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Abstract

In this paper we treat the black hole horizon as a physical boundary to the spacetime and study

its dynamics following from the Gibbons-Hawking-York boundary term. Using the Kerr black hole as

an example we derive an effective action that describes, in the large wave number limit, a massless

Klein-Gordon field living on the average location of the boundary. Complete solutions can be found

in the small rotation limit of the black hole. The formulation suggests that the boundary can be

treated in the same way as any other matter contributions. In particular, the angular momentum of

the boundary matches exactly with that of the black hole, suggesting an interesting possibility that

all charges (including the entropy) of the black hole are carried by the boundary. Using this as input,

we derive predictions on the Planck scale properties of the boundary.
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1 Introduction

By far our best understanding of black hole entropy has been based on the idea of holography [1, 2, 3].

In this framework one assumes that quantum gravity in a given black hole background has a dual

description in terms of a field theory defined on the boundary of the space [4, 5, 6, 7]. As far as

black holes are concerned, all such dual descriptions either have been deduced in string theory [8]

or have arisen from considerations of asymptotic symmetries [4, 9]. For more realistic black holes in

General Relativity (GR), such dual descriptions are only known in bits and pieces [10, 11, 12] and a

full understanding of the black hole entropy is still not available.

The idea of gauge/gravity duality is very profound and has had wide applications (see, e.g. [13, 14,

15, 16, 17]), but alternative methods to the black hole entropy should also be explored. In particular,

even from the holography perspective one expects that both sides of a dual pair should be equally

good (not considering the level of technical difficulty) in explaining the same physics. For a black

hole, this means that one also expects to understand its entropy from the pure gravity side. Here

a central problem is to identify the correct physical entity (entities) that is (are) responsible for the

thermodynamical properties of the black hole.

In this respect, ’t Hooft [18] has looked at point particles as possible carriers of the black hole

charges. He noted that there should be a cut-off at a tiny distance away from outside the horizon,

so that the density of states of the particles do not diverge. He then calculated the total energy and

the entropy of the particles. In order for the entropy to match with that of the black hole, he noticed

that the cutoff must be

δ ∼
ℓ2p
r+

, (1)

where ℓp =
√
GN ≈ 1.6× 10−35m is the Planck length and r+ is the radius of the black hole horizon.

This cut off is referred to as the “brick wall”. ’t Hooft’s calculation was proposed as a toy model and

there are obvious problems with it, including the fact that the final answer of the entropy depends

on the number of available particle species living in the vicinity of the horizon. What’s more, the

physical origin of the “brick wall” is not entirely clear. An idea for addressing this later problem is
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recently proposed in [19], using an earlier idea from York [20]. York attempted to understand the

black hole entropy by including back-reactions from the quantum fields to the black hole background,

which leads to an oscillating metric [20].

In this paper, instead of looking at point particles, we want to study if extended objects can play

any role in the statistical origin of black hole entropy. Extended objects like D-branes are well known

in string theory and have played a crucial role in the first successful string calculation of black hole

entropy [8]. Here we shall study in detail the possible connection between the dynamics of extended

objects and the black hole entropy directly within the framework of GR.

For this purpose we need to look for brane-like objects which can be possibly related to the black

hole thermodynamics. In fact, a candidate is readily available, which is nothing but the black hole

horizon. The idea of viewing the black hole horizon as a membrane was earlier explored in the

membrane paradigm.1 The most direct reason for this possibility is that, if the horizon is a dynamical

object, then its dynamics must be described by a field theory living on the world volume of the horizon.

As a result, the entropy of the system must be proportional to the area of the horizon. Still, treating

the black hole horizon as a physical entity may appear odd at the first glance. Let’s discuss some

further hint for this possibility.

Back in 1998 Carlip has shown that one can identify conformal symmetries on the (stretched)

horizon, which can then be used to infer information about the entropy of the black hole [10]. This idea

has been reinforced in recent years by the proposal of the Kerr/CFT correspondence, which showed

how to identify the conformal symmetries by zooming in the near horizon region of an extremal

Kerr black hole [11]. Later effort has further shown how conformal symmetries can be identified

on the horizons of generic stationary and axisymmetric black holes in generic dimensions [22]-[27].

