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Abstract

The topic of this work is the dynamic modeling and observation of polyhedral, grow-
ing crystals. This is motivated by the fact that besides size, shape is an important
product property for particulate materials in various industries. Due to the under-
lying anisotropic molecular crystal structure, growth proceeds at different rates in
different directions. Therefore, crystals assume a non-spherical, polyhedral, though,
under ideal conditions also a symmetric shape. The work at hand is essentially di-
vided into three major parts. At first, a system-theoretic framework is introduced and
applied to describe the evolution of single crystals and of crystal populations. In the
second part the extraction of shape information from suspension images is discussed.
This data is finally used to determine growth kinetics enabling the description of the
conducted experiments with the developed models.

It is shown that models decribing the development of a single crystal exhibit hy-
brid dynamics if the number of faces changes. In order to transfer this property to the
population level, the class of systems that can be captured with population balances
is widened to hybrid systems. Such systems are capable of performing switches in
their velocity field or jumps in their state space. It is pointed out that different crys-
tal morphologies exist in different parts of the state space, the so called morphology
cones. On the bounding elements of the morphology cone hybrid dynamics is in-
duced. It turns out that the morphology cones do not cover the whole state space and
thus the computational time for the solution of evolution equations is reduced.

The shape evolution modeling studies are then augmented by the development of a
crystal shape observation scheme. 3D shape descriptors of crystal populations cannot
be measured directly with current devices. Therefore, an image processing routine is
assembled that reduces 2D grayscale images of the crystal suspension so that individ-
ual particle projections are extracted. The estimation scheme to obtain the 3D shape is
validated against synthetic (in-silico) image data. It is shown that the time-dependent
shape distribution function of the synthetic images is reconstructed accurately. Also
growth kinetics that control the shape evolution can be extracted from the image data.
Since this is successfully tested on synthetic image data, the method is applied to ob-
serve the batch cooling crystallization of potassium dihydrogen phosphate. Two ex-
periments are used to determine the supersaturation-dependent, face-specific growth
rates. The obtained growth rates are cross-validated against the mass balance and in-
dependently conducted experiments.

Employing the developed techniques allows for a rigorous population balance mod-
eling of crystals taking polyhedral shape into account. On the basis of the image-
based crystal observation scheme, it is possible to determine face-specific growth
rates. The so equipped population balance model can be included in a process model
for crystallization and used to reproduce and predict the outcome of crystallization
experiments.
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Zusammenfassung

Die vorliegende Arbeit behandelt die dynamische Modellierung und Beobachtung
wachsender Kristallpolyeder. Da neben der Größe auch die Kristallform eine be-
deutende Produkteigenschaft darstellt, ist dieses Thema für Verständnis und Opti-
mierung von Kristallisationsprozessen relevant. Kristalle wachsen aufgrund ihrer
anisotropen molekularen Struktur in unterschiedlichen Richtungen mit verschiede-
nen Geschwindigkeiten. Daher nehmen sie eine nicht-sphärische, polyedrische, und
unter idealen Bedingungen dennoch symmetrische Form an. Die vorliegende Arbeit
gliedert sich in drei Teile. Zunächst werden systemtheoretische Methoden entwick-
elt, die zur Beschreibung der Entwicklung von Einzelkristallen und Kristallpopula-
tionen eingesetzt werden. Im zweiten Teil werden Methoden zur Gewinnung quan-
titativer Forminformationen aus Bildern von Kristallsuspensionen vorgestellt. Die so
extrahierten Daten werden dann zur Bestimmung von Wachstumskinetiken herange-
zogen, die die Beschreibung der durchgeführten Experimente mit Hilfe der entwick-
elten Modelle ermöglichen.

Es wird gezeigt, dass Modelle, die die Entwicklung eines einzelnen Kristalls be-
schreiben, hybride Dynamik aufweisen, wenn sich die Anzahl der wachsenden Flä-
chen ändert. Um die Dynamik auf die Populationsebene zu übertragen, wird die
Systemklasse, die mit populationsdynamischen Modellen beschrieben werden kann,
um hybride Systeme erweitert. Diese Systeme können instantane Änderungen im
Geschwindigkeitsfeld oder Sprünge innerhalb ihres Zustandsraumes aufweisen. Es
wird gezeigt, dass unterschiedliche Kristallmorphologien in verschiedenen konvexen,
polyedrischen Kegeln – den sogenannten Morphologiekegeln – des Zustandsraums
erzeugt werden und auf ihren begrenzenden Elementen hybride Dynamik erzeugt
wird. Die Morphologiekegel decken nicht den gesamten Zustandsraum ab, weshalb
das Rechengebiet zur Lösung von Evolultionsgleichungen signifikant reduziert und
die Simulation beschleunigt wird.

Die Untersuchungen zur Kristallformdynamik werden dann um einen Algorith-
mus zur Messung von Kristallformen erweitert. Die 3D Form kann für Kristallpop-
ulationen mit verfügbaren Mitteln nicht direkt gemessen werden. Daher wird eine
Bildverarbeitungsvorschrift entwickelt, die 2D Graustufenbilder einer Kristallsus-
pension so abstrahiert, dass Projektionen einzelner Kristalle extrahiert werden kön-
nen. Der Schätzalgorithmus zur Bestimmung der 3D Form wird gegen synthetische
Bilddaten getestet. Darüberhinaus werden die – die Formentwicklung kontrollieren-
den – Wachstumskinetiken extrahiert. Da die Methode für Testdaten gute Ergebnisse
liefert, wird sie zur Beobachtung einer Batch-Kühlungskristallisation von Kaliumdi-
hydrogenphosphat angewendet. Mit Hilfe von zwei Experimenten werden flächen-
spezifische Wachstumsraten in Abhängigkeit der Übersättigung bestimmt. Die ermit-
telten Wachstumsraten halten einer Vergleichsprüfung gegen die Massenbilanz und
unabhängigen Experimenten stand.

Die in dieser Arbeit entwickelten Methoden erlauben eine rigorose populationsdy-
namische Modellierung polyedrischer Kristalle. Auf Basis der ausgearbeiteten Form-
schätzmethode ist es möglich, flächenspezifische Wachstumsraten aus Experimenten
zu bestimmen. Die damit parametrierte Populationbilanz kann in einem Prozess-
modell für Kristallisation genutzt werden, um den Verlauf von Experimenten zu
beschreiben und vorherzusagen.
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x′ vector with n − 1 components of the property vectorx
Ẋi i-th component of the velocity field in x-space
Ẋ velocity field in x-space
y second component of x (coord. on proj. plane) m
Yi i-th component of the environmental state vector
Y environmental state vector
z surface-intrinsic coordinate system in Σ
Ż velocity in surface coordinates

Greek Symbols

α angle
αj weight of j-th vertex
Γ spatial domain
δ Dirac delta
εnuc numerical parameter controlling the distance between nu-

cleation pivots
θ angle
θ Euler angle
µ vector of mean values
ν number of preliminary nodes
ρ density
σ indicator function defining Σ
σ standard deviation
Σ surface domain in property state space
λ weight
λ morphology index
Λ material control volume in state space
ξ jump function
φ Euler angle
ψ Euler angle
Ω domain in property state space
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Superscripts

T transpose
Σ quantity on Σ
∅ disappearance of a face
↷ transition to new edge-configuration
< inequality (less than zero)
0 equality (equal zero)
− quantity related to that part of the state space where σ < 0
+ quantity related to that part of the state space where σ > 0

Subscripts

0 initial value
{hkl} related to crystallographic forms {hkl}
[hkl] related to crystallographic direction [hkl]
c centroid
cry crystal/crystalline
cry, pop crystal population
dis dissolved
est estimation/estimated value
H2O quantity related to water
i, j indices
j jump
KDP quantity related to KDP (potassium dihydrogen phosphate)
lut lookup table
mod model
nuc nucleation/nucleated particles
particles particles/all particles
P Projection
S related to surface S
sat saturation
sc scaled
seed quantity related to the seed crystals
ss steady state
true true value
x′ function given in x′-coordinates
z function given in z-coordinates
Λ quantity related to Λ
Σ quantity related to Σ
ψ vector of Euler angles
∅ disappearance of a face



Chapter 1

Introduction

About 60% of all products manufactured by major chemical companies are delivered
as solids, among them many crystalline materials (Wintermantel, 1999). Virtually all
pharmaceutical production processes involve a crystallization step and most active
pharmaceutical ingredients are administered in a crystalline form (Variankaval et al.,
2008). Crystalline pharmaceuticals, but also agrochemicals, cosmetics and other spe-
cialty chemicals are high value-added products for which crystal shape is an impor-
tant quality factor. In fact, the availability of the adequate crystal shape is of interest
wherever crystals are used, for example in nanotechnology (Barnard, 2009; Damm
et al., 2012; Chemseddine and Moritz, 1999; Körmer et al., 2012), catalysis (Christo-
pher and Linic, 2008; Dellamorte et al., 2009; Lee et al., 2009; Selloni, 2008; Yang et al.,
2008; Yang and Liu, 2009), photo-catalysis (Zhang et al., 2010), solar cells (Wu et al.,
2008), optical applications (Iskandar, 2009), pharmaceuticals (Tiwary, 2007; Sun and
Grant, 2001; Blagden et al., 2007; Rasenack and Muller, 2002) and bio (medical) sys-
tems (Meldrum and Coelfen, 2008; Gupta and Gupta, 2005; Chow et al., 2011). There-
fore, the focus of research in industrial crystal production aims ever more at control-
ling not only the crystal size but also crystal shape (Wintermantel, 1999; Charpentier,
2009).

Depending on the particular system and application, substances can crystallize
from different fluid phases, for instance from a gas phase, from the melt, within an
amorphous solid or from a solution. Most often, crystallization systems are mul-
ticomponent and multiphase systems. Solution crystallization is widely used as a
separation and purification step in industrial practice. It can also be the first step in
a series of operations to formulate a final product. In most of the cases the parti-
cle size and shape distribution needs to meet certain specifications depending on the
further downstream processing (washing, filtration, drying) or end product specifi-
cations (Fujiwara et al., 2002; Mullin, 2001). Though it is well known that properties
of dispersed phase products are strongly linked to their shape, process systems engi-
neering research was so far focused on particle size and size distributions and only
during the last years efforts have been started to include quantitative measures for
shape and shape distributions, e.g. Zhang et al. (2006); Bajcinca et al. (2010); Borchert
and Sundmacher (2011b); Briesen (2006); Chakraborty et al. (2010); Briesen (2007);
Kempkes (2009); Ma and Braatz (2000); Ma et al. (2002b). An overview on crystal

1



2 Chapter 1. Introduction

shape engineering and recent advances with a special focus on solution crystalliza-
tion has been published by Doherty and coworkers (Lovette et al., 2008).

Crystal shape is the result of the kinetic processes of growth and/or dissolution.
That is, the harvesting of crystals from crystallizers yields kinetically rather than ther-
modynamically controlled crystal shapes. Hence, the mastering of the growth mech-
anism is the key to shape control. This is traditionally achieved by chemical means,
i.e., by the usage of additives (Peltier et al., 2010; Radenovic et al., 2003) or by chang-
ing the solvent (Lahav and Leiserowitz, 2001; Davey et al., 1982). In the same man-
ner impurities can shift the shape in an undesired way (Mullin et al., 1970; Sizemore
and Doherty, 2009). Recently developed concepts to combine cycles of growth and
dissolution have been discussed in order to expand the attainable region of crystal
morphologies by avoiding the application of additives or different solvents (Snyder
et al., 2007; Bajcinca et al., 2010). Changing the level of supersaturation is yet another
method for systems which exhibit a clear dependency of the relative growth rate be-
tween different facets on the level of supersaturation (Yang et al., 2006; Ristic et al.,
2001; Sangwal, 1998; Boerrigter et al., 2002; Mullin et al., 1970).

Models investigating different aspects of crystal growth range from the atomistic
to the crystal population level. Geometric models of crystal growth track the ad-
vancement of the boundary of a whole crystal and assume that the boundary ve-
locity depends only on local conditions (Taylor et al., 1992). Among these models,
those describing the evolution of convex, faceted crystals are the simplest ones since
they involve only a few ordinary differential equations. Growth models for polyhe-
dral convex crystals have been used in the scientific and engineering literature for
decades. For example, Prywer has published a series of papers which discuss the
shape evolution of different crystal systems and analyze growth rate ratios of differ-
ent faces that lead to morphological changes, that is, the disappearance of faces and
edges (Prywer, 2005, 2002, 1996). Doherty and coworkers have published a series
of papers in which, beside the derivation of growth kinetics, polyhedral shape evo-
lution models are used that account for morphological changes (Gadewar and Do-
herty, 2004; Zhang et al., 2006; Snyder and Doherty, 2007). Even though polyhedral
shape evolution models are not capable to model dendritic growth as it often ap-
pears for example in precipitation processes, they can be applied to the wide class of
crystallization systems in which convex polyhedral crystal growth can be observed.
The only challenge during the integration of polyhedral crystal growth models is the
tracking of discrete events like the appearance and disappearance of edges and faces,
events that constitute morphological changes (Zhang et al., 2006). Though the inte-
gration of these models, while continuously checking for discrete events, is a simple
and computationally not very intensive task if the growth of only one crystal must be
simulated, this is a quite expensive exercise if many crystal growth trajectories have
to be computed. This is of course the case for crystal populations as they appear in
industrial crystallizers.

For multi-scale modeling, the concept of the population balance equation facilitates
the lifting of single particle dynamics to the level of a collection of a huge number
of particles, a so called population. Population balances are partial differential (or
partial integro differential) equations that capture the dynamics of a number den-
sity in the particle property state space. Classically, the population balance is used
in crystallization for the modeling of the evolution of the size distribution (Ramkr-



3

ishna, 2000; Randolph and Larsen, 1988). The incorporation of shape information
in process-level models using the population balance has been proposed by various
authors. For instance, Matthews and Rawlings (1998); Zhang and Doherty (2004);
Borchert et al. (2009) include shape information to a model based on a 1D population
balance, by linking the development of the shape factor directly to size. More rigor-
ous approaches treat the shape distribution evolution as a multivariate problem that
involves a multidimensional population balance equation, e.g. Cardew (1985); Ma
et al. (2002a,b, 2008); Briesen (2006); Borchert and Sundmacher (2011b).

