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We investigate a class of spatially anisotropic cosmological models in Einstein-
aether theory with a scalar field in which the self-interaction potential depends on the
timelike aether vector field through the expansion and shear scalars. We derive the
evolution equations in terms of expansion-normalized variables, which reduce to a dy-
namical system. We study the local stability of the equilibrium points of the dynamical
system corresponding to physically realistic solutions, and find that there are always
ranges of values of the parameters of the models for which there exists an inflationary
attractor. C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4802246]

I. INTRODUCTION

There are various models of early universe cosmology which incorporate a violation of Lorentz
invariance, which include Einstein-aether theory1, 2 and the IR limit of (extended) Horava gravity.3

When the phenomenology of theories with a preferred frame is studied, it is generally assumed
that this frame coincides, at least roughly, with the cosmological rest frame defined by the Hubble
expansion of the universe. It has recently been shown,4 based on a Bayesian analysis and assuming
nothing other than the existence of a suitably averaged linear Hubble law, that the standard Cosmic
Microwave Background (CMB) rest frame is not the one in which the Hubble flow is most uniform
(questioning whether the standard treatment of the cosmic rest frame in which the variance in the
Hubble flow can be reduced to a boost at a point is correct).

Einstein-aether theory consists of general relativity (GR) coupled, at second derivative order,
to a dynamical timelike unit vector field, the aether. In Horava gravity, the aether vector is assumed
to be hypersurface-orthogonal; hence every hypersurface-orthogonal Einstein-aether solution is a
Horava solution (most of the solutions studied). In this effective field theory approach, the aether
vector field ua and the metric tensor gab together determine the local spacetime structure.

The inflationary paradigm5 provides one of the simplest ways to describe various aspects of
the physics of the early universe in standard cosmology. However, despite its successes some of the
fundamental questions still remain to be answered in this paradigm. We shall discuss the late time
dynamics of Einstein aether cosmological models. In particular, we explore the impact of Lorentz
violation on the inflationary scenario.1, 2, 6–8

Cosmological models in aether (Lorentz-violating) theories of gravity are currently of interest.
A systematic construction of an Einstein-aether gravity theory with a Lorentz violating dynamical
field that preserves locality and covariance in the presence of an additional “aether” vector field has
been presented (the field equations (FE) are given therein).1, 9, 10

In an isotropic and spatially homogeneous Friedmann universe with expansion scale factor a(t)
and comoving proper time t, the aether field will be aligned with the cosmic frame and is related to the
expansion rate of the universe. The Einstein FE are generalised by the contribution of an additional
stress tensor for the aether field. If the universe contains a single self-interacting scalar field φ (e.g.,
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a scalar inflation which would dominate in any inflationary epoch), with a self-interaction potential
V , V can now be a function of φ and the expansion rate and even the shear.1

A. Exponential potentials

Exponential potentials V0e−λφ arise naturally in various higher dimensional frameworks, such
as in Kaluza-Klein theories and supergravity.11 Scalar fields with exponential potentials in GR do
not yield exponential inflation as with (for example) the harmonic potential.5 However, they do lead
to a power-law inflation provided the potential is not too steep. The limitation of steep potentials
can be alleviated using multiple fields, which can cooperate via Hubble damping to yield assisted
inflation.12 In addition, for sufficiently flat potentials, exponential potentials yield a scaling solution
which is a late time attractor.13, 14

The dynamical properties of the positive exponential potentials leading to inflation in the
Friedmann-Robertson-Walker (FRW) model have been widely studied15–17 (also see Appendix A).
The classical solution for the scale factor can be written as a power law, a ∝ tn, with n = 2/λ2;
in order to have an inflationary phase with the exponential potential, one requires the steepness
parameter λ to satisfy λ2 < 2. If the potential is steep, then it does not support inflation. The effective
dynamics with an exponential potential have been more widely studied.13, 14 The equilibrium points
corresponding to sources consist of a subset of the (non-oscillatory) Jacobs anisotropic Bianchi I
non-vacuum (massless scalar field) solutions.14

Negative exponential potentials also lead to a rich physics, such as in the Ekpyrotic scenario.18

II. ANISOTROPIC MODELS

We study a class of spatially homogeneous, anisotropic cosmological models in Einstein-aether
theory. Carruthers and Jacobson6 and Kanno and Soda7 examined Bianchi type I anisotropic solutions
in the presence of a positive cosmological constant, with three orthogonal principal directions of
expansion, and with the aether tilted in one of the principal directions. They showed that, to linear
order in the anisotropy, the system relaxes exponentially to the isotropic, de Sitter solution.

In an anisotropic Einstein-aether model there will be additional terms in the FE:

• The effects on the geometry from the anisotropy (and curvature) of the actual 1-parameter
subclass of Bianchi V Ih spatially homogeneous models (with an isotropic curvature; see
Eqs. (4)–(5)) considered below.

• The energy momentum tensor of the scalar field, due to the possible dependence of the self-
interaction potential V on the Lorentz violating vector field (see Eqs. (14)–(15) below).9

• The Einstein FE are generalised by the contribution of an additional stress tensor, Sab, for the
aether field which depends on the dimensionless parameters of the aether model (e.g., “the ci”).
This has the effect of renormalizing some of the parameters in the model (e.g., the gravitational
constant G, where we choose units in which 8πG = 1; effectively we set c1 + 3c2 + c3 = 0
so that the remaining parameters in the model can be characterized by the constants c2 and
d – see below).7

• In anisotropic models, there may be a tilt between the preferred direction of the aether and that
of the anistropy (in an isotropic and spatially homogeneous Friedmann universe the aether field
is aligned with the cosmic frame). This adds additional terms to the aether stress tensor Sab,
which can be characterized by a hyperbolic tilt angle, α(t), measuring the boost of the aether
relative to the rest frame of the homogeneous spatial sections.6, 7

In this paper, we are interested in the qualitative features of cosmological models in Einstein
aether theory (and in particular in the presence of curvature and shear).

A. The potential

If the universe contains a single self-interacting scalar field φ (e.g., a scalar inflation which
would dominate in any inflationary epoch), the self-interaction potential V is a function of φ but
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can now also be a function of the timelike vector field ua (the aether field);1 V = V (φ, θ, σ ), where
θ = 3H = 3ȧ/a is the expansion rate and σ is the shear scalar, defined by σ 2 ≡ 1

2σ abσab. The

modified stress tensor T φ

ab can be written in terms of an effective fluid with density ρφ and pressure
pφ (see below).

In general, we consider a scale invariant potential of the form (cf. Ref. 9),

V (θ, φ, σ ) = V0 exp[−λφ] +
∑
r,s

ar,sθ
rσ s exp[(r + s − 2)λφ/2], (1)

where V0, λ (k ≡ − λ in Ref. 19 and Appendix A) and {ar, s} are constants. The constant V0 is
assumed to be positive. Negative constants ar, s are permitted; however, it might be demanded that
the potential V (θ, φ, σ ) is positive definite.

In particular, we shall study the particular potential

V (θ, φ) = V0e−λφ + a
√

V0θe− 1
2 λφ + b

√
V0σe− 1

2 λφ, (2)

where, for convenience, we have renormalized the constants, dropped the indices on the constants
and renamed the second constant b. We could easily consider additional terms with r = 2, s = 0
and r = 0, s = 2, but these terms are expected to simply renormalize the arbitrary parameters in the
resulting model.