This suggests, in particular, that the quantum nature of a black hole might be captured by a dual

conformal field theory (CFT) living on the horizon, and this should be a generic feature in all spacetime

dimensions. If true, this can be the best explanation to the problem of “Universality” [28].

Another suggestive hint comes from the classic AdS5/CFT4 correspondence [5], where the bound-

ary Super Yang-Mills theory is related to the dynamics of a stack of D-branes. By analogy, in the

pure gravity case the dual field theory may also describe dynamics of extended objects like the branes.

Since from the previous paragraph we know that the dual field theory of a black hole likely lives on

the horizon, it is tempting to ask if the horizon itself is part of the objects described by the dual field

theory. What’s more, if this is true, we suggest that this could offer a way to obtain, instead of a full

theory, an (or a partial contribution from the horizon to the) effective action of the dual field theory.

The idea for doing this is based on the fact that the horizon acts as a boundary to the black hole

spacetime.

After it was understood that the singularity at a black hole horizon can be removed by a coordinate

transformation, it has been widely accepted that there is no true singularity on the horizon and

one can pass through it without experiencing anything dramatic. This latter point, however, is

being challenged recently [29]. Despite this, everyone agrees that the horizon acts as a unidirectional

1We thank José Lemos for pointing this out and for the reference [21].
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membrane, i.e. a causal boundary of the spacetime. This is at the basis of trying to interpret the

black hole entropy as an entanglement entropy (see, e.g. [30]).

With the conformal symmetries mentioned above, the horizon could be more than just a causal

boundary. For a two dimensional statistical system, conformal symmetry usually arises at critical

points of second order phase transitions. Since the conformal symmetries related to a black hole

horizon are also those in two dimensions, this hints at the intriguing possibility that the horizon could

also be a boundary separating two different phases of (the material that is making up) the spacetime.

Inspired by this, we consider the possibility that the horizon is a physical boundary to the spacetime.

If treated as a brane with zero depth, a physical boundary contributes to the stress energy tensor

with a delta function in the direction normal to the boundary, which then leads to a step function

in the metric. This means that the metric inside the horizon is significantly different from that of a

usual black hole. In the following, however, we will only need the part of the metric that is outside

the horizon.

When there is a boundary to the spacetime, the Einstein-Hilbert action must be supplemented

by the Gibbons-Hawking-York boundary term [31, 32] so that the variational principle can be well

defined. In the presence of a physical boundary, one can view the boundary term as the contribution

from the boundary to the total action. So it is reasonable to suggest that the dynamics of the boundary

is governed by the boundary action.2

In the rest of the paper we study the dynamics of the horizon as predicted by the Gibbons-Hawking-

York boundary term. Since the horizon is assumed to be a physical boundary to the spacetime, we

will use the words “horizon” and “boundary” interchangeably.

In section 2, we collect all formulae related to the boundary action which we will need in later

sections. In section 3, an effective action is derived from the Gibbons-Hawking-York boundary term

in the background of a Kerr black hole. Instead of living precisely on the dynamical horizon, this

effective action will be defined on the average location of the boundary. In section 4, all classical

solutions to the effective action are found in the small rotation limit of the black hole. The system

can then be quantized and the complete spectrum is found. In section 5, we study thermodynamical

properties of the system. We show that the black hole angular momentum is fully accounted for by

that of the boundary. This motivates us to assume that all charges of the black hole are carried by the

horizon. With this assumption one can get predictions on the Planck scale properties of the boundary.

The paper ends with a short summary in section 6.