When it comes to model identification on the population level, adequate sensors
are required that track the dynamics of a crystallization process with respect to the
quantities of interest. Probes that are capable of measuring the particle size distribu-
tion deliver a wealth of information with which a model can be calibrated. However,
if only size information is available, nothing is known about the shape of the par-
ticles. That is, it can for instance not be distinguished directly whether an increase
in size is attributed to aggregation or growth. Of course, from the shape of the size
distribution curve and its evolution, mechanisms can be distinguished or even iden-
tified (Ramkrishna, 2000). But size distribution measurements rely also on a shape
model for the particles (e.g. spherical) and thus, the result is biased by this assump-
tion. Even though a model parametrized with these data may be capable of reflecting
the size or even shape distribution evolution accurately or may even be extrapola-
tive with respect to the specific probe, it is of major interest to extract distribution
data from more advanced devices. In recent years, online probes that permit the
imaging of bypassing particles have been discussed in the literature, see for exam-
ple De Anda et al. (2005); Li et al. (2006); Kempkes (2009); Kempkes et al. (2010);
Patience and Rawlings (2001b); Larsen and Rawlings (2009); Glicksman et al. (1994).
The improvement of the quality of the measurements can in principle be afforded via
the enhancement of the image quality or further development of the post-processing
algorithms. That is, either the hardware of the sensor is improved, or processing algo-
rithms for image analysis are equipped with advanced techniques in order to apply
it to data acquired from (commercially) available equipment. The concatenation of so
retrieved, information-rich population data to detailed population models promises
model synthesis of high-quality.

The motivation for shape manipulation, enhancement, modeling and observation
can be manifold. Sometimes only in its adequate crystal shape substances can be
used for specific applications. Another goal could be the maximization of raw ma-
terial usage because having assumed a specific shape, the material’s performance is
enhanced. If the crystalline material is only an intermediate in a production process,
the formulation of a different shape can improve the handling of the solid which in
turn increases the throughput of a plant or reduces the investment or operating costs.
Though this is a strong motivation, the engineering interest, however, shall not only
be driven by such economic factors but also by the spirit to push the boundaries of
technological feasibility a bit further.



4 Chapter 1. Introduction

1.1 Aim of this Work

The understanding of a complex process like crystallization is the prerequisite for
its rational improvement. This requires a realistic and thus physically interpretable
model and appropriate measurement techniques. Shape is an important and ubiqui-
tous issue in crystallization. The aim of this work is thus, to provide a modest con-
tribution to the model formulation and observation in the wide field of crystal shape
dynamics. In particular, this involves, among others, the treatment of the following
questions:

• How can the crystal property shape be included in process models for crystal-
lization, both on the single crystal and on the population level?

• Given a set of crystallographic faces, how many different morphologies can
theoretically be produced from this set?

• If the morphology has to be determined that is produced by a specific crystal
state vector: Is it possible to circumvent the computation of the crystal polyhe-
dron? Or is it even possible to compute geometric quantities without comput-
ing the polyhedron?

• How is a morphology switch reflected in the crystal’s state space during shape
evolution? How are morphology switches reflected in the dynamic equations
for shape evolution on the single crystal and on the population level?

• Are special model structures required to capture morphology switches?

• Can the crystal shape distribution be observed during a whole crystallization
experiment?

• How can crystal projections be related easily to the crystal’s 3D body in order
to quantify the shape of a crystal? Can this information be used to determine
the shape distribution of a population? And how reliable is this information?

• Can growth rates be estimated from measured shape distributions? And is it
possible to assure the reliability of the estimation procedure?

Clearly, there are numerous other questions in crystal shape engineering which
are not addressed here. The undeniably important subject of process control and
optimization for instance is not discussed. Models that derive the equilibrium crystal
shape or even growth rates from the molecular crystal structure are not a topic of this
work. The complex interaction between the crystalline phase and the surrounding
fluid is no matter of concern. This interaction also governs the growth process on
the molecular level which is disregarded like the importance of additives to influence
growth mechanisms. Only polyhedral crystals are considered, albeit many crystalline
materials do not assume this kind of shape. Spatial variations within a crystallizer
which undoubtedly impair the controllability on shape are not taken into account.
The list of topics that cannot be found in this work could be prolonged arbitrarily.
Themes that are addressed are outlined in the following section.
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6 Chapter 1. Introduction

1.2 This Thesis in a Nutshell

In this thesis, the general model formulation independent of a particular system
stands in the foreground. Thus, the classical order to present at first experimental
methods, the outcome of experiments and finally a model that is employed to inter-
pret the experimental findings is not followed. In a sense, the horse is put before the
cart because we start with general methods for model formulation, then turn to mod-
els for shape development and evolution of shape distributions. After this, the topic
of shape observation is again addressed from a rather analytical point of view until
the experiments using a simple model system are described at the very end. The pa-
rameters derived from the experiments, in particular the growth laws, are, however,
already used throughout the theoretical parts.

In Ch. 2 general methods for the model formulation of dynamic systems are given.
Of course, this is done in view of later applications. The notion of individuals and
populations evolving over time and interacting with the environment is introduced.
The special focus of this chapter lies in the formal description of hybrid dynamical
systems. Differential equations for the state of individuals of such systems involve,
beside the continuous evolution, instantaneous switches of their state development
or even jumps in the state itself. The task of population balances is the incorporation
of detailed information about individuals on a larger scale, i.e. huge populations
of individuals. The lifting of detailed knowledge on the evolution of single hybrid
dynamical systems to the population level is addressed.

In Ch. 3 an extensive dissection of the equations describing the shape of convex
crystals and its evolution is given. Starting with the natural half-space representation
of a convex polyhedral crystal, the state space is divided into morphology cones in
which combinatorially similar shapes exist. On the faces of the morphology cones or
by moving from one morphology cone to another, structural changes on the crystal
surface can be observed, for example disappearance of faces or edges. Therefore,
the knowledge of the morphology cones makes the exhaustive computation of the
crystal polyhedron in every time step of the integration – which would alternatively
reveal structural changes – unnecessary. It turns out that the evolution of a single
crystal undergoing morphological changes can be interpreted as a hybrid dynamical
system. Also the computation of crystal volume and surface area for a crystal of a
given state can be directly performed without computing the polyhedron. A practical
implementation of the methodology is carried out and applied to the shape evolution
of paracetamol.

In Ch. 4 the application of the methods developed in Ch. 2 for the derivation of
multivariate population balance equations for continuous and hybrid systems are ap-
plied to the special case of crystal shape evolution. At first, a model substance, which
does not undergo morphological changes, is introduced that is in later chapters also
used in experiments. The continuous population balance is solved with parameters
that are determined in Ch. 6 on the basis of data collected in Ch. 5. More challenging
from the theoretical point of view are systems in which morphological changes occur.
The basic methodology is sketched along a simple 2D example. Using the state space
analysis of Ch. 3 and the model formulation given in Ch. 2, the general procedure to
derive systems of multivariate population balances incorporating shape evolution in
a rigorous manner is given.
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In Ch. 5 the model formulation themes are left and we concentrate on the connec-
tion between the world of models and the real world. For the topic at hand, this
means that crystal shapes that can be seen in crystallization experiments must be
measured. The method of choice would be a highly sophisticated 3D sensor which
perfectly grasps the exact crystal shape. It is argued that such a sensor is not avail-
able for measurements that shall be taken directly during the crystallization. Instead,
a flow-through microscope is used which, however, only delivers projections of the
crystals within the suspension. A technique is developed that relates the boundary
of the crystal projection to its actual 3D state using a model of the crystal shape. The
proposed procedure is validated against synthetic data and subsequently applied to
observe the shape evolution in experiments.

In Ch. 6 the results of Ch. 5 are used to estimate the growth kinetics from experi-
ments. The procedure is validated by simulating the data acquisition and processing
steps in-silico. On the basis of this synthetic data, the growth kinetics used in the
simulation can be recovered accurately which gives confidence in the principle prac-
ticability of the scheme. Application of the method to data, which has been extracted
from experiments in Ch. 5, allows for the determination of the growth kinetics. The
growth laws are shown to reproduce not only the crystal geometry development but
also the supersaturation dynamics when used in simulations that are presented al-
ready in Ch. 4. The outcome of independently conducted experiments is predicted as
well.

In Ch. 7 the thesis is summarized and concluded. Also an outlook on major topics,
that may play a role in future developments, is given.





We propose to consider first the single elements of our subject, then
each branch or part, and, last of all, the whole, in all its relations –
therefore to advance from the simple to the complex. But it is
necessary for us to commence with a glance at the nature of the
whole, because it is particularly necessary that in the consideration
of any of the parts the whole should be kept constantly in view.

Carl von Clausewitz
On War

Book I – On the Nature of War

Chapter 2

Evolution of Individuals and
Populations

Evolution is defined as “one of a set of prescribed movements”, “a process of change
in a certain direction” or “a process of continuous change from a lower, simpler, or
worse to a higher, more complex, or better state” (Webster, 2003, → evolution). The
term evolution is most strongly bound to Darwin’s work on the “theory that the vari-
ous types of animals and plants have their origin in other preexisting types” (Webster,
2003, → evolution). It clearly carries the notion of processes that aim at enhancing a
system to a – however defined – better state. In this sense an objective has to be de-
fined as a measure for the improvement due to evolution. Yet, this kind of measure
is not included in this chapter. An alternative, more neutral term would be the word
“development”, which is equally qualified to replace “evolution” in the title of this
chapter. However, “evolution” reflects in a most appropriate way the purpose for
which the models are developed for, that is, for the conduction of a process, which
induces an optimalf environment for the development of a population into the direc-
tion of a better state – which is evolution as used in everyday language.

An individual “exists as an indivisible whole” and “as a distinct entity” (Webster,
2003, → individual). This can be a person, a cell or a particle. In the later chapters of
this thesis we shall be concerned with faceted crystals. Individuals are characterized
by a state. The state is a point in the state space and as such recognized as a point
particle in the state space. That is, the term particle in this chapter does not necessarily
refer to a physical particle but is merely a point moving in the state space. The state
is in general subject to change over time, that is, it evolves. The movement of the
particle is associated with the evolution of a specific individual. The evolution of an
individual is governed by (i) its state, (ii) the interaction with the environment and
(iii) direct interaction with other individuals. The latter implies the existence of other
individuals which make up a population.

A population is “the total of individuals occupying an area or making up a whole”
(Webster, 2003, → population). It is a collection of individuals which are subject to
evolve over time and thus the population evolves in the state space. If the population
size is large and the number of individuals within a small volume changes almost
continuously when the volume is moved through space at a particular configuration,
a distribution density, for instance a number density, can be used to describe the

9
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population structure. Population balance equations are a natural implement to model
the change of the distribution of a population in an environment.

In view of Clausewitz’ quote cited at the beginning of this chapter first the individ-
uals are considered, then specific types of the evolution of individuals and, last of all,
the evolution of the whole population and its interaction with its environment. This
structure mainly follows the book by Ramkrishna (2000). Before the individuals are
discussed, however, a look at the whole is taken and in Sec. 2.1 the attention is drawn
to the concept of population balances. In Sec. 2.2 the nature of the state vector of an
individual as used in this work is presented. The state of the environment which is
a continuous phase is introduced in Sec. 2.3. Sec. 2.4 discusses in a rather detailed
way the evolution of individuals which can proceed continuously, discontinuously
or can even involve jumps in the state space. The latter two cases are more complex
to transfer to the population case, thus a separate part on the number density func-
tion is included in Sec. 2.5 before the dynamical evolution of the population in terms
of population balances is discussed in Sec. 2.6. Sec. 2.7 summarizes the chapter.

2.1 The Notion of Population Balances

Process engineering is concerned with the processing of materials to convert them
into more valuable materials. The raw material as well as the product is either fluid
(gas or liquid) or solid (amorphous or crystalline). For the purpose of engineering
analysis, the processing system is characterized by state variables. Fluids are quanti-
fied by composition, temperature, velocity and pressure. The dynamical evolution of
these state variables can be described by equations derived from conservation laws
for energy, momentum and mass which – equipped with thermodynamic relation-
ships and a proper quantification of kinetic processes – furnish a complete model of
the fluid system. For a solid, in principle the same is true. However, a solid phase
embedded in a continuous phase in a processing system is most often not a single
homogeneous entity but composed of a huge number of individual particles. Then
we also speak of a dispersed system.1 From the macroscopic engineering point of view
it is most often adequate to look at an individual of the dispersed phase as an entity
that is sufficiently described by a finite number of scalar state variables, for exam-
ple (like for the continuous phase) composition, temperature, velocity and pressure.
But as a single particle is small compared to the overall system, it is assumed that
these state variables are not spatially distributed within the particle. As such, it is
also not necessary to describe the particle-fluid boundary in any detail. However,
one is in principle interested in approximate geometrical and other extensive features
of the individuals, for example their size and shape. By taking these properties into
account, counting the number of individuals and describing the dynamical behavior
in a continuous framework, one arrives at the population balance.

Under a population we understand a collection of individuals. At first, a quanti-
tative measure for the size of the population is required, that is, the number of indi-
viduals. If no further information about the individuals are at hand, the dynamical
evolution of the number of individuals suffices to model the system. The dynamical

1That is not to say that dispersed systems necessarily involve a solid phase. For example, non-miscible
fluids forming an emulsion are dispersed system as well.
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evolution of the population size is then captured by an ordinary differential equation.
With this implement it is possible to model the interaction between different popu-
lations. The Lotka-Volterra equations for predator-prey dynamics is the most promi-
nent example (Aulbach, 1997). Though such systems can exhibit complex dynamical
behavior, from the practical point of view it is more interesting to study structured
populations, i.e., the individual is characterized by at least one property, for instance
size, shape, composition or the like. Property state vectors can be seen as points in
the property state space or phase space. Within it, the distribution of individuals can
be characterized by a number density function, which is an expedient tool to describe
large systems with many individuals instead of tracking the state of each individ-
ual. The evolution of the number density is specified by the population balance. This
framework allows not only an efficient population modeling but due to the inherent
consideration of a whole population, the modeling of interactions between individ-
uals as for example fusion, fission, breakage and aggregation can be integrated in a
most elegant way.

