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1 Introduction

By far our best understanding of black hole entropy has been based on the idea of holog-

raphy [1–3]. In this framework one assumes that quantum gravity in a given black hole

background has a dual description in terms of a field theory defined on the boundary of

the space [4–7]. As far as black holes are concerned, all such dual descriptions either

have been deduced in string theory [8] or have arisen from considerations of asymptotic

symmetries [4, 9]. For more realistic black holes in General Relativity (GR), such dual

descriptions are only known in bits and pieces [10–12] and a full understanding of the black

hole entropy is still not available.

The idea of gauge/gravity duality is very profound and has had wide applications (see,

e.g. [13–17]), but alternative methods to the black hole entropy should also be explored. In

particular, even from the holography perspective one expects that both sides of a dual pair

should be equally good (not considering the level of technical difficulty) in explaining the

same physics. For a black hole, this means that one also expects to understand its entropy

from the pure gravity side. Here a central problem is to identify the correct physical entity

(entities) that is (are) responsible for the thermodynamical properties of the black hole.

In this respect, ’t Hooft [18] has looked at point particles as possible carriers of the

black hole charges. He noted that there should be a cut-off at a tiny distance away from

outside the horizon, so that the density of states of the particles do not diverge. He then

calculated the total energy and the entropy of the particles. In order for the entropy to

match with that of the black hole, he noticed that the cutoff must be

δ ∼
ℓ2p
r+

, (1.1)

where ℓp =
√
GN ≈ 1.6 × 10−35m is the Planck length and r+ is the radius of the black

hole horizon. This cut off is referred to as the “brick wall”. ’t Hooft’s calculation was
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proposed as a toy model and there are obvious problems with it, including the fact that

the final answer of the entropy depends on the number of available particle species living

in the vicinity of the horizon. What’s more, the physical origin of the “brick wall” is not

entirely clear. An idea for addressing this later problem is recently proposed in [19], using

an earlier idea from York [20]. York attempted to understand the black hole entropy by

including back-reactions from the quantum fields to the black hole background, which leads

to an oscillating metric [20].

In this paper, instead of looking at point particles, we want to study if extended ob-

jects can play any role in the statistical origin of black hole entropy. Extended objects

like D-branes are well known in string theory and have played a crucial role in the first

successful string calculation of black hole entropy [8]. Here we shall study in detail the

possible connection between the dynamics of extended objects and the black hole entropy

directly within the framework of GR.

For this purpose we need to look for brane-like objects which can be possibly related to

the black hole thermodynamics. In fact, a candidate is readily available, which is nothing

but the black hole horizon. The idea of viewing the black hole horizon as a membrane

has been much explored in the membrane paradigm [21, 22].1 The most direct reason for

this possibility is that, if the horizon is a dynamical object, then its dynamics must be

described by a field theory living on the world volume of the horizon. As a result, the

entropy of the system must be proportional to the area of the horizon. Still, treating the

black hole horizon as a physical entity may appear odd at the first glance. Let’s discuss

some further hint for this possibility.

Back in 1998 Carlip has shown that one can identify conformal symmetries on the

(stretched) horizon, which can then be used to infer information about the entropy of

the black hole [10]. This idea has been reinforced in recent years by the proposal of the

Kerr/CFT correspondence, which showed how to identify the conformal symmetries by

zooming in the near horizon region of an extremal Kerr black hole [11]. Later effort has

further shown how conformal symmetries can be identified on the horizons of generic sta-

tionary and axisymmetric black holes in generic dimensions [25]–[30]. This suggests, in par-

ticular, that the quantum nature of a black hole might be captured by a dual conformal field

theory (CFT) living on the horizon, and this should be a generic feature in all spacetime

dimensions. If true, this can be the best explanation to the problem of “Universality” [31].

Another suggestive hint comes from the classic AdS5/CFT4 correspondence [5], where

the boundary Super Yang-Mills theory is related to the dynamics of a stack of D-branes.

By analogy, in the pure gravity case the dual field theory may also describe dynamics of

extended objects like the branes. Since from the previous paragraph we know that the dual

field theory of a black hole likely lives on the horizon, it is tempting to ask if the horizon it-

self is part of the objects described by the dual field theory. What’s more, if this is true, we

suggest that this could offer a way to obtain, instead of a full theory, an (or a partial contri-

1The author thanks José Lemos for this point and for the related reference [23]. There has also been

earlier effort in deriving boundary effective actions (see, e.g. [24]), as we will do in this paper. The author

is indebted to the referee for this later point.
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bution from the horizon to the) effective action of the dual field theory. The idea for doing

this is based on the fact that the horizon acts as a boundary to the black hole spacetime.