2If the bulk action is not Einstein-Hilbert, then the boundary term should be modified accordingly. If a black hole

exists in this new theory, then the dynamics of the horizon should be governed by the new boundary action.
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2 Boundary action

Suppose that the boundary is defined by the function B(x) = 0, then the Gibbons-Hawking-York

boundary term is given by

SB =
1

16πℓ2p

∫

B

(dn−1x)µN
µ
√−g K =

1

16π

∫

B

dn−1x
√
−h K , (2)

where (dn−1x)µ1···µp
= 1

(n−p)!p!εµ1···µpν1···νn−p
dxν1 ∧ · · · ∧ dxνn−p , |ε| = 1, n is the dimension of the

bulk spacetime, Nµ = ∂µB/|∂B| , |∂B| =
√
g̺σ∂̺B∂σB , g is the bulk metric, h is the induced metric

on the boundary, and K is the extrinsic curvature

K = gµνKµν , Kµν = ∇µNν +∇νNµ . (3)

We will set ℓp = 1 for most part of the calculation, but will restore it when needed. Labelling the

coordinates by xµ ∈ {x1 = r, xi} , i = 2, · · · , n and let B = r − f(xi), one can explicitly check that

∫

B

(dn−1x)µ =

∫

B

dn−1xNµ|∂B| ,
√
−h = |∂B|√−g , (4)

where the coordinates on B = 0 are taken to be xi , i = 2, · · · , n. The boundary action (2) is

determined up to a constant term, but which will not be relevant for our following calculations.

The total action is

Stot =
1

16π

∫
dnx

√−g (R− 2Λ) + SB , (5)

where R is the Ricci scalar in the bulk and Λ is the bulk cosmological constant, which can be zero. A

variation of the bulk metric leads to

δStot =
1

16π

∫
dnx

√−g δgµν
(
Rµν − R− 2Λ

2
gµν

)
+ δS′

B

δS′
B =

1

16π

∫

B

dn−1x
√
−h

[
∇̃α(Nβδg

αβ) + ∇̃β(Nαδg
αβ)− δgαβ

K

2
gαβ − PαβN

ρ∇ρδg
αβ

]

+
1

16π

∫

B

dn−1x
√
−hNµ

(
gαβ∇µδgαβ −∇νδg

µν
)
, (6)

where Pαβ = gαβ −NαNβ is the projector on to the boundary and ∇̃α = Pβ
α∇β . The first line of δS

′
B

comes from δSB, while the second line comes from varying the bulk action. Here one observes a big

difference between the physics of a boundary and that of an isolated system, i.e. the stress energy

tensor of a boundary also receives contributions from the bulk action. This is crucial to a consistent

calculation in the following.

One can combine the two lines of (6) and find

δS′
B =

1

16π

∫

B

dn−1x
√
−h

[
δgαβ

(
∇̃αNβ + ∇̃βNα − K

2
gαβ

)
+Nα∇̃βδg

αβ
]

=
1

16π

∫

B

dn−1x
√
−h δgαβ

Tαβ
2

,

Tαβ = ∇̃αNβ + ∇̃βNα −Kgαβ + 2NαNβN
µ∂µ ln

√
−h

−(Nα∂β +Nβ∂α) ln |∂B| − 1

2
NµNν(Nα∂β +Nβ∂α)gµν , (7)
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where we have used
∫
B
dn−1x∂̃αf

α = 0 and

∫

B

dn−1x
√
−h ∇̃αf

α =

∫

B

dn−1x
√
−hfα

(
NαN

µ∂µ ln
√
−h − ∂α ln |∂B| − 1

2
NµNν∂αgµν

)
. (8)

Note the general coordinate invariance is explicitly broken by the presence of the boundary. The stress

energy tensor of the boundary can be found as

Tµν = − 2√−g

δS′
B

δgµν
= −δ(B)|∂B|

16π
Tµν , (9)

where we have used

∫

B

dn−1x
√
−h =

∫
dnxδ(B)

√
−h =

∫
dnx

√−g δ(B)|∂B| . (10)

The minus sign in the definition of Tµν means that the boundary is treated as a matter contribution.

As mentioned before, there is also a delta function in Tµν .