We could also study a potential with a single generic term (with arbitrary values for r, s, and
non-zero constant ar, s).20

B. The model

The evolution equations follow from the FE derived from the Einstein aether action.1, 2 The
energy-momentum conservation law or Klein-Gordon equation is

φ̈ + θφ̇ + Vφ = 0. (3)

The generalized Friedmann equation is

θ2 = 3c2σ 2 + 9d(α̇ + 1

3
αθ )2 + 3ρφ − 3

2
P, (4)

where P is the scalar curvature of the homogeneous hypersurfaces, which is always negative in the
models discussed here (where we also neglect normal matter). The Raychaudhuri equation governing
the evolution of the expansion is given by

θ̇ = −1

3
θ2 − 2c2σ 2 + d(α2(θ̇ + 1

3
θ2) − 3α̇2 + αα̇θ + 3αα̈) − 1

2
(ρφ + 3pφ). (5)

Following Ref. 21 (also see Appendix A), we consider a 1-parameter (m ≡ h − 1) class of
anisotropic cosmological models with metric (A10), which includes Bianchi types III (m = 0), V
(m = 1), VI0 (m = − 1), and VIh (all other m). The expansion scalar, which determines the volume
behavior of the fluid, is given by (A11) and the shear scalar is given by (A13). In the case under
consideration here, there is no rotation and no acceleration; i.e.,

ua;b = 1

3
θhab + σab,

where hab ≡ gab + uaub.
Thus, in our model, in the generalized Friedmann equation − 3

2 P = 3
a2 N , where N ≡ m2 + m

+ 1 ≥ 3/4 > 0. Using the generalized Friedmann equation, the evolution equation for the shear is

c2σ̇ = −c2σθ + M

3
√

3
(θ2 − 3c2σ 2 − 9d(α̇ + 1

3
αθ )2 − 3ρφ), (6)

where M ≡ 1−m√
m2+m+1

. The constants M and N are not independent but are related (via m); formally,
we can recover the Bianchi type I case by taking M = N = 0.
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Finally, the evolution equation for the tilt is

α̈ + θα̇ + 1

9
α(3θ̇ + 2θ2) = 0. (7)

1. The future evolution of tilt

The evolution equation (the “master” equation in Ref. 7) for the tilt (in the small anisotropy and
small tilt limit; i.e., using the Raychaudhuri equation and keeping α, σ to first order only) is given
by

α̈ + θα̇ − 1

9
α[θ2 + 27

2
(ρφ + 3pφ)] = 0. (8)

From this equation it was shown that the tilt decays (α → 0) to the future (in the Bianchi type
I models) as is expected.7 (Note that the possibility that the dimensionless parameters can depend
on the cosmological time via the scalar field (i.e., ci = ci(φ)) was also considered by Ref. 7, and it
was found that inflationary solutions can be obtained even in the absence of a scalar field potential,
as in scalar-tensor theories of gravity.) The dynamics of a tilted aether in a Bianchi I cosmological
model without the assumption of a small tilt was studied in Ref. 6, and it was found that when the
initial hyperbolic tilt angle α (and its time derivative) is sufficiently small, then α → 0 at late times
(consistent with the linearized stability analysis in Ref. 7), but in general (for larger tilt angles) there
can be runaway (or singular) behaviour in the anisotropy. It is known that the tilt decays to the future
in general tilted perfect fluid Bianchi cosmological models (except in the degenerate case in which
the tilt becomes extreme; but this case must be treated separately here).22

2. Past evolution

We are also interested in the past evolution of these models. Let us discuss this briefly. Since we
expect the spatial curvature not to be dynamically important to the past, as a first step we can study
the Bianchi type I models. We need to study the tilt carefully, since the tilt may become extreme to
the past (and we may need to parameterize the tilt differently).

In the case of a stiff perfect fluid (or massless scalar field) in GR, the solutions are non-
oscillatory to the past, and asymptote towards a one parameter family of sources that correspond to
Jacobs anisotropic Bianchi type I non-vacuum solutions.13 We shall later find that analogues of the
Jacobs anisotropic solutions are sources of the anisotropic Einstein aether models. Let us simply ask
whether the tilt could change the qualitative picture. The normalized equations for the tilt angle α

are

α′ = 3	,	′ = (q − 2)	 + (q − 1)α, (9)

where 	 ≡ α̇/θ . The equilibrium points with q = 2 (the analogues of the Jacobs solutions) are
not compatible with α non-zero, which implies that there are no sources with non-zero tilt. A
local stability analysis of these equilibrium points (with zero tilt) then shows that all of the non-zero
eigenvalues (the equilibrium points are non-isolated) of these q = 2 Jacobs-like solutions are positive
(3 and 1), and hence these equilibrium points are local sources.

3. The case of negligible tilt

Therefore, neglecting the tilt, and assuming the forms of the potential discussed earlier, we obtain
the following system of equations, governing the phenomenological Einstein-aether cosmological
models under consideration:

θ2 = 3c2σ 2 + 3ρφ − 3

2
P, (10)

θ̇ = −1

3
θ2 − 2c2σ 2 − 1

2
(ρφ + 3pφ), (11)
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c2σ̇ = −c2σθ + M

3
√

3
(θ2 − 3c2σ 2 − 3ρφ), (12)

φ̈ + θφ̇ + Vφ = 0. (13)

C. The scalar field

Let us now consider the forms of ρφ and pφ in the specific class of geometries under consideration
here. The Einstein-aether action,1 which is a generalization of the Einstein-Hilbert action, also
depends on the aether field (the timelike vector field ua). In particular, the matter fields can depend
on the aether field. The Lagrangian for the matter (scalar) field is given by

Lφ = 1

2
∇aφ∇aφ − V,

where the self-interaction potential V now can depend on scalar quantities constructed from (the
covariant derivative of) ua. Taking variations of V = V (φ, θ, σ ) with respect to the metric and the
aether field ua (see Eq. (13) in Ref. 1) we obtain (for the models under consideration) the effective
density ρφ and pressure pφ (T φ

ab ∼ ρφuaub + pφhab) of the form (see Appendix B),

ρφ = 1

2
φ̇2 + V − Vθ (θ +

√
6σ ) − Vσ (σ − 1√

6
θ ), (14)

pφ = 1

2
φ̇2 − V + Vθ (θ +

√
6σ +

√
6
σ̇

θ
) + Vσ (σ − 1√

6
θ − 1√

6

θ̇

θ
)

+ V̇θ (1 +
√

6
σ

θ
) + V̇σ (

σ

θ
− 1√

6
). (15)

Note that in the Bianchi I case with Vσ = 0, we have that

ρφ = 1

2
φ̇2 + V − Vθ (θ +

√
6σ ), (16)

pφ = 1

2
φ̇2 − V + θVθ + V̇θ (1 +

√
6
σ

θ
). (17)

(In the absence of shear (σ = 0) we obtain Eq. (14) in Ref. 1).

D. Special cases

There are a number of special cases that might be of interest.