After it was understood that the singularity at a black hole horizon can be removed by

a coordinate transformation, it has been widely accepted that there is no true singularity

on the horizon and one can pass through it without experiencing anything dramatic. This

latter point, however, is being challenged recently [32, 33]. Despite this, everyone agrees

that the horizon acts as a unidirectional membrane, i.e. a causal boundary of the spacetime.

This is at the basis of trying to interpret the black hole entropy as an entanglement entropy

(see, e.g. [34]).

With the conformal symmetries mentioned above, the horizon could be more than just

a causal boundary. For a two dimensional statistical system, conformal symmetry usually

arises at critical points of second order phase transitions. Since the conformal symmetries

related to a black hole horizon are also those in two dimensions, this hints at the intriguing

possibility that the horizon could also be a boundary separating two different phases of (the

material that is making up) the spacetime. Inspired by this, we consider the possibility

that the horizon is a physical boundary to the spacetime.

If treated as a brane with zero depth, a physical boundary contributes to the stress

energy tensor with a delta function in the direction normal to the boundary, which then

leads to a step function in the metric. This means that the metric inside the horizon is

significantly different from that of a usual black hole. In the following, however, we will

only need the part of the metric that is outside the horizon.

When there is a boundary to the spacetime, the Einstein-Hilbert action must be sup-

plemented by the Gibbons-Hawking-York boundary term [35, 36] so that the variational

principle can be well defined. In the presence of a physical boundary, one can view the

boundary term as the contribution from the boundary to the total action. So it is reason-

able to suggest that the dynamics of the boundary is governed by the boundary action.2

In the rest of the paper we study the dynamics of the horizon as predicted by the

Gibbons-Hawking-York boundary term. Since the horizon is assumed to be a physical

boundary to the spacetime, we will use the words “horizon” and “boundary” interchange-

ably.

In section 2, we collect all formulae related to the boundary action which we will need

in later sections. In section 3, an effective action is derived from the Gibbons-Hawking-

York boundary term in the background of a Kerr black hole. Instead of living precisely

on the dynamical horizon, this effective action will be defined on the average location

of the boundary. In section 4, all classical solutions to the effective action are found in

the small rotation limit of the black hole. The system can then be quantized and the

complete spectrum is found. In section 5, we study thermodynamical properties of the

system. We show that the black hole angular momentum is fully accounted for by that of

the boundary. This motivates us to assume that all charges of the black hole are carried by

2If the bulk action is not Einstein-Hilbert, then the boundary term should be modified accordingly. If

a black hole exists in this new theory, then the dynamics of the horizon should be governed by the new

boundary action.
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the horizon. With this assumption one can get predictions on the Planck scale properties

of the boundary. The paper ends with a short summary in section 6.

2 Boundary action

Suppose that the boundary is defined by the function B(x) = 0, then the Gibbons-Hawking-

York boundary term is given by

SB =
1

16πℓ2p

∫

B
(dn−1x)µN

µ√−g K =
1

16π

∫

B
dn−1x

√
−h K , (2.1)

where (dn−1x)µ1···µp = 1
(n−p)!p!εµ1···µpν1···νn−pdx

ν1 ∧ · · · ∧ dxνn−p , |ε| = 1, n is the dimension

of the bulk spacetime, Nµ = ∂µB/|∂B| , |∂B| =
√

g̺σ∂̺B∂σB , g is the bulk metric, h is

the induced metric on the boundary, and K is the extrinsic curvature

K = gµνKµν , Kµν = ∇µNν +∇νNµ . (2.2)

We will set ℓp = 1 for most part of the calculation, but will restore it when needed. It is

always possible to choose the bulk coordinates xµ ∈ {r, xi (i = 1, · · · , n− 1)} as such that

the boundary function is of the form B = r − f(xi). One can then explicitly check that

∫

B
(dn−1x)µ =

∫

B
dn−1xNµ|∂B| ,

√
−h = |∂B|√−g , (2.3)

where the coordinates on B = 0 are taken to be xi, and we have used the definition

hijdx
idxj = gµνdx

µdxν |B=0. The boundary action (2.1) is determined up to a constant

term, but which will not be relevant for our following calculations.

