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Searching for a needle in a stack of needles: challenges
in metaproteomics data analysis

Thilo Muth,a Dirk Benndorf,b Udo Reichl,ab Erdmann Rappa and
Lennart Martens*cd

In the past years the integral study of microbial communities of varying complexity has gained

increasing research interest. Mass spectrometry-driven metaproteomics enables the analysis of such

communities on the functional level, but this fledgling field still faces various technical and semantic

challenges regarding experimental data analysis and interpretation. In the present review, we outline

the hurdles involved and attempt to cover the most valuable methods and software implementations

available to researchers in the field today. Beyond merely focusing on protein identification, we provide

an overview on different data pre- and post-processing steps, such as metabolic pathway analysis, that

can be useful in a typical metaproteomics workflow. Finally, we briefly discuss directions for

future work.

Introduction

Advances in high throughput DNA sequencing have led to new
perspectives on the molecular interactions in environmental
microbial communities by retrieving comprehensive sequence
information. Metagenomics1 nowadays provides insight into
the phylogenetic structure and functional potential of micro-
bial populations and shows its variety and distribution in
natural habitats.2

Shifting from the genome to the proteome level, metapro-
teomics3 or whole community proteomics4 aims to additionally
investigate the functional profile of microbial communities,
e.g. the immediate catalytic potential of a microbial community.
The strategy pursued to achieve this insight is taken directly
from more traditional proteomics approaches. Proteins are
isolated from the sample, and subsequently digested with a
protease such as trypsin to obtain peptides, and these are then
analyzed by tandem mass spectrometry (MS/MS) to obtain
fragmentation spectra.5 These experimental spectra are then
either compared to theoretical spectra obtained after in silico
digest of a protein sequence database, or a sequence is
read from them de novo to identify the original peptides.6

These peptides are then in turn used to infer the proteins that
were originally derived from the sample.7

Compared to the traditional single-organism proteomics
approaches however, metaproteomics research presents several
unique challenges, most notably the high complexity and
heterogeneity of the samples. Indeed, microbial communities
may contain hundreds to thousands of different species,
with estimations for complete metagenomes predicting a com-
plexity of more than 100 times that of the human genome.8

Furthermore, a second common hurdle concerns the restricted
availability of (predicted) protein databases as metagenomic
sequence information is often not available. The resulting
lack of protein sequences to match experimental spectra
against them leads to a low amount of successful peptide
and protein identifications, e.g. in samples from wastewater
treatment,9 biogas plants10 or human gut.11 Apart from these
two primary challenges, microbial samples further carry the
intrinsic biological problems of containing many homologous
proteins, while performing horizontal gene transfer and
exhibiting strain variety as well. A final issue relates to the
low reliability of protein extraction from complex biological
matrices.12,13

In the present review, we outline the most common bio-
informatics and data analysis techniques used to tackle these
problems with processing metaproteomics data. Besides pro-
viding an overview on algorithms and software used, we also
mention as-yet unresolved challenges and drawbacks in meta-
proteomics data analysis and provide an outlook for urgently
needed development in the future.
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Metaproteomics workflow steps and
relevant software

An overview of the three steps in a typical metaproteomics
workflow, along with a summary of the relevant data processing
challenges and key technology platform for each step, is
provided in Fig. 1.

Gene prediction and high-throughput sequencing

An important cornerstone of proteomics data processing consists
of matching experimental spectra against theoretical spectra
obtained from sequence databases. Ideally, the database would
fully contain the sample under study, and it would therefore be
advantageous to possess the full coding potential of a sample in
the form of its complete metagenome. Using next-generation
sequencing technologies such as pyrosequencing14 short reads
(100–500 base pairs) can be produced to cover the coding
potential of the sample.15 More detailed information on next-
generation DNA sequencing can be found in more specialized
comprehensive reviews.16,17 However, in metagenomics the pre-
diction of intact genes from these short sequence reads is
challenging as the single genome assembly traditionally employed
in DNA sequencing for whole genomes cannot be applied. Several
metagenomic gene prediction programs have therefore been
developed, including MetaGeneAnnotator,18 Orphelia19 and
GeneMark.20 A benchmark comparison of the algorithms and
an approach to combine the different gene prediction methods
can be found in the paper of Yok and Rosen.21 As one example
for metagenomic analysis and annotation, the Metagenomics
RAST22 online platform can be used. Furthermore, comprehensive
reviews on the specialist and complex topic of metagenomics
can be found in Wooley et al.23 and Thomas et al.24

With a suitable search space defined, either through meta-
genomics or the use of existing sequence databases, the actual
metaproteomics data processing workflow can begin, as detailed
in the next sections.