In a stationary and axisymmetric background, given the canonical time t and azimuthal angle φ,

the energy and the angular momentum of the boundary are

H = − 1

16π

∫

B

dn−1x
√
−h T t

t , Jφ = − 1

16π

∫

B

dn−1x
√
−h T t

φ . (11)

3 Effective action in the Kerr background

Let’s now study (2) in the background of a Kerr black hole. The metric is

ds2 = f
(dr2

∆
− ∆

v2
dt2

)
+

fdx2

1− x2
+

v2(1− x2)

f
(dφ − wdt)2 ,

∆ = (r − r+)(r − r−) , w =
r

v2
√
r+r− (r+ + r−) ,

f = r2 + r+r−x
2 , v2 = (r2 + r+r−)

2 −∆ r+r−(1− x2) , (12)

where r± = M ±
√
M2 − J2/M2 with M and J being the mass and angular momentum of the black

hole, respectively. The outer (inner) horizon of the black hole is given by r+ (r−). The black hole

temperature, angular velocity and entropy are

T =
r+ − r−

4πr+(r+ + r−)
, Ω =

√
r−r+

r+(r+ + r−)
, S = πr+(r+ + r−) . (13)

As the radius r → ∞, the metric (12) approaches that of a Minkowski spacetime, where t is the time,

x ∈ [−1, 1] and φ = φ + 2π. We will refer to these as the canonical coordinates. The determinant

of the metric (12) is
√−g = f . In the background of (12), the extrinsic curvature for a surface with

normal vector Nµ is

K =
2

f

{
∂r(∆Nr) + ∂x[(1 − x2)Nx] +

f2∂φNφ

v2(1− x2)
− v2

∆
(∂t + w∂φ)(Nt + wNφ)

}
. (14)

As will be justified later, the horizon described by (2) fluctuates around an average location in

the background of (12). The fluctuating horizon carries part of the black hole energy,3 and this

3We will suggest later that the boundary actually carries all the energy of the black hole.
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energy is distributed to each excitation of the boundary. So each excitation can be viewed as living

in a background that has an energy slightly smaller than that of the full black hole. In canonical

coordinates, this effectively means that the physically fluctuating horizon always lives outside the

coordinate singularity of the background metric. For later convenience, let’s call the horizon of the

background metric, such as the r+ in (12), the “background horizon”, while the physically fluctuating

horizon simply the “horizon” or the “boundary”, interchangeably.

With the fixed background (12), one can then assume that the boundary is centered at r0 =

r+(1 + ǫ) and is fluctuating with an amplitude r+ǫ |Φ(x, φ, t)|, where ǫ > 0 is a small parameter. The

configuration function of the fluctuating horizon is then given by

B = r − r+

{
1 + ǫ

[
1 + Φ(x, φ, t)

]}
= 0 . (15)

The unit normal vector is

Nr =
1

|∂B| , Ni = −ǫ r+
∂iΦ

|∂B| , i = x, φ, t ,

|∂B|2 =
∆

f
+ (ǫ r+)

2
{1− x2

f
(∂xΦ)

2 +
f(∂φΦ)

2

v2(1 − x2)

− v2

f∆
[(∂t + w∂φ)Φ]

2
}
. (16)

The induced metric on the boundary is

ds2H = −f∆

v2
dt2 +

fdx2

1− x2
+

v2(1− x2)

f
dφ2

+(ǫr+)
2 f

∆

(
∂xΦdx+ ∂φΦdφ + ∂tΦdt

)2

, (17)

which has the determinant
√
−h = f |∂B| = |∂B|√−g , as is expected.

By definition, one plugs (15) - (17) into (2) and then let r = r+{1+ ǫ[1+Φ(x, φ, t)]} to obtain the

action on the boundary. As we will see later, ǫ is an extremely small parameter. So one can firstly

expand the action (2) around ǫ and then look at the weak field limit |Φ| → 0. After doing this for (2),

however, we find that

SB =
r+ − r−

4
− µ

2

∫

B

dxdφdt
[
L0 +

2r+(r+ + r−)
2Φ(∂t +Ω∂φ)

2Φ

r+ − r−
+O(Φ3)

]
+O(

√
ǫ ) ,

L0 =
2r+(r+ + r−)

2

r+ − r−
[(∂t +Ω ∂φ)Φ]

2 − (1− x2)(
√
ǫ ∂xΦ)

2 − (r+ + r−x
2)2(

√
ǫ ∂φΦ)

2

(r+ + r−)2(1− x2)
, (18)

where µ = r+/(8π) and we have thrown away all boundary terms. The minus sign in front of the

L0 integral is consistent with that the boundary should be treated as a matter contribution, as was

assumed in (9). The derivatives ∂x and ∂φ only appear in L0 through the combinations
√
ǫ ∂xΦ and

√
ǫ ∂φΦ.