• V = V (φ, θ ), which has non-trivial corrections when the shear is not zero.
• The Bianchi type I subcase with K = 0.
• The case c2 = 1

Regarding this last subcase, there are 4 dimensionless free parameters (constants) that define
the Einstein aether theory (ci; i = 1...4). Since we have normalized G (c1 + 3c2 + c3 = 0), and
since there is an invariance in the action in the cosmological application, there are effectively only 2
independent parameters,1, 23 denoted here by c2 and d. The arbitrary parameter d ∼ c1 − c4 does not
occur in the tilt-free equations above. The final parameter, c2 − 1 ∼ (c1 + c3) satisfies 0 ≤ c2 ≤ 1,
where c2 = 1 is the corresponding GR value. In Ref. 23 it was shown that (c1 + c3) is positive and
bounded above; indeed, it is expected that (c1 + c3) is very small (i.e., ∼10− 3). Therefore, c2 ∼ 1 is
consistent with Refs. 1 and 23. In addition, since it is not expected that there would be any significant
different qualitative behaviour in the late time dynamics, we could assume self-consistently here
that c2 ∼ 1 to simplify the analysis.
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E. Dimensionless variables

We now introduce new expansion-normalized variables and a new time variable as follows:

β =
√

6
σ

θ
,

dt

dτ
= 3

θ
,

� =
√

3√
2

φ̇

θ
,  =

√
3V0

e−λφ/2

θ
. (18)

For a given potential V (θ, φ, σ ), we can find 3ρφ /θ2 and 3pφ /θ2, in terms of β, �, and , and
determine the system of differential (evolution) equations in terms of the expansion-normalized
variables (see below). We define K ≡ − 3P

2θ2 , and since K is always positive the generalized Friedmann
equation usually determines a compact region of interest (i.e., β, �, and  are bounded). The
deceleration parameter, q, is defined by the decoupled evolution equation for the expansion

dθ

dτ
= −θ (1 + q), (19)

and inflation is defined by q < 0.

III. A CLASS OF ANISOTROPIC MODELS

We are looking for general scale invariant solutions in which

V (θ, φ, σ ) = V0e−√
6λ̄φ + a√

3

√
V0θe−

√
6

2 λ̄φ +
√

2b
√

V0σe−
√

6
2 λ̄φ, (20)

where we have defined λ̄ = λ/
√

6, and we have normalized the constants a and b appropriately.
Let us now consider the class of anisotropic models under consideration (with with B1 = 1 and

B2 = 1 in Appendix B). The evolution equations are

β ′ = (q − 2)β −
√

2M

c2
K , (21)

� ′ = (q − 2)� + 3λ̄

2

(
22 + a + bβ

)
, (22)

′ = (q + 1) − 3λ̄�, (23)

where

K = c2

2
β2 + � − 1, (24)

� = �2 + 2 − aβ + b, (25)

q − 2 = ( a
√

2M
c2  − 4)K + 3(a + b)λ�β + 3(a − b)λ� + 62 + 3(b − aβ)

b − 2
. (26)

Note that 0 ≤ � ≤ 1 and c2

2 β2 ≤ 1. First we shall make some general comments about the full 3D
system. In Sec. IV, we shall comprehensively study the 2D zero curvature case.

A. Equilibrium points with zero curvature (K = 0)

1. One parameter family, Pj:

 = 0, �2 + c2

2 β2 = 1, qPj = 2. (27)
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Eigenvalues:

λ1 = 4 −
√

2Mβ, λ2 = 3(1 − λ̄�), λ3 = 0. (28)

Since − 1 < M < 1, we have that the smallest possible value for λ1 occurs for M → ± 1 when �

= 0 and β = ±
√

2
|c| . On the other hand, the smallest possible value for λ2 is obtained for the largest

possible value of �. We have that if |c| > 1
2 and λ̄ < 1, then all of the circle of equilibrium points

defined above consists of sources for all allowed values of M. If λ̄ > 1 or |c| < M
2 , a part of the

circle consists of saddles (or even sinks if λ̄ is large enough, M is non-zero and c is small enough).
The vacuum solution � = 0, M = 0, β = ±

√
2

|c| is always a source. These sources correspond to
analogues of the (non-oscillatory) Jacobs anisotropic Bianchi I non-vacuum solutions.13

2. Isotropic equilibrium points p2, p3:

 = 2(2λ̄2b−b−aλ̄2±
√

b2−2aλ̄2b+a2λ̄2+4−4λ̄2)

4λ̄2b2−4aλ̄2b+a2λ̄2+4
, β = 0. (29)

For physical solutions we require  to be real and positive. To make the linearization (for small
values of the parameters a and b) of the two isotropic equilibrium points p2, p3 easier we introduce
new parameters (A, B) specifically adapted to the points p2 and p3 through the relations:

a = 1−λ2−A2(1+B2)
A + B(λ−1 − 2λ), b = 1−λ2−A2(1+B2)−2ABλ

A , (30)

A = 2(2λ̄2b−b−aλ̄2±
√

(b−aλ̄2)2+(1−λ̄2)(a2λ̄2+4))

λ̄2(2b−a)2+4
, B = ( a

2 − b)λ̄. (31)

The two signs are necessary to cover the whole range of parameter values. We then obtain a new
parameterization of the two points, (p1, p2) → ( p̄1, p̄2),

p̄2 :  = A, � = AB + λ̄, β = 0, qp̄2 = −(1 − 3ABλ̄ − 3λ̄2), (A > 0), (32)

p̄3 :  = λ̄2−1
A(B2+1) , � = B λ̄2−1

A(B2+1) + λ̄, β = 0, (33)

qp̄3 = − A(1+B2)(1−3λ̄2)+3Bλ̄(1−λ̄2)
A(1+B2) , (A > 0, λ̄2 > 1), (A < 0, λ̄2 < 1). (34)

Eigenvalues:

p̄2 : λ1 = −3(1 − ABλ̄ − λ̄2), λ2 = −2(1 − 3ABλ̄ − 3λ̄2), (35)

λ3 = −3(1+A2+A2 B2−λ̄2)
1+A2+(AB+λ̄)2 , (36)

p̄3 : λ1 = −2 A(1+B2)(1−3λ̄2)+3Bλ̄(1−λ̄2)
A(1+B2) , λ2 = − 3(A+AB2+Bλ̄)(1−λ̄2)

A(1+B2) , (37)

λ3 = −3(1−λ̄2)(1−λ̄2+A2+A2 B2)
(1−ABλ̄−λ̄2)2+A2(1+B2+λ̄2) . (38)

The equilibrium point p̄2 is an inflationary sink for small λ̄ and positive A, while p̄3 is an inflationary
sink for small λ̄ and negative A.

3. Anisotropic points, p4, p5:

� = 1
λ̄
,  = − 1

2 (bβ + a), β = b2−a2−ab
2ba+2c2+b2 ± (39)

√
((a2+b2)2+2(2b−a)ac2)λ̄2+4(2ab+b2+2c2)(λ̄2−1)

λ̄(2ba+2c2+b2)
, (40)

qp4,p5 = 2. (41)
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The non-vacuum solutions corresponding to these equilibrium points also are spatially flat anisotropic
solutions with a deceleration parameter equal to 2 (and hence are never inflationary), but with a
fraction of the energy density contained in the potential energy of the scalar field.

