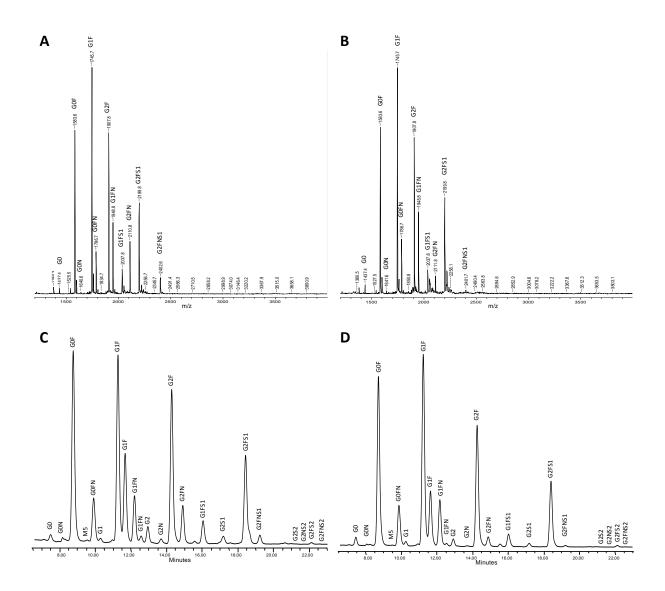
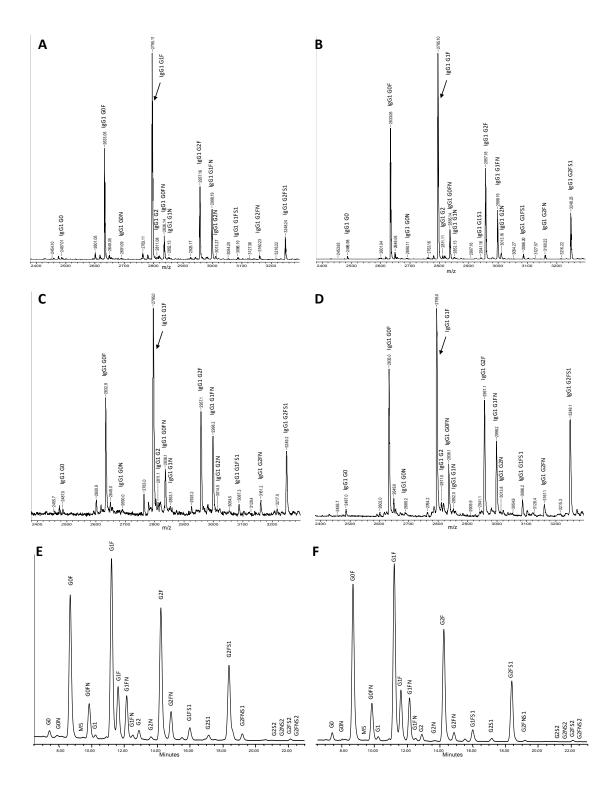

Supplementary Figure 1. Age dependence of IgG1 and IgG2 &3 glycoforms with correlation coefficients (r) and coefficients of determination (R^2).


Supplementary Figure 2. Statistically significant correlations between IgG Fc glycosylation features stratified for sex. Females are plotted in red with a fitted line in dark red, while males are plotted in blue with a fitted line in dark blue. R^2 - coefficient of determination.

Supplementary Figure 3. Correlations (r - correlation coefficients) between glycosylation features from MALDI-TOF-MS and HILIC profiling. R^2 - coefficient of determination.

Supplementary Figure 4. Age dependence of MS (IgG1 Fc, IgG2&3 Fc) and HILIC (total IgG) galactosylation levels in neutral glycoforms and percentage of sialylation of fucosylated structures. Females are plotted in red with a fitted line in dark red, while males are plotted in blue with a fitted line in dark blue. Both lines were fitted using the loess (locally weighted scatterplot smoothing) method.

Supplementary Figure 5. Linear-negative ion mode MALDI-TOF-MS spectra of 2-AA-labeled *N*-glycan species of IgG standard (A) and IgG Fc standard (B) and HILIC chromatogram of 2-AB *N*-glycan species of IgG standard (C) and IgG Fc standard (D). Glycan species are given as in Table 1.


