation:
(1) 1st pass.—Starting point �c, deterministic point

generation.
(2) 2nd pass.—Starting point �c, stochastic point

generation.
(3) 3rd pass.—Starting point from the loudest template

from the first two passes, deterministic point
generation.

(4) 4th pass.—Starting point from the vicinity of the
loudest point from the first two passes, stochastic
point generation.

In the zoom stage, we terminate the search as soon as the
loudest point of the current iteration satisfies the signal

2The number of sky templates has been estimated by numeri-
cal computation of the sky part of the metrics ĝ and ~g using
FSTATMETRIC_V2 from LALSUITE [25]; see also Ref. [17].
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confirmation condition (S) of Eq. (35). In lower-
dimensional cases, such as the directed search considered
later, a single pass is therefore often found to be sufficient.
For later usage, we introduce the total number of MADS
iterations nI as the sum of the number of steps in each pass.

F. MADS follow-up computing cost

Contrary to grid-based searches, the computing cost of
the MADS based algorithm is nondeterministic, due to the
a priori unknown number of explored parameter-space
points. To estimate the maximal computing cost of the
refinement or the zoom stage using Eq. (19), we need the
maximal number of possibly evaluated templates

N max ¼ XnI
i¼0

pi
max ; (42)

where pi
max is the user-specified maximum of the number

of computed templates at MADS iteration i. This maximal
number is typically chosen to be large to avoid a too-early
interruption of the MADS instance, e.g., when further
improvement of the current solution is possible while the
extremum is not yet found. However, if the extremum is
found, a MADS iteration starting from this point termi-
nates rapidly.
Note that the fundamental computing cost cSFT0 in sto-

chastic searches over the sky is typically larger than in a
grid-based search, where a lot of templates with different
spin-down components can be computed at fixed sky
position. This results in a larger value of about cSFT0 �
3	 10�7 s instead of the number quoted in Sec. III C.

G. False-alarm and detection probability

After the final fully coherent zoom stage, we are left with
a candidate falling into one of the three categories discussed
earlier: namely, the candidate is consistent with the signal
model (S), with Gaussian noise (G), or is of non-Gaussian
origin but inconsistent with the signal model. An additional
valuable piece of information is the false-alarm probability
associated with the candidate. This is the probability of
exceeding a threshold 2F value in the absence of a signal,
where the relevant distribution is the central �2 distribution
with four degrees of freedom, denoted as �2

4ð2F Þ. The
single-template false-alarm probability is

p1
fA ¼

Z 1

2F th

dð2F Þ�2
4ð2F Þ ¼ ð1þF thÞe�F th ; (43)

and for N independent templates, this results in

pfA ¼ 1� ð1� p1
fAÞN ; (44)

where for N p1
fA 
 1, Taylor expansion yields pfA �

N p1
fA. For example, a threshold ofg2F ðGÞ

th ¼ 70 for a search
with N ¼ 1	 105 templates corresponds to a false-alarm
probability of pfA & 2	 10�9, where the upper bound
corresponds to N completely independent templates.
The overall detection probability of the follow-up

method depends on the signal SNR. Higher SNR in the
refinement stage yields better localization of the signal—
i.e., a smaller Fisher ellipse—and thus also a higher proba-
bility of signal recovery [Eq. (35)]. In addition, the MADS
algorithm parameters also affect the detection efficiency;
e.g., an increased number of MADS iterations increases
the detection probability, especially for signals with lower
SNR. Because of this, the detection probability will have to
be estimated empirically in a Monte Carlo study (see
Figs. 4(c) and 5(c)).

IV. MONTE CARLO STUDIES

To demonstrate the capability of the systematic follow-
up procedure proposed in Sec. III, we perform two differ-
ent types of Monte Carlo (MC) studies.

FIG. 3. MADS-based search algorithm with four passes, where
�0 ¼ �c in the refinement stage and�0 ¼ �̂MLE in the zoom stage.
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In the first case, we simulate a so-called directed search
for a fixed sky position, where we follow up candidates in

a two-dimensional spin-down space, i.e., ff; _fg. In the
second case, we simulate an all-sky search over the four-

dimensional parameter space f�; �; f; _fg.
All MADS searches are implemented using the MADS

reference library NOMAD [29], and the LAL library from
the LALSUITE [25] is used for the F -statistic computation
[30]. The Gaussian data and signal injections are produced
using the LALAPPS programs from LALSUITE. In particular,
with LALAPPS_MAKEFAKEDATA_V4, we create data sets of
total duration T ¼ 200 d, with N ¼ 200 segments of du-
ration �T ¼ 1 d, using SFTs of length TSFT ¼ 1800 s, for
the two LIGO detectors H1 and L1. The noise level per
detector is generated as Gaussian white noise with a power-

spectral density Sn of
ffiffiffiffiffi
Sn

p ¼ 2	 10�23 Hz�1=2.