4 Given the smallness of ǫ, this means that only the large wave number modes can have

significant contributions.

The (∂t + Ω∂φ)-terms in SB consist a total derivative and drop out of the integral, which means

that the action SB does not predict any interesting dynamics of the boundary. As an alternative,

4Note one can always let ∂t + Ω∂φ → ∂t by a coordinate redefinition φ → φ+ Ωt.
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we look at the action on the average location of the fluctuating horizon. That is, instead of setting

r = r+{1 + ǫ[1 + Φ(x, φ, t)]}, we set r = r0 = r+(1 + ǫ) in the end. This is not what one naively

expects from the definition, but it does lead to interesting results. Indeed we find that

SH = −r+ − r−
4

+
µ

2

∫

H

dxdφdt
[
L0 +O(Φ3)

]
+O(

√
ǫ ) , (19)

where the subscript H means the integral is taken over the surface r0 = r+(1 + ǫ). We have included

an extra minus sign in the boundary action so that SH is in the proper form of a matter contribution.

The need to look at the action on the average location of the fluctuating horizon may due to the

approximation that we have made when assuming that the background is still given by (12) for

r > r+, despite the fact that the boundary is now physical and dynamical.

For the charges (11) the situation is similar. There is no dynamics at r = r+[1 + ǫ(1 + Φ)], while

at r = r0 we find

H = −ΩJφ +
µ

2

∫

H

dxdφdt
{2r+(r+ + r−)

2

r+ − r−
[(∂t +Ω ∂φ)Φ]

2 − L0

}
, (20)

Jφ =
µ

2

∫

H

dxdφdt
{2r+(r+ + r−)

2

r+ − r−
(∂t +Ω ∂φ)Φ ∂φΦ

+Ω
(r+ + r−)

2(1− x2)

(r+ + r−x2)2

[
3r2+ − r2−x

2 + r+r−(1 + x2)
]}

= J +
µ

2

∫

H

dxdφdt
[2r+(r+ + r−)

2

r+ − r−
(∂t +Ω ∂φ)Φ ∂φΦ

]
, (21)

where J = 1
2 (r+ + r−)

√
r+r− is the angular momentum of the black hole.

Not considering the constant terms, one can infer from (21) that the canonical momentum conju-

gating to Φ is

ΠΦ = µ
r+(r+ + r−)

2

r+ − r−
(∂t +Ω ∂φ)Φ . (22)

From (20) one can also read off the Hamiltonian density

H = −ΩΠΦ∂φΦ+
µ

2

{2r+(r+ + r−)
2

r+ − r−
[(∂t +Ω ∂φ)Φ]

2 − L0

}

=
µ

2

{2r+(r+ + r−)
2

r+ − r−
(∂t +Ω ∂φ)Φ∂tΦ− L0

}
, (23)

which is in the familiar form H = ΠΦ∂tΦ− 1
2µL0.

For an isolated system, we expect ΠΦ = δSH

δ(∂tΦ) . For a boundary, however, the contribution from

the bulk action modifies the relation. In the present case, we actually find

ΠΦ =
1

2

δSH

δ(∂tΦ)
. (24)

This unusual relation will not cause any problem for our calculations in the following.

4 Classical solutions and quantization

Let’s now look at the solutions of (19). Instead of considering the general case, lets focus on the small

rotation limit (Ω → 0 ⇒ ρ ≡ r−/r+ → 0). In this case,

L0 = 2r2+(1 + 3ρ)[(∂t +Ω ∂φ)Φ]
2 − (1− x2)(

√
ǫ ∂xΦ)

2

8



−
( 1

1− x2
− 2ρ

)
(
√
ǫ ∂φΦ)

2 , (25)

where we have preserved terms up to the subleading order in ρ → 0. The Hamiltonian and the angular

momentum are

H = −ΩJφ +
µ

2

∫

H

dxdφ
{
(1− x2)(

√
ǫ ∂xΦ)