Eigenvalues:

λ1 = 4 −
√

2Mβp4 , λ2,3 = −3p4,p5

(
bβ2

p4,p5
− bβp4,p5 + 2βp4,p5p4,p5 + b ± D

)
2
(
bp4,p5 − 2

) , (42)

where

D = [(−βp4,p5 (b − 2p4,p5 ) + bβ2
p4,p5

+ b)2 − 2(bp4,p5 − 2)(βp4,p5 λ̄
2(b2 + 2bp4,p5

+ 42
p4,p5

) + b2β3
p4,p5

λ̄2 + 4bβ2
p4,p5

λ̄2p4,p5 + 4(bλ̄2p4,p5 + λ̄22
p4,p5

− λ̄2 + 1))]1/2.
(43)

The signs of the eigenvalues can be studied. In Sec. IV, we will analyse the equilibrium points
in the zero curvature case in detail. There are some sources, which are analogues of the Jacobs
solutions studied above.

B. Equilibrium points with curvature

p6 :  = 0, � = 0, β = M√
2c2 , (44)

K = M2

4c2 − 1, q = M2

2c2 . (45)

Eigenvalues:

λ1 = M2

2c2
+ 1, λ2 = M2

2c2
− 2, λ3 = M2

2c2
− 2. (46)

This equilibrium point is always a saddle when the curvature K is negative.

C. Discussion

There are a number of important invariant sets. From Eqs. (B3)–(B5), we can compute the
evolution equations for K. By setting K = 0 in this expression we obtain K′ = 0, so that K = 0 is an
invariant set of the system. We recall that we can obtain the Bianchi I models (with K = 0) when M
= N = 0. We shall study this 2D invariant set (not necessarily for small values of the parameters a
and b) in Sec. IV (where we will use the same notation for the 2D equilibrium points as the 3D zero
curvature equilibrium points in this section).

In the invariant set  = 0, the scalar potential is dynamically negligible. The isotropic models
with β = 0 (i.e., no shear anisotropy), were studied in Ref. 20.

IV. ANALYSIS OF THE SYSTEM WITH ZERO CURVATURE

When K = 0 we obtain the 2D system (we also set c2 = 1),

β ′ = (q − 2)β, (47)

′ = (q + 1) − 3λ̄�, (48)

where

�2 = 1 − 1

2
β2 − 2 + aβ − b, (49)

q − 2 = 3

b − 2

[
(λ̄� − 1)(a + b)β + (a − b)λ̄� + b(β + 1) + 2

]
. (50)
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TABLE I. Equilibrium points of the anisotropic model.

Eq pts  β

p2, 3
2(2λ̄2b−b−aλ̄2±Z )

4λ̄2b2−4aλ̄2b+a2 λ̄2+4
0

p4, 5 − −λ̄b3−ba2 λ̄−2aλ̄±b N
2λ̄(2+2ab+b2)

λ̄b2−λ̄ab−λ̄a2∓N
λ̄(2+2ab+b2)

A. Equilibrium points

We define

Z =
√

b2 − 2abλ̄2 + a2λ̄2 + 4 − 4λ̄2

and

N 2 = b4λ̄2 + 2λ̄2a2b2 + λ̄2a4 + 8λ̄2 − 8 + 12abλ̄2 − 2a2λ̄2 − 8ab + 4b2λ̄2 − 4b2.

The equilibrium points that are potentially of interest (i.e., possible future attractors) in the 2D
system with zero curvature are given in Table I.

For physical solutions all of , β, and � must be real, and  ≥ 0. Since K = 0, if � ≥ 0, then
� and β2 are bounded. For sufficiently small λ̄, Z is real. We cannot hope to study the stability of
these equilibrium points in all generality. However, we consider some appropriate values of λ̄ (e.g.,
for small λ̄ such as λ̄ = 1

2 ). First, if a = b = 0 we will have the same equilibrium points pi as in the
single scalar field model with matter. We will study the stability of the pi in the two cases a = 0 and
b = 0, separately.

For the point p1, where  = 0 and β = ±
√

2λ̄2−2
λ̄

, which is only valid for λ̄ > 1, we have that
q = 2, and hence p1 is always non-inflationary. p1 always has one zero eigenvalue. In general, this
point will be a source, and we will not consider it further here. Some of the other equilibria may also
turn out to be sources for particular ranges of the parameters. Recall that analogues of the Jacobs
anisotropic Bianchi I non-vacuum solutions are sources.

1. Point p2

 is always positive for sufficiently small λ̄. The value of � for p2 is given by

� = λ̄(−ab + 2b2 + 4 + a Z − b Z )

4λ̄2b2 − 4aλ̄2b + a2λ̄2 + 4
.

We study the stability in two cases for the values of a, b between − 3 and 3.
The first case is when a = 0. For a = 0,  is real and positive for λ̄2 < 1, and also for λ̄2 > 1 if

b > 2
√

λ̄2 − 1 > 0. The eigenvalues μi, where i = 1, 2 (corresponding to + , −), are given by

μi = −3(m2 m1(m3 + m4)) ± √
2 m1 m5 + √

2λ̄3b2 m6)

m2(m7 ± m1 m8)
,

where

m1 =
√

b2 − 4λ̄2 + 4,

m2 =
√

−λ̄2(−4b2 + 2λ̄2b2 + (b3 + 2)b m1 − 2 − b4)

(λ̄2b2 + 1)2
,

m3 = 4bλ̄2 + 4b3λ̄4 + b5λ̄4 − b,
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FIG. 1. a = 0; μ1-eigenvalue of p2.

m4 = 4 − b6λ̄4 + b2 − 4λ̄2 + 4b4λ̄62λ̄2b6 + 2b2λ̄2,

m5 = b5λ̄5 + 3b3λ̄5 − 3b3λ̄3 − bλ̄3 − b3λ̄5,

m6 = 5 + b4 − b4λ̄2 + 5b2 + 2b2λ̄4 − 6λ̄2 − 7b2λ̄2,

m7 = 10b2λ̄2 + b6λ̄4 + 2b4λ̄2 + 2b6λ̄6 + 8b4λ̄4 + 4 + b2,

m8 = b5λ̄4 + 2b3λ̄2 + b.

We plot the two eigenvalues μ1, μ2, where the horizontal axes are the values of the parameters
(b, λ̄) (where � in Figures 1 and 2 is equal to λ̄), and the vertical axes are the values of μ1, μ2.

For illustration, we can also evaluate the two eigenvalues when λ̄ = 1
2 . We plot the two eigen-

values μ1, μ2 when λ̄ = 1
2 in Figs. 3 and 4 (where the horizontal axes are the values of − 3 ≤ b ≤ 3

and the vertical axes are the value of the eigenvalues μ1, μ2). As can be seen from the figures, for
the parameter − 3 ≤ b ≤ 3 , we have two negative eigenvalues which implies that p2 is a sink.

The second case is when b = 0.  is real and positive if λ̄2 ≤ 1 and a < 2 (including negative
values of a) or λ̄2 > 1 and a > 2. The eigenvalues are given by

μi = 3(m13 m15 ± m14 m16 + m17)

m14(48a2λ̄2 + 12a4λ̄4 + a6λ̄6 + 64)
,

where

m13 =
√

4 − 4λ̄2 + λ̄2a2,

m14 =
√

λ̄2(4a2 + a4λ̄2 − 4a2λ̄2 + 8a m13 + 16

(4 + a2λ̄2)2
,

m15 = −2aλ̄3 m13(16 + 4a2 + a2λ̄2 − 12λ̄2),
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FIG. 2. a = 0; μ2-eigenvalue of p2.

m16 = −64 − 32a2λ̄2 − 4a4λ̄4 + 64λ̄2 + 8aλ̄2 m13(a2λ̄2 + 4) − 4a4λ̄6,

m17 = −32a2λ̄3 − 4a4λ̄5a6λ̄7 + 48a2λ̄5 − 4a4λ̄7.