The total action is

Stot =
1

16π

∫
dnx

√−g (R− 2Λ) + SB , (2.4)

where R is the Ricci scalar in the bulk and Λ is the bulk cosmological constant, which can

be zero. A variation of the bulk metric leads to

δStot =
1

16π

∫
dnx

√−g δgµν
(
Rµν −

R− 2Λ

2
gµν

)
+ δS′

B

δS′
B =

1

16π

∫

B
dn−1x

√
−h

[
∇̃α(Nβδg

αβ) + ∇̃β(Nαδg
αβ)− δgαβ

K

2
gαβ − PαβN

µ∇µδg
αβ

]

+
1

16π

∫

B
dn−1x

√
−hNµ

(
gαβ∇µδgαβ −∇νδg

µν
)
, (2.5)

where Pαβ = gαβ −NαNβ is the projector onto the boundary and ∇̃α = Pβ
α∇β . The first

line of δS′
B comes from δSB, while the second line comes from varying the bulk action. Here

one observes a big difference between the physics of a boundary and that of an isolated

system, i.e. the stress energy tensor of a boundary also receives contributions from the bulk

action. This is crucial to a consistent calculation in the following.
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One can combine the two lines of (2.5) and find

δS′
B =

1

16π

∫

B
dn−1x

√
−h

[
δgαβ

2

(
∇̃αNβ + ∇̃βNα −KPαβ

)
+ ∇̃λ(NβPλ

αδg
αβ)

]

=
1

16π

∫

B
dn−1x

√
−h

δgαβ

2
Tαβ ,

Tαβ = ∇̃αNβ + ∇̃βNα −KPαβ + 2Nβ

(
1

2
Pρσ∂̃αPρσ − ∂̃α ln

√
−h

)
, (2.6)

where we have used
∫
B dn−1x∂̃λf

λ = 0 and3

∫

B
dn−1x

√
−h ∇̃λf

λ =

∫

B
dxn−1x

√
−h fλ

(
1

2
Pρσ∂λPρσ − ∂̃λ ln

√
−h

)
. (2.7)

The last term in (2.6) can be shown to vanish and Tαβ becomes the quasi-local stress tensor

by Brown and York [37]. The stress energy tensor of the boundary can be found as

Tµν = − 2√−g

δS′
B

δgµν
= −δ(B)|∂B|

16π
Tµν , (2.8)

where we have used
∫

B
dn−1x

√
−h =

∫
dnxδ(B)

√
−h =

∫
dnx

√−g δ(B)|∂B| . (2.9)

The minus sign in the definition of Tµν means that the boundary is treated as a matter

contribution. As mentioned before, there is also a delta function in Tµν .

In a stationary and axisymmetric background, given the canonical time t and azimuthal

angle φ, the energy and the angular momentum of the boundary are

H = − 1

16π

∫

B
dn−1x

√
−h T t

t , Jφ = − 1

16π

∫

B
dn−1x

√
−h T t

φ . (2.10)

3 Effective action in the Kerr background

Let’s now study (2.1) in the background of a Kerr black hole. The metric is

ds2 = f

(
dr2

∆
− ∆

v2
dt2

)
+

fdx2

1− x2
+

v2(1− x2)

f
(dφ− wdt)2 ,

∆ = (r − r+)(r − r−) , w =
r

v2
√
r+r− (r+ + r−) ,

f = r2 + r+r−x
2 , v2 = (r2 + r+r−)

2 −∆ r+r−(1− x2) , (3.1)

where r± = M ±
√
M2 − J2/M2 with M and J being the mass and angular momentum of

the black hole, respectively. The outer (inner) horizon of the black hole is given by r+ (r−).

The black hole temperature, angular velocity and entropy are

T =
r+ − r−

4πr+(r+ + r−)
, Ω =

√
r−r+

r+(r+ + r−)
, S = πr+(r+ + r−) . (3.2)

3I thank Stefan Theisen for help in simplifying the result.
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As the radius r → ∞, the metric (3.1) approaches that of a Minkowski spacetime, where t

is the time, x ∈ [−1, 1] and φ = φ+2π. We will refer to these as the canonical coordinates.