Filtering MS/MS data

Prior to attempting peptide and protein identification, it is
important to guarantee a minimal degree of quality in the raw
data. The massive amount of information produced in meta-
proteomics experiments renders it necessary to filter out low
quality raw spectra a priori. While spectrum filters can be
applied manually by choosing criteria such as minimum total
intensity, minimum peak number or mandatory presence of
certain fragment ions, several more advanced and automated
methodologies have been described for spectrum quality
assessment.25–27 By applying the quality-based classifier
method26 for 25 000 experimental MS/MS spectra from meta-
proteomics samples we found that between 13 and 47% of the
non-identified spectra could be removed due to bad quality
while retaining 98% of the correctly identified spectra (see
Table 1). Another promising approach to reduce computational
load and simultaneously improve spectral quality is provided
by spectral clustering to combine redundant spectra into meta-
spectra.28,29 The clustering method of Flikka et al.28 was
applied to the aforementioned dataset and resulted in a
reduction of 23 458 non-identified spectra to 16 432 clusters
and 2408 meta-spectra (see Table 2).

In contrast, 1542 identified spectra could be combined to
1391 clusters and 108 meta-spectra. These numbers show that
the non-identified spectra exhibit a higher redundancy in
comparison to the identified spectra.

Protein database searching

In general, the algorithms for protein identification correlate
experimental fragment ion spectra with theoretical spectra

Fig. 1 Overview of a metaproteomics workflow. The three main workflow
parts are shown in the boxes on the left, with the middle column showing the
relevant data processing steps in each of these three steps. The rightmost
column shows the corresponding key technology platform for that step.

Table 1 Spectrum quality classification. The table shows the true-positive (TP) and
the true-negative (TN) rate for five different test datasets. The TP rate represents
the rate of identified spectra labeled as good spectra. The TN rate is the rate
of unidentified spectra classified as bad

Dataset TP rate TN rate No. spectra

Dataset1 0.98881 0.23225 5000
Dataset2 0.98282 0.46995 5000
Dataset3 0.98023 0.18597 5000
Dataset4 0.97826 0.12867 5000
Dataset5 0.97701 0.38384 5000
Sum 0.98119 0.28097 25 000

Table 2 Spectral clustering. The table shows the clustering results for the
identified (Id) and unidentified (Non-Id) spectra of the same datasets as used
for the spectrum quality classification in Table 1. All spectra were clustered (Id
and Non-Id clusters) and clusters with at least two containing spectra were
merged into meta-spectra (Id and Non-Id merged)

Dataset
Id
spectra

Id
clusters

Id
merged

Non-Id
spectra

Non-Id
clusters

Non-Id
merged

Dataset1 268 246 18 4732 4110 438
Dataset2 291 278 13 4709 4128 490
Dataset3 354 328 25 4646 4151 439
Dataset4 368 344 22 4632 4172 402
Dataset5 261 195 30 4739 3981 639
Sum 1542 1391 108 23 458 16 432 2408
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calculated for each peptide derived after in silico digest of
a protein sequence database. Several commercial and non-
commercial software packages exist for this purpose, and these
can be applied in metaproteomics data analysis as well. The
most prominent commercial search algorithms are SEQUEST30

and MASCOT.31 Various high performing free and open source
alternatives such as X!Tandem,32 OMSSA,33 Myrimatch,34

Crux35 and InsPect36 are available as well. However, each of
these algorithms suffers from the issue of false positive identi-
fications, and controlling the overall false discovery rate (FDR)
is therefore essential.37 Several computational techniques have
been developed to estimate the FDR at both the peptide and the
protein level, including statistical modeling approaches38,39 and
the highly popular target-decoy40 approach that has already been
included in several commercial search engines. The generation of
a decoy database is usually done by reversing or shuffling the
input database sequences.41 A major issue comes with the ques-
tion how to reasonably generate a decoy database. Software
packages such as QVality42 and Percolator43 make it possible to
use the results of any search engine and apply the target-decoy
strategy to them. In the case of Percolator, the use of advanced
machine learning methods is furthermore employed to increase
the sensitivity of identification at constant FDR. Although FDR
estimation is useful in the traditional, more limited search space
of a single organism’s proteome, where traditional search engines
provide a sufficiently discriminating score between correct and
incorrect identification candidates, this scoring system resolution
can deteriorate quickly when the search space increases in
complexity, as is the case in metaproteomics.44 This effect
dramatically reduces sensitivity, both in metaproteomics and
proteogenomics.45 One approach to regain some sensitivity by
providing a scoring system that better separates correct identifica-
tions from incorrect ones, hinges on the combination of multiple
database search engines as implemented by iProphet46 and
MSblender.47 These latter approaches benefit from the partially
complementary nature of search engine identifications.48,49