We plot the two eigenvalues μ1, μ2 in Figs. 5 and 6, where the horizontal axes are the values
of the parameters (a, λ̄) (where � in the figures below is equal to λ̄), and the vertical axes are the
values of μ1, μ2.

For illustration, we can also evaluate the two eigenvalues when λ̄ = 1
2 . We plot the two eigen-

values μ1, μ2 when λ̄ = 1
2 in Figs. 7 and 8 (where the horizontal axes are the values of − 3 ≤ a

FIG. 3. λ̄ = 1
2 , a = 0; μ1- plot for p2.
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FIG. 4. λ̄ = 1
2 , a = 0; μ2-plot for p2.

FIG. 5. b = 0; μ1-eigenvalues of p2.

FIG. 6. b = 0; μ2-eigenvalues of p2.
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FIG. 7. λ̄ = 1
2 , b = 0; μ1- plot of p2.

≤ 2 and the vertical axes are the values of the eigenvalues μ1, μ2). As you can seen from the
Figs. 7 and 8, we always have a sink for the values − 3 ≤ a ≤ 2.

The deceleration parameter for p2:
In this case, the deceleration parameter can be written in the form

q = −4(4 + b2) + λ̄2(G + Z C) + Z b

(X )(S − b Z )
,

where

G = −20ab + 12a2λ̄2 + 36b2 − a2b2 − 2ab3 − 16ab3λ̄2 + 9λ̄2a2b2

+λ̄2a3b − 8a2 + 8b4 + 48 + 4λ̄2b4 − λ̄2a4,

FIG. 8. λ̄ = 1
2 , b = 0; μ2-plot of p2.
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FIG. 9. λ̄ = 1
2 , a = 0; q for p2.

C = −8b3 − 12b3λ̄2 + 3λ̄2a3 − 36b + 12a + ba62 + 2ab2 − 15ba2λ̄2 − 24λ̄2ab2,

S = b2 + 2b2λ̄2 − 3abλ̄2 + 4 + a2λ̄2,

and

X = 4λ̄2b2 − 4aλ̄2b + a2λ̄2 + 4,

and we note that Z is defined earlier. We consider the inflationary behaviour in the same two cases
as in the stability analysis above; i.e, when a = 0 and λ̄ = 1

2 and when b = 0 and λ̄ = 1
2 . We plot the

values of q, where the horizontal axis is the value of a or b and the vertical axis is the value of q, in
Figs. 9 and 10. For λ̄ = 1

2 , and the case where a = 0, if b � − 1
2 , then q is negative; otherwise q is

positive. For the second case where b = 0, if a � 1, then q is positive; otherwise q is negative. That
is, the model is inflationary (in the latter case) when a � 1.

FIG. 10. λ̄ = 1
2 , b = 0; q for p2.
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FIG. 11. λ̄ = √
2, a = 0; μ1-eigenvalues of p3.

2. Point p3

The value of � for p3 is given by

� = λ̄(−ab + 2b2 + 4 − a Z + b Z )

4λ̄2b2 − 4aλ̄2b + a2λ̄2 + 4
.

The value of  is given by

 = 2(2λ̄2b − b − aλ̄2 − √
b2 − 2abλ̄2 + a2λ̄2 + 4 − 4λ̄2)

4λ̄2b2 − 4aλ̄2b + a2λ̄2 + 4
.

For small λ̄,  is negative; e.g., when a = 0 and λ̄ = 1
2 ,

 = −b + 2
√

b2 + 3

b2 + 4
,

which is always negative. Indeed, for positive real  we must have that λ̄ > 1 and b > 2
√

λ̄2 − 1 > 0.
The first case is when a = 0: the eigenvalues μi are given by

μi = −3(m2(m1(m3 + m4)) ∓ √
2m1 m5 + √

2λ̄3b2 m6)

m2(m7 ∓ m1 m8)
.

We plot the two eigenvalues μ1, μ2 when λ̄2 = 2 in Figs. 11 and 12 (where the horizontal axes are
the values of 2 < b ≤ 5 and the vertical axes are the values of the eigenvalues μ1, μ2). The signs of
the two eigenvalues are different, which implies that p3 in this case is a saddle.

The second case is when b = 0; we have

 = 2

4 + a2λ̄2

(
−aλ̄2 −

√
4 + a2λ̄2 − 4λ̄2

)
.

Thus,  is real and positive when λ̄ > 1, a < −2
λ̄

√
λ̄2 − 1 < 0. The eigenvalues are given by

μi = 3(m13 m15 ∓ m14 m16 + m17)

m14(48a2λ̄2 + 12a4λ̄4 + a6λ̄6 + 64)
.

We plot the two eigenvalues μ1, μ2 when λ̄2 = 2 in Figs. 13 and 14 (where the horizontal axis are
the values of − 4 ≤ a < − 1 and the vertical axis are the values of the eigenvalues μ1, μ2). We
always have positive signs for the both eigenvalues μ1 and μ2 which means that p3 is a source in the
range of − 4 ≤ a < − 1 .
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FIG. 12. λ̄ = √
2, a = 0; μ2-eigenvalues of p3.

The deceleration parameter for p3:
In this case, the deceleration parameter can be written in the form

q = −4(4 + b2) + λ̄2(G − Z C) − Z b

(X )(S + b Z )
.

In the two cases considered above, in which λ̄2 = 2, p3 is either a saddle or a source. For illustration,
we plot the values of q when a = 0 and λ̄ = 1

2 and when b = 0 and λ̄ = 1
2 in Figs. 15 and 16, where

the horizontal axis is the value of a or b and the vertical axis is the value of q. When a = 0, if b � 1
2 ,

then q is positive (otherwise q is negative). When b = 0, if a � − 1, then q is positive (otherwise
q is negative).

FIG. 13. λ̄ = √
2, b = 0; μ1-eigenvalues of p3.
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FIG. 14. λ̄ = √
2, b = 0; μ2-eigenvalues of p3.

3. Point p4

In this case � = 1
λ̄

. The value of  is given by

 = −λ̄b3 − ba2λ̄ − 2aλ̄ − b N

2λ̄(2 + 2ab + b2)
,

where N was defined earlier (before the table for the equilibrium points).  is real if N > 0 and it is
positive if b < 0. We define

J1 = b11 − 7b9 − 32b7 − 92b5 − 112b3 − 32b,

J2 = b13 − 13b11 − 20b9 − 20b7 − 160b5 − 416b3 − 384,

J = −2b20 − 4200b14 + 15b22 − 12576b12 − 34704b10 − b24 − 2b2(1116b16 − 189b18),

FIG. 15. λ̄ = 1
2 , a = 0; q for p3.
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FIG. 16. λ̄ = 1
2 , b = 0; q for p3.

J̄ = +582784b10 + 471552b8 + 345984b12 − 2b28 + 127584b14,

F1 = J̄ − 894b22 − 124b24 + 42b26 + 28128b16 + 312b18,

J3 =
√

2b2(−164864b2 − 205824b4 − 61440 − 82752b8 − 156160b6 + J ),

J4 =
√

−294912 − 983040b4 − 909312b2 − 23142b6 + F1,

J5 = 18b6 + b10 + 48b4 + 48b2 + 3b8,

J6 = −3b10 − 30b8 + b12 − 80b6 + 192b2 + 128.