2-AB-labeled *N*-glycans were analyzed by HILIC as described in Experimental section. 2-AA-labeled glycans were prepared and analyzed as follows:

N-glycan release and 2-AA labeling of IgG standards. To 100 μ g of dried human IgG and IgG Fc standards 30 μ l of 1.33% SDS was added followed by a 10 min incubation at 60°C to allow protein denaturation. Subsequently, 20 μ l of a *N*-glycan release mixture was added containing 2% NP-40, 2.5x PBS and 0.5 mU PNGase-F (Roche, Manheim, Germany) followed by an overnight incubation at 37°C. To the released *N*-glycans, 25 μ l labeling mixture (0.35M 2-AA in DMSO with 15% glacial acetic acid) and 25 μ l reducing agent (1M 2-picoline borane in DMSO) was applied and incubated for 2h at 65°C.

Cotton HILIC microSPE of released *N*-glycans of lgG standards. Cotton HILIC microSPE was performed as described previously (Selman, M.H., *et al.*, Cotton HILIC SPE microtips for microscale

purification and enrichment of glycans and glycopeptides, *Anal. Chem.* 2011, 83(7):2492-9), with minor modifications. Briefly, 5 μ l of the 2-AA labeled *N*-glycans from the human IgG and IgG Fc standards was diluted with ACN to a final ACN concentration of 84%. *N*-glycans were adsorbed to the cotton HILIC microSPE by aspirating and dispensing the sample 20x. The *N*-glycans were washed 3x with 84% ACN containing 1% TFA, and eluted directly onto an AnchorChip MALDI target (Bruker Daltonics, Bremen, Germany) with 2 μ l ultrapure water. Spotted samples were allowed to dry, overlaid with 1 μ L of 5 mg/mL 2,5-dihidroxybenzoic acid (DHB; Bruker-Daltonics) in 50 % acetonitrile and allowed to dry in a controlled manner underneath a pierced cap containing 5 holes of ca. 5 mm.

MALDI-TOF-MS. 2-AA labeled *N*-glycans of the IgG and IgG Fc standards were analyzed on an UltrafleXtreme MALDI-TOF/TOF mass spectrometer (Bruker Daltonics) which was operated in the negative-ion linear mode). Ions between *m*/*z* 1000 and 4500 were recorded. To allow homogeneous spot sampling a random walk laser movement with 50 laser shots per raster spot was applied and each sum mass spectrum was generated by accumulation of 4000 laser shots. Mass spectra were internally calibrated using a list of known 2-AA labeled *N*-glycans. Data processing and evaluation were performed with FlexAnalysis Software (Bruker Daltonics) and Microsoft Excel, respectively. The data were baseline subtracted and the intensities of a defined set of 2-AA labeled N-glycans (47 plasma N-glycans; Supplementary Table 4) were automatically determined for each spectrum.

Supplementary Figure 6. Reflectron-negative (A, B) and linear-negative (C, D) ion mode MALDI-TOF-MS spectra of tryptic glycopeptides, and HILIC chromatograms of 2-AB-labeled *N*-glycan species (E, F). IgG1 standard (A, C, E) and IgG Fc standard (B, D, F) were used for the analyses. Glycan species are given as in Table 1.

2-AB-labeled *N*-glycans were analyzed by HILIC as described in the Experimental section. *N*-glycopeptides were prepared and analyzed as follows:

Trypsin digestion of IgG standards. Twenty μ g of a human IgG1 and IgG Fc standard (Athens Research & Technology, Athens, GA) was digested overnight at 37°C with 200 ng sequencing grade trypsin (Promega, Madison, WI).

Reverse-phase solid phase extraction (RP-SPE) of glycopeptides. *N*-glycopeptides were purified and desalted as described in the Experimental section.

MALDI-TOF-MS. *N*-glycopeptides of the IgG1 and IgG Fc standards were spotted onto MTP 384 polished steel target plate (Bruker Daltonics), overlaid with 1 μ L of 5 mg/mL 4-chloro- α -cyanocinnamic acid (CI-CCA; 95% purity; Bionet Research) in 50 % acetonitrile and allowed to dry at room temperature. N-glyopeptides were analyzed on an UltrafleXtreme MALDI-TOF/TOF mass spectrometer (Bruker Daltonics) which was operated in the negative-ion reflectron and leniear mode. Ions between m/z 1000 and 4500 were recorded. To allow homogeneous spot sampling a random walk laser movement with 50 laser shots per raster spot was applied and each sum mass spectrum was generated by accumulation of 2000 laser shots. Mass spectra were internally calibrated using a list of known glycopeptides. Data processing and evaluation were performed with FlexAnalysis Software (Bruker Daltonics) and Microsoft Excel, respectively. The data were baseline subtracted and the intensities of a defined set of glycopeptides (16 IgG1 glycoforms) were automatically defined for each spectrum.