Spectral libraries

Database search engines have the disadvantage of having to
rely on existing protein sequence information. The alternative
approach of spectral library searching is based on recorded and
identified high-quality mass spectra as more flexible and
accurate references for identification. Here, the experimental
mass spectra are compared against reference spectra in
the spectral library and their similarity is taken as discrimi-
native measure. Popular spectral library search engines are
SpectraST,50 X!Hunter51 and the NIST MS search software.52

A shortcoming of this method is the fact that a reliable
reference spectral library has to be available for searching,
and this can be difficult to obtain, especially in the case of
metaproteomics data. Indeed, spectral libraries are mostly
derived from single-organism experiments on model species,
most notably human, mouse or yeast. However, the SpecraST
tools allow spectral libraries to be home-built,53 and as a result
it will be interesting to devise ways to develop spectral libraries
for metaproteomics. Note that spectral identification of the

spectra in the library is not necessarily required. One could
track the occurrence of non-identified spectra across different
experiments and ecosystems, and thus detect significantly repre-
sented spectra for more detailed follow-up analysis. Further-
more, interesting perturbations across systems could be detected
through marker spectra, even if they have not yet been identified.
This approach is quite similar to typical profile-based biomarker
discovery strategies,54 with that difference that MS2 features
would be used here instead of MS1 features for profile-based
approaches. This reduces the total amount of available data, but
also the amount of noise among the data, and may therefore be
more successful than the profile-based strategy.

De novo sequencing and homology search

The method of de novo sequencing deduces aminoacid
sequences directly from fragmentation spectra. It thus relies
solely on the information present in the spectra and therefore
obviates the need for a protein sequence database. This makes
de novo searching a very useful tool in metaproteomics research.
Furthermore, de novo approaches can also identify previously
unknown peptide sequences or sequences carrying unexpected
post-translational modifications. The major caveat of such
methods is that they require very high quality data to function
reliably,55 emphasizing the importance of preprocessing
steps such as binning, noise reduction and other filtering
techniques.56 Despite the corresponding low success rate,
de novo searching often remains the only possibility in the
context of metaproteomics experiments where the appropriate
protein sequence information is unknown or unavailable. The
most prominent de novo software packages are currently the
freely available PepNovo+57 and the commercial PEAKS58 suite,
with several other tools available as well.59 After the generation
of de novo peptide sequences a BLAST search60 can be employed
in order to identify candidate homology proteins. The MS
BLAST homology searching protocol61 represents a web-based
application specifically tailored to MS-based protein similarity
searches. However, this approach has to be used with care as
the obtained protein matches may result from incorrectly
derived peptide sequences due to the error-prone nature of
de novo sequencing. De novo sequencing results therefore
require tedious manual inspection, limiting the overall
throughput of this method. It is worth noting that BLAST
searches do not take into account mass spectral information,
and confidently identified aminoacids may well be considered
mutated by BLAST without reflecting badly on the downstream
alignment score. Cantarel et al. used a combination of
PepNovo+ and PEAKS for a whole-community proteomics
workflow to obtain high confidence consensus sequence tags.62

The derived de novo sequences were then mapped onto predicted
protein sequences from metagenomic contigs, establishing
the link between assembled metagenomics data and proteomics
de novo peptide sequence data.

Quantification methods

In order to analyze and compare protein expression levels,
methods of protein quantification63 need to be applied to
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microbial community samples. Quantification of proteins in
2D-gels worked well for decades, but separation of proteins
from environmental samples with 2D-gel electrophoresis is
extremely challenging, with time-consuming optimization
required for every novel sample type. Furthermore, none of
the popular quantification methods such as ICAT64 or iTRAQ65

in gel-free proteomics could be successfully applied to measure
protein expression in complex environmental samples. To
make matters worse, the performance of software for label-
based quantitative proteomics is often still lagging behind the
latest advances in the techniques themselves.66 Fortunately,
so-called label-free techniques provide a promising alternative
for peptide and protein quantification in microbial community
proteomics. Label-free quantification has the advantage that
it can be applied directly to protein identification data and
represents a very simple and straightforward approach for
estimating protein abundance.67 In this approach, the number
of identified spectra for a specific protein is counted, and the
higher these spectral counts are the higher the assumed
protein abundance. An improved approach is provided by the
normalized spectral abundance factor (NSAF)68 that takes into
account the fact that proteins with longer sequences usually
have more peptide identifications than shorter proteins and
thus obtains more consistent results by normalizing for this
effect.

