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Quantum metrology utilizes entanglement to improve the sen-
sitivity of measurements'3. To date, the focus has been on the
measurement of a single observable. Its orthogonal observable,
however, may contain additional information, the knowledge of
which can be used to further improve the measurement result
beyond what is possible with state-of-the-art quantum metrol-
ogy. Here we demonstrate a laser interferometer that provides
information about two non-commuting observables, with
uncertainties below the meter's quantum ground state. Our
experiment is a proof of principle of what we call ‘quantum-
dense metrology’, referring to its increased measurement infor-
mation and its analogy to quantum-dense coding in quantum
information science. We propose to use the additional infor-
mation to discriminate between the actual science signal and
parasitic signals originating from scattered photons. Our
approach can be readily applied to improve squeezed-light
enhanced gravitational-wave detectors at non-quantum noise-
limited detection frequencies by providing a sub-shot-noise
veto trigger against stray-light-induced signals.

The Heisenberg uncertainty principle (HUP) limits the amount
of information that can be obtained about non-commuting observa-
bles of a physical system. Prominent examples are the position and
momentum of a particle or the amplitude and phase quadratures of
an electromagnetic wave. To optimize the sensitivity of a measure-
ment device under given constraints, such as limited energy, this
limit demands a sophisticated design of the ‘meter’ (or ‘probe’)
system (which couples to the targeted measurement quantity) as
well as a sophisticated design of the detector that reads out the
meter observable, which is an (optimal) estimator of the measure-
ment quantity®. Non-classical meter states have been used to
‘squeeze’ the imprecision in one meter observable to below its
zero-point fluctuation, entering the regime of quantum metrology.
The first such experiments were applied to squeezed-light enhanced
laser-interferometric phase measurements®. Further examples
include phase measurements with entangled photons®~, entangled
ions® and non-classical states of neutral atoms>!°, entanglement-
assisted nuclear magnetic resonance'! and magnetometry with
entangled magnetic moments of atomic ensembles!?. Recently,
quantum metrology has been applied to improve an operating
gravitational wave detector (GWD)"3.

All previous experiments in quantum metrology aimed to
improve the signal-to-noise ratio of a single meter observable.
However, the meter’s orthogonal observable may contain additional
information with a different physical origin. To date, a simultaneous
quantum measurement of additional, independent (incoherent)
information encoded in the meter’s orthogonal observable has not
been considered. In general, when using a single, separable and
squeezed meter mode, the HUP demands increased (‘anti-
squeezed’) quantum noise in the orthogonal observable, which

Here we propose and implement the concept of quantum-dense
metrology (QDM), which qualitatively increases the measurement
information compared to conventional quantum metrology by
simultaneously reading out two conjugate observables. Both obser-
vables show squeezed quantum noise and act as estimators of
independent physical quantities.

QDM is based on an Einstein-Podolsky-Rosen (EPR)
entangled!® two-mode system, first proposed for metrology by
D’Ariano and colleagues'>. One mode of the entangled system,
described by the bosonic annihilation operator a,, serves as the
new meter state, whereas the other mode 4, is kept as an external
reference for the measurement device (Fig. 1). In principle, it is
possible to measure exactly the distance in phase space between
the two modes, because the difference in their canonical positions
X, — %, and the sum of their canonical momenta p,, + p,
commute, [%,, — & P + P,] = 0, where &, = @Ay, +af,,)/v2
and p, . = —i(a,, — al, )/v/2. We overcome the limitation set
by the Heisenberg uncertainty relation (HUR) for reading out two
orthogonal quadratures of a system by performing all measurements
in relation to the reference beam. This situation was recently
described as ‘quantum-mechanics free’'®. The required (continuous-
variable) entangled states were first demonstrated by Ou et al.!”
and subsequently by many other groups'®-2’. They were previously
considered for the quantum-informational task of dense coding,
which doubles the capacity of quantum communication chan-
nels??2, In contrast to all previously discussed applications of
EPR entanglement, QDM benefits from two-mode squeezing
of non-orthogonal quadratures. Our discussion shows that
this opens a way to optimize the science-signal-to-noise ratio
within QDM.