	•			0				
	Glycosylation - feature -	All a	All ages		Ages ≤ 57		Ages > 57	
lgG subclass		Female	Male	Female	Male	Female	Male	
30001835		r (P)	r (P)	r (P)	r (P)	r (P)	r (P)	
	Gal_n	-0.66	-0.45	-0.53	-0.40	-0.21	-0.24	
		(<0.001)	(<0.001)	(<0.001)	(<0.001)	(<0.001)	(<0.001)	
		0.24	0.18	0.25	0.20	0.04	0.06	
lgG1 Fc	Bis GlcNAc_n	(<0.001)	(<0.001)	(<0.001)	(0.002)	(0.450)	(0.306)	
	FGS/(F+FG+FGS)	-0.42	-0.15	-0.37	-0.11	-0.01	-0.07	
		(<0.001)	(0.001)	(<0.001)	(0.088)	(0.957)	(0.252)	
	Gal_n	-0.69	-0.46	-0.55	-0.34	-0.27	-0.28	
		(<0.001)	(<0.001)	(<0.001)	(<0.001)	(<0.001)	(<0.001)	
	Bis GlcNAc_n	0.13	0.12	0.14	0.14	-0.06	0.03	
lgG2&3 Fc		(<0.001)	(0.002)	(0.001)	(0.010)	(0.208)	(0.549)	
	FGS/(F+FG+FGS)	-0.59	-0.31	-0.47	-0.26	-0.22	-0.15	
		(<0.001)	(<0.001)	(<0.001)	(<0.001)	(<0.001)	(0.008)	
	Gal_n	-0.68	-0.49	-0.56	-0.37	-0.28	-0.26	
IgG		(<0.001)	(<0.001)	(<0.001)	(<0.001)	(<0.001)	(<0.001)	
	Bis GlcNAc_n	0.30	0.23	0.34	0.32	0.03	0.07	
		(<0.001)	(<0.001)	(<0.001)	(<0.001)	(0.498)	(0.201)	
	FGS/(F+FG+FGS)	-0.57	-0.34	-0.45	-0.16	-0.20	-0.16	
		(<0.001)	(<0.001)	(<0.001)	(0.005)	(<0.001)	(0.004)	

Supplementary Table 1. Correlation coefficients of IgG glycosylation features and age stratified for sex for the IgG1 Fc, IgG2&3 Fc and the total IgG.

Positive correlation coefficients (r) for age indicate increased levels with increasing age, while negative correlation coefficients indicate decreased levels with increasing age. Correlations found to be significant after Bonferroni correction for gender and glycosylation features ($P \le 0.008$) are in bold. Gal_n - level of galactosylation in neutral glycoforms, Bis GlcNAc_n - level of bisecting N-acetylglucosamine in neutral glycoforms and FGS/(F+FG+FGS) - degree of sialylation of fucosylated glycoforms without bisecting N-acetylglucosamine.

	Glycosylation feature	Ages ≤ 57		Ages > 57			Differences		
lgG subclass		Female	Male	Sex differences (P)	Female	Male	Sex differences (<i>P</i>)	between age groups (P)	
		Median (IQR)	Median (IQR)		Median (IQR)	Median (IQR)		Female	Male
	Gal_n	41.4 (12.2)	37.5 (8.4)	<0.001	30.0 (8.6)	32.5 (9.3)	<0.001	<0.001	<0.001
lgG1 Fc	Bis GlcNAc_n	12.4 (4.7)	12.5 (4.3)	0.633	14.2 (4.9)	13.2 (4.6)	0.013	<0.001	0.002
	FGS/(F+FG+FGS)	4.4 (2.4)	3.8 (2.2)	<0.001	3.0 (1.9)	3.3 (2)	0.003	<0.001	0.159
	Gal_n	31.0 (13)	28.2 (8.7)	<0.001	20.0 (7.3)	22.6 (7.6)	<0.001	<0.001	<0.001
lgG2&3 Fc	Bis GlcNAc_n	8.7 (3.5)	8.5 (3.1)	0.028	9.5 (3.7)	8.7 (3.2)	0.001	<0.001	0.105
	FGS/(F+FG+FGS)	3.9 (2.8)	3.5 (2.0)	0.002	2.2 (1.4)	2.7 (1.6)	<0.001	<0.001	0.004
	Gal_n	45.9 (10.9)	43.2 (7.4)	<0.001	35.9 (7.7)	38.4 (6.8)	<0.001	<0.001	<0.001
lgG	Bis GlcNAc_n	17.0 (3.4)	16.8 (3.7)	0.139	18.5 (3.5)	17.6 (2.9)	<0.001	<0.001	0.008
	FGS/(F+FG+FGS)	22.7 (5.9)	21.4 (4.6)	<0.001	18.0 (4.5)	19.0 (4.9)	<0.001	<0.001	<0.001