The determinant of the metric (3.1) is
√−g = f . In the background of (3.1), the extrinsic

curvature for a surface with normal vector Nµ is

K =
2

f

{
∂r(∆Nr) + ∂x[(1− x2)Nx] +

f2∂φNφ

v2(1− x2)
− v2

∆
(∂t + w∂φ)(Nt + wNφ)

}
. (3.3)

As will be justified later, the horizon described by (2.1) fluctuates around an average

location in the background of (3.1). The fluctuating horizon carries part of the black hole

energy,4 and this energy is distributed to each excitation of the boundary. So each exci-

tation can be viewed as living in a background that has an energy slightly smaller than

that of the full black hole. In canonical coordinates, this effectively means that the physi-

cally fluctuating horizon always lives outside the coordinate singularity of the background

metric. For later convenience, let’s call the horizon of the background metric, such as the

r+ in (3.1), the “background horizon”, while the physically fluctuating horizon simply the

“horizon” or the “boundary”, interchangeably.

With the fixed background (3.1), one can then assume that the boundary is centered

at r0 = r+(1 + ǫ) and is fluctuating with an amplitude r+ǫ |Φ(x, φ, t)|, where ǫ > 0 is a

small parameter. The configuration function of the fluctuating horizon is then given by

B = r − r+

{
1 + ǫ

[
1 + Φ(x, φ, t)

]}
= 0 . (3.4)

The unit normal vector is

Nr =
1

|∂B| , Ni = −ǫ r+
∂iΦ

|∂B| , i = x, φ, t ,

|∂B|2 =
∆

f
+ (ǫ r+)

2

{
1− x2

f
(∂xΦ)

2 +
f(∂φΦ)

2

v2(1− x2)

− v2

f∆
[(∂t + w∂φ)Φ]

2

}
. (3.5)

The induced metric on the boundary is

ds2H = −f∆

v2
dt2 +

fdx2

1− x2
+

v2(1− x2)

f
dφ2

+(ǫr+)
2 f

∆

(
∂xΦdx+ ∂φΦdφ+ ∂tΦdt

)2
, (3.6)

which has the determinant
√
−h = f |∂B| = |∂B|√−g , as is expected.

By definition, one plugs (3.4)–(3.6) into (2.1) and then let r = r+{1+ǫ[1+Φ(x, φ, t)]} to
obtain the action on the boundary. As we will see later, ǫ is an extremely small parameter.

So one can firstly expand the action (2.1) around ǫ and then look at the weak field limit

|Φ| → 0. After doing this for (2.1), however, we find that

SB =
r+ − r−

4
− µ

2

∫

B
dxdφdt

[
L0 +

2r+(r+ + r−)
2Φ(∂t +Ω∂φ)

2Φ

r+ − r−
+O(Φ3)

]
+O(

√
ǫ ) ,

L0 =
2r+(r+ + r−)

2

r+ − r−
[(∂t +Ω ∂φ)Φ]

2−(1− x2)(
√
ǫ ∂xΦ)

2− (r+ + r−x
2)2(

√
ǫ ∂φΦ)

2

(r+ + r−)2(1− x2)
, (3.7)

4We will suggest later that the boundary actually carries all the energy of the black hole.
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where µ = r+/(8π) and we have thrown away all boundary terms. The minus sign in

front of the L0 integral is consistent with that the boundary should be treated as a matter

contribution, as was assumed in (2.8). The derivatives ∂x and ∂φ only appear in L0 through

the combinations
√
ǫ ∂xΦ and

√
ǫ ∂φΦ.

5 Given the smallness of ǫ, this means that only the

large wave number modes can have significant contributions.

The (∂t + Ω∂φ)-terms in SB consist a total derivative and drop out of the integral,

which means that the action SB does not predict any interesting dynamics of the boundary.

Normally this would be the end of the story. But then we notice an interesting feature.

That is, instead of r = r+{1 + ǫ[1 + Φ(x, φ, t)]}, if we look at the average location of the

brane, r = r0 = r+(1 + ǫ), we indeed find well defined dynamics,

SH = −r+ − r−
4

+
µ

2

∫

H
dxdφdt

[
L0 +O(Φ3)

]
+O(

√
ǫ ) , (3.8)

where the subscript H means the integral is taken over the surface r0 = r+(1 + ǫ). We

have included an extra minus sign in the boundary action so that SH is in the proper form

of a matter contribution.

One may ask if there is any physical reason to believe in (3.8). A possible explanation

comes from the approximation that we have made when deriving (3.7) and (3.8). When

the boundary fluctuates, the metric near the boundary will fluctuate accordingly. But for

technical reasons we have to rely on the average field approximation and use the average

metric (3.1), instead of the real time metric, in the calculations. Although a concrete proof

is hard to get at the moment, this approximation suggests that it could make more sense

that we also derive the effective action at the average location of the boundary, just as

in (3.8). In any case, this is still a weak link in the whole construction that we wish to

improve in future works.