The measurement problem of reading out two orthogonal quad-
ratures was first discussed by Arthurs and Kelly?’. Consider an
optical field described by the position and momentum-like quadra-
ture amplitudes X and p. Two physical interactions U(t) and U'(t)
modulate the field, resulting in incoherent, classical amplitude
and phase signals X = (%) and P = (p). From the commutation
relation [X, p] = i, one obtains the signal-normalized HUR

A% A%p o1 "
IXI? |PI* ~ 4|XI?|P®

where the quadrature variances for the ground state are normalized
to A’% = A’p = 1/2. However, actually measuring both quadra-
tures of a separable mode simultaneously (subscript ‘sim’) with,
for example, an eight-port homodyne detector?* leads to an uncer-
tainty product that is four times as large?*:

24 2a
A xsimAPsim > 1

prohibits a simultaneous non-classically improved readout of )
b | Xoiml* |Piml> ~ IXI?|PP?
oth observables. sim sim
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Figure 1| Schematic showing the underlying principle of QDM. The
measurement uses a bipartite (continuous-variable) entangled state; one
part (the 'meter’) probes two different interactions U(t) and U'(t) and the
other part is kept as an external reference. When leaving the interaction
zone the meter mode, which is described here by the annihilation operator
a,,, carries two pieces of information encoded in two non-commuting
observables. Both pieces of information are extracted with squeezed
quantum noise by recombining the entangled modes on a beamsplitter
and by detecting different observables (using two balanced

homodyne detectors).

With QDM, the simultaneous readout is no longer limited by such
an uncertainty relation. Instead, the achievable sensitivity is directly
connected to the squeezing parameters r,, r,, of the initial squeezed
beams. Overlapping them with a relative angle 6 on a beamsplitter pro-
duces entanglement and allows for a simultaneous detection of the
quadrature % and the rotated quadrature X, = & cos 6 + p sin 6 with

N A, e 5
2 2 = 2 2
|Xsim| |X6,sim| |X| |X0|

Setting = 1/2, the fundamental improvement compared to the
lower bound in inequality (2) becomes obvious. The HUR
(equation (1)) for a conventional readout based on a single separable
mode is surpassed for two-mode squeezing if r,,>0.347. A
detailed derivation of the above results can be found in the
Supplementary Information.

In this work we experimentally proved the principle of QDM and
its high potential for improving state-of-the-art laser interfero-
meters. Our set-up (Fig. 2) is in direct analogy to Fig. 1. We first
generated entangled light from two squeezed modes, following
earlier work!®, One mode of the entangled state was mode-
matched into the output port of a Michelson-type laser interferom-
eter operating at its dark fringe (Fig. 2). The actual interferometer
phase signal was produced by modulating the piezoelectric
transducer (PZT)-mounted north-arm mirror at 5.55 MHz.
We intentionally introduced a parasitic signal at 5.17 MHz by
PZT-modulating a small amount of light that leaked through the
east-arm mirror. By adjusting the phase of the light that is back-
reflected into the interferometer, we were able to simulate a parasitic
interference in any quadrature. Such a disturbance occurs naturally
in any measurement device due to rescattering of meter state
quanta from moving surfaces®>. A more detailed explanation of
the experimental set-up is given in the Methods.

The results of our experiment are presented in Fig. 3. Each point
in the spectra corresponds to the noise power of an operator,
X = %(Q, AQ), where AQ) is the spectral width defined by the resol-
ution bandwidth set at the spectral analyser (10 kHz in our case).
The non-classical sensitivity improvement in Fig. 3a is ~6 dB
(r,~0.69). At the same time, the interferometer’s sensitivity in
the orthogonal quadrature p (Fig. 3b) is also ~6 dB better than
in the classical case (r, & 0.69). Figure 3a,b clearly surpasses the
limit set by inequality (2), and even outperforms inequality (1).