Supplementary Table 2. Descriptives of glycosylation features in females and males with statistical significance (*P*) of sex differences and differences between age groups for the IgG1 Fc, IgG2&3 Fc and the total IgG.

P-values of sex differences ($P \le 0.006$) and differences between age groups ($P \le 0.006$) found to be significant after Bonferroni correction for multiple comparisons are in bold. IQR – interquartile range. Gal_n - level of galactosylation in neutral glycoforms, Bis GlcNAc_n - level of bisecting *N*-acetylglucosamine in neutral glycoforms and FGS/(F+FG+FGS) - degree of sialylation of fucosylated glycoforms without bisecting *N*-acetylglucosamine.

lgG subclass	Glycosylation - feature	All ages		Ages ≤ 57		Ages > 57	
		Bis GlcNAc_n	FGS/(F+FG+FGS)	Bis GlcNAc_n	FGS/(F+FG+FGS)	Bis GlcNAc_n	FGS/(F+FG+FGS)
		r (P)	r (P)	r (P)	r (P)	r (P)	r (P)
lgG1 Fc	Gal_n	-0.63	0.65	-0.09	0.63	0.15	0.57
	Gui_ii	(0.018)	(<0.001)	(0.013)	(<0.001)	(<0.001)	(<0.001)
	Bis GlcNAc_n		0.26		0.26		0.40
			(<0.001)		(<0.001)		(<0.001)
lgG2&3 Fc	Gal_n	-0.07	0.80	-0.04	0.78	0.02	0.70
		(0.003)	(<0.001)	(0.244)	(<0.001)	(0.965)	(<0.001)
	Bis GlcNAc_n		0.14		0.17		0.24
			(<0.001)		(<0.001)		(<0.001)
IgG	Gal_n	-0.22	0.82	-0.21	0.79	-0.04	0.75
		(<0.001)	(<0.001)	(<0.001)	(<0.001)	(<0.278)	(<0.001)
			-0.19		-0.17		-0.05
	Bis GlcNAc_n		(<0.001)		(<0.001)		(<0.166)

Supplementary Table 3. Correlation coefficients of glycosylation features for the IgG1 Fc, IgG2&3 Fc and the total IgG.

Correlations found to be significant after Bonferroni correction ($P \le 0.008$) are in bold. Gal_n - level of galactosylation in neutral glycoforms, Bis GlcNAc_n - level of bisecting N-acetylglucosamine in neutral glycoforms and FGS/(F+FG+FGS) - degree of sialylation of fucosylated glycoforms without bisecting N-acetylglucosamine.

Glycan species	Glycan composition	[M-H] ⁻		
M5	H5N2	1354.4789		
FA1	H3N3F1	1379.5106		
G0	H3N4	1436.5320		
M6	H6N2	1516.5317		
M2A1G1S1	H3N3S1	1524.5481		
GOF	H3N4F1	1582.5899		
G1	H4N4	1598.5848		
GON	H3N5	1639.6114		
M7	H7N2	1678.5848		
M3A1G1S1	H4N3S1	1686.6009		
M5A1G1	H6N3	1719.6111		
G1F	H4N4F1	1744.6428		
G2	H5N4	1760.6377		
GOFN	H3N5F1	1785.6693		
G1N	H4N5	1801.6642		
FM3A1G1S1	H4N3H1S1	1832.6588		
M8	H6N2	1840.6374		
M4A1G1S1	H5N3S1	1848.6537		
G1S1	H4N4S1	1889.6803		
G2F	H5N4F1	1906.6956		
G1FN	H4N5F1	1947.7221		
G2N	H5N5	1963.7170		
M9	H9N2	2002.6902		
M5A1G1S1	H6N3S1	2010.7065		
G1FS1	H4N4F1S1	2035.7382		
G2S1	H5N4S1	2051.7331		
G2FN	H5N5F1	2109.7750		
G2FS1	H5N4F1S1	2197.7910		
G2NS1	H5N5S1	2254.8125		
G3F	H6N5F1	2271.8278		
G2S2	H5N4S2	2342.8285		
G2FNS	H5N5F1S1	2400.8704		
G3NS1	H6N6S1	2416.8653		
G2FS2	H5N4F1S2	2488.8864		
G2NS2	H5N5S2	2545.9079		
G3FS1	H6N5F1S1	2562.9232		
G2FNS2	H5N5F1S2	2691.9658		
G3S2	H6N5S2	2707.9607		
	H6N5F1S2	2854.0186		
G3FS2				
G3S3	H6N5S3	2999.0561		
G4S2	H7N6S2	3073.0929		
G3FS3	H6N5F1S3	3145.1140		
G4FS2	H7N6F1S2	3219.1508		
G4S3	H7N6S3	3364.1883		
G4FS3	H7N6F1S3	3510.2462		
G4S4	H7N6S4	3655.2837		
G4FS4	H7N6F1S4	3801.3417		