Independently of the type of search, the initial candi-
dates to follow up are prepared as follows: Rather than
performing a semicoherent grid-based search using the
Hough [5] or GCT method [6], we generate candidates
by drawing a random point in the vicinity of the injection
and consider it a candidate if the semicoherent metric
mismatch �� is within the range

�� 2 ½0; 1�; (45)

see Figs. 4(a) and 5(a). This procedure for candidate
preparation allows us to separate the study of the follow-
up algorithm from the problem of how to set up a semi-
coherent search, which is a difficult question on its own.
Note that even if the original grid-based semicoherent

search does not produce candidates that conform with
Eq. (45), we can always increase the density of the grid until

FIG. 4 (color online). Monte Carlo study of two-stage follow-up of candidates from a directed ff; _fg semicoherent search pointed
toward the Galactic center with N ¼ 200 segments of duration �T ¼ 1 d. (a) SNR loss of the initial candidates �� versus semicoherent

metric mismatch�� to the closest template. (b)g2F Z distribution after the fully coherent 2D ff; _fg zoom stage of 5000 directed searches

in pure Gaussian noise without injected signal. The maximal 2F value found is g2Fmax
Z ¼ 51:61. The mean value hg2F Zi ¼ 29:00 is

plotted with a dotted line. (c) Percentage of the 5000 injected signals classified as recovered (�S) and of non-Gaussian origin (	:G) as
function of the noncentrality parameter �2

s, Eq. (7). The error bars are computed by using a Jackknife estimator. (d) Upper plot:
computing cost of the semicoherent refinement stage. Middle plot: computing cost of the fully coherent zoom stage. Lower plot: total
computing cost.
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Eq. (45) applies. This would amount to a (cheap) preprocess-
ing stage inserted before the present follow-up procedure.

A. Follow-up of candidates from a directed search

For the directed type of searches, we fix the sky position
to the coordinates of the Galactic center. This choice is
arbitrary, and we could use any other point without quali-
tatively changing the results. We create 5000 data sets.
Note that each data set has different Gaussian noise real-
ization in which a CW signal from an isolated source is
injected. In the process of injection, the original noise data
set is also used to examine the behavior of the follow-up
method in the absence of a signal.

The pulsar injection parameters �s are drawn uniformly
in the range f 2 ð50; 51Þ Hz, cos � 2 ð�1; 1Þ, c 2

ð��=4; �=4Þ and �0 2 ð0; 2�Þ, where � is the inclination
angle of the source with respect to the line of sight, c is the
polarization, and �0 is the initial phase of the signal [30].
The signal amplitude h0 is chosen such that the expected
average SNR2 of Eq. (7) for a perfect match is distributed

uniformly in the range �2
s 2 ð0; 2Þ. The spin-down _f is

chosen uniformly in the range _f 2 ð� fmin


min
; fmin


min
Þ with a

minimal spin-down age 
min ¼ 300 yr at fmin ¼ 50 Hz.
The MADS algorithm parameters used in the MC which
have been found empirically to achieve good results are
summarized in Table I. For this type of follow-up, we find
that the first pass of the search algorithm in the refinement
stage and only two repetitions of the second pass in the
zoom stage are sufficient. We restrict the size of the search
box for the refinement stage ��R by taking one frequency

FIG. 5 (color online). Monte Carlo study of two-stage follow-up of candidates from an all-sky f�; �; f; _fg semicoherent search with

N ¼ 200 segments of duration �T ¼ 1 d. (a) SNR loss of the initial candidates �� versus semicoherent metric mismatch� � . (b)g2F Z

distribution after the fully coherent 4D f�; �; f; _fg zoom stage of 7500 searches in pure Gaussian noise, without injected signal. The

maximal 2F value found is g2F max
Z ¼ 58:76. The mean value hg2F Zi ¼ 37:50 indicated with dots. (c) Percentage of the 7500 injected

signals classified as recovered (�S) and of non-Gaussian origin (	:G) as function of the signal strength �2
s. The error bars are

computed using a Jackknife estimator. (d) Upper plot: computing cost of the semicoherent refinement stage. Middle plot: computing
cost of the fully coherent zoom stage. Lower plot: total computing cost.
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and two first spin-down metric extents. In the zoom
stage, we constrain the parameter space to a Fisher ellipse
[Eq. (25)] with nB ¼ 24.