QDM uses the simultaneous squeezing in two orthogonal quad-
ratures to improve the overall measurement, here by identifying
a parasitic (disturbance) signal, as described in the following.
Balanced homodyne detector (BHD) A measures the amplitude
quadrature (Fig. 3a, orange trace), which generally provides the
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Figure 2 | Schematic set-up for the experimental demonstration of QDM.
Inside a Michelson interferometer, two independent interactions Us™!(t)
and UP"(t) are generated by the PZT-driven mirrors My, and Mg ,. They
result in a 'scientific’ signal X*8™ and a disturbance signal Xfrasmc. xsignal
corresponds to a pure amplitude modulation of the interferometer output
beam, while Xf’asmc describes a modulation that is rotated into quadrature
angle ¢ by adjusting A, which is the microscopic spacing between the east
mirrors. A Faraday rotator in combination with a polarizing beamsplitter
(PBS) couples one part of the entangled state into the interferometer.

The other part is overlapped with the light beam leaving the interferometer.
The two resulting beams are simultaneously detected with balanced
homodyne detectors BHD A and B, which measure quadratures % and X,_.,
respectively p = X,_. ». The total projected signal at BHD A reads

Xsim — (]/ﬁ)(xsignal + Xzarasitic cos (P)-

- /

highest signal-to-noise ratio for the interferometric science signal
(here at 5.55 MHz). BHD A also clearly detects a second (parasitic)
signal at 5.17 MHz. Looking at p with BHD B (Fig. 3b), the phase
signal at 5.55 MHz vanishes as expected, while the signal at
5.17 MHz does not vanish but actually increases in size. This infor-
mation is sufficient to reveal the parasitic nature of the lower
frequency signal, which can thus be excluded (‘vetoed’) from
further data analysis.

In Fig. 3¢, we used an improved strategy to reveal the parasitic
signal. We detuned the angle 6 between the original squeezing
ellipses away from 90°. In this way it is possible to retain at least
part of the science signal in BHD B, while still having insight into
the orthogonal quadrature. As the projection of a phase signal
measured at BHD A into the X, quadrature can be calculated
exactly, any discrepancy reveals a parasitic signal. The dashed
black lines in Fig. 3b,c show the projected noise power, assuming
that Fig. 3a contains only phase signals. Although the signal at
5.55 MHz perfectly matches the expectation, the disturbance at
5.17 MHz clearly does not. The advantage of the measurement in
Fig. 3c is that, together with Fig. 3a, the overall signal-to-noise
ratio of the science signal is improved.

In the following we discuss the application of QDM in state-of-
the-art measurement devices. Generally, to achieve high quantum-
noise-limited sensitivities, very bright states have to be used.
Current laser-interferometric GWDs use light fluxes of ~1 x 10
photons per second?. Just a single photon per second and hertz,
which is backscattered from a vibrating surface and in this way
frequency-shifted into the detection band, produces a significant
parasitic interference signal. Such disturbances are a well-known
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Figure 3 | Experimental demonstration of QDM. a-c, Orange traces show
the (unnormalized) simultaneously squeezed quadrature noise-power
spectra A’%(Q2) (BHD A, a) and A?p(€2) or A*%,() (BHD B, b and c,
respectively) in comparison with the respective spectra of the meter's
zero-point fluctuations (blue). In b and ¢, parasitic signals due to their
unexpected scaling can be observed. The calculated scalings of science
signals are shown as the dashed black curves. In ¢, angle 6 was tuned so
that part of the true science signal was recovered. All traces are slightly
sloped due to the decreasing transfer function of the homodyne detectors.
They were recorded with a resolution bandwidth of AQ =10 kHz, a video
bandwidth of 100 Hz, and were averaged three times.

problem in high-precision laser interferometry?»*”-?® and are ulti-
mately a fundamental problem in any measuring device aiming
for high quantum-noise-limited sensitivities. We presume that
the sensitivity limitation at lower detection frequencies in the
squeezed-light enhanced GWD GEO 600 (ref. 13) at least partially
originates from parasitic interferences. Using QDM in GEO 600,
in direct analogy to Fig. 2, would allow us to clarify which of the
(low-frequency) signals are parasitic and which occur in the
quadrature where gravitational waves are expected.