There are also two cases for p4. First, when a = 0 and λ̄ = 1
2 , the value of  is

 = −1

2
b

(
b2 + √

b4 − 12b2 − 24

b2 + 2

)
,

which is real if b4 − 12b2 − 24 > 0 and  is positive for b < 0; i.e, we consider b < −3.75. The
eigenvalues are given by

μi = 3b(
√

b4 − 12b2 − 24(J1) + J2 ± √
b4 − 12b2 − 24 J3 ± J4)

2(b2 + 2)(
√

b4 − 12b2 − 24 J5 + J6)
.

We note that μ1(b) = μ2(−b).
We plot the eigenvalues μ1, μ2 in Figs. 17 and 18, where the horizontal axis is the real part of

the eigenvalues and the vertical axis is the imaginary part of the eigenvalues μ1 and μ2 for the range
of the parameter − 7 ≤ b ≤ − 4. As can be seen from these figures, the real parts of μ1 and μ2 are
both positive in the range − 7 ≤ b ≤ − 4, so that p4 is a source.

In the second case, when b = 0, the value of  is

 = −a

2
,
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FIG. 17. λ̄ = 1
2 , a = 0; μ1-eigenvalue of p4; Plot − 7 ≤ b ≤ − 4.

which is valid if a < 0. Let now consider the case when b = 0 and λ̄ = 1
2 ; the eigenvalues are given

by

μi = 3

16
a(−a3 + a n2 ± n̄2),

where

n2 =
√

(a2 − 6)(a2 + 4),

n̄2 =
√

2a6 − 2a4 n2 − 20a2 − 4a4 + 48 + 2a2 n2.

Again we note that μ2(a) = μ1(−a). We plot the eigenvalues above in Figs. 19 and 20 (where
the horizontal axis is the real part of the eigenvalues and the vertical axis is the imaginary part of
the eigenvalues for the range of parameter − 3 ≤ a < 0). As can be seen from these figures, the real

FIG. 18. λ̄ = 1
2 , a = 0; μ2-eigenvalue of p4; Plot − 7 ≤ b ≤ − 4.
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FIG. 19. λ̄ = 1
2 , b = 0; μ1-eigenvalue of p4; Plot for − 3 ≤ a < 0.

part of μ1 is negative and the real part of μ2 is positive in the range − 3 ≤ a < 0, which means that
in this case p4 is a saddle.

4. Point p5

The first case for p5 is when a = 0. The value of  is given by

 = −λ̄b3 + b
√

D

2λ̄(2 + b2)
,

where D ≡ b4λ̄2 + 8λ̄2 − 8 + 4b2λ̄2 − 4b2.  is real if D > 0, so that if λ̄2 > 1 then D always is
positive. But if λ̄2 < 1, then we have the condition that

b2 ≥ −2 + 2

λ̄2
+ 2

λ̄2

√
1 − λ̄4.

FIG. 20. λ̄ = 1
2 , b = 0; μ2-eigenvalue of p4; Plot for − 3 ≤ a < 0
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 is positive if −λ̄b3 + b
√

D > 0. Then, there are two cases: If b < 0, then λ̄2 < 1 and
b2 ≥ −2 + 2

λ̄2 + 2
λ̄2

√
1 − λ̄4, which means that b < − 3.75. Let us consider the case when a = 0

and λ̄ = 1
2 . The value of  is

 = 1

2
b(

−b2 + √
b4 − 12b2 − 24

b2 + 2
).

The eigenvalues are given by

μi =
3
(

J2 − √
b4 − 12b2 − 24J1 ∓ J3

√
b4 − 12b2 − 24 ± J4

)
2(b2 + 2)(−√

b4 − 12b2 − 24J5 + J6)
.

It can be shown that p5 is a saddle when a = 0 and λ̄ = 1
2 .

In the case b > 0, we then have λ̄2 > 1. Let us consider the case when a = 0 and λ̄ = 2. The
value of  is

 = 1

2
b(

−b2 + √
b4 + 3b2 + 6

b2 + 2
).

We define

k1 = 13b14 − 169b2 − 332b10 − 620b8 − 3232b6 − 8000b4 − 7680b2 − 768,

k2 = −13b12 + 91b10 + 488b8 + 1508b6 + 1936b4 + 704b2,

k3 = 589824 + 2359296b2 + 9535488b4 + 10665984b6,

k4 = −15224832b10 − 3186688b8 − 11761280b12 − 2668608b614,

k5 = +978b28 − 32b30 + 1508064b16 + 1383072b18 + 450120b20,

k6 = +40428b22 − 21822b24 − 6004b26,

FIG. 21. λ̄ = 2, a = 0; the real part of μ1-eigenvalue of p5; Plot for 0 < b ≤ 3.
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FIG. 22. λ̄ = 2, a = 0; the real part of μ2-eigenvalue of p5; Plot for 0 < b ≤ 3.

k7 =
√

k3 + k4 + k5 + k6,

k8 = −20208b18 + 39432b20 + 17490b22 − 1623264b14 + 2248b24,

k9 = −407040b16 − 786432b2 − 3710976b4 − 9141760b10 − 9193472b6,

k10 = −11950080b8 − 4576896b12 − 786b26 + 32b28,

k11 =
√

k8 + k9 + k10.

FIG. 23. λ̄ = 1
2 , b = 0; μ1-eigenvalue of p5; Plot − 2 ≤ a < 0.
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FIG. 24. λ̄ = 1
2 , b = 0; μ2-eigenvalue of p5; Plot − 2 ≤ a < 0.

The eigenvalues are given by

μi =
−3

(
k1 + √

b4 − 12b2 − 24k2 ± k7 + ∓k11

√
b4 − 12b2 − 24

)
2(b2 + 2)(−√

b4 − 12b2 − 24J5 + J6)
.

We plot the real part of the eigenvalues in Figs. 21 and 22 (where the vertical axis is the real part
of the eigenvalues and the horizontal axis is the value of the parameter in the range 0 < b ≤ 3).
As can be seen from Figs. 21 and 22, the real parts of μ1 and μ2 are both negative in the range of
0 < b � 2.55; therefore, p5 is a sink. The real part of μ2 changes sign for b � 2.55, so that implies
p5 becomes a saddle. Note that q > 0, which implies that p5 is not inflationary.

The second case for p5 is when b = 0, and the value of  is

 = −a

2
,

which is positive if a < 0. Let us consider the case where b = 0 and λ̄ = 1
2 ; the eigenvalues are given

by

μi = 3

16
a(−a3 − a n2 ± n̄6),

where

n2 =
√

(a2 − 6)(a2 + 4), n̄6 =
√

2a6 + 2a4 n2 − 20a2 − 4a4 + 48 − 2a2 n2.

We plot the eigenvalues in Figs. 23 and 24 (where the horizontal axis is the real part of the
eigenvalues and the vertical axis is the imaginary part of the eigenvalues for the range of the
parameter − 2 ≤ a < 0). As can be seen from these figures, the real part of μ1 is negative in the range
− 2 ≤ a < 0 but the real part of μ2 is positive is the same range. Thus, p5 is a saddle in this case.