The discussion above started with the distinction between fluid materials and pop-
ulations of solid materials and this is also historically the adequate point of entry
into the field of population balances in process engineering. Population balances
have most prominently been applied for the modeling of solids and dispersed phase
processes. In chemical engineering the seminal work of Hulburt and Katz (1964)
introduced the general multivariate population balance equation from a statistical
mechanics perspective. In the same year Randolph (1964) published the concept of
the general population balance in a shorter note as well employing a continuum me-
chanical framework (Jakobsen, 2008). The focus of Hulburt and Katz (1964) has been
laid on particle processes in which the population distribution undergoes nucleation,
growth and agglomeration. The distribution dynamics equation (population balance)
is derived as a Liouville equation from the equations of motion in the phase space.
Beside the generality of the formulation, applicable to a wide range of (continuously
evolving) state vectors in the phase space, their work stands out because the depen-
dency of the particle evolution of the environmental state evolving according to the
classical transport equations is included. Also the recognition that the application
of population balances may be ’overdetailed’ is admitted which motivated the intro-
duction of the still nowadays widely used concept to derive evolution equations of
the moments of the property distributions. Though the paper of Hulburt and Katz
(1964) is mostly seen as the nucleation point of population balances, the concept has
been applied earlier to special cases. For instance, Randolph and Larson (1962) use a
1D population balance for the modeling of mixed suspension crystallizers in which
nucleation and growth is included. The particle size in this work (as mostly in pop-
ulation balance modeling for crystallization) is assumed to take values in the whole
R+ and thus the population balance is a partial differential equation. On the other
hand Smoluchowski (1917) describes the coagulation of colloidal systems under the
assumption of a monodisperse initial population. Hence, the new particles produced
have a mass of n times the mass of the initial particles. Therefore, the property coordi-
nate can be reduced to the positive integers which results, for the dynamical descrip-
tion of the distribution on the sites of the property coordinate, in a set of ordinary
differential equations rather than in a partial differential equation. However, this set
of ordinary differential equations may also be considered a population balance and
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is widely used for problems in particle technology (Rollié, 2010) and polymerization
(Wulkow, 1990) where individuals are assembled from uniform building blocks.

As outlined by Jakobsen (2008), application examples of the population balance
beyond chemical engineering range from aerosol dynamics and atmospheric sciences
(Williams and Loyalka, 1991; Friedlander, 2000; Yong and Seinfeld, 1992; Singh et al.,
2005; Gelbard and Seinfeld, 1980, 1978; Gelbard et al., 1980; Shekar et al., 2012), over
multiphase droplet flow dynamics (Kolev, 1993, 2002), flame synthesis (Shekar et al.,
2012), and bubbly two-phase flow in nuclear engineering (Lavalle et al., 1994). Among
the most important application fields of population balances are liquid-liquid disper-
sions, e.g. Coulaloglou and Tavlarides (1977); Gerstlauer (1999), gas-liquid disper-
sions as for instance described by Carrica et al. (1999); Chen et al. (2005) and Lehr
and Mewes (2001), and granulation, e.g. Peglow (2005); Hounslow et al. (2001). The
usability of the population balance equation in chemical engineering beyond parti-
cle technology has been recognized right from the start of the field. Fredrickson and
Tsuchiya (1963) derive the population balance in terms of the age distribution of mi-
croorganisms undergoing a continuous development in their life cycle. Furthermore,
binary fission of older cells producing new cells of age zero reflect the dynamic pro-
cess of birth and death of individuals. Though a significant progress in the field of
biological reactor modeling, the generality of the presented approach is limited since
age is taken as the only independent property coordinate determining the full state
vector in terms of the metabolic state. In Fredrickson et al. (1967) the population bal-
ance in the full multivariate physiological phase space is derived for the case of a
unicellular system. In this paper is it exemplary shown how the knowledge of the
behavior of a single entity and its interaction with the environment can be incorpo-
rated in a population framework in order to derive a structured model of the complex
process of population evolution. In their own words: They ”have tried to show how
information gleaned from analysis of subcellular phenomena can be used to describe
and predict the behavior of cells and cell populations. The foregoing statement does
not imply that such information will be sufficient to effect a synthesis; clearly, it is
necessary for synthesis” (Fredrickson et al., 1967) .

In this spirit the work at hand builds up on the theory of population balance equa-
tions for continuous systems and develops a population balance approach for enti-
ties which undergo continuous as well as discrete dynamics. This framework is later
applied to the case of populations of faceted crystals which posses this combined
continuous and discrete (hybrid) dynamical model structure.

2.2 The Property State Vector

An individual is characterized by a state vector composed of external coordinates r
denoting the spatial position and internal coordinates x quantifying the actual particle
state, for example size, shape and/or composition (Ramkrishna, 2000):

r =
⎛
⎜⎜
⎝

r1
⋮

r3

⎞
⎟⎟
⎠
∈ Γ ⊂ R3 , x =

⎛
⎜⎜
⎝

x1
⋮

xn

⎞
⎟⎟
⎠
∈ Ω ⊂ Rn . (2.1)
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Figure 2.1: Property state, position and environmental state of a particle and its evolution.

The domain Γ is bound by the physical region in which a particle can move. The
domain Ω is a subset of the state space continuum Rn in which the internal states
take their values. In general, x could also contain discrete or complex values but this
is not discussed in the following.

The selection of properties to be accommodated in x depends on the process and
the purpose that the model is developed for. It is necessary that the number of state
variables is straitened to a sensible amount that reflects the condition of the particle
in an adequate manner. For the sake of identifiability, some of the state variables
or (nonlinear) combinations of them should – in the real world – be accessible by
measurements; at best for a huge number of individuals. But often, direct population
distribution measurements or moments of the same suffice. Of course, only state
variables that are subject to change during the process are included in x, i.e., the
nature of the underlying processes driving the movement of a state variable have to
be modeled as well.

Clearly, in different contexts, the modeling of a system will lead to very different
choices of the internal state variables, for instance the crystal sizes in different direc-
tions or the physiological state vector of a cell. Very often, it is also admissible to
neglect the spatial position r completely which is also done in the remainder of this
work.

2.3 The Continuous Phase Vector

The particle is embedded in a fluid phase continuum whose state, denoted by (see
Ramkrishna, 2000)

Y(r, t) =
⎛
⎜⎜
⎝

Y1(r, t)
⋮

Yc(r, t)

⎞
⎟⎟
⎠
∈ ΩY ⊂ Rc , (2.2)
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is in general a time- and space-dependent function and involves quantities like com-
position, temperature and velocity. The evolution equations for these variables can be
derived from the classical conservation laws for mass, energy and momentum (Bird
et al., 2002; Jischa, 1982). It may not always be necessary to follow the fluid phase
state in any detail. Rather, those states are selected that control the evolution of the
particle state x . The environmental state Y sometimes varies significantly in space so
that different individuals within a population are surrounded by different environ-
ments. But the spatial variation on the scale of the particle size is usually assumed
to be negligible, i.e., Y does not vary on different sides of an individual. Very often,
the spatial variation of Y is negligible. And particularly in designed identification ex-
periments, the change of Y in time is small compared to the evolution of the particle
state so that its dynamics must not always be reflected in a first order model.

In the remainder of this work, the spatial dependency of the continuous phase and
the spatial coordinates of the individuals are not further considered. Their evolution
in time, however, is retained and of course constitutes a core concept of the whole
work.

2.4 Evolution of the Property State Vector

The change of the particle state is assumed to be at least piecewise continuous in time
and deterministic, i.e., at a point in state space, the direction of movement is unam-
biguous. Particle trajectories in Ω are controlled by the continuous phase variables
and current state. Hence, a trajectory is a function that is a solution to a differential
equation whose right-hand side is obtained from a velocity field

dx
dt

= Ẋ(x, Y, t) =
⎛
⎜⎜
⎝

Ẋ1(x, Y, t)
⋮

Ẋn(x, Y, t)

⎞
⎟⎟
⎠

, (2.3)

which is most often an explicit function of the environmental and particle state. An
explicit time-dependency is uncommon and usually does not result from a rigorous
physical model but from pretended environmental state trajectories. For the sake of
brevity, the dependencies of the different variables may not be written out or only
the dependency of interest is indicated while the others are hidden. For instance,
the shorthand notation for Ẋ(x, Y, t) for the case when only the dependency on Y is
important but other dependencies can exist is Ẋ(Y, ⋅) .

In the simplest case the state evolves within Ω in accordance to a velocity field,
which is continuously differentiable, see the hereafter directly following Sec. 2.4.1.
Slightly more complex are trajectories with sharp bends, i.e., the velocity field switches
at a point instantaneously. These systems are known as differential equations with
discontinuous right-hand sides2 and introduced in Sec. 2.4.2. A generalization of
switching systems is the notion of systems that can perform state jumps. They make
up the class of hybrid dynamical systems (Lunze, 2002) presented in Sec. 2.4.3.

2Systems with discontinuous right-hand side are also known as Fillipov-Systems and sliding mode systems.
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2.4.1 Continuously Evolving Systems

The state x of a particle evolves in accordance to a velocity field Ẋ , which is a smooth
function in Ω , that is, the partial derivatives

∂nẊj

∂x1 . . . ∂xn
, j = 1 . . . n , (2.4)

exist. A trajectory starting at x0 is a solution to the ordinary differential equation

dx
dt

= Ẋ , x(t = 0) = x0 , (2.5)

which may be coupled to other algebraic or differential equations from which the
necessary values for variables are obtained which are used to evaluate the right-hand
side. The analytical solution for systems of the type (2.5) is known in general only for
the linear (in the state variables) case (Aulbach, 1997; Bronstein et al., 2001). Nonlin-
ear right-hand sides can lead to interesting dynamical behavior and are anything but
trivial. For example, multiple steady-states can exist which can be stable, unstable
or saddle points. Even limit cycles can occur and exhibit challenging dynamical be-
havior if the control of such a system must be achieved. Solutions in closed form can
usually not be obtained, but according to the theorems of Peano and Picard-Lindelöf3,
the local existence and uniqueness of the solution is guaranteed (Aulbach, 1997). For
physical systems it is most often possible to integrate the system (2.5) together with
accompanying (possibly algebraic) equations for Y numerically and achieve a solu-
tion. For the numerical techniques the reader is referred to the standard literature,
for instance Bronstein et al. (2001), Deuflhard and Bornemann (2002) and Shampine
(1994).

2.4.2 Systems with Discontinuous Right-Hand Side

Differential equations whose right-hand side Ẋ shows qualitatively different behav-
ior in different parts of the state space Ω are encountered in many engineering prob-
lems (Fillippov, 1988). Examples are found for the model description of mechanical
systems and hybrid control systems. In later chapters of this thesis, the evolution
of faceted crystals is described by such a set of differential equations whose right-
hand side switches if the shape undergoes qualitative changes. Ch. 3 and particularly
Sec. 3.2.1 discusses this for single crystals whereas Ch. 4 adopts this concept also for
crystal populations. However, because the general derivation of the discontinuous
nature of the right-hand sides of dynamic crystal shape models requires a more elab-
orate introduction and because the statements given below apply to a whole class
of such systems, we proceed with an easier comprehensible, motivational example
taken from mechanics.

Motivational Example: Cart-Wall Collision Consider a system presented by van der
Schaft and Schumacher (2000) and Imura and van der Schaft (2000): A cart colliding

3The Theorem of Picard-Lindelöf is also called Cauchy-Lipschitz Theorem.
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Figure 2.2: Collision of a cart to an elastic wall (left) (redrawn from Imura and van der
Schaft, 2000). Trajectory with two sharp bends due to the discontinuity of the velocity field
(right).

to an elastic wall as shown in Fig. 2.2 (left). The cart’s system state is made up by the
position and velocity:

x = ( r
v

) . (2.6)

Its movement can be described by the differential equations

dx
dt

= [ 0 1
0 0

] x , x(t = 0) = ( r0 > 0
v0 < 0

) , for r ≥ 0 , (2.7a)

dx
dt

= [ 0 1
−k −d

] x , x(t∣r=0) = ( 0
v0

) , for r ≤ 0 . (2.7b)

Though the system is not complicated to integrate if the collision event can be de-
tected (MathWorks, 2011), at t∣r=0 the velocity of the system is not differentiable and
in principle governed by both differential equations. Before the wall is hit, the sys-
tem is governed by Eq. (2.7a). It moves towards the wall with a constant velocity
until after r = 0 the dynamics is controlled by Eq. (2.7b) and thus decelerated by the
spring-damper system. A typical trajectory4 that passes twice through the surface
r = 0 is shown in Fig. 2.2 (right). It can be seen clearly that the trajectory in x-space
has sharp bends reflecting the discontinuity of the right-hand side.

A manifold of the kind Σ = {x ∶ r = 0}, see the state space plot in Fig. 2.2, is in the fol-
lowing recognized as a switching surface separating the state space into parts, denoted
here by Ω− and Ω+, in which different system structures exist (van der Schaft and
Schumacher, 2000; Lunze, 2002). These systems can be interpreted as hybrid dynami-
cal systems , which are not capable of performing jumps in the state space. However,
in this work the terms system with discontinuous right-hand side or switching system is
preferred. The standard theory on existence and uniqueness for ordinary differential
equations cannot be applied directly to switching systems (Aulbach, 1997; Fillippov,
1988; van der Schaft and Schumacher, 2000). In fact, a vast amount of literature is
concerned to show existence and uniqueness of solutions to equations with discon-
tinuous right-hand side, e.g. (Fillippov, 1988; van der Schaft and Schumacher, 2000).
The present work, however, is not focused on this topic but rather numerical solu-

4Parameters: k = 1, d = 1 . Initial condition xT
= (1,−1) . Simulation time 0 ≤ t ≤ 6 .
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Figure 2.3: Division of the state space Ω into a region Ω− in which the velocity field is Ẋ−
and a region Ω+ where the field is Ẋ+. Both parts are separated by the switching surface Σ
of codimension 1. The surface Σ is imagined to be encased by a hull infinitesimally close
to Σ . The parameter λ ∈ [0, 1] serves to connect the velocity fields in a consistent way if a
trajectory just passes through the surface (a). If a particle trajectory moves on Σ , a velocity
field ẊΣ must be defined, which is at best obtained directly from the physical modeling or
has to be defined in a consistent way (b).

tions to such systems are taken and by employing physical background information
it is judged whether the so obtained integration is qualitatively correct. For this, it
is important to tie the limit values of the velocity fields for switches (e.g. between
Eq.s (2.7a) and (2.7b)) in a consistent way at the switching surface. In the example of
the cart colliding to the elastic wall, the right hand side of Eq. (2.7b) can be defined to
apply only for r < 0 which makes practically no difference in the solution compared
to the case with r ≤ 0 . This is also due to the fact that the system passes directly
through the surface r = 0 and does not move within it.