Protein inference and taxonomic assignment

The question of how to correctly assign peptides to proteins has
been formulated as the protein inference problem, and is
eloquently described in ref. 7. Peptides can be shared among
protein splice isoforms in eukaryotes, across homologous
proteins from different species, or across recurring functional
domains, leading to so-called degenerate peptides. These
degenerate peptides lead to essentially irresolvable ambiguities
in protein identification that can easily lead to incompatible or
incorrect data interpretations.41 In metaproteomics, another
protein inference challenge is added at the taxonomy level.
Indeed, rather than mapping to multiple proteins, many pep-
tides identified in metaproteomics experiments can map to
multiple species, genera or even families. Additionally, data-
base search engines often display only a subset of all possible
protein identifications (the so-called best hits) for a limited
number of species and this limitation in the provided output
has to be taken into consideration for samples of unknown species
composition. A promising strategy for taxonomic evaluation is
provided by the following workflow: the identified peptide
sequences (derived from database or de novo searching) are
submitted as a preprocessing step to protein BLAST.60 With
the derived results the homology-matching software MEGAN69

then computes a phylogenetic tree for the dataset by employing
the NCBI taxonomy database. Details and instructions
on the metagenomic and metaproteomic analysis with MEGAN
(free for academic use) can be found in ref. 70. For meta-
proteomics, Schneider et al. built a perl script based workflow
(PROPHANE: PROteomics result Pruning and Homology group
ANnotation Engine) that fuses protein hits sharing common

peptides to a group.71 Subsequently, the taxonomic affiliation is
assigned on the level where the different affiliations of the hits in
the tree are converging.71 Although this approach is promising,
it does not take into account that certain aminoacid sequences
within a group of hits are conserved and thus should carry less
weight in this analysis.

Functional and metabolic pathway analysis

Protein identification lists derived from a database are however
not the end result of a proteomics experiment. Typically, a
perspective focusing on the meaningful semantic interpreta-
tion of the obtained protein data is sought after. This section
therefore describes possible strategies and examples for post-
processing analysis in the context of metaproteomics research.

Several publicly available databases can be used for the
functional annotation of individual identified proteins. The
UniProt knowledgebase72 serves as an excellent starting point
for collecting relevant information on specific proteins. The
Cluster of Orthologous Groups database (COG,73,74) maps both
prokaryotic and eukaryotic proteins to COG groups and each
group is linked to a COG functional category, e.g. aminoacid
transport and metabolism. COGs can be used to assign pre-
dicted functions to coding sequences, as shown by Schlüter
et al. for the metagenomic analysis of a biogas-producing
microbial community.75 Furthermore, Kolmeder et al. applied
the COG classification for the functional analysis of the human
intestinal metaproteome.11 The main issue with COG is that it
has not been updated since 2003, so it does not include any
novel information obtained since then. The Gene Ontology
(GO) project is a collaborative effort that addresses the need
for consistent descriptions of gene products across different
databases.76 GO provides three structured vocabularies,
so-called ontologies that describe biological processes, cellular
components and molecular functions independently of asso-
ciated species. Several tools, e.g. the Ontologizer software77 and
the web interface-based DAVID,78 enable protein analysis via
ontologies and protein families.

InterPro is a protein domain database providing a wide range
of information on protein sequence function and annotation.79

Its aim is to integrate information from other secondary protein
databases on functional sites and domains, such as PROSITE,80

PRINTS,81 SMART,82 Pfam83 and ProDom.84 A search against
InterPro can quickly reveal functional or known domains in an
otherwise uncharacterized protein, and can thus contribute to a
functional understanding of the identified proteins.