Supplementary Table 4. Calculated monoisotopic *m/z* values of 2-AA labeled glycans.

Glycan	IgG		Fc			
species	MALDI-TOF-MS	HILIC of 2-AB	MALDI-TOF-MS	HILIC of 2-AB		
species	of 2-AA N-glycans	N-glycans	of 2-AA N-glycans	N-glycans		
G0F	18.09	20.29	18.87	21.52		
G1F	25.06	28.62	26.38	32.60		
G2F	17.82	16.14	17.80	16.53		
G0FN	4.65	4.84	5.65	5.52		
G1FN	7.88	5.62	8.41	6.55		
G2FN	5.79	4.10	1.87	1.45		
G1FS1	2.74	2.86	2.60	2.29		
G2FS1	10.06	10.63	11.60	9.19		
G2FNS1	1.78	0.99	0.35	0.22		
G2FNS2	0.01	0.06	0.05	0.05		
G2FS2	0.04	0.19	0.13	0.23		
G2NS2	0.01	0.02	0.06	0.01		
G0	0.68	0.71	0.87	0.97		
G1	1.50	0.46	1.79	0.60		
G2	2.21	1.79	1.42	1.07		
G0N	0.20	0.60	0.21	0.32		
G2N	0.50	0.49	0.18	0.14		
G2S1	0.91	1.16	1.58	0.54		
G2S2	0.07	0.12	0.11	0.07		
M5	0.03	0.29	0.04	0.12		

Supplementary Table 5. Comparison of relative abundance (%) of *N*-glycan species of IgG and IgG Fc standards measured by MALDI-TOF-MS of 2-AA labeled *N*-glycans and HILIC of 2AB labeled *N*-glycans.

Glycan species are given as in Table 1.

		lgG1	Fc			
Glycan species	RN ion mode MALDI-TOF-MS of glycopeptides	LN ion mode MALDI-TOF-MS of glycopeptides	HILIC of 2-AB <i>N</i> -glycans	RN ion mode MALDI-TOF-MS of glycopeptides*	LN ion mode MALDI-TOF-MS of glycopeptides*	HILIC of 2-AB <i>N</i> -glycans
G0F	22.27	18.28	18.49	22.68	19.65	21.67
G1F	41.49	32.92	30.45	35.67	27.88	32.83
G2F	14.55	16.00	17.71	15.73	15.40	16.65
G0FN	4.62	6.58	4.75	5.10	6.70	5.56
G1FN	10.01	11.98	6.25	8.43	9.84	6.60
G2FN	0.65	1.51	3.94	0.67	1.21	1.46
G1FS1	0.29	0.82	2.23	0.85	1.84	2.31
G2FS1	4.44	9.50	11.47	7.99	12.82	9.26
G0	0.31	0.06	0.80	0.48	0.55	0.98
G1	0.76	1.18	0.46	1.17	2.02	0.61
G2	0.37	1.12	1.31	0.62	1.48	1.08
GON	0.09	0.04	0.66	0.13	0.10	0.32
G2N	0.13	0.00	0.43	0.33	0.11	0.14
G2S1	0.03	0.00	1.05	0.16	0.39	0.54

Supplementary Table 6. Comparison of relative abundance (%) of *N*-glycan species of IgG1 and IgG Fc standards measured by MALDI-TOF-MS of *N*-glycopeptides and HILIC of 2-AB labeled *N*-glycans.

Glycan species are given as in Table 1.

* only IgG1 glycopeptides measured