We first apply the follow-up chain to the pure Gaussian
noise data without injected signals. The correspondingg2F Z distribution of the resulting fully coherent zoom stage
is plotted in Fig. 4(b). The maximal value found isg2Fmax

Z ¼ 51:61. We therefore use a threshold for the

classification of non-Gaussian candidates (:G) ofg2F ðGÞ
th ¼

60, which is safely above this level.
We next apply the follow-up chain to the Gaussian noise

data with injected signal. In Fig. 4(c), we plot the percent-
age of injected signals that are classified as recovered
signals (S) and non-Gaussian origin (:G) as a function

of the injected signal strength �2
s. From this plot, we can

read out the detection probability—namely, we reach 90%

of signal recovery for candidates with �2
s � 0:7.

The computing cost as a function of �2
s is plotted in

Fig. 4(d). We notice that the cost of the refinement stage is
negligible, and in the zoom stage, the averaged computing
time decreases with higher signal strength.

B. Follow-up of candidates from an all-sky search

The data and signal preparation for the following all-sky
Monte Carlo study is the same as in the directed search
case; however, the sky position is drawn isotropically over
the whole sky. We create 7500 data sets with uniformly

distributed injected average SNR2 in the range �2
s 2 ð0; 3Þ.

The algorithm parameters used in the refinement and zoom
stages which have been found empirically to yield good
performance are given in Table II. We also find that here
the zoom stage benefits from performing all four search
passes shown in Fig. 3. The size of the search box for the
refinement stage in the spin-down subspace has been de-
fined exactly as in the directed search example. The sky
subspace is constrained by using an m ¼ 1 isomismatch
ellipse. As in the previous example, we use nB ¼ 24 in
Eq. (25) to determine the size of the Fisher ellipse.

Similarly to the directed follow-up, we first test the
pipeline using the Gaussian noise data without injections.

The resulting distribution of final g2F Z values is plotted in

Fig. 5(b). The maximal value found is g2F max
Z ¼ 58:76,

which is higher compared to the value found in the directed
follow-up searches due to the increased number of eval-
uated templates. We therefore use a threshold for the

classification of non-Gaussian candidates (:G) ofg2F ðGÞ
th ¼

70, which is safely above this level.
Next, we search the data containing the injected

signals. In Fig. 5(c), we plot the fraction of signals clas-
sified as recovered (S) and the percentage of MC trials
found to be of non-Gaussian origin (:G) as a function of

the injected signal strength �2
s. In order to achieve

90% signal recovery (S), we now need stronger signals,

namely �2
s * 1:7. However, for �2

s � 1:5, we can already
achieve 90% ‘‘detection probability’’ in the sense of
separating candidates from Gaussian noise (:G). This
indicates that the zoom step sometimes converges on a
secondary maximum. Given that any non-Gaussian (:G)
candidates after zoom will receive further scrutiny, it
would be straightforward to further explore the parameter
space around such candidates to localize a potential pri-
mary maximum.

The computing cost as a function of �2
s is plotted in

Fig. 5(d). We notice that the total computing cost is domi-
nated by the zoom stage, and the averaged computing time
is rather independent of the signal strength.

V. DISCUSSION

We have studied a two-stage scheme for the fully co-
herent follow-up of semicoherent candidates. The first
stage, called refinement, aims to find the maximum like-
lihood estimator of the initial semicoherent candidate. This
allows us to better constrain the parameter space for the
coherent zoom stage. The two-stage scheme is suitable for
following-up candidates from all-sky or directed semico-
herent searches. The proposed gridless optimization lowers
the computing cost per candidate to acceptable levels. In
Monte Carlo studies, we tested the efficiency of the algo-
rithm for directed and all-sky follow-up searches.
In this paper, we restricted the all-sky follow-up opti-

mization to four dimensions, namely sky, frequency, and
first spin-down. Further work is required to extend the
optimization to higher dimensions. A related attractive
direction for further development is the extension and
application of the search algorithm for follow-up of CW
candidates in binary systems, which is a challenging
higher-dimensional problem.
We also aim to extend the two-stage scheme presented

here by including intermediate semicoherent zoom stages.
This should allow us to further reduce the computing cost
and increase detection efficiency.

TABLE I. Algorithm parameters for follow-up of candidates
from directed searches.

Stage w� wþ
min wþ

max ub pmax

R �1 1 1 2 20 000

Z �1 1 50 1.1 20 000

TABLE II. Follow-up algorithm parameters for full parameter-
space searches.

Stage w� wþ
min wþ

max ub p

R �1 1 5 2 20 000

Z �1 1 50 1.2 20 000
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