KEGG (the Kyoto Encyclopedia of Genes and Genomes) is a
data resource integrating genomic, biochemical and functional
information that focuses on intermediate metabolic and regu-
latory pathways.85 The idea is to model expression data and to
understand higher-order cellular processes. The data model is
based on catalyst activities via Enzyme Commission (EC) numbers.
This may prove an issue for proteomics data however, as the
relation of a protein to its enzymatic function may not be a single
link, especially in the case of a polypeptide chain with multiple
functions. The KEGG automated annotation server86 can be used
to place proteins into KEGG ontologies. Mapping of identified
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COGs onto KEGG pathways was employed by Kolmeder et al.
and a global metabolic pathway map could thus be retrieved.11

In addition to taxonomical analysis, the PROPHANE software
assigns mass spectra to functional groups using the COG
and KEGG database.71 With PROPHANE, protein annotations
are being validated by various complementary approaches,
including tools such as ClustalW,87 BLAST60 and Bioperl.88

The Reactome project collects structured information on cano-
nical biological pathways and processes in human,89 and con-
tains supplementary information with orthologous molecular
reactions in mouse, rat, worm and other model organisms.
Extending beyond a mere database, Reactome actually resembles
a curated journal that is expert-authored and peer-reviewed.
However, the main disadvantage of using Reactome for meta-
proteomics research lies in the fact that this knowledgebase is
limited to few species, all of which are higher eukaryotes.

The MetaCyc database is a curated reference database of
metabolic pathways from a wide variety of organisms, with a
particular emphasis on microorganisms and plants.90 Being
connected to MetaCyc, the BioCyc database offers further
species-specific pathway and genome databases.91 One of the
future plans is to integrate the genomes of the Human Micro-
biome Project.92 The metaproteomic analysis of the human
salivary microbiota by Rudney et al. was supplemented by
searching the MetaCyc database for prokaryotic pathways.93

The authors mention the problem that not all sequenced
microbial species were included in the database, and that
pathway matches were therefore based on data from closely
related taxa in some cases.

Additionally, the presence of proteins in common metabolic
pathways, protein–protein interaction maps or regulatory
networks could also help to interpret the obtained meta-
proteomics data, possibly even serving to confirm weak protein
identifications.94

Data storage and online data repositories

Although various data analysis software packages exist, it is
often difficult to integrate the output from the various analysis
tools. Many laboratories tend to implement their own in-house
database systems and scripts, but these local solutions have the
disadvantage that the results are mostly not replicable for any
other laboratory. It is therefore helpful to organize the data
workflow by using a laboratory information management
system (LIMS) or data analysis tools that provide a unified
relational database system at the backend. Proteus95 is a
commercial data integration and analysis system, capable of
storing data from many popular proteomics analysis tools.
CPAS,96 ms_lims,97 MASPECTRAS,98 myProMS99 and OpenMS100

represent freely available frameworks for mass spectrometry-
based data analysis and provide similar storage capabilities.
Comparative reviews of these various LIMS systems can be found
in ref. 101 and 102.

Local data storage is not the end of the data storage and
dissemination chain, however. Indeed, several initiatives
have been started over the past years in order to make experi-
mental proteomics data publicly available to the scientific

community at large. Among the most popular online databases
and repositories for proteomics data are the PRoteomics
IDEntifications database (PRIDE),103 the Global Proteome Machine
Database (GPMDB),104 PeptideAtlas,105 ProteomeCommons
Tranche106 and NCBI Peptidome.107 Peptidome has since
ceased to exist, but all its data have been safely archived in
PRIDE.

In addition to pure storage capacities, these repositories
provide possibilities of exchanging data between different
laboratories and allow the reanalysis of data, for instance when
new search algorithms or functional annotation tools become
available. An overview of the functionalities of these online
systems can be found in ref. 108–110.

Conclusions

Like all proteomics disciplines, metaproteomics research
strongly benefits from the developments of more sensitive
instruments and optimized sample preparation. But while
both trends increase the amount of acquired data, the corre-
sponding increase in the yield of information does not yet
follow suit. The heterogeneity and complexity of the samples
raise the question of the validity of the obtained results, and
advanced pre- and post-processing steps are needed to bring
the performance of the data analysis to the level of the data
acquisition. The lack of sequence information remains an
important issue for successful peptide and protein identifi-
cation in metaproteomics, and both de novo sequencing
approaches as well as alternatives such as spectral library
searching have to be improved further to overcome this
problem. In addition, software tools required for the reliable
functional and taxonomic assignment of primary data are
currently lacking yet are urgently needed. The current workflow
in processing metaproteomics data depends on collating
together pipelines from a variety of different tools from various
research fields. It would be of great benefit to the field if a
software platform were to be constructed that integrates and
improves these various functions in a single application.
In opposite of these data analysis and interpretation challenges
however, the field of metaproteomics holds significant pro-
mise for the future. Driven by the steadily growing amount
of available metagenomic sequence information, continued
improvements in the analytical and bioinformatics workflows
will enable metaproteomics to increasingly contribute to a
better understanding of microbial communities in the near
future.