For the moment, we make the extra assumption that (3.8) is the correct effective action

for the boundary. (Hopefully we can eliminate the need for this extra assumption in the

near future!) And we will show in the following that this action does lead to physically

reasonable results.

For the charges (2.10) the situation is similar. There is no dynamics at r = r+[1 +

ǫ(1 + Φ)], while at r = r0 we find

H = −ΩJφ +
µ

2

∫

H
dxdφdt

{
2r+(r+ + r−)

2

r+ − r−
[(∂t +Ω ∂φ)Φ]

2 − L0

}
, (3.9)

Jφ =
µ

2

∫

H
dxdφdt

{
2r+(r+ + r−)

2

r+ − r−
(∂t +Ω ∂φ)Φ ∂φΦ

+Ω
(r+ + r−)

2(1− x2)

(r+ + r−x2)2

[
3r2+ − r2−x

2 + r+r−(1 + x2)
]}

= J +
µ

2

∫

H
dxdφdt

[
2r+(r+ + r−)

2

r+ − r−
(∂t +Ω ∂φ)Φ ∂φΦ

]
, (3.10)

where J = 1
2(r+ + r−)

√
r+r− is the angular momentum of the black hole.

5Note one can always let ∂t +Ω∂φ → ∂t by a coordinate redefinition φ → φ+Ωt.
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Not considering the constant terms, one can infer from (3.10) that the canonical mo-

mentum conjugating to Φ is

ΠΦ = µ
r+(r+ + r−)

2

r+ − r−
(∂t +Ω ∂φ)Φ . (3.11)

From (3.9) one can also read off the Hamiltonian density

H = −ΩΠΦ∂φΦ+
µ

2

{
2r+(r+ + r−)

2

r+ − r−
[(∂t +Ω ∂φ)Φ]

2 − L0

}

=
µ

2

{
2r+(r+ + r−)

2

r+ − r−
(∂t +Ω ∂φ)Φ∂tΦ− L0

}
, (3.12)

which is in the familiar form H = ΠΦ∂tΦ− 1
2µL0.

For an isolated system, we expect ΠΦ = δSH

δ(∂tΦ) . For a boundary, however, the contri-

bution from the bulk action modifies the relation. In the present case, we actually find

ΠΦ =
1

2

δSH

δ(∂tΦ)
. (3.13)

This unusual relation will not cause any problem for our calculations in the following.

4 Classical solutions and quantization

Let’s now look at the solutions of (3.8). Instead of considering the general case, lets focus

on the small rotation limit (Ω → 0 ⇒ ρ ≡ r−/r+ → 0). In this case,

L0 = 2r2+(1 + 3ρ)[(∂t +Ω ∂φ)Φ]
2 − (1− x2)(

√
ǫ ∂xΦ)

2

−
(

1

1− x2
− 2ρ

)
(
√
ǫ ∂φΦ)

2 , (4.1)

where we have preserved terms up to the subleading order in ρ → 0. The Hamiltonian and

the angular momentum are

H = −ΩJφ +
µ

2

∫

H
dxdφ

{
(1− x2)(

√
ǫ ∂xΦ)

2 +

(
1

1− x2
− 2ρ

)
(
√
ǫ ∂φΦ)

2

}
, (4.2)

Jφ = J +

∫

H
dxdφµ r2+(1 + 3ρ)(∂t +Ω ∂φ)Φ ∂φΦ . (4.3)

With Φ = fm
ℓ (x) exp{i[m(φ− Ωt)− Eℓ,mt]}, the equation of motion from (3.8) is

2r2+(1 + 3ρ)E2
ℓ,mfm

ℓ + ǫ ∂x

[
(1− x2)∂xf

m
ℓ

]
−
(

1

1− x2
− 2ρ

)
ǫm2fm

ℓ = 0 . (4.4)

This equation can be solved by the associated Legendre polynomials fm
ℓ = Pm

ℓ (x), with

Eℓ,m =

√
ǫ
ℓ(ℓ+ 1)− 2m2ρ

2r2+(1 + 3ρ)
≈ ℓ

r+

√
ǫ

2

[
1− ρ

(
3

2
+

m2

ℓ2

)]
,

ℓ = 0, 1, · · · ,∞ , m = −ℓ, · · · , ℓ . (4.5)

– 8 –
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(Here and in the following, when making approximations, we always preserve terms up to

the subleading order in ρ → 0 and up to the leading order in |m| ∼ ℓ → ∞.) The full

solution can be expanded as Φ =
∑

ℓ,mΦm
ℓ , where

Φm
ℓ = Nm

ℓ Pm
ℓ (x)