B. Summary

Let us summarize the stability analysis. The point p2 is a sink for both cases (a = 0, b = 0) in
the range of values − 3 ≤ a, b ≤ 2. However, p3 is a saddle when a = 0 and λ̄ = 1

2 for the range
2 < b ≤ 5. p3 is a source when b = 0 and λ̄ = √

2 in the range − 4 ≤ a ≤ − 1. The model is
inflationary for p2 if either − 1

2 � b or a � 1. The model is inflationary for p3 if either 1
2 � b or

a � − 1. Let us next consider the stability of p4. When a = 0 and λ̄ = 1
2 , p4 is a source in the range

− 7 ≤ b ≤ − 4. But p4 is a saddle when b = 0 and λ̄ = 1
2 . For p5, there are restrictions on the ranges
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for a and b in order for p5 to exist. p5 is a sink when a = 0 and λ̄ = 2 in the range of 0 < a � 2.55,
but q > 0 which implies that p5 is not inflationary.

The equilibrium points correspond to physically realistic solutions for a restricted set of values
of the parameters. Therefore, a complete discussion of the cosmological models would include
further analysis of the viable (physical) ranges for the parameters and the nature of the equilibrium
points in each of these viable ranges. However, for each set of parameters in the ranges discussed,
there always exists an inflationary future attractor for sufficiently small λ̄.

V. CONCLUSIONS

We have investigated cosmological models in the Einstein-aether theory and (extended) Horava
gravity in which both the aether vector field and the metric tensor together determine the evolution.
We have been especially interested in the possible inflationary behaviour of the models in a class
of spatially anisotropic cosmological models. In particular, we have studied scalar field models in
which the self-interaction potential, consisting of terms each containing exponentials, depends on
the scalar field φ and also on the timelike vector field through the expansion rate θ and the shear
scalar σ . We derived the evolution equations in the anisotropic models, which consist of the energy-
momentum conservation law or Klein-Gordon equation, the generalized Friedmann equation, the
Raychaudhuri equation, and the evolution equations for the shear and for the tilt. It was argued that
the tilt generally decays to the future (in the anisotropic models under consideration), and we thus
concentrated on the inflationary behaviour of models in the case of negligible tilt.

We introduced expansion-normalized variables and obtained the resulting dimensionless evo-
lution equations which reduce to a 3D dynamical system. We studied the behaviour of the models
in general, and in the 2D zero curvature case (which includes the Bianchi I type models) in de-
tail. In particular, we studied the local stability of equilibrium points of the 2D dynamical system
corresponding to physically realistic solutions with a restricted set of values of the parameters. We
concluded that there are always ranges of values for which there exists an inflationary sink.

In this paper, we have primarily been interested in the local stability of equilibrium points of the
cosmological dynamical system and, especially, in demonstrating the local existence of physically
important inflationary future attractors (sinks). Some of these local sinks may also be global sinks.
We have also briefly discussed the past evolution of the Einstein-aether cosmological models. A
global analysis of a particular cosmological model (i.e., a specific Bianchi model with a specific
self-interaction potential), based on the dynamical systems approach used here, would certainly be
possible.14
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APPENDIX A: REVIEW OF SCALAR FIELD COSMOLOGY

Spatially homogeneous and isotropic FRW scalar field models have been studied in Ref. 15.
Spatially homogeneous but anisotropic models of various Bianchi types have been studied in
Ref. 16 (especially exact solutions) and Ref. 19. A qualitative analysis of all Bianchi models
with k2 < 2 (where k ≡ − λ), including standard matter satisfying various energy conditions, was
presented in Ref. 17. It was found that the power-law inflationary solution is indeed an attractor for
all initially expanding Bianchi models (except for a subclass of the Bianchi type IX models which
recollapse).
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1. Equations

Cosmological models with a minimally coupled scalar field have an effective energy density
and pressure given by

ρφ = 1

2
φ̇2 + V (φ), pφ = 1

2
φ̇2 − V (φ). (A1)

In the models under consideration, the potential of the scalar field is given by

V (φ) = V0ekφ, (A2)

where V0 (>0) and k are constants.
From the Einstein FE we have the Raychaudhuri equation governing the evolution of the

expansion

θ̇ = −2σ 2 − 1

3
θ2 − φ̇2 + V (φ), (A3)

and the generalized Friedmann equation

θ2 = 3σ 2 + 3

2
φ̇2 + 3V (φ) − 3

2
P, (A4)

where σ is the shear scalar, P is the scalar curvature of the homogeneous hypersurfaces, which is
always negative except in the Bianchi IX case, and V (φ) is given by Eq. (A2). The Klein-Gordon
equation for the scalar field with an exponential potential is then

φ̈ + θφ̇ + kV (φ) = 0. (A5)

We now introduce new expansion-normalized variables and a new time variable as follows:

β =
√

3
σ

θ
,

dt

dτ
= 3

θ
,

� =
√

6

2

φ̇

θ
,  =

√
3V0

ekφ/2

θ
. (A6)

With these definitions, Eqs. (A3)–(A5) can be rewritten as

� ′ = −�(2 − 2β2 − 2�2 + 2) −
√

6k

2
2, (A7)

′ = −(−1 − 2β2 − 2�2 + 2 −
√

6k

2
�), (A8)

where ′ denotes differentiation with respect the new time τ . There is an additional differential equation
for β, which depends on the particular Bianchi model under consideration. The equilibrium points
of the system have either  = � = 0, which corresponds to the massless scalar field case, β2

+ �2 = 1,  = 0, which represents the Bianchi type I initial (line) singularity, or else (and in all
cases of interest here) obey the following relation:

2 + �2 = −
√

6

k
�. (A9)

2. A class of anisotropic cosmological models

The diagonal form of the Bianchi type VIh metric is given by21

ds2 = −dt2 + a(t)2dx2 + b(t)2e2mx dy2 + c(t)2e2x dz2, (A10)

where m = h − 1. If m = 1, then the metric is of Bianchi type V, if m = 0, then the metric is of
Bianchi type III, and if m = − 1, then the metric is of Bianchi type VIo. Thus, we are considering a
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1-parameter (m) class of Bianchi models which include Bianchi types III (m = 0), V (m = 1), VI0

(m = − 1), and VIh (all other m).
The expansion scalar (A11), which determines the volume behaviour of the fluid, is given by

θ = ȧ

a
+ ḃ

b
+ ċ

c
(A11)

(where an over-dot denotes differentiation with respect to the proper time). The shear tensor, σ ab,
determines the distortion arising in the fluid flow leaving the volume invariant. The nonzero com-
ponents of the shear tensor are

σ11 = a2

3

(
2

ȧ

a
− ḃ

b
− ċ

c

)
,

σ22 = b2e2mx

3

(
2

ḃ

b
− ȧ

a
− ċ

c

)
, (A12)

σ33 = c2e2x

3

(
2

ċ

c
− ȧ

a
− ḃ

b

)
,

and the shear scalar, σ 2 ≡ 1
2σ abσab, is given by

σ 2 = 1

3

[(
ȧ

a

)2

+
(

ḃ

b

)2

+
(

ċ

c

)2

− ȧḃ

ab
− ȧċ

ac
− ḃċ

bc

]
. (A13)

In the case under consideration here, there is no rotation and no acceleration.
For a scalar field with an exponential potential, the Einstein FE can be written down explicitly.21

We obtain the generalized Friedmann equation

θ2 = 3σ 2 + 3

2
φ̇2 + 3V0ekφ + 3

a2
(m2 + m + 1). (A14)