Abbreviations

FDR False discovery rate
MS/MS Tandem mass spectrometry
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L. Valmu, J. Salojärvi, A. Palva, A. Salonen and M. W.
de Vos, PLoS One, 2012, 7, e29913.

12 K. Chourey, J. Jansson, N. VerBerkmoes, M. Shah,
K. L. Chavarria, L. M. Tom, E. L. Brodie and R. L.
Hettich, J. Proteome Res., 2010, 9, 6615–6622.

13 L. Giagnoni, F. Magherini, L. Landi, S. Taghavi, A. Modesti,
L. Bini, P. Nannipieri, D. Van der lelie and G. Renella,
Eur. J. Soil Sci., 2011, 62, 74–81.

14 M. Margulies, M. Egholm, W. E. Altman, S. Attiya,
J. S. Bader, L. A. Bemben, J. Berka, M. S. Braverman,
Y. J. Chen, Z. Chen, S. B. Dewell, L. Du, J. M. Fierro,
X. V. Gomes, B. C. Godwin, W. He, S. Helgesen,
C. H. Ho, G. P. Irzyk, S. C. Jando, M. L. Alenquer,
T. P. Jarvie, K. B. Jirage, J. B. Kim, J. R. Knight,
J. R. Lanza, J. H. Leamon, S. M. Lefkowitz, M. Lei, J. Li,
K. L. Lohman, H. Lu, V. B. Makhijani, K. E. McDade,
M. P. McKenna, E. W. Myers, E. Nickerson, J. R. Nobile,
R. Plant, B. P. Puc, M. T. Ronan, G. T. Roth, G. J. Sarkis,
J. F. Simons, J. W. Simpson, M. Srinivasan, K. R. Tartaro,
A. Tomasz, K. A. Vogt, G. A. Volkmer, S. H. Wang, Y. Wang,
M. P. Weiner, P. Yu, R. F. Begley and J. M. Rothberg,
Nature, 2005, 437, 376–380.

15 M. L. Metzker, Nat. Rev. Genet., 2010, 11, 31–46.
16 J. Shendure and H. Ji, Nat. Biotechnol., 2008, 26,

1135–1145.

17 D. R. Bentley, Curr. Opin. Genet. Dev., 2006, 16, 545–552.
18 H. Noguchi, T. Taniguchi and T. Itoh, DNA Res., 2008, 15,

387–396.
19 K. J. Hoff, T. Lingner, P. Meinicke and M. Tech, Nucleic

Acids Res., 2009, 37, W101–W105.
20 W. Zhu, A. Lomsadze and M. Borodovsky, Nucleic Acids

Res., 2010, 38, e132.
21 N. G. Yok and G. L. Rosen, BMC Bioinf. 2011, 12, 20.
22 F. Meyer, D. Paarmann, M. D’Souza, R. Olson, E. Glass,

M. Kubal, T. Paczian, A. Rodriguez, R. Stevens, A. Wilke,
J. Wilkening and R. Edwards, BMC Bioinf. 2008, 9, 386.

23 J. C. Wooley, A. Godzik and I. Friedberg, PLoS Comput.
Biol., 2010, 6, e1000667.

24 T. Thomas, J. Gilbert and F. Meyer, Microb. Inf. Exp., 2012,
2, 3.

25 J. W. H. Wong, M. J. Sullivan, H. M. Cartwright and
G. Cagney, BMC Bioinf. 2007, 8, 51.

26 K. Flikka, L. Martens, J. Vandekerckhove, K. Gevaert and
I. Eidhammer, Proteomics, 2006, 6, 2086–2094.

27 A. I. Nesvizhskii, F. F. Roos, J. Grossmann, M. Vogelzang,
J. S. Eddes, W. Gruissem, S. Baginsky and R. Aebersold,
Mol. Cell Proteomics, 2006, 5, 652–670.

28 K. Flikka, J. Meukens, K. Helsens, J. Vandekerckhove,
I. Eidhammer, K. Gevaert and L. Martens, Proteomics,
2007, 7, 3245–3258.

29 A. M. Frank, N. Bandeira, Z. Shen, S. Tanner, S. P. Briggs,
R. D. Smith and P. A. Pevzner, J. Proteome Res., 2008, 7,
113–122.