{
aℓ,mei[m(φ−Ωt)−Eℓ,mt] + a†ℓ,me−i[m(φ−Ωt)−Eℓ,mt]

}
, (4.6)

Nm
ℓ =

√
1

2µ r2+(1 + 3ρ)Eℓ,m
2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
. (4.7)

In quantization, one promotes aℓ,m and a†ℓ,m to operators âℓ,m and â†ℓ,m, yielding Φ̂

and Π̂Φ. Then one imposes the following equal time commutation relations,

[Φ̂(x, φ, t), Π̂Φ(x
′, φ′, t)] = iδ(x− x′)δ(φ− φ′) ,

[Π̂Φ(x, φ, t), Π̂Φ(x
′, φ′, t)] = [Φ̂(x, φ, t), Φ̂(x′, φ′, t)] = 0 , (4.8)

which, with (4.6) and (4.7), lead to

[âℓ,m , â†p,q] = δℓ,p δm,q , [âℓ,m , âp,q] = [â†ℓ,m , â†p,q] = 0 . (4.9)

As usual, âℓ,m annihilates the vacuum state in the Fock space, âℓ,m|0〉 = 0, and â†ℓ,m
generates multiparticle states, |Nℓ,m〉 ∼ (â†ℓ,m)Nℓ,m |0〉, which have the following properties

N̂ℓ,m|Nℓ′,m′〉 = δℓℓ′δmm′Nℓ,m|Nℓ,m〉 , 〈Nℓ,m|Nℓ′,m′〉 = δℓℓ′δmm′ . (4.10)

Here N̂ℓ,m = â†ℓ,mâℓ,m, and Nℓ,m is a non-negative integer standing for the number of

corresponding particles. The Hamiltonian (4.2) and the angular momentum (4.3) become

Ĥ = −ΩĴφ +
∑

ℓ,m

Eℓ,m
(
N̂ℓ,m +

1

2
N̂0

)

=

(
− ΩJ +

∑

ℓ,m

Eℓ,m
2

)
N̂0 +

∑

ℓ,m

E ′
ℓ,mN̂ℓ,m , (4.11)

Ĵφ = JN̂0 −
∑

ℓ,m

mN̂ℓ,m , (4.12)

where E ′
ℓ,m = Eℓ,m +mΩ, and N̂0 is the number operator for the vacuum state,

N̂0|0〉 = |0〉 , N̂0|Nℓ,m〉 = 0 . (4.13)

We have made the presence of N̂0 explicit so that both (4.12) and (4.11) are well defined

operator equations. The fact that Ĥ and Ĵφ have the expected structures supports the

result for the stress energy tensor (2.8) and the result for the canonical momentum (3.11).

When there is gravity, we expect every piece of the Hamiltonian to contribute to the

total energy. That is why we keep both the constant term and the terms of the zero point

energy in (4.11). In order for the contribution from the zero point energy to be finite, there

must be a cutoff on the physically available modes. As mentioned before, the existence
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of two dimensional conformal symmetries on the horizon hints at the possibility that the

horizon is a boundary separating two different phases of the spacetime. This can be taken

as indicating the existence of substructures of the spacetime. In this case, the presence of

a cutoff (say Nc) is very natural, which is directly related to the minimal lattice spacing

(say a) of the substructures along the direction of the boundary,

Nc = ℓmax = mmax ≈ 2πr+
a

. (4.14)

With the cutoff, the contribution from the zero point energy is

M0 =

Nc∑

ℓ=0

ℓ∑

m=−ℓ

Eℓ,m
2

≈ N3
c

3r+

√
ǫ

2

(
1− 11ρ

6

)
. (4.15)

5 Statistics

The thermal state of our scalar system with temperature T and angular velocity Ω is

|Ψ〉 = |0〉+
∑

ℓ,m

∑

Nℓ,m

(
e−Nℓ,m(βE ′

ℓ,m
+αm)