In conclusion, we have introduced and experimentally demon-
strated the concept of quantum-dense metrology. QDM makes
use of entanglement to achieve a simultaneous non-classical
readout of two conjugate observables, which are estimators for
quantities originating from independent physical processes. Our
approach uses steady-state entanglement and therefore does not
rely on any kind of conditioning or post-selection, which would
result in a loss of measurement time. For the first time we
propose two-mode squeezing for metrology, generated with a

non-orthogonal relative squeezing angle. Such entangled states
allow optimization of the signal-to-noise ratio when QDM
is applied.

We have shown experimentally that QDM is superior to conven-
tional quantum metrology and can be used to distinguish between
scientific and parasitic signals with a precision beyond the ground-
state uncertainty. Although our application of QDM does not help
in the case of parasitic signals that occur solely in the phase quadra-
ture, for example caused by thermally excited fluctuations of mirror
surfaces and radiation pressure forces, it is a valuable tool against all
types of parasitic signals that have a phase space orientation different
from the phase quadrature. It should even be possible to subtract
parasitic signals from the measurement data without subtracting
science signals. For this, the assumption has to be made that the tem-
poral or spectral shapes of the science and parasitic signals are differ-
ent. Then, fitting parameters could be introduced that describe with
which magnitudes the parasitic signals are projected onto the con-
ventional readout quadrature of the interferometer. Fitting par-
ameters are already used in data analysis based on matched
filtering and signal templates®. Beyond the identification of parasitic
signals, QDM might find application in all measurement interactions
where different physical processes interact independently with
non-commuting observables of the meter system. We envision that
QDM will widen the application of quantum metrology in
ongoing and future high-precision measurements.

Methods

Entangled-light generation. Our continuous-variable entangled light was generated
by a source as described in a previous publication®’. Two squeezed vacuum fields
generated by degenerate type I parametric downconversion in periodically-poled
potassium titanyl phosphate (PPKTP) were overlapped at a 50:50 beamsplitter,
thereby creating two-mode squeezed light. Both input fields carried a residual phase
modulation from locking the optical parametric amplifiers. At the detection stage,
this modulation was reused to align the homodyne detectors to the squeezed
quadratures. A single sideband modulation was imprinted on one of the squeezed
fields by overlapping it with 80 MHz frequency-shifted light from an acousto-optical
modulator. This sideband was used to lock the quadrature angle between the input
squeezed states. It was also used to stabilize one mode of the entangled field to the
Michelson interferometer by detecting the beat signal between the sideband and the
interferometer input field behind one end-mirror.

Interferometer set-up and control. The Michelson interferometer had an arm
length of ~7.5 cm for the north arm. The east arm was ~1.5 cm shorter, which
allowed us to use the so-called Schnupp modulation technique for locking the
interferometer to its dark fringe. Both end-mirrors were flat and had power
reflectivities of 99.98% (My) and 98% (Mg,). The north mirror was PZT-mounted
to create a phase modulation inside the interferometer. A second PZT-mounted flat
mirror My, with a reflectivity of ~20% was placed a few millimetres behind My,
creating a (weakly coupled) Fabry-Pérot cavity. By tuning this cavity, the phase
signal created by Mg, could be rotated into an arbitrary quadrature. A d.c. locking
scheme detected the transmitted light and held the cavity at its operating point.
Both PZTs were driven on a mechanical resonance to create signals in the
few-megahertz regime where the detected squeezing was strongest.
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