30 J. K. Eng, A. L. McCormack and J. R. Yates, J. Am. Soc. Mass
Spectrom., 1994, 5, 976–989.

31 D. N. Perkins, D. J. Pappin, D. M. Creasy and J. S. Cottrell,
Electrophoresis, 1999, 20, 3551–3567.

32 R. Craig and R. C. Beavis, Bioinformatics, 2004, 20,
1466–1467.

33 L. Y. Geer, S. P. Markey, J. A. Kowalak, L. Wagner, M. Xu,
D. M. Maynard, X. Yang, W. Shi and S. H. Bryant,
J. Proteome Res., 2004, 3, 958–964.

34 D. L. Tabb, C. G. Fernando and M. C. Chambers,
J. Proteome Res., 2007, 6, 654–661.

35 C. Y. Park, A. A. Klammer, L. Käll, M. J. MacCoss and
W. S. Noble, J. Proteome Res., 2008, 7, 3022–3027.

36 S. Tanner, H. Shu, A. Frank, L.-C. Wang, E. Zandi,
M. Mumby, P. A. Pevzner and V. Bafna, Anal. Chem.,
2005, 77, 4626–4639.

37 M. Vaudel, J. M. Burkhart, A. Sickmann, L. Martens and
R. P. Zahedi, Proteomics, 2011, 11, 2105–2114.

38 A. Keller, A. I. Nesvizhskii, E. Kolker and R. Aebersold,
Anal. Chem., 2002, 74, 5383–5392.

39 B. Y. Renard, W. Timm, M. Kirchner, J. A. Steen,
F. A. Hamprecht and H. Steen, Anal. Chem., 2010, 82,
4314–4318.

40 J. E. Elias and S. P. Gygi, Nat. Methods, 2007, 4, 207–214.
41 L. Martens and H. Hermjakob, Mol. Biosyst., 2007, 3,

518–522.
42 L. Käll, J. D. Storey and W. S. Noble, Bioinformatics, 2008,

24, i42–i48.

Review Molecular BioSystems

Pu
bl

is
he

d 
on

 0
3 

D
ec

em
be

r 
20

12
. D

ow
nl

oa
de

d 
by

 M
ax

-P
la

nc
k-

In
st

itu
t f

ür
 D

yn
am

ik
 k

om
pl

ex
er

 te
ch

ni
sc

he
r 

Sy
st

em
e 

on
 0

9/
09

/2
01

3 
13

:4
2:

01
. 

View Article Online

http://dx.doi.org/10.1039/c2mb25415h


584 Mol. BioSyst., 2013, 9, 578--585 This journal is c The Royal Society of Chemistry 2013

43 L. Käll, J. D. Canterbury, J. Weston, W. S. Noble and
M. J. MacCoss, Nat. Methods, 2007, 4, 923–925.

44 N. Colaert, S. Degroeve, K. Helsens and L. Martens,
J. Proteome Res., 2011, 10, 5555–5561.

45 K. Krug, S. Nahnsen and B. Macek, Mol. Biosyst., 2011, 7,
284–291.

46 D. Shteynberg, E. W. Deutsch, H. Lam, J. K. Eng, Z. Sun,
N. Tasman, L. Mendoza, R. L. Moritz, R. Aebersold and
A. I. Nesvizhskii, Mol. Cell Proteomics, 2011, 10, M111.007690.

47 T. Kwon, H. Choi, C. Vogel, A. I. Nesvizhskii and
E. M. Marcotte, J. Proteome Res., 2011, 10, 2949–2958.

48 E. A. Kapp, F. Schutz, L. M. Connolly, J. A. Chakel,
J. E. Meza, C. A. Miller, D. Fenyo, J. K. Eng, J. N. Adkins,
G. S. Omenn and R. J. Simpson, Proteomics, 2005, 5,
3475–3490.

49 C. Stephan, K. A. Reidegeld, M. Hamacher, A. van Hall,
K. Marcus, C. Taylor, P. Jones, M. Muller, R. Apweiler,
L. Martens, G. Korting, D. C. Chamrad, H. Thiele,
M. Bluggel, D. Parkinson, P. A. Binz, A. Lyall and
H. E. Meyer, Proteomics, 2006, 6, 5015–5029.