Ξℓ,m

)1/2

|Nℓ,m〉

= |0〉+
∑

ℓ,m

∑

Nℓ,m

(
e−Nℓ,mβEℓ,m

Ξℓ,m

)1/2

|Nℓ,m〉 , (5.1)

where Ξℓ,m =
∑

Nℓ,m
e−Nℓ,mβEℓ,m = 1/(1 − e−βEℓ,m), β = 1/T and α = −βΩ. (The minus

sign in α is due to the fact that βΩ is a chemical potential.) By definition, the thermal

sate (5.1) is space and time independent, and it assigns the expected occupancy number

to each particle (including the vacuum),

〈Ψ|N̂0|Ψ〉 = 1 , 〈Ψ|N̂ℓ,m|Ψ〉 =
∑

Nℓ,m

e−Nℓ,mβEℓ,m

Ξℓ,m
Nℓ,m . (5.2)

As shown in (4.5), Eℓ,m is an even function in m. So “particles” with m > 0 and m < 0

are evenly excited. One can then derive from (4.11), (4.12) and (5.2) that

E = 〈Ψ|Ĥ|Ψ〉 = −ΩJ +
∑

ℓ,m

Eℓ,m
2

+
∑

ℓ,m

∑

Nℓ,m

E ′
ℓ,mNℓ,m

e−Nℓ,mβEℓ,m

Ξℓ,m

= −ΩJ +
∑

ℓ,m

Eℓ,m
2

− ∂β
∑

ℓ,m

ln Ξℓ,m ,

Jφ = 〈Ψ|Ĵφ|Ψ〉 = J , (5.3)

where the second line for E is possible because the terms linear in m cancel among them-

selves in E ′
ℓ,m. The result for Jφ suggests that all the angular momentum of the black hole

is carried by the boundary, i.e., the horizon.
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Now the key quantity to calculate is the the partition function,

ln Ξ =
∑

ℓ,m

ln Ξℓ,m = −
Nc∑

ℓ=0

ℓ∑

m=−ℓ

ln
(
1− e−βEℓ,m

)
. (5.4)

An explicit result is possible in the small rotation limit. In this limit the black hole

thermodynamical quantities can be expanded as

M ≈ r+
2
(1+ρ) , J ≈ r2+

2

√
ρ (1+ρ) , Ω ≈

√
ρ

r+
(1−ρ) , T ≈ 1− 2ρ

4πr+
, S ≈ πr2+(1+ρ) .

(5.5)

We firstly expand (5.4) around ρ → 0, assuming that β is an unknown constant. Then we

sum over m and replace
∑Nc

ℓ=0 by an integral. The result is (note y = kn and k = β
r+

√
ǫ
2 )

ln Ξ ≈ − 2

k2

∫ kNc

0
dyf1(y) = − 2

k2

[
f2(kNc)− f2(0)

]
,

f1(y) = f ′
2(y) = y ln(1− e−y)− 11ρy2

6(ey − 1)
, f1(0) = 0 ,

f2(y) = yLi2(e
−y) + Li3(e

−y) +
11ρ

3
f3(y) , f2(0) = ζ(3)

(
1 +

11ρ

3

)
,

f3(y) = yLi2(e
−y) + Li3(e

−y)− y2

2
ln(1− e−y) , f3(0) = ζ(3) , (5.6)

where Lis(z) is the polylogarithm. The total energy and the entropy are

E = −ΩJ +M0 − ∂β ln Ξ

≈ −r−
2

+
N3

c

3r+

√
ǫ

2

(
1− 11ρ

6

)
+

k

β

{
2

k2
f1(kNc)Nc −

4

b3

[
f2(kNc)− f2(0)

]}

=
ℓ2p

4π3r2+ǫ0

[
ζ(3)− f3(c0) +

c30
12

+O(ρ)

]
M , (5.7)

S′ = (1− β∂β) ln Ξ

≈ − 2

k2

[
f2(kNc)− f2(0)

]
+ k

{
2

k2
f1(kNc)Nc −

4

k3

[
f2(kNc)− f2(0)

]}

=
3ℓ2p

4π3r2+ǫ0

[
ζ(3)− f3(c0)−

c20
6
ln(1− e−c0) +O(ρ)

]
S , (5.8)

where we have let ǫ = ǫ0 + ǫ1ρ+O(ρ2), Nc = N0 +N1ρ+O(ρ2), and c0 = 2π
√
2ǫ0N0. We

have also written explicitly the Planck length ℓp so that the ratios E
M and S′

S are obviously

dimensionless.

In our setup, the parameter ǫ and the cutoff Nc are a priori not known. From (5.3)

we see that the boundary carries all the angular momentum of the black hole. This hints

at an interesting possibility that all other charges of the black hole are also carried by the

horizon. We use this to get an idea on what the values of Nc and ǫ might be.