The More Abstract Perspective A more general view on a switching surface in
the state space is depicted in Fig. 2.3. Rather than studying immediately an arbitrary
number of switching surfaces, the situation with a single one is analyzed. The do-
main Ω is partitioned into regions Ω− and Ω+ which are separated by an (n − 1)-D
switching surface, denoted by Σ . This surface is encased by parts of the boundaries
of the regions, that is Σ− ⊂ ∂Ω− and Σ+ ⊂ ∂Ω+. The nature of the other domain bound-
aries are of no concern for the current discussion. In order to specify Σ , an indicator
function σ is introduced that is negative in Ω− , positive in Ω+ and zero on Σ . The
surface Σ is thus defined as a point set:

Σ = {x ∶ σ(x) = 0} . (2.8a)

Its hull, which is infinitesimally close to Σ , is given by

Σ− = {x ∶ σ(x) = 0−} (2.8b)

Σ+ = {x ∶ σ(x) = 0+} , (2.8c)



18 Chapter 2. Evolution of Individuals and Populations

Ω

(a)

continuous transition stable unstable

(b)

ˆ +n ˆ −n

(d)

Σ +Σ−Σ
−Ω +Ω

(c)

Σ +Σ−Σ
−Ω +Ω

(e)

one-sided transition

+Ω

ˆ −n

Σ
−Ω

(f)

one-sided stable

ˆ −n

+Ω

Σ−Σ
−Ω

(g)

one-side unstable

ˆ −n

+Ω

Σ−Σ
−Ω

(h)

transition jump

ˆ +n

ˆ −n

−Σ
−Ω

+Σ
+Ω

jump in stable surface

ˆ +n

ˆ −n

−Σ
−Ω

+Σ

(i)

jump from unstable surface

ˆ +n

ˆ −n

−Σ
−Ω

+Σ

(j)

Σ +Σ−Σ
−Ω +Ω

Figure 2.4: State space with continuous velocity field (a), with discontinuous velocity fields
(b) to (d), one-sided discontinuous velocity fields (e) to (g) and jumping systems (h) to (j).
Detailed explanations for the single trajectory case can be found in Sec.s 2.4.2.1-2.4.2.6 and
Sec.s 2.4.3.1-2.4.3.3.
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and thus (due to the continuity and differentiability of σ) parallel to Σ = 0 . The unit
normal pointing from Ω− away is (Slattery et al., 2007; Aris, 1989)

n̂− = 1
∣∇x σ∣Σ∣

∇x σ∣Σ , (2.9)

where ∇x is the Nabla operator in x-space. The outer unit normal of Ω+ is n̂+ = −n̂− ,
see Fig. 2.3.

A particle in Ω− moves in accordance to the velocity field Ẋ− and correspondingly
in Ω+ with Ẋ+ . Before the velocity in Σ is discussed we consider the particle veloc-
ities at the hull encasing Σ . There, the velocities are given in agreement with the
continuously differentiable fields in the interior of Ω− and Ω+:

Ẋ−∣Σ− = lim
σ(x)→0−

Ẋ−(x, ⋅) (2.10a)

Ẋ+∣Σ+ = lim
σ(x)→0+

Ẋ+(x, ⋅) , (2.10b)

see Fig. 2.3. The reachability of the surface Σ clearly depends on the orientation of
Ẋ−∣Σ− and Ẋ+∣Σ+ . Let

p̂− = 1
∣Ẋ−∣Σ− ∣

Ẋ−∣Σ− , and (2.11a)

p̂+ = 1
∣Ẋ+∣Σ+ ∣

Ẋ+∣Σ+ (2.11b)

be unit vectors, called velocity direction vectors, which point in the direction of the
vector fields Ẋ−∣Σ− and Ẋ+∣Σ+ , respectively. If the dot product between an outer unit
normal surface vector and a velocity direction vector in the interior is positive, the
inter-vectorial angle is acute, that is, the velocity vector points into the same half-
plane and thus towards the surface. Therefore, the surface is reachable by a particle
moving in accordance to the velocity field. If the dot product is negative, the surface
is not reachable. For the velocities around the surface introduced above this means:

p̂− ⋅ n̂− > 0→ Σ is reachable from Ω− , (2.12a)

p̂− ⋅ n̂− ≤ 0→ Σ is not reachable from Ω− , (2.12b)

p̂+ ⋅ n̂+ > 0→ Σ is reachable from Ω+ , (2.12c)

p̂+ ⋅ n̂+ ≤ 0→ Σ is not reachable from Ω+ , (2.12d)

ẊΣ ⋅ n̂+ = 0→ trajectories stay in Σ . (2.12e)

If the surface Σ has been reached and the path of the particle is continued therein
(see the case-by-case analysis below) as for instance shown in Fig. 2.3 (b), its velocity
is given by ẊΣ . The origin of the field ẊΣ may be given directly from the physical
model or it is a projection of one of the neighboring higher-dimensional vector fields
or a weighted sum thereof.

As indicated previously, it is in principle possible to produce different configura-
tions arising from the direction of the vector fields Ẋ−, ẊΣ and Ẋ+ and the orientations
n̂− and n̂+ of the surface. Some local cases are depicted in Fig. 2.4 which will be dis-
cussed in the following. For this, we use symbols having the following meaning:
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horizontal arrows (← and→) indicate the velocity direction in the domain Ω− or Ω+ .
A vertical line ( ∣ ) stands for the surface Σ on which the particle does not move but
is passed directly through without staying in it. An upright arrow (↑) denotes a sur-
face on which the particles can move. A cross-sign (×) stands for a domain in which
no velocity field is defined, for example because a state vector in this domain has no
physical meaning.

At first, the accumulation-free transition surface, abbreviated by T (→ ∣ →), is dis-
cussed in Sec. 2.4.2.1. Then the case is sketched for which a particle is driven into
the surface and trapped therein, the so called stable surface S (→↑←), see Sec. 2.4.2.2.
Opposite to this situation is the unstable surface U (←↑→), on which particles can in
principle move but are pushed away upon a slight deviation from it, see Sec. 2.4.2.3.
In Sec.s 2.4.2.4 to 2.4.2.6 three special cases of the preceding generic situations are
sketched in which one side across the dividing surface is not reachable. This is partic-
ularly interesting for later applications and the formulation of shape evolution equa-
tions in Ch.s 3 and 4.

2.4.2.1 Case T (→ ∣→): Transition Surface

Consider the case sketched in Fig.s 2.3 (a) and 2.4 (b). The particle starts in Ω− with
state x0 and subsequently moves in accordance to the field Ẋ− pointing towards Σ if
the condition in Eq. (2.12a) is fulfilled. It reaches Σ−, moves to Σ+ and continues di-
rectly in Ω+ if the constraint given in Eq. (2.12d) can be met, see also Fig. 2.3 (a). The
reverse situation where the trajectory is started in Ω+, passed through Σ and contin-
ued in Ω− is qualitatively identical if the direction of the velocity fields with respect
to the orientation of the surface is reversed as well. Since the particles pass directly
through the surface, this case is in the following referred to as transition surface. The
differential equation describing the evolution of this system is given by

dx
dt

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ẋ− for x ∈ Ω−

ẊΣ for x ∈ Σ
Ẋ+ for x ∈ Ω+

, x(t = 0) = x0 ∈ Ω , (2.13)

where the velocity in Σ is

ẊΣ = (1− λ)Ẋ−∣Σ− + λẊ+∣Σ+ , 0 ≤ λ ≤ 1 . (2.14)

The parameter λ can be chosen in a way that reflects the physical behavior of the
system at best. For the practical solution the choice should make no difference.

2.4.2.2 Case S (→↑←): Stable Surface

Contrary to the previous case, the particle starts either in Ω− or Ω+ and moves with
the velocity Ẋ− or Ẋ+, respectively, which point towards Σ . That is, the conditions
(2.12a), (2.12c) and (2.12e) must be fulfilled in order to realize this situation, see
Fig.s 2.3 (b) and 2.4 (c). Thus, the trajectory enters Σ and continues its path therein,
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moving with ẊΣ . Due to the fact that in this case particles remain in Σ , this setup is
referred to as stable surface. The differential equation is qualitatively given by

dx
dt

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ẋ− for x ∈ Ω−

ẊΣ for x ∈ Σ
Ẋ+ for x ∈ Ω+

, x(t = 0) = x0 ∈ Ω , (2.15)

where ẊΣ is a velocity field of the sliding mode (trajectory within Σ) which follows
directly from the physical model. If this does not follow directly from the model, a
weighted sum of the projected fields Ẋ− and Ẋ+ could generate a reasonable velocity
field which shall be consistent with the physical situation.

2.4.2.3 Case U (←↑→): Unstable Surface

The reverse setting to the previous case (Fig. 2.4 (d)) is given when the fields Ẋ−

and Ẋ+ point from Σ away (conditions (2.12b) and (2.12d)) and a trajectory that is in
Σ remains therein (condition (2.12e)) but particles from within Ω− and Ω+ are not
attracted by Σ . The differential equation for this system is determined by the initial
condition since the domain in which the particle is started cannot be left:

dx
dt

= Ẋ− for x(t = 0) = x0 ∈ Ω− , (2.16a)

dx
dt

= ẊΣ for x(t = 0) = x0 ∈ Σ , (2.16b)

dx
dt

= Ẋ+ for x(t = 0) = x0 ∈ Ω+ . (2.16c)

A trajectory is not attracted by Σ but in fact pushed to the interior of Ω− or Ω+ once
it slightly deviates from Σ , for example driven by a small disturbance. Hence, this
configuration is referred to as unstable surface.

2.4.2.4 Case Tos (← ∣×): One-Sided Transition Surface

A special case of the transition surface, see Sec. 2.4.2.1, occurs when particles starting
in Σ move directly to the interior of Ω−, that is, the condition (2.12b) must be fulfilled.
This situation is depicted in Fig. 2.4 (e). The velocity in Σ is determined by the limit
value of Ẋ−:

ẊΣ = Ẋ−∣Σ− , (2.17)

so that particles starting on Σ move – due to the validity and invalidity of Eq.s (2.12b)
and (2.12e), respectively – directly into Ω−. Within the domain Ω+ no velocity field
is defined, i.e., this part of the state space cannot be entered by trajectories, for exam-
ple because it does not reflect physically sensible states. In this case the differential
equation reads

dx
dt

= Ẋ− , x(t = 0) = x0 ∈ Ω− ∪Σ . (2.18)

Actually, this formulation makes sense only if indeed the particle is being started
on Σ . This can for instance happen due to the conversion of a stable surface to a
transition surface. That is, the continuation of the path that has been covered till the
conversion within Σ is relaunched by (2.18) to continue in Ω−. If, however, the par-
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ticle is started directly in Ω−, the system is simply an ordinary differential equation
not necessitating the notion of the transition surface.

2.4.2.5 Case Sos (→↑ ×): One-Sided Stable Surface

If on the other hand the field Ẋ− points towards Σ (see Eq. (2.12a)) and a particle
entering Σ continues therein but in Ω+ no velocity field is defined, the evolution of
the system is a special case of the stable surface as described in Sec. 2.4.2.2:

dx
dt

= { Ẋ− for x ∈ Ω−

ẊΣ for x ∈ Σ .
, x(t = 0) = x0 ∈ Ω− ∪Σ . (2.19)

This means that particles starting in Ω− move into Σ and stay therein while moving
with the velocity ẊΣ . If a particle starts in Σ , it remains in this surface and moves
with ẊΣ as well. In Fig. 2.4 (f) a sketch of the velocity field is depicted.

2.4.2.6 Case Uos (←↑ ×): One-Sided Unstable Surface

Like the stable surface, also the unstable surface as discussed in Sec. 2.4.2.3 can degen-
erate so that solutions starting in Σ stay in this domain. A trajectory that is started in
Ω−, however, does not reach Σ since – presuming that the inequality (2.12b) is fulfilled
– the velocity field points to the interior of Ω− , see Fig. 2.4 (g). As for the two degen-
erate cases discussed above, the opposite domain Ω+ across Σ shall not be reachable.
The differential equations for the state evolution are derived from Eq. (2.16):

dx
dt

= Ẋ− for x(t = 0) = x0 ∈ Ω− (2.20a)

dx
dt

= ẊΣ for x(t = 0) = x0 ∈ Σ . (2.20b)

2.4.2.7 Interim Summary: Discontinuous Evolution

In the preceding Sec.s 2.4.2.1-2.4.2.6 the evolution equations for the trajectory of a
particle have been formulated for the case that the state space is separated by a sur-
face Σ of codimension 1 at which a qualitative change of the velocity (i.e., the right
hand side of the differential equation) occurs. Clearly, switches between the cases
can in principle emerge because the environmental conditions Y and other variables
controlling the velocity field are in general subject to evolve over time and with it the
velocity fields. This must of course be tracked when such a system is integrated. Fur-
thermore, it is imaginable that the velocity fields behave differently in different parts
of the state space, that is, combinations of the cases presented above can be easily
constructed.