2 +
( 1

1− x2
− 2ρ

)
(
√
ǫ ∂φΦ)

2
}
, (26)

Jφ = J +

∫

H

dxdφµ r2+(1 + 3ρ)(∂t +Ω ∂φ)Φ ∂φΦ . (27)

With Φ = fm
ℓ (x) exp{i[m(φ− Ωt)− Eℓ,mt]}, the equation of motion from (19) is

2r2+(1 + 3ρ)E2
ℓ,mfm

ℓ + ǫ ∂x

[
(1− x2)∂xf

m
ℓ

]
−
( 1

1− x2
− 2ρ

)
ǫm2fm

ℓ = 0 . (28)

This equation can be solved by the associated Legendre polynomials fm
ℓ = Pm

ℓ (x), with

Eℓ,m =

√
ǫ
ℓ(ℓ+ 1)− 2m2ρ

2r2+(1 + 3ρ)
≈ ℓ

r+

√
ǫ

2

[
1− ρ

(3
2
+

m2

ℓ2

)]
,

ℓ = 0, 1, · · · ,∞ , m = −ℓ, · · · , ℓ . (29)

(Here and in the following, when making approximations, we always preserve terms up to the sublead-

ing order in ρ → 0 and up to the leading order in |m| ∼ ℓ → ∞.) The full solution can be expanded

as Φ =
∑

ℓ,mΦm
ℓ , where

Φm
ℓ = Nm

ℓ Pm
ℓ (x)

{
aℓ,mei[m(φ−Ωt)−Eℓ,mt] + a†ℓ,me−i[m(φ−Ωt)−Eℓ,mt]

}
, (30)

Nm
ℓ =

√
1

2µ r2+(1 + 3ρ)Eℓ,m
2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
. (31)

In quantization, one promotes aℓ,m and a†ℓ,m to operators âℓ,m and â†ℓ,m, yielding Φ̂ and Π̂Φ. Then

one imposes the following equal time commutation relations,

[Φ̂(x, φ, t), Π̂Φ(x
′, φ′, t)] = iδ(x− x′)δ(φ − φ′) ,

[Π̂Φ(x, φ, t), Π̂Φ(x
′, φ′, t)] = [Φ̂(x, φ, t), Φ̂(x′, φ′, t)] = 0 , (32)

which, with (30) and (31), lead to

[âℓ,m , â†p,q] = δℓ,p δm,q , [âℓ,m , âp,q] = [â†ℓ,m , â†p,q] = 0 . (33)

The Hamiltonian (26) and the angular momentum (27) become

Jφ = J −
∑

ℓ,m

mâ†ℓ,mâℓ,m . (34)

H = −ΩJφ +
∑

ℓ,m

Eℓ,m
(
â†ℓ,mâℓ,m +

1

2

)

= −ΩJ +
∑

ℓ,m

Eℓ,m
2

+
∑

ℓ,m

E ′
ℓ,m , (35)

where E ′
ℓ,m = Eℓ,m +mΩ. The fact that H and Jφ have the expected structures supports the result

for the stress energy tensor (9) and the result for the canonical momentum (22).
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When there is gravity, we expect every piece of the Hamiltonian to contribute to the total energy.

That is why we keep both the constant term and the terms of the zero point energy in (35). In order

for the contribution from the zero point energy to be finite, there must be a cutoff on the physically

available modes. As mentioned before, the existence of two dimensional conformal symmetries on the

horizon hints at the possibility that the horizon is a boundary separating two different phases of the

spacetime. This can be taken as indicating the existence of substructures of the spacetime. In this

case, the presence of a cutoff (say Nc) is very natural, which is directly related to the minimal lattice

spacing (say a) of the substructures along the direction of the boundary,

Nc = ℓmax = mmax ≈ 2πr+
a

. (36)

With the cutoff, the contribution from the zero point energy is

M0 =

Nc∑

ℓ=0

ℓ∑

m=−ℓ

Eℓ,m
2

≈ N3
c

3r+

√
ǫ

2

(
1− 11ρ

6

)
, (37)

5 Statistics

Given (34) and (35), the partition function of a grand canonical system with a fixed temperature T

and angular velocity Ω is given by

lnΞ = −
Nc∑

ℓ=0

ℓ∑

m=−ℓ

ln
(
1− e−βE′

ℓ,m−αm
)
= −

Nc∑

ℓ=0

ℓ∑

m=−ℓ

ln
(
1− e−βEℓ,m

)
, (38)

where β = 1/T and α = −βΩ. (The minus sign in α is due to the fact that βΩ is a chemical potential.)