From the mass and the entropy there are two equations, E = M and S′ = S. With

two free parameters a solution is then possible.6 This can be done order by order in the

6This point is not so trivial as it looks. For example, if we do not include the contribution from the zero

point energy, it is then NOT possible to satisfy both E = M and S′ = S simultaneously.
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expansion of the small rotation limit. Up to the subleading order, we find

√
ǫ0 ≈ ℓp

7.27r+
, N0 ≈

2πr+
2.84ℓp

,
ǫ1
ǫ0

≈ 0.22 ,
N1

N0
≈ 1.61 . (5.9)

A few comments are in order:

• Firstly, the putative lattice spacing introduced in (4.14) is

a ≈ 2.84ℓp , (5.10)

which is independent of the properties of the black hole.

• Secondly, r0 differs from the background horizon r+ by

δ ≈ r+ǫ0 ∼
ℓ2p
r+

, (5.11)

which is qualitative the same as (1.1). From (3.1), the physical distance between r0
and r+ is

δ′ ≈ r+
√
ǫ0 ≈

ℓp
7.27

, (5.12)

which is also independent of the properties of the black hole.

• Thirdly, the energy at the cutoff is approximately

EN0,m ≈ N0

r+

√
ǫ0
2

≈ 0.22

r+
. (5.13)

Since the cutoff energy (5.13) is calculated by using the canonical time t, it is natural

to interpret it as the energy measured by an observer at the spatial infinity. Translating

back to the boundary, this means that the cutoff energy is

E ′
N0,m ≈ EN0,m√

ǫ0
∼ 1

ℓp
, (5.14)

which is at the Planck scale. This result fits well with our naive expectations and it also,

interestingly, suggests the presence of a true firewall.

6 Summary

Apart from some very special cases (see, e.g. [38]), most of our understanding of black hole

entropy comes without an explicit knowledge of the physical entities that actually carry

the thermodynamical properties of the black hole. In view of the fact that the horizon acts

as a (at least, causal) boundary to the spacetime, we ask what happens if it is in fact a

physical and dynamical boundary to the spacetime, and then we study its contribution to

the black hole thermodynamics.

The dynamics of a physical boundary is naturally governed by the boundary action,

which can be identified by requiring that the variational principle is well defined. If the bulk
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theory is Einstein-Hilbert, then the boundary action is given by the Gibbons-Hawking-York

term. Using the Kerr black hole as an example, we find that the boundary action on the

average location of the physical horizon effectively describes a massless Klein-Gordon field.

Quantum mechanically, this inevitably leads to fluctuations of the boundary. We note that

only large wave number modes have significant contributions to the effective action. The

full spectrum of the system can be found in the small rotation limit of the black hole.

We then look at the contribution of the boundary to the black hole thermodynamics.

It turns out that the angular momentum of the boundary matches exactly with that of the

black hole. It is then tempting to suggest that all charges of the black hole are carried by the

horizon. We use this as an assumption to fix the two unknown parameters in our model. As

a result, the lattice spacing of the putative substructures of spacetime along the boundary is

found to be (5.10), the physical distance from the real boundary to the background horizon

r+ is found to be (5.12). We also determined the cutoff energy of the excitations in (5.13).

Phenomenologically, our simple model is already capable of a detailed explanation of

the statistical origin of the black hole entropy. At the deeper level, however, the model relies

on two unusual assumptions which require further investigation. Let’s finish by listing them:

• Firstly, our model assumes that the black hole horizon is a physical boundary to the

spacetime. If there is indeed substructures to the spacetime, then the existence of a

boundary means that the substructures are in two different phases across the horizon.

Although it is widely accepted that no one can report to us any information from be-

hind the horizon of a black hole, people also often assume that one can pass through

the horizon unimpeded (see, however, [32, 33]). Our assumption implies that the

spacetime behind the horizon is significantly different from what is predicted by the

usual black hole metric.

• Secondly, the zero point energy of the quantum modes (4.11) plays an indispensable

role in the calculation. The problem of zero point energy is not so crucial for a theory

in flat spacetime. And its role in the case of gravity is not clear. Our model suggests

that black holes may provide the first evidence that zero point energy is physically

relevant in curved spacetime.

It is possible that the horizon is only one of the many physical entities that contribute

to the black hole thermodynamics. If we do not induce the contribution from the

zero point energy, other sources will have to be included to make up the total black

hole mass. In that case, the simplicity pertained to the present model will be lost. In

particular, it is possible that one may need even more unusual assumptions in order

to explain the unusual relation between the black hole mass and entropy.
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