The notion of switching surfaces does not complete our perception of hybrid sys-
tems. In the following section, yet another mechanism of an irregular (hybrid) state
evolution is discussed: If the trajectory reaching the surface Σ is not continued locally
but restarted at a different position in the state space, it performs a jump.
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2.4.3 Jumping Systems

Motivational Example: Bouncing Ball An exemplary system performing jumps
in the state space is the bouncing ball which is also discussed by Kofman (2004). A
tutorial in the Matlab documentation (MathWorks, 2011) provides a readily imple-
mented code of this system which has also been used here. The simplest version of
this model describes the free fall of a ball (without friction) and the subsequent reflec-
tion at a solid surface at which a portion (1−γ) of the kinetic energy is absorbed. The
system state includes the height and velocity of the ball as depicted in Fig. 2.5 (a):

x = ( h
v

) . (2.21)

The movement is governed by the following equations:

dx
dt

= [ 0 1
0 0

] x + ( 0
−g

) for h > 0 (2.22a)

x∣Σ− = x(t−j ) for h = 0 (2.22b)

x∣Σ+ = [ 1 0
0 −γ

] x∣Σ− for h = 0 , (2.22c)

where t−j refers to the instant preceding the jumping time for an infinitesimal inter-
val. A typical development of velocity and height is depicted in Fig.s 2.5 (b) and (c),
respectively: At height h = 20 the ball is released and subsequently accelerates con-
stantly due to gravity, i.e., the evolution is dictated by Eq. (2.22a). The trajectory in
x-space is depicted in Fig. 2.5 (d). Until the height h = 0 is reached for the first time
the upper curve in the left half makes up the trajectory. At h = 0 the ball hits a solid
surface. In view of the previously introduced notation, the domain Σ = {x ∶ h = 0}
is a so called jump surface. When it is reached, the direction of the ball’s velocity is
instantaneously reversed and its magnitude reduced (factor γ), see Eq.s (2.22b) and
(2.22c). This is also shown in Fig. 2.5 (b) where at t = 2 the velocity is displaced from
v ≈ −20 to v ≈ 15. In the state space this implicates a jump on the velocity axis, i.e., the
trajectory dunking into Σ− = {x ∶ h = 0, v < 0} is continued at a determined point in
Σ+ = {x ∶ h = 0, v > 0} . The (deterministic) transfer from a point in Σ− to a point in Σ+

is called a jump and indicated in Fig. 2.5 (d) by the gray shaded, curved arrows below
the v axis. For t > 2 the path of the ball is continued such that it reaches a maximal
height, moved again towards the solid boundary where it is again reflected to move
up and so forth until the kinetic energy is fully dissipated and xT(t →∞) = (0, 0) .

This small introductory example shall serve to motivate that jumps in the state
space can occur in various systems in mechanics but also in chemical engineering,
electrical and control engineering and robotics. In fact, a vast amount of researchers
investigate such systems under the topic hybrid dynamic systems, that is hybrid in the
sense that continuous (differential equations) as well as discrete (automates) dynam-
ics are involved. The lecture notes of Tomlin (2005) are a good starting point to get
acquainted with the field; therein also a huge number of references on mathemat-
ical foundations and on applications of hybrid systems is given. The book edited
by Engell et al. (2002) contains overview articles on modeling, simulation, analysis
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Figure 2.5: Bouncing ball. The ball is accelerated by gravitation and reflected at a solid wall
(a). At the reflection point the velocity changes its sign and its magnitude is additionally
decreased by a dissipation factor (b). The maximum height decreases over time (c). The
trajectory in height-velocity-space performs jumps when the ball is reflected by the wall
(d).

and controller synthesis from the theoretical point of view but contains application
examples as well.

The more General View In the previous section, systems have been discussed
whose path reaching the surface Σ is continued with a different velocity, i.e., the
right-hand side of the differential equation can jump. The system class in this section
is further widened since now jumps in the state are allowed as well (and not only in
the velocity). This situation is depicted in Fig. 2.6. The state space is again decom-
posed into domains Ω− and Ω+ which do (locally) not share a common boundary.
In contrast to the preceding explanations, the boundaries Σ− and Σ+ are separated
and wrap a domain which is not accessible and where not necessarily a velocity field
is defined similarly to the cases Tos, Sos and Uos in Sec.s 2.4.2.4-2.4.2.6. But in con-
trast to these cases, the domain that is not accessible can in the following examples
be jumped over. A particle starting in Ω− reaches the surface Σ− if the conditions
as stated in Eq. (2.12a) are met. From there the particle is instantaneously moved to
a point x∣Σ+ on the surface Σ+ by a jump-function ξ+j whose argument is the state at
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Figure 2.6: State space division for jumping systems.

the Σ−-surface, denoted by x∣Σ− , and possibly other arguments, particularly environ-
mental state variables. The instantaneous move from Σ− to Σ+ is called a jump in state
space and the time instant denoted by tj . The instant preceding tj for an infinitesi-
mally small time interval is denoted by t−j whereas the instant following is t+j . Note
that the superscripts + and − for tj do not necessarily refer to Σ− and Σ+ ; they rather
indicate the sequence of the events.

Along the lines of the preceding Sec. 2.4.2, three cases are distinguished: The tran-
sition jump passing the trajectory to the boundary of the opposite domain where it is
directly continued in the interior, see Sec. 2.4.3.1. In Sec. 2.4.3.2 the jump into a stable
surface is presented whereas Sec. 2.4.3.3 discusses the case of the jump from an un-
stable surface to the boundary of a fully dimensional domain in which the trajectory
is continued.

2.4.3.1 Case Tj (→ ∣⇢ ∣→): Transition Jump

The trajectory of the particle is started in Ω− and evolving with the velocity Ẋ− . As
depicted in Fig. 2.4 (h), the direction of Ẋ− with respect to the orientation of the Σ−-
surface is such that trajectories dunk into Σ−, i.e., the condition given in Eq. (2.12a) is
fulfilled. After Σ− is reached, the jump function ξ+ is executed, i.e., the trajectory is
instantaneously moved from a point on Σ− to a determined point on Σ+ . The jump
function with a + in the superscript refers to the transfer to Σ+; in principle, the reverse
case is also possible when the orientation of the velocity fields is reversed. Formally,
the instant preceding the jump time, tj , for an infinitesimally short interval is denoted
by t−j , whereas the instant following is referred to by t+j . After Σ+ is reached, the
path is continued in the interior of Ω+, which necessitates that the velocity field Ẋ+ is
oriented such that the condition given in Eq. (2.12d) is fulfilled. Using the introduced
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notation, the dynamical equations including the discrete event of the jump can be
expressed as

dx
dt

= Ẋ− for x ∈ Ω− , i.e. 0 ≤ t < t−j , x(t = 0) = x0 ∈ Ω− , (2.23a)

x∣Σ− = x(t−j ) for x ∈ Σ− at t = t−j , (2.23b)

x∣Σ+ = ξ+(x∣Σ− , ⋅) for x ∈ Σ− at t = t+j , (2.23c)

dx
dt

= Ẋ+ for x ∈ Ω+ , i.e. t > t+j , x(t = tj) = x∣Σ+ . (2.23d)

The motivational example of the bouncing ball falls into this category with the sim-
plification that the fully-dimensional region must not be separated into Ω− and Ω+

since the continuous evolution equations before Σ− and after Σ+ are the same and tra-
jectories move in a joint domain, Ω , which is not left, see Fig. 2.5 (d). This case shows
a certain analogy to the transition surface case T described in Sec. 2.4.2.1, where the
trajectory is passed over the surface. Hence, the prototype Eq.s (2.23) are referred to
as transition jump or in shorthand notation Tj .

2.4.3.2 Case Sj (→ ∣⇢↑): Jump into Stable Surface

After a jump, the continuation of the trajectory within a surface is also possible. The
jump from the boundary Σ−, following the movement in Ω−, into a surface Σ+ is
sketched in Fig. 2.4 (i). The continuous movement succeeding the jump is continued
within Σ+ in which the velocity field ẊΣ determines the evolution. The equations
quantifying this situation are almost identical to Eq.s (2.23):

dx
dt

= Ẋ− for x ∈ Ω− , i.e. 0 ≤ t < t−j , x(t = 0) = x0 ∈ Ω− , (2.24a)

x∣Σ− = x(t−j ) for x ∈ Σ− at t = t−j , (2.24b)

x∣Σ+ = ξ+(x∣Σ− , ⋅) for x ∈ Σ− at t = t+j , (2.24c)

dx
dt

= ẊΣ+ for x ∈ Σ+ , i.e. t > t+j , x(t = tj) = x∣Σ+ . (2.24d)

Since the Eq.s (2.24) are similar to the stable surface (see Eq.s (2.15)) with the addi-
tional feature of the jump, the case is referred to as a jump into stable surface or in
shorthand notation Sj .

2.4.3.3 Case Uj (← ∣⇠ ∣): Jump from Unstable Surface

The reverse case to the jump into the stable surface is the jump from an unstable
surface which may be compared to the simple unstable surface, see Sec. 2.4.2.3. The
jump at tj = 0 from the surface Σ+ onto the boundary Σ− of the the domain Ω− is
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shown in Fig. 2.4 (j) . In principle, the governing equations are directly derived from
the equations of the transition jump, Eq.s (2.23):

x∣Σ+ = x(t−j ) for x ∈ Σ+ at t = t−j = 0− , x(t = 0) = x0 ∈ Σ+ , (2.25a)

x∣Σ− = ξ−(x∣Σ+ , ⋅) for x ∈ Σ− at t = t+j = 0+ (2.25b)

dx
dt

= Ẋ− for x ∈ Ω− , i.e. t > t+j , x(t = tj) = x∣Σ− . (2.25c)

Note that the jump function is furnished with a minus sign as a superscript because
the jump is performed from Σ+ to Σ− . In the sections above the jump was performed
from Σ− to Σ+, i.e., the jump function was equipped with a plus sign. Because the
mechanism is similar to the unstable surface explained in Sec. 2.4.2.3, this case is
called jump from unstable surface and according to the previously developed abbrevi-
ated notation denoted by Uj .

2.5 The Number Density Function

While the preceding sections have dealt with single particles, from now on popula-
tions of particles are examined. In principle, this can be done in two different ways.
The number of equations used to specify the evolution of a single particle can be
increased so that every individual within the system is described separately. If the
number of particles in the system, however, becomes large, the number of trajectories
which must be computed becomes large and for practical applications the resulting
set of equations is computationally expensive to solve. This problem can be remedied
partly by choosing representative particles whose trajectories are computed. Neigh-
boring particle trajectories are assumed to evolve in a similar way. Using this method,
a number of problems in particle technology have been solved, particularly for the
determination of particle trajectories in stirred vessels, e.g. Decker (2005). In a more
rigorous way, the distribution of individuals in the state space is quantified by a num-
ber distribution density which upon multiplication with an infinitesimal volume of the
state space yields the number of particles in state x :

f (x, t)dVx . (2.26)

The volume measure dVx for a Cartesian state space is dx1dx2 . . . dxn . If the state
space Ω is not further partitioned, the overall number of particles in the system is
obtained by integration over the whole domain:

N(t) = ∫
Ω

f (x, t)dVx . (2.27)

In case that the state space – due to the discontinuous velocity field – is partitioned
into regions Ω− and Ω+ , separated by Σ, see Sec. 2.4.2 and Fig.s 2.4 and 2.7, the
number density is separately defined in each part. The distribution of the particles
in Ω+ and Ω− is – as for the continuous case described above – given by a number
density quantifying the number of particles within a unit volume in x-space. On the
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surface Σ , the distribution is specified by the number of particles per unit area on the
surface:

f−(x, t) = number of particles
unit volume of Ω

, x ∈ Ω− , (2.28a)

f Σ(x, t) = number of particles
unit area of Ω

, x ∈ Σ , (2.28b)

f+(x, t) = number of particles
unit volume of Ω

, x ∈ Ω+ . (2.28c)

Hence, the total number of particles in the system is the sum of two volume integrals
and a surface integral:

N = ∫
Ω−

f− dVx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=N−

+∫
Σ

f Σ dAx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=NΣ

+∫
Ω+

f+ dVx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=N+

. (2.29)

Actually, (n − 1) coordinates within Σ suffice for the quantification of the surface
number density. A local intrinsic (possibly curvilinear) surface system with coordi-
nate vector z ∈ Ωz ⊂ Rn−1 allows to address every point on the surface, see Fig. 2.7.
Clearly, a unit volume in z-space has the dimension of a unit area in the full x-space.
That is, a number density function in z-coordinates can be defined such that

f Σ(x, t)dAx = f Σ
z (z, t)dVz . (2.30)

The number of particles within the surface is then obtained by

NΣ(t) = ∫
Ωz

f Σ
z (z, t)dVz . (2.31)

Though the integration of the surface density is conveniently expressed in terms of
the z- rather than in x-coordinates, for balancing it is necessary to revert to a common
framework. The following derivations serve to facilitate the surface density in terms
of x-coordinates.
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If the point set σ = 0 , defining the surface Σ , see Eq. (2.8a), can be solved for one
coordinate of x , say without loss of generality xn , and if Σ is not perpendicular to the
xn-direction, σ = 0 can be organized to assume the form

xΣ
n = s(x′) , (2.32)

where x′ = (x1, . . . , xn−1)T are the remaining coordinates, see Fig. 2.7. That is, the full
state vector on the surface is given as a function of x′:

x(x′) = ( x′

xΣ
n (x′) ) ∈ Σ . (2.33)

Yet another number density function f Σ
x′(x′, t) can be defined such that

f Σ
z (z, t)dVz = f Σ

x′(x′, t)dVx′ . (2.34)

If (at least locally) the z-coordinates can be obtained uniquely from the x′ coordinates,
i.e.

z = z(x′) , (2.35)

the function f Σ
x′(x′, t) is obtained by

fx′(x′, t) = f Σ
z (z(x′), t) ∣J(z, x′)∣ , (2.36)

where

∣J(z, x′)∣ = ∣det( dVz

dVx′
)∣ = ∣det( ∂(z1, . . . , zn−1)