As shown in (29), Eℓ,m is an even function in m, so all the m > 0 and m < 0 modes will be evenly

excited. One can then derive from (34) that

Jφ = J . (39)

This result suggests that all the angular momentum of the black hole is carried by the boundary, i.e.,

the horizon.

In order to calculate the partition function (38), note in the small rotation limit the black hole

thermodynamical quantities can be expanded as

M ≈ r+
2
(1 + ρ) , J ≈ r2+

2

√
ρ (1 + ρ) , Ω ≈

√
ρ

r+
(1 − ρ) , T ≈ 1− 2ρ

4πr+
, S ≈ πr2+(1 + ρ) . (40)

We firstly expand (38) around ρ → 0, assuming that β is an unknown constant. Then we sum over m

and replace
∑Nc

ℓ=0 by an integral. The result is (note y = kn and k = β
r+

√
ǫ
2 )

ln Ξ ≈ − 2

k2

∫ kNc

0

dyf1(y) = − 2

k2

[
f2(kNc)− f2(0)

]
,

f1(y) = f ′
2(y) = y ln(1 − e−y)− 11ρy2

6(ey − 1)
, f1(0) = 0 ,

f2(y) = yLi2(e
−y) + Li3(e

−y) +
11ρ

3
f3(y) , f2(0) = ζ(3)

(
1 +

11ρ

3

)
,
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f3(y) = yLi2(e
−y) + Li3(e

−y)− y2

2
ln(1− e−y) , f3(0) = ζ(3) , (41)

where Lis(z) is the polylogarithm. The total energy and the entropy are

H = −ΩJ +M0 − ∂β ln Ξ

≈ −r−
2

+
N3

c

3r+

√
ǫ

2

(
1− 11ρ

6

)
+

k

β

{ 2

k2
f1(kNc)Nc −

4

b3

[
f2(kNc)− f2(0)

]}

=
ℓ2p

4π3r2+ǫ0

[
ζ(3)− f3(c0) +

c30
12

+O(ρ)
]
M , (42)

S′ = (1− β∂β) ln Ξ

≈ − 2

k2

[
f2(kNc)− f2(0)

]
+ k

{ 2

k2
f1(kNc)Nc −

4

k3

[
f2(kNc)− f2(0)

]}

=
3ℓ2p

4π3r2+ǫ0

[
ζ(3)− f3(c0)−

c20
6
ln(1− e−c0) +O(ρ)

]
S , (43)

where we have let ǫ = ǫ0 + ǫ1ρ+O(ρ2), Nc = N0 +N1ρ+O(ρ2), and c0 = 2π
√
2ǫ0N0. We have also

written explicitly the Planck length ℓp so that the ratios H
M

and S′

S
are obviously dimensionless.

In our setup, the parameter ǫ and the cutoff Nc are a priori not known. From (39) we see that the

boundary carries all the angular momentum of the black hole. This hints at an interesting possibility

that all other charges of the black hole are also carried by the horizon. We use this to get an idea on

what the values of Nc and ǫ might be.

From the mass and the entropy there are two equations, H = M and S′ = S. With two free

parameters a solution is then possible.5 This can be done order by order in the expansion of the small

rotation limit. Up to the subleading order, we find

√
ǫ0 ≈ ℓp

7.27r+
, N0 ≈ 2πr+

2.84ℓp
,

ǫ1
ǫ0

≈ 0.22 ,
N1

N0
≈ 1.61 . (44)

A few comments are in order:

• Firstly, the putative lattice spacing introduced in (36) is

a ≈ 2.84ℓp , (45)

which is independent of the properties of the black hole.