50 H. Lam, E. W. Deutsch, J. S. Eddes, J. K. Eng, N. King,
S. E. Stein and R. Aebersold, Proteomics, 2007, 7, 655–667.

51 R. Craig, J. C. Cortens, D. Fenyo and R. C. Beavis,
J. Proteome Res., 2006, 5, 1843–1849.

52 S. Stein and D. Scott, J. Am. Soc. Mass Spectrom., 1994, 5,
859–866.

53 H. Lam, E. W. Deutsch, J. S. Eddes, J. K. Eng, S. E. Stein and
R. Aebersold, Nat. Methods, 2008, 5, 873–875.

54 K. R. Coombes, J. S. Morris, J. Hu, S. R. Edmonson and
K. A. Baggerly, Nat. Biotechnol., 2005, 23, 291–292.

55 S. Pevtsov, I. Fedulova, H. Mirzaei, C. Buck and X. Zhang,
J. Proteome Res., 2006, 5, 3018–3028.

56 K. Ning, N. Ye and H. W. Leong, J. Bioinf. Comput. Biol.,
2008, 6, 467–492.

57 A. Frank and P. Pevzner, Anal. Chem., 2005, 77, 964–973.
58 B. Ma, K. Zhang, C. Hendrie, C. Liang, M. Li, A. Doherty-

Kirby and G. Lajoie, Rapid Commun. Mass Spectrom., 2003,
17, 2337–2342.

59 J. Allmer, Expert Rev. Proteomics, 2011, 8, 645–657.
60 S. F. Altschul, W. Gish, W. Miller, E. W. Myers and

D. J. Lipman, J. Mol. Biol., 1990, 215, 403–410.
61 A. Shevchenko, S. Sunyaev, A. Loboda, P. Bork, W. Ens and

K. G. Standing, Anal. Chem., 2001, 73, 1917–1926.
62 B. L. Cantarel, A. R. Erickson, N. C. VerBerkmoes,

B. K. Erickson, P. A. Carey, C. Pan, M. Shah,
E. F. Mongodin, J. K. Jansson, C. M. Fraser-Liggett and
R. L. Hettich, PLoS One, 2011, 6, e27173.

63 M. Vaudel, A. Sickmann and L. Martens, Proteomics, 2010,
10, 650–670.

64 S. P. Gygi, B. Rist, S. A. Gerber, F. Turecek, M. H. Gelb and
R. Aebersold, Nat. Biotechnol., 1999, 17, 994–999.

65 P. L. Ross, Y. N. Huang, J. N. Marchese, B. Williamson,
K. Parker, S. Hattan, N. Khainovski, S. Pillai, S. Dey,
S. Daniels, S. Purkayastha, P. Juhasz, S. Martin,
M. Bartlet-Jones, F. He, A. Jacobson and D. J. Pappin,
Mol. Cell Proteomics, 2004, 3, 1154–1169.

66 H. Choi, D. Fermin and A. I. Nesvizhskii, Mol. Cell Proteomics,
2008, 7, 2373–2385.

67 H. Liu, R. G. Sadygov and J. R. Yates, Anal. Chem., 2004, 76,
4193–4201.

68 B. Zybailov, A. L. Mosley, M. E. Sardiu, M. K. Coleman,
L. Florens and M. P. Washburn, J. Proteome Res., 2006, 5,
2339–2347.

69 D. H. Huson, A. F. Auch, J. Qi and S. C. Schuster, Genome
Res., 2007, 17, 377–386.

70 D. H. Huson and S. Mitra, Methods Mol. Biol., 2012, 856,
415–429.

71 T. Schneider, K. M. Keiblinger, E. Schmid, K. Sterflinger-
Gleixner, G. Ellersdorfer, B. Roschitzki, A. Richter, L. Eberl,
S. Zechmeister-Boltenstern and K. Riedel, ISME J., 2012, 6,
1749–1762.

72 R. Apweiler, A. Bairoch, C. H. Wu, W. C. Barker,
B. Boeckmann, S. Ferro, E. Gasteiger, H. Huang,
R. Lopez, M. Magrane, M. J. Martin, D. A. Natale,
C. O’Donovan, N. Redaschi and L.-S. L. Yeh, Nucleic Acids
Res., 2004, 32, D115–D119.

73 R. L. Tatusov, E. V. Koonin and D. J. Lipman, Science, 1997,
278, 631–637.

74 R. L. Tatusov, N. D. Fedorova, J. D. Jackson, A. R. Jacobs,
B. Kiryutin, E. V. Koonin, D. M. Krylov, R. Mazumder,
S. L. Mekhedov, A. N. Nikolskaya, B. S. Rao, S. Smirnov,
A. V. Sverdlov, S. Vasudevan, Y. I. Wolf, J. J. Yin and
D. A. Natale, BMC Bioinf. 2003, 4, 41.
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