∂(x1, . . . , xn−1)
)∣ , (2.37)

is the Jacobian matrix determinant, e.g. Bronstein et al. (2001), which can be inter-
preted as the ratio between unit areas in the z- and x-framework. Of course, also the
reverse operation to (2.35) may be of use:

x′ = x′(z) , (2.38)

which enables us to express a point x on Σ as a function of z, see Eq. (2.33):

x(z) = ( x′(z)
xΣ

n (x′(z)) ) ∈ Σ . (2.39)

The number of particles within Σ is obtained by integration over the whole x′-space

NΣ(t) = ∫
Ωx′

f Σ
z (z(x′), t) ∣J(z, x′)∣ dVx′ , (2.40)

or simply

NΣ(t) = ∫
Ωx′

f Σ
x′(x′, t)dVx′ . (2.41)

This result is not affected if f Σ
x′ is multiplied previously by a Dirac delta function

δ(xn − xΣ
n ) = δ(xn − s(x′)) that lifts the number density to the surface, and an integra-

tion over the xn-coordinate is additionally taken out:

NΣ(t) = ∫
xmax

n

xmin
n

∫
Ωx′

f Σ
x′(x′, t)δ(xn − s(x′))dVx′ dxn . (2.42)
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The integration over Ωx′ and the full range of xn corresponds to the integration over
Ωx which is:

NΣ(t) = ∫
Ωx

f Σ
x′(x′, t)δ(xn − s(x′))dVx . (2.43)

The total number of particles, see Eq. (2.29), can thus be calculated by volume inte-
gration over the whole domain Ωx:

N(t) = ∫
Ωx

f−(x, t)+ f Σ
x′(x′, t)δ(xn − s(x′))+ f+(x, t)dVx . (2.44)

Comparison to Eq. (2.27) gives rise to the formal definition:

f (x, t) = f−(x, t)+ f Σ
x′(x′, t)δ(xn − s(x′))+ f+(x, t) . (2.45)

Or in view of Eq. (2.36)

f (x, t) = f−(x, t)+ f Σ
z (z(x′), t)δ(xn − s(x′)) ∣J(z, x′)∣+ f+(x, t) . (2.46)

That is, the surface population density expressed in x-coordinates is obtained from
the one in z-coordinates by

f Σ(x, t) = f Σ
z (z(x′), t)δ(xn − s(x′)) ∣J(z, x′)∣ . (2.47)

Summary In this section, the number density function for the different parts of the
state space has been introduced. The functions f− and f+ quantifying the populations
in the fully dimensional regions Ω− and Ω+ are measured in terms of the number of
particles per unit volume of the state space. The surface number density f Σ is given
by the number per unit area. Surface-intrinsic coordinates z with one component less
than the full state vector x actually suffice as an argument for the surface density. z
may be obtained also from n − 1 coordinates of x, denoted by x′ . Using Dirac delta
functions, it is possible to express surface number densities in terms of the full state
vector x . With these utilities in mind, the field of dynamical evolution of the number
distributions is harvested.

2.6 Evolution of the Number Density Function

This section is concerned with the evolution equations for the population’s number
density functions introduced above. Following the structure of Sec. 2.4 where the
evolution of single individuals has been dissected, the first section of this part intro-
duces the balance equation for continuously evolving populations, see Sec. 2.6.1. In
Sec. 2.6.2 the population balances for state spaces divided by a surface are discussed
for the above introduced classes of transition, stable and unstable surfaces. For the
more complex cases of jumping systems, the evolution of the number densities is
exposed in Sec. 2.6.3.

Before the different cases are discussed in detail, major parts of the employed no-
tation are presented as well as frequently used and case-independent mathematical
relationships. The equations are derived using classical balancing over a fixed, arbi-
trary region R which is a subset of the whole state space Ω , see Fig. 2.8 (left). Within
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Figure 2.8: Balancing in state space for continuous evolution (left) and discontinuous evo-
lution (right).

R , overall N individuals reside. Integration of the number density function f (x, t)
over R gives this number:

N(t) = ∫
R

f (x, t)dVx , (2.48)

which is clearly a function of time, i.e. its time rate of change is

dN
dt

= d
dt ∫R

f (x, t)dVx . (2.49)

The integral on the right hand side can be reformulated using an extension of the clas-
sical transport theorem (Slattery, 1999) to arbitrary continuous state spaces (Ramkr-
ishna, 2000) for stationary R:

dN
dt

= ∫
R

∂ f
∂t

(x, t)dVx . (2.50)

In general, the number change within R is caused by the flux of particles across its
boundary and by the production in the interior:

dN
dt

= ṄFlux across boundary + ṄProduction in R . (2.51)

The number flux over the domain boundary S due to particle population movement
with velocity Ẋ is:

( f Ẋ) ⋅ (−n̂S) . (2.52)

where n̂S is the outer unit normal, see Fig. 2.8. Thus, the change of the number of
particles due to in- and outflow to/from R is

ṄFlux across boundary = ∫
S
( f Ẋ) ⋅ (−n̂S)dAx . (2.53)

By the virtue of the Divergence Theorem, the surface integral can be reformulated to
a volume integral:

ṄFlux across boundary = ∫
R
−∇x ⋅ ( f Ẋ)dVx . (2.54)
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The production density of individuals is denoted by h(x, Y, t) which contributes to
the rate of change of N by

ṄProduction in R = ∫
R

h(x, Y, t)dVx . (2.55)

For a more general analysis, the argument of the production density must be ex-
panded by the number density and – if existing – the number densities of other pop-
ulations as well. Then it is feasible to model the impact of interactions between par-
ticles on the number density. This includes for instance aggregation and breakup of
individuals. That is, particles located in one part of the state space can interact with
remote particles, i.e., the evolution of the number density is not only governed by
local operators (convective movement) but by global, integral operators, which pos-
sibly act on the full property state space, see for details Ramkrishna (2000); Randolph
and Larsen (1988). For the remainder of this work, however, the effects are excluded.
That is, the particle production density is only a function of the particle state, environ-
mental conditions and possibly time. Then h can for instance represent the occurrence
of new particles due to nucleation or feeding.

2.6.1 Population Balance Model for Continuous Flow

An arbitrary but contiguous region R in a state space Ω that is not separated in the
sense of Sec. 2.4 is balanced with regard to number conservation by

dN
dt

= ṄFlux across S + ṄProduction in R , (2.56)

that is, in view of Eq.s (2.50), (2.54) and (2.55):

∫
R

∂

∂t
f (x, t)dVx = ∫

R
−∇x ⋅ (Ẋ f )dVx + ∫

R
h dVx . (2.57)

Due to the arbitrariness of the choice of the region R, this equation must hold also
locally:

∂ f
∂t

+∇x ⋅ (Ẋ f ) = h . (2.58a)

The initial condition to this equation is denoted by f0(x). If the domain Ω is open in
some directions of the state space, it is formally separated into two parts. The closed
boundary of Ω is denoted by ∂Ω with an outer unit normal b̂ , whereas the open
”boundary” is referred to by ∣x∣ → ∞ . Across ∂Ω particles flow with a flux density
ḟin(x, t) . For the open parts of Ω it is pretended that the flux vanishes, the so called
regularity condition Ramkrishna (2000). This is an adequate hypothesis for physical
systems5. In summary, the Eq. (2.58a) must be solved subject to initial, boundary and
regularity conditions

I.C.: f (x, t = 0) = f0(x) , (2.58b)

B.C.: b̂ ⋅ Ẋ f = ḟin(x, t) , x ∈ ∂Ω , (2.58c)

R.C.: Ẋ f → 0 , ∣x∣→∞ , (2.58d)

5For instance if the property is size, this assumption states that the particle cannot grow infinitely large.
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see also Ramkrishna (2000).

2.6.2 Population Balance Model for Discontinuous Evolution

As in the preceding Sec. 2.4.2, let Σ be a surface of codimension 1, separating the
n-dimensional domain Ω into Ω− and Ω+ , see Fig. 2.8 (right). The portion of R in
Ω− is denoted by R− and accordingly the portion within Ω+ is R+ . If the region R is
completely in either of the domains and its boundary does not share a part with the
surface Σ , the population balances for the interior of Ω− and Ω+ are directly derived
from the continuous case, Eq. (2.58):

∂ f−

∂t
+∇x ⋅ ( f−Ẋ−) = h− (2.59a)

∂ f+

∂t
+∇x ⋅ ( f+Ẋ+) = h+ , (2.59b)

where h− and h+ is the production density in Ω− and Ω+ , respectively. The boundary
and initial conditions are chosen with respect to the nature of the flow fields around
Σ which is discussed case by case in the following. The transition, stable and un-
stable surfaces interacting with the number density of a population are discussed in
Sec.s 2.6.2.1-2.6.2.3. From these equations the special cases of the one-sided transition,
one-sided stable and one-sided unstable surface can be comprehended.

2.6.2.1 Population Case T (→ ∣→): Transition Surface

In Sec. 2.4.2.1 the single particle case for the transition surface has been discussed,
see also Fig. 2.4 (b). The surface Σ in this configuration does not store particles. We
consider the region R , which is separated by Σ . Let SΣ− be the portion of S− that is
shared with Σ− and SΣ+ the common surface of S+ and Σ+ , see Fig. 2.8 (right). SΣ is
the part of Σ between SΣ− and SΣ+ . Since in Σ no particles reside, the flux across SΣ−

must be balanced with the flux over SΣ+ and the production within Σ , denoted by
hΣ:

∫
SΣ−

( f−Ẋ−∣Σ−) ⋅ n− dAx +∫
SΣ+

( f+Ẋ+∣Σ+) ⋅ n+ dAx +∫
SΣ

hΣdAx = 0 . (2.60)

Because this relationship must hold for arbitrary SΣ (and the respective surface sec-
tors SΣ− and SΣ+ ) , it can be concluded that

( f−Ẋ−∣Σ−) ⋅ n− + ( f+Ẋ+∣Σ+) ⋅ n+ + hΣ = 0 at x ∈ Σ . (2.61)

This equation serves as the coupling boundary condition for the interior population
balances (Eq. (2.59)) whose initial, remaining boundary and regularity conditions can
be written similar to Eq.s (2.58) (b)-(d).

2.6.2.2 Population Case S (→↑←): Stable Surface

For the case of the stable surface (see the single particle case in Sec. 2.4.2.2) , the pop-
ulations in Ω− and Ω+ move into Σ wherein they further exist and possibly con-
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Figure 2.9: Control area SΣ within the dividing surface.

tinue their evolution, see Fig. 2.4 (c). That is, particles in the control area SΣ ex-
ist and their number is changed, as depicted in Fig. 2.9, due to (i) flux within the
surface, ṄΣ

Flux across L , (ii) flux across SΣ− into SΣ and over SΣ+ into SΣ , written as
ṄΣ

Flux from Σ− and ṄΣ
Flux from Σ+ , respectively, and (iii) production within Σ , denoted

by ṄΣ
Production in Σ . That is overall:

dNΣ

dt
= ṄΣ

Flux across L + ṄΣ
Flux from Σ− + ṄΣ

Flux from Σ+ + ṄΣ
Production in Σ . (2.62)

In the following derivation the surface-intrinsic coordinates z are used like during the
introduction of the surface number density function, see Eq. (2.30). For the accumu-
lation term we find upon differentiation of Eq. (2.31) with the help of the Transport
Theorem for fixed regions:

dNΣ

dt
= ∫

SΣ

∂ f Σ
z

∂t
(z, t)dVz , (2.63)

where f Σ
z is used for the quantification of the surface number density. In this sense,

the velocity within the surface, ẊΣ , as used for the single particle case is transformed
to a velocity vector Ż with respect to the surface-intrinsic coordinates. Then the
flux across the boundary L enclosing SΣ within Σ , see Fig. 2.9, is obtained similar
to Eq. (2.53):6

ṄΣ
Flux across L = ∫

SΣ
−∇z ⋅ (Ż f Σ

z (z, t)) dVz . (2.64)

The flux of the f−-population across SΣ− into SΣ is (see Fig. 2.9)

ṄΣ
Flux from Σ− = ∫SΣ−

(Ẋ−∣Σ− f−(x, t)) ⋅ n̂− dAx . (2.65)

6Note that practical calculations with differential operators acting in curvilinear systems using indexed
tensor notation involve the consideration of the curvature (Christoffel symbols).
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Similarly, the flux over SΣ+ into SΣ is

ṄΣ
Flux from Σ+ = ∫SΣ+

(Ẋ+∣Σ+ f+(x, t)) ⋅ n̂+ dAx . (2.66)

The production of individuals within SΣ is obtained by integration of the surface
production density over SΣ:

ṄΣ
Production in Σ = ∫

SΣ
hΣ

z (z, t)dVz . (2.67)

Inserting Eq.s (2.63), (2.64), (2.65), (2.66), (2.67) into Eq. (2.62) yields:

∫
SΣ

∂ f Σ
z

∂t
(z, t)+∇z ⋅ (Ż f Σ

z (z, t)) dVz = ∫
SΣ−

(Ẋ−∣Σ− f−(x, t)) ⋅ n̂− dAx

⋅ ⋅ ⋅ +∫
SΣ+

(Ẋ+∣Σ+ f+(x, t)) ⋅ n̂+ dAx +∫
SΣ

hΣ
z (z, t)dVz . (2.68)

By converting the first two integrals on the right-hand side to be taken over Σ using
the transformation (2.39) we obtain

∫
SΣ

∂ f Σ
z

∂t
(z, t)+∇z ⋅ (Ż f Σ

z (z, t)) dVz =

. . .∫
SΣ

(Ẋ−(x(z))∣Σ− f−(x(z), t)) ⋅ n̂−(x(z))∣J(x′, z)∣

⋅ ⋅ ⋅ + (Ẋ+(x(z))∣Σ+ f+(x(z), t)) ⋅ n̂+(x(z))∣J(x′, z)∣+ hΣ
z (z, t)dVz . (2.69)

Because this relationship must hold for arbitrary regions SΣ , the integrand must ful-
fill the equation:

∂ f Σ
z

∂t
(z, t)+∇z ⋅ (Ż f Σ

z (z, t)) = (Ẋ−(x(z))∣Σ− f−(x(z), t)) ⋅ n̂−(x(z))∣J(x′, z)∣

⋅ ⋅ ⋅ + (Ẋ+(x(z))∣Σ+ f+(x(z), t)) ⋅ n̂+(x(z))∣J(x′, z)∣+ hΣ
z (z, t) . (2.70)

This equation together with adequate boundary, initial and regularity conditions is
directly coupled to the evolution equations for the density in the interior of Ω− and
Ω+, see Eq.s (2.59).