• Secondly, r0 differs from the background horizon r+ by

δ ≈ r+ǫ0 ∼
ℓ2p
r+

, (46)

which is qualitative the same as (1). From (12), the physical distance between r0 and r+ is

δ′ ≈ r+
√
ǫ0 ≈ ℓp

7.27
, (47)

which is also independent of the properties of the black hole.

5This point is not so trivial as it looks. For example, if we do not include the contribution from the zero point energy,

it is then NOT possible to satisfy both H = M and S′ = S simultaneously.
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• Thirdly, the energy at the cutoff is approximately

EN0,m ≈ N0

r+

√
ǫ0
2

≈ 0.22

r+
. (48)

There is a question related to the interpretation of the cutoff energy (48). Since this energy is

calculated by using the canonical time t, it appears natural to interpret (48) as the energy measured

by an observer at the spatial infinity. Translating back to the boundary, this would mean that the

cutoff energy is

E ′
N0,m

≈ EN0,m√
ǫ0

∼ 1

ℓp
, (49)

which is at the Planck scale. A Planck scale cutoff fits better with our naive expectations and it also,

interestingly, suggests the presence of a true firewall. However, this is in clash with the accepted fact

that the horizon is at the Hawking temperature. In fact, if we interpret the Hawking temperature

as the value measured at the spatial infinity, then (49) would be consistent. But since the Hawking

temperature is the value measured at the horizon, we have to assume that (48) is also the value that

is measured at the horizon.

6 Summary

Apart from some very special cases (see, e.g. [33]), most of our understanding of black hole entropy

comes without an explicit knowledge of the physical entities that actually carry the thermodynamical

properties of the black hole. In view of the fact that the horizon acts as a (at least, causal) boundary to

the spacetime, we further propose to treat it as a physical and dynamical boundary to the spacetime,

and then we study its contribution to the black hole thermodynamics.

The dynamics of a physical boundary is naturally governed by the boundary action, which can

be identified by requiring that the variational principle is well defined. If the bulk theory is Einstein-

Hilbert, then the boundary action is given by the Gibbons-Hawking-York term. Using the Kerr

black hole as an example, we find that the boundary action on the average location of the physical

horizon effectively describes a massless Klein-Gordon field. Quantum mechanically, this inevitably

leads to fluctuations of the boundary. We note that only large wave number modes have significant

contributions to the effective action. The full spectrum of the system can be found in the small

rotation limit of the black hole.

We then look at the contribution of the boundary to the black hole thermodynamics. It turns

out that the angular momentum of the boundary matches exactly with that of the black hole. It is

then tempting to suggest that all charges of the black hole are carried by the horizon. We use this as

an assumption to fix the two unknown parameters in our model. As a result, the lattice spacing of

the putative substructures of spacetime along the boundary is found to be (45), the physical distance

from the real boundary to the background horizon r+ is found to be (47). We also determined the

cutoff energy of the excitations in (48).
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Phenomenologically, our simple model is already capable of a detailed explanation of the statistical

origin of the black hole entropy. At the deeper level, however, the model relies on two unusual

assumptions which require further investigation. Let’s finish by listing them:

• Firstly, our model assumes that the black hole horizon is a physical boundary to the spacetime.

If there is indeed substructures to the spacetime, then the existence of a boundary means that

the substructures are in two different phases across the horizon.

Although it is widely accepted that no one can report to us any information from behind the

horizon of a black hole, people also often assume that one can pass through the horizon unim-

peded (see, however, [29]). Our assumption implies that the spacetime behind the horizon is

significantly different from what is predicted by the usual black hole metric.

• Secondly, the zero point energy of the quantum modes (35) plays an indispensable role in the

calculation. The problem of zero point energy is not so crucial for a theory in flat spacetime.

And its role in the case of gravity is not clear. Our model suggests that black holes may provide

the first evidence that zero point energy is physically relevant in curved spacetime.

It is possible that the horizon is only one of the many physical entities that contribute to the

black hole thermodynamics. If we do not induce the contribution from the zero point energy,

other sources will have to be included to make up the total black hole mass. In that case, the

simplicity pertained to the present model will be lost. In particular, it is possible that one may

need even more unusual assumptions in order to explain the unusual relation between the black

hole mass and entropy.
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