Note that m2 + m + 1 ≥ 3/4 > 0. The Raychaudhuri equation (Eq. (A3)) is

θ̇ = −2σ 2 − 1

3
θ2 − φ̇2 + V0ekφ. (A15)

The evolution equation for the shear is

σ̇ = −σθ + (1 − m)

3
√

3
√

m2 + m + 1
(θ2 − 3σ 2 − 3

2
φ̇2 − 3V0ekφ). (A16)

The Klein-Gordon equation for the scalar field (Eq. (A5)) is

φ̈ = −θφ̇ − kV0ekφ. (A17)

The system of differential equations in the expansion-normalized variables becomes

dβ

dτ
= β(q − 2) + 1 − m√

m2 + m + 1

(
1 − β2 − �2 − 2

)
, (A18)

d�

dτ
= �(q − 2) −

√
6k

2
2, (A19)

d

dτ
= (1 + q) +

√
6k

2
�, (A20)

and the decoupled evolution equation for the expansion

dθ

dτ
= −θ (1 + q), (A21)

where the deceleration parameter, q, is defined by

q = 2 β2 + 2 �2 − 2. (A22)
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The domain of interest (determined by Eq. (A14)) is the region defined by

β2 + �2 + 2 ≤ 1, (A23)

which describes the surface and interior of a sphere in the (reduced) phase space (β, �, ). Inflation
in the context of this paper is defined to occur whenever the deceleration parameter is negative; i.e.,
q < 0.

In this brief review we have not included ordinary matter (satisfying the usual energy conditions).
However, matter can be easily included (see Ref. 14).

3. Equilibrium points and qualitative behaviour

The equilibrium point {
β = 0, � = −k/

√
6, =

√
1 − k2/6

}
, (A24)

does not exist if k2 > 6 and is part of the non-isolated line of equilibrium points β2 + �2 = 1
when k2 = 6. The point lies on the boundary of the phase space β2 + �2 + 2 = 1 and hence it
corresponds to a model with zero curvature. The point is inflationary if q = (k2 − 2)/2 < 0; i.e., if
k2 < 2. The eigenvalues are: λ1 = λ2 = (k2 − 6)/2, λ3 = k2 − 2. If k2 < 2 the point is therefore a
sink, and if 2 < k2 < 6, then the point is a saddle point. For k = 0 the exact solution corresponding
to this equilibrium point is that of a flat FRW model. Note: k2 ≤ 2 is a necessary condition for the
homogeneous models under consideration to isotropize,17 and for k2 < 2 these models will inflate;
the power-law inflationary FRW solution is the unique attractor for any initially expanding Bianchi
model.

The equilibrium point{
β = (1 − m)/(2

√
m2 + m + 1), � = 0, = 0

}
, (A25)

satisfies the boundary condition, Eq. (A23), for all m, and when m = −1 the point is part of the
non-isolated line of equilibrium points β2 + �2 = 1. The inflationary condition q < 0 is never
satisfied and hence this point is non-inflationary. The eigenvalues are: λ1 = λ2 = − λ3 = − 3(m
+ 1)2/(2(m2 + m + 1)). It is easily seen that this point is a saddle point with a two-dimensional
stable manifold. The exact solution corresponding to this point is that of a vacuum Bianchi type VIh

model or one of its degeneracies.
There is also an equilibrium point with all of β, �,  non-zero when k2 ≥ 2, and the corre-

sponding solution is non-inflationary when the point exists inside the physical phase space given
by Eq. (A23). It can be shown that if k2 > 2, all three eigenvalues are negative and hence the
equilibrium point is a stable attractor. It is also interesting to note that if k2 > 2 + 4(m2 + 1)/(7m2

− 2m + 7), then the equilibrium point is a focus. The exact solution corresponding to this point
is that of a Bianchi type VIh model or one of its degeneracies. Thus for k2 > 2, this non-isotropic
and non-inflationary solution is a stable attractor for the type III and VIh cases. When m = 1, the
corresponding isotropic solution represents the future asymptotic attractor for the Bianchi type VIIh

models as well as the asymptotic attractor for the Bianchi type V models.
In the full three-dimensional phase space the ring of equilibrium points (β2 + �2 = 1,  = 0)

for k2 < 6 is a global source, and for k2 > 6 we find that some part of the ring acts like a source and the
remaining part of the ring acts like a saddle. The equilibrium points corresponding to sources (part
of the past attractor) consist of a subset of the Jacobs Disc, which correspond to exact self-similar
Jacobs stiff perfect fluid (or massless scalar field) solutions.14 Therefore, the models are asymptotic
in the past to an analogue of the (non-oscillatory) Jacobs anisotropic Bianchi I non-vacuum solution.

APPENDIX B: GENERAL MODEL

Let us consider the scalar potential

V (θ, φ, σ ) = V0e−√
6λ̄φ + a√

3

√
V0θe−

√
6

2 λ̄φ +
√

2b
√

V0σe−
√

6
2 λ̄φ, (B1)
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where we have defined λ̄ = λ/
√

6, and we have normalized the constants a and b appropriately.
We could also discuss the more general potential V (θ, φ, σ ) = V0 exp[−λφ] + ar,sθ

rσ s exp[(r + s
−2)λφ/2].

In general, we have that

ρφ = 1

2
φ̇2 + V − Vθ (θ +

√
6B1σ ) − Vσ (B2σ − 1√

6
θ ), (B2)

and an appropriate expression for pφ in terms of the arbitrary parameters B1 and B2 (where B1 = 1
and B2 = 1 for the anisotropic models above). We then obtain

β ′ = (q − 2)β −
√

2M

c2
K , (B3)

� ′ = (q − 2)� + 3λ̄

2

(
22 + a + bβ

)
, (B4)

′ = (q + 1) − 3λ̄�, (B5)

where

K = c2

2 β2 + � − 1, (B6)

� ≡ �2 + 2 − aB1β − b(B2 − 1)β + b, (B7)

q − 2 = K
b−2

[
(aB1 + (B2 − 1)b)

√
2M
c2  − 4

] +


b−2

[
3(λ̄� − 1)(aB1 + bB2)β + 3(a − b)λ̄� + 3b(β + 1) + 6

]
, (B8)

The system (B3)–(B5), with arbitrary parameters (including B1 and B2), can be regarded as
a phenomenological system of equations for an anisotropic cosmological model with a particular
self-interaction potential V (θ, φ, σ ).

We note that when K = 0, from (B3) the equilibrium points must satisfy β = 0 or q = 2. In the
latter case we have  = 0 and �2 + c2

2 β2 = 1, which will include the cosmological sources. When
β = 0 we will find equilibrium points (with  = 0 and � non-zero) corresponding to inflationary
sinks.

1. 2D system with zero curvature

From Eqs. (B3)–(B5), we can compute the evolution equation for the auxiliary variable K; by
setting K = 0 in this expression we obtain K′ = 0, so that K = 0 is an invariant set of the system.
We recall that we can obtain the Bianchi I models (with K = 0) when M = N = 0. When K = 0 we
obtain

β ′ = (q − 2)β, (B9)

′ = (q + 1) − 3λ̄�, (B10)

where

�2 = 1 − c2

2
β2 − 2 + (B2 − 1)bβ + aB1β − b, (B11)

q − 2 = 3

b − 2

[
(λ̄� − 1)(aB1 + bB2)β + (a − b)λ̄� + b(β + 1) + 2

]
. (B12)
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