2.6.2.3 Population Case U (←↑→): Unstable Surface

As in Sec. 2.4.2.3 we deal with a state space in which the velocity fields Ẋ− and Ẋ+

point from Σ away, see Fig. 2.4 (d). Only particles that are already in Σ or produced
direcly therein make up the surface population. Following the explanations and no-
tation for the stable surface in the previous section, the influx terms in Eq. (2.70) can
be crossed out so that the population balance for the unstable surface immediately
becomes:

∂ f Σ
z

∂t
(z, t)+∇z ⋅ (Ż f Σ

z (z, t)) = hΣ
z (z, t) . (2.71)
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This equation, equipped with proper boundary and initial conditions, must be solved
simultaneously with the balances for f− and f+, Eq.s (2.59), however, it is not directly
coupled to these functions.

2.6.2.4 Population Case Tos (← ∣×): One-Sided Transition Surface

Let us revisit the case of a one-sided transition surface discussed for the single par-
ticle case in Sec. 2.4.2.4, see also Fig. 2.4 (e). The domain Ω+ does not contain any
particles, thus the number density f+ is not defined. Particles accommodated in Σ
are instantaneously moved to the interior of the domain Ω− , thus the distribution
density in Σ is zero except for t = 0:

f Σ
z (z, t) = { f Σ

z,0(z) for t = 0
0 for t > 0 .

(2.72)

Within the domain Ω− the population balance is given by Eq. (2.58):

∂ f−

∂t
+∇x ⋅ ( f−Ẋ−) = h− . (2.73)

At the Σ− boundary of Ω−, the surface population is added to the f− population in-
stantaneously at t = 0. Thus, the initial condition for f− consists of a part quantifying
the population in the interior of Ω− as in Eq. (2.58c), f−0 (x) , and the population trans-
ferred from Σ . Transformation of the f Σ

z density to x-coordinates using Eq. (2.47)
yields the initial condition for the population balance for the domain Ω−:

f−(x, t = 0) = f−0 (x)+ f Σ
z,0(z(x′))δ(xn − s(x′)) ∣J(z, x′)∣ . (2.74)

It can be seen that for the case of f−0 (x) = 0 and h−(x, t) = 0 the population evolving in
Ω− exists only on a surface of codimension 1 since the surface s(x′) in the dirac delta
distribution, lifting f Σ

z,0 to the full x-space, is moved with Ẋ− according to Eq. (2.73).

In case that particles are being produced within the unstable surface at a production
density hΣ, the boundary condition to Eq. (2.73) must be augmented by balancing the
production with the influx to Ω− following the derivation of Eq. (2.61):

( f−Ẋ−) ⋅ n− + hΣ = 0 at x ∈ Σ . (2.75)

2.6.2.5 Population Case Sos (→↑ ×): One-Sided Stable Surface

Recall the case of the one-sided stable surface for the single particle explained in
Sec. 2.4.2.5. The population balance for f Σ

z can be derived directly from the (two-
sided) stable surface in Eq. (2.70) in Sec. 2.6.2.2, since only the feeding from the Ω+-
side must be cleared:

∂ f Σ
z

∂t
(z, t)+∇z ⋅ (Ż f Σ

z (z, t)) = (Ẋ−∣Σ− f−(x, t)) ⋅ n̂−∣J(x′, z)∣+ hΣ
z (z, t) . (2.76)

Due to unattainability of the domain Ω+, a number density function f+ is not defined.
In Ω− the continuous case population balance applies, Eq. (2.59).
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2.6.2.6 Population Case Uos (←↑ ×): One-Sided Unstable Surface

In analogy to Sec. 2.4.2.6 for the single particle case we consider the surface on which
a population can in principle exist and move but the flow field, existing in Ω− only,
points from Σ away. The domain Ω+ is assumed to be not accessible and thus the
number density f+ is not defined. The dynamics of f− is captured by the population
balance (2.59), whereas the evolution in Σ is identical to the (two-sided) unstable
surface, see Eq. (2.71):

∂ f Σ
z

∂t
(z, t)+∇z ⋅ (Ż f Σ

z (z, t)) = hΣ
z (z, t) . (2.77)

with the initial condition
f Σ
z (z, t = 0) = f Σ

z,0(z) . (2.78)

2.6.3 Population Balance Model for Jumping Systems

This section considers the population case for state spaces in which single parti-
cles can perform jumps as introduced in Sec.s 2.4.3.1-2.4.3.3, which are depicted in
Fig.s 2.4 (h)-(j). Evolution equations for the population density involving jumps are
structurally similar to the simple transition, stable and unstable cases considered
above, except that jump functions of the type given in Eq. (2.23c) must be included.
Like in the preceding parts, in the following Sec.s 2.6.3.1-2.6.3.3 the differential equa-
tions are derived for the transition jump, the jump into a stable surface and the jump
from an unstable surface.

2.6.3.1 Population Case Tj (→ ∣⇢ ∣→): Transition Jump

In setting up the population balance for transition jumps, see Fig. 2.4 (i), we fol-
low the derivation of the population balance for the transition surface, Eq. (2.60),
in Sec. 2.6.2.1. The integral flux into the surface Σ− must be balanced with the flux
feeding Ω+ at Σ+ . Firstly, two fixed control surfaces SΣ− and SΣ+ are defined, see
Fig. 2.10, such that every transfer from the SΣ− is covered by the SΣ+ region. Vice
versa, all trajectories jumping into SΣ+ originate in SΣ− . Upon number conservation,
the amount of particles flowing into SΣ− emerge on SΣ+ again:

∫
SΣ−

(Ẋ−(x, ⋅) f−(x, t)) ⋅ n−(x)dAx = ∫
SΣ+

(Ẋ+(x, ⋅) f+(x, t)) ⋅ n+(x)dAx . (2.79)

With the help of the jump function x∣Σ+ = ξ+(x∣Σ−), relating starting points of the
jump on Σ− to the end point on Σ+, the integral on the r.h.s. can be taken over Σ−

instead of Σ+ :

∫
SΣ−

(Ẋ−(x, ⋅) f−(x, t)) ⋅ n−(x)dAx =

∫
SΣ−

(Ẋ+(ξ+(x), ⋅) f+(ξ+(x), t)) ⋅ n+(ξ+(x)) ∣J(ξ+, x)∣ dAx , (2.80)
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Figure 2.10: Population balance modeling for jumping systems: (a) transition jump, (b)
jump in stable surface, (c) jump from unstable surface.

where J(ξ+, x) is the Jacobian matrix determinant:

J(ξ+, x) = det( ∂(ξ1, . . . , ξn)
∂(x1, . . . , xn)

) . (2.81)

Due to the arbitrariness of the domain SΣ− , (2.80) must hold also locally:

(Ẋ−(x, ⋅) f−(x, t)) ⋅ n−(x) =
(Ẋ+(ξ+(x), ⋅) f+(ξ+(x), t)) ⋅ n+(ξ+(x)) ∣J(ξ+, x)∣ , x ∈ Σ− , (2.82)

which is the boundary condition for the population balances for the domains Ω− and
Ω+ which are given according to Eq.s (2.59) with the appropriate initial, boundary
and regularity conditions.

2.6.3.2 Population Case Sj (→ ∣⇢↑): Jump in Stable Surface

The case of a population moving from Ω− into the boundary surface Σ− , jumping into
the surface Σ+ and continuing its evolution therein is depicted in Fig. 2.10 (b). Within
Ω− the continuous population balance (2.59) can be applied. Within Σ+ , the integral
version of the evolution equation for the one-sided stable surface, see Eq. (2.76), is
taken as the prototype:

∫
SΣ+

∂ f Σ
z

∂t
(z, t)+∇z ⋅ (Ż f Σ

z (z, t)) dVz = ṄFlux from Σ− +∫
SΣ+

hΣ
z (z, t)dVz . (2.83)

The number of particles crossing the fixed control surface SΣ− per unit time is

ṄFlux from Σ− = ∫
SΣ−

(Ẋ f−(x, t)) ⋅ n̂− dAx . (2.84)

Instead of integrating over the Σ− surface, a change of coordinates using the inverse
of the jump function, see Eq. (2.24c),

x∣Σ− = ξ− (x∣Σ+) = (ξ+)−1 (x∣Σ+) , (2.85)
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allows to calculate the flux by integration over Σ+ :

ṄFlux from Σ− = ∫
SΣ+

(Ẋ f−(ξ−(x), t)) ⋅ n̂−(ξ−1(x))∣J(ξ−, x)∣dAx . (2.86)

The point x on Σ+ must now be expressed in terms of the z-coordinate system for
which it is partitioned into two parts: x′(z) and xn(x′(z)) , see Eq. (2.39). Hence,
switching to z as the integration variable, Eq. (2.86) becomes

ṄFlux from Σ− = ∫
SΣ+

(Ẋ f−(ξ−(x(z)), t)) ⋅ n̂−(ξ−(x(z)))∣J(ξ−, x(z))∣ ∣J(x′, z)∣dVz .

(2.87)
Eq. (2.83) can be written fully under an SΣ+ integral

∫
SΣ+

∂ f Σ
z

∂t
(z, t)+∇z ⋅ (Ż f Σ

z (z, t)) dVz =

⋅ ⋅ ⋅ +∫
SΣ+

(Ẋ f−(ξ−(x(z)), t)) ⋅ n̂−(ξ−(x(z)))∣J(ξ−, x(z))∣ ∣J(x′, z)∣+ hΣ
z (z, t)dVz .

(2.88)

Since this equation must hold for arbitrary domains Σ , the integrand itself must fulfill
this relationship as well:

∂ f Σ
z

∂t
(z, t)+∇z ⋅ (Ż f Σ

z (z, t)) =

⋅ ⋅ ⋅ + (Ẋ f−(ξ−(x(z)), t)) ⋅ n̂−(ξ−(x(z)))∣J(ξ−, x(z))∣ ∣J(x′, z)∣+ hΣ
z (z, t) , (2.89)

which is the surface population balance for the case that the surface is fed by particles
jumping into it.

2.6.3.3 Population Case Uj (← ∣⇠ ∣): Jump from Unstable Surface

The jump from an unstable surface is sketched in Fig.s 2.4 (j) and 2.10 (c). If a popula-
tion exists on the unstable surface Σ+ only at t = 0, i.e., no particles are being produced
within Σ+, this initial population must be transferred to Σ− via the initial condition to
the population balance for Ω−, given by Eq. (2.59). Similar to the one-sided transition
surface, let the population density on Σ+ be given in a surface intrinsic coordinate
system z , denotd by f Σ+

z,0 . Transformation to x-coordinates and lifting this number
density to the fully-dimensional x-space yields

f Σ+
0 (x) = f Σ

z,0(z(x′))δ(xn − s(x′))∣J(z, x′)∣ , (2.90)

see also Eq. (2.47). Using the jump function, see Eq. (2.25b), f Σ+
0 (x) is shifted from Σ+

to Σ−:
f Σ−
0 (x∣Σ−) = f Σ+

0 (x∣Σ+)∣J(ξ−, x)∣ . (2.91)

As such it can be incorporated to the initial condition of Eq. (2.59), quantifying the
density evolution in Ω−:

f−(x, t = 0) = f−0 (x)+ f Σ−
0 (x) . (2.92)
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If the production rate in Σ+ does not vanish, there is a flux from Σ+ into Ω− across
Σ−. In case that the production density is given in surface coordinates z , the number
of particles produced in the fixed control area SΣ+ is given by

ṄProduction Flux from Σ+ = ∫
SΣ+

hΣ
z (z, t)dVz , (2.93)

see also Fig. 2.10 (c). Switching to x-coordinates yields

ṄProduction Flux from Σ+ = ∫
SΣ+

hΣ
z (z(x′), t)∣J(z, x′)∣dAx . (2.94)

Replacing the integration domain to the opposite domain SΣ− using the inverse of the
jump function, we obtain

ṄProduction Flux from Σ+ = ∫
SΣ−

hΣ
z (z(x′), t)∣J(z, x′)∣∣J(x, ξ−)∣dAx . (2.95)

Equating this with the flux of the f−-population across SΣ− , yields

∫
SΣ−

(Ẋ f−) ⋅ (−n̂−)dAx = ∫
SΣ−

hΣ
z (z(x′), t)∣J(z, x′)∣∣J(x, ξ−)∣dAx , (2.96)

which must hold for arbitrary choices of SΣ− , i.e.,

(Ẋ f−) ⋅ (−n̂−) = hΣ
z (z(x′), t)∣J(z, x′)∣∣J(x, ξ−)∣ , (2.97)

which is incorporated as the boundary condition for the population balance of f− .

2.7 Summary

In this chapter , the differential equations for developing individuals and populations
have been discussed with the special focus on the systematization of evolution equa-
tions that involve not only continuous development but also discrete events (hybrid
systems). For this, the state space has been divided into three parts: two fully dimen-
sional domains Ω− and Ω+ and a surface Σ separating the former two. In principle,
three different cases were introduced: (a) Σ acting as a transition surface, i.e., trajec-
tories immediately pass through it, (b) Σ attracting trajectories from its environment,
thus called a stable surface and (c) Σ pushing trajectories away. Either case can be
clearly identified by comparing the direction of the velocity fields in the respective
domain with the orientation of the dividing surface. The differential equations for
such systems typically exhibit switches on the right hand side. A further generaliza-
tion allows the separation of the domain boundaries of Ω− and Ω+ between which
trajectories can jump. From the evolution equation of a single entity and using classi-
cal balancing, general population balances have been derived that are capable of cap-
turing the number density evolution of systems consisting of particles with switching
right hand side and the ability to jump in state space. These generic equations shall
serve in Ch. 4 to set up rigorous models for populations of faceted crystals. However,
following the structure of this chapter, at first the evolution of single faceted crystals
is analyzed in the next chapter.
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Chapter 3

Single Crystal Shape Evolution Model
and State Space Analysis

General equations on the evolution of individuals have been presented in the pre-
ceding chapter. The concrete topic that is addressed in this thesis is crystal shape
evolution. In this chapter we embark on an analysis of the geometric model of a
polyhedral convex crystal. The state space of the crystal is divided into regions, so
called morphology cones, in which different morphologies exist (Sec. 3.1). This analy-
sis allows an elegant formulation and fast computation of the crystal shape trajectory
(Sec. 3.2). The recognition of morphological regions makes it easy to compute crystal
properties like volume and surface area directly from the state vector, i.e., by avoid-
ing the computation of the crystal shape (Sec. 3.3). In Sec. 3.4, a more complex crystal
system than the one developed in parallel in the previous sections is given. Finally,
in Sec. 3.5 the chapter is concluded in brief.

3.1 Shape Model

The shape of a polyhedral convex crystal is given by

S = {r ∶ N r ≤ h} , (3.1)

where r is a 3D vector of space coordinates, and

N =
⎡⎢⎢⎢⎢⎢⎣

nT
1
⋮

nT
n

⎤⎥⎥⎥⎥⎥⎦
∈ Rn×3 (3.2)

is a matrix with the unit normals of the n faces on its rows. Throughout the paper
skew intrinsic crystal coordinate systems with different unit vector’s lengths are not
used. Instead, all orientation vectors are transformed to a right-handed Cartesian
coordinate system beforehand. The unit normals ni can be calculated from the Miller
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(a) (b) 

(c) (d) (e) 

Figure 3.1: Morphologies of a symmetric cubic crystal with two different forms. The dis-
tance of the cubic {100} and octahedral {111} faces is h1 and h2, respectively. For example,
in pure water, NaCl crystals grow as cubes (e) but if urea or formamide is added, {111}
faces are stabilized and shapes as shown in (a)-(d) can appear, see e.g. Radenovic et al.
(2003).

indices of the crystal system, e.g. Schwarzenbach (2001); Zhang et al. (2006). The
vector

h =
⎛
⎜⎜
⎝

h1
⋮

hn

⎞
⎟⎟
⎠
∈ Rn×1

+ (3.3)

contains the distances of the faces to a reference point which is without loss of gen-
erality assumed to lie within the crystal, i.e. hj > 0. h is called the geometrical crystal
state since it is subject to variations due to growth, whereas the orientation of a face
is fixed. The space in which the geometrical state exists is referred to as h-space or
simply state space. By varying the geometrical state, qualitatively different shapes
can be generated. An example for a symmetric crystal with the distance of the cube
and octahedral forms denoted by h1 and h2, respectively, is given in Fig. 3.1. Par-
ticularly, special shapes can be obtained from which some faces have disappeared,
i.e., Eq. (3.1) contains in this case redundant conditions. It is a central concern of this
paper to deduce regions in h-space in which qualitatively different shapes occur. As
an example without detailed explanations given at this stage, take a look at Fig. 3.4
in which different crystal shapes are depicted obtained from various points in state
space. Within the regionM1 for instance all shapes assume the form of the truncated
octahedron, whereas this type of shape is not found in other parts of the h-space. In
the remainder we aim at partitioning arbitrary crystal shape space in such a way.

For the analysis below, often only subsets of the whole set of unit normal vectors
and distances are needed. For example, if only the unit normals and distances of the
faces i, j, and k must be considered, the following notation is used:

Nijk =

⎡⎢⎢⎢⎢⎢⎢⎣

nT
i

nT
j

nT
k

⎤⎥⎥⎥⎥⎥⎥⎦

, hijk =
⎛
⎜⎜
⎝

hi
hj
hk

⎞
⎟⎟
⎠

. (3.4)
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The equations which are given in this paper apply to arbitrary, in general unsym-
metrical, convex polyhedra. But crystals usually exhibit a certain degree of symmetry
which should also be exploited for a model formulation. In order to keep the follow-
ing discussion as general as possible, the considerations given below are taken out
without the notion of any symmetry. Resulting equations can be simplified for the
symmetric case later as presented in Sec. 3.1.5.

The remainder of this section is organized as follows. At first, faces, edges and
vertices of crystal shapes are introduced, see Sec. 3.1.1. Then in Sec. 3.1.2 the term
crystal morphology is casted in a quantitative definition. Subsequently, the existence
domain of a morphology in h-space (a cone) is derived, see Sec. 3.1.3. In Sec. 3.1.4
the systematic search for all possible morphologies which can be obtained from a
given set of crystal faces is described. Then, it is shown how to account for sym-
metry (Sec. 3.1.5) and the steps for the computation of morphological domains are
summarized in Sec. 3.1.6. In Sec. 3.1.7 an example is discussed which can also be
comprehended by pencil-and-paper geometry.

3.1.1 Elements of Convex Crystals

The convex hull of the 3D shape as defined by Eq. (3.1) comprises of faces, edges and
vertices:

Fi = S⋂{r ∶ ni ⋅ r = hi} (3.5a)

Eij = S⋂{r ∶ Nijr = hij} (3.5b)

Vijk = S⋂{r ∶ Nijkr = hijk} . (3.5c)

Though the shape is defined by the geometrical state vector, only after computing
these elements it becomes clear how the actual shape looks like, e.g. the area of faces
and edges and their ratios. For example, it can happen that some inequality condi-
tions in Eq. (3.1) are redundant. This means also that such a condition induces no
face on S . Faces which are in principle included in N and h but do not appear on the
crystal surface are referred to as virtual faces. On the other hand, real faces do appear
on the crystal surface (Zhang et al., 2006; Gadewar and Doherty, 2004; Johnsen, 1910).

The quantification of the crystal shape using linear inequalities, Eq. (3.1), is called
halfspace (H-) representation in polytope theory (Ziegler, 2006). Alternatively, the
shape is also known when the coordinates of all vertices are known, because the
polyhedron can be interpreted as the set of all possible convex combinations of the
vertices. This is referred to by V-representation (Ziegler, 2006). Even though, only
the V-representation allows a detailed analysis of the actual shape, there is no direct
mapping known betweenH and V-representations, i.e., the shape must be calculated
exhaustively, for instance by checking whether triplets of faces, e.g. ijk, meet at a
vertex. The coordinates of a vertex follow directly from the definition in Eq. (3.5c):

vijk = N−1
ijkhijk , (3.6)

which makes clear that a vertex can only be formed by three faces whose orientations
are independent, i.e., det Nijk ≠ 0 . The intersection point of the planes i, j and k
constitutes a vertex on the crystal surface if the constraints in Eq. (3.1) can be met. In
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Figure 3.2: The edge E i→∅
ij,kl is defined by four faces where the unit normal of the face i is

enclosed by the unit normals of the other faces, i.e., lies in the positive linear span (a). If the
distance of the face i is increased so that the edge disappears, the face i disappears as well
(b).
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↷
E

Figure 3.3: The edge E ↷ij,kl is defined by four faces of which no unit normal lies in the
positive linear span of the other three unit normal vectors. If the distance of one face, for
example i, is varied such that the edge disappears, a four-compound vertex is formed on
the crystal surface. If it is displaced even further, a new edge, denoted by Ekl,ji, appears on
the crystal surface.

computational geometry this problem is known as the vertex enumeration problem
(Bremner et al., 1998; Ziegler, 2006). Of course, more than three faces can meet at a
vertex. In Zhang et al. (2006) these vertices are called compound vertices, i.e., if n
faces form a vertex, it is an n-compound vertex. Vertices made up by three faces are
called simple vertices. Even though compound vertices appear quite often on (ideal)
crystal shapes, a special treatment is not required for the following analysis because
compound vertices can be seen as combined simple vertices. Only the additional
treatment of the occurence conditions of 4-compound vertices is essential because –
as will be shown hereafter – 4-compound vertices constitute the generic geometric
configuration for morphology changes.

Two vertices are said to be connected if their connecting line is an edge on the crys-
tal surface. The edge is labeled using the index of the two faces which meet at the
edge, e.g. Eij, see Eq. (3.5b). However, this point set is bounded by at least two more
faces (indices k and l) which detain the intersection line between i and j to be a finite
line, see Fig.s 3.2 and 3.3. This means, an edge is in the simplest case defined by four
faces which form two simple connected vertices. Again, the primal setting with four
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faces is sufficient to dissect, since edges at which more than four faces are involved
can be seen as a combination of simple edges which are geometrically identical but
combinatorially (i.e. which set of faces constitutes teh simple edge) different. There-
fore, it makes sense to introduce an alternative to the notation in Eq. (3.5b) disclosing
the involvement of the four faces establishing a simple edge:

Eij,kl = {r ∶ vijk + α (vijl − vijk) , 0 ≤ α ≤ 1} . (3.7)

The comma-separation between the index pairs ij and kl is used to clarify that the
faces i and j intersect and faces k and l terminate the intersection line to become an
edge. The two qualitatively different situations of faces defining an edge are sketched
in Fig.s 3.2 and 3.3. In one case, the disappearance of an edge is followed by the
occurence of another edge like the transition from (a) to (c) in Fig. 3.3. In the other
case, the disappearance of an edge goes along with the disappearance of a face and
no new edge is formed, see Fig. 3.2. The two different situations are generic and can
be distinguished by analyzing the orientation of the unit normals of the faces which
are involved. The transition to a configuration with a new edge (Fig. 3.3) can only
occur if ni does not lie in the positive linear span of the vectors nj, nk and nl . On
the other hand, the shift to a configuration lacking the face i requires that ni is within
the positive linear span of nj, nk and nl . That means, ni is a linear combination of
nj, nk and nl , where the combination coefficients, denoted by wij, wik and wil , are all
positive:

ni = wijnj +wiknk +wilnl . (3.8)

Combining the weights to a vector wT
ij,kl = (wij, wik, wil) , they can be easily calculated

in order to distinguish both situations:

wij,kl = [nj nk nl]
−1

ni . (3.9)

An edge whose disappearance goes along with the disappearance of the ith face is
denoted by E i→∅

ij,kl , whereas edges whose disappearance is followed by the appearance

of another edge are denoted by E ↷ij,kl . For E i→∅
ij,kl all coefficients in wij,kl are positive

(positive linear span) whereas for E ↷ij,kl the coefficients have mixed signs:

E i→∅
ij,kl → wij,kl ≥ 0 (3.10a)

E ↷ij,kl → wij,kl
<> 0 (3.10b)

A similar index notation could be introduced for faces since the definition of the point
set Fi is bounded by other faces as well (at least three). However, this is not required
for the remainder of this paper.

3.1.2 Morphological Features

For convex crystals, the number of faces and edges and their combinatorial arrange-
ment is a palpable feature to distinguish morphologies. That is, the knowledge of
faces and edges present on the surface enables for the identification of the morphol-
ogy; we follow in this Borchardt-Ott (2009):



46 Chapter 3. Single Crystal Shape Evolution Model and State Space Analysis

Morphology is the external boundary of a crystal comprising of faces and edges.

In Fig. 3.1 different crystal morphologies are shown which are produced with the
same set of faces but different state vectors. Our goal is to determine the domain
in h-space in which a certain morphology exists. Types of crystal morphologies are
described below:

Complete Morphology (C-Morphology) refers to crystal shapes comprising of all
n real faces. Examples of two C-morphologies are in Fig. 3.1 (a) and (b).

Submorphology (S-Morphology) means crystal shapes with less than n real faces,
i.e., some are virtual. Examples are the crystals shown in Fig. 3.1 (c) and (e)
which are S-morphologies of the crystals depicted in (a) and (b), respectively.
The crystal shown in Fig. 3.1 (d) is not an S-morphology because all faces can
be found on the crystal surface and the shape is rather special since h1 and h2
must be chosen exactly in a way so that two cubic and two octahedral faces
meet in one vertex.

Transition Morphology (T-Morphology) refers to crystal shapes which connect dif-
ferent morphologies or submorphologies with the same set of real faces. Their
state vectors are chosen so that compound vertices on the crystal surface appear
which clear edges from the crystal surface but no faces. An example is depicted
in Fig. 3.1 (d).

Clearly, the differentiation whether a morphology is termed C- or S-morphology de-
pends on the choice of the n faces which have been included in the analysis. A mor-
phology recognized to be an S-morphology is in a different context a C-morphology if
only a subset of faces is included into the analysis. For example, the C-morphologies
shown in Fig. 3.1 are S-morphologies if yet another face is considered in the analy-
sis as for example depicted in Fig. 3.7. T-morphologies, as will be shown later, are
classified as such regardless of the maximum number of faces.

From the definition above it follows that morphology boundaries in the h-space
must be located where faces and edges appear or disappear. We restrict ourselves for
the following analysis (until Sec. 3.1.3) to identify disappearance from C-morphologies
since the knowledge of their existence domain unfolds the existence domain of asso-
ciated S- and T-morphologies. The detection of T-morphologies also discloses the
boundaries to other domains of C- or S-morphologies. Without having an a priori
knowledge of how many morphologies can be generated from a given set of faces we
also aim at determining the morphological variations which can occur.

The disappearance of a face is accompanied by the disappearance of edges (Pry-
wer, 1996, 2002). Hence, it is sufficient to study the disappearance of edges. Before
we analyze this in more detail, we cast the term C-morphology in a more formal defi-
nition: The index set Eλ contains all quads of faces, e.g. ij, kl, which form an edge on a
given shape of the λth C-morphology. Every C-morphology of the overall m possible
C-morphologies has a different index set Eλ.

Practically, the index set Eλ is obtained from calculating a representative shape of
the morphology. This can for instance be done by checking the set of faces involved
in the formation of a pair of vertices, for instance vijk and vnml . In general, this means
a set of six faces {i, j, k, l, m, n} . If two elements of this set occur twice, for instance
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i = n and j = m and if the distance between vijk and vnml = vijl is greater than zero,
the two vertices are connected by an edge Eij,kl . By exhaustively running through all
pairs of vertices, the full set of edges Eλ can be determined:

Eλ = {ij, kl ∶ ∣vijk − vijl ∣ > 0} . (3.11)

For reasons which become clear below, the set of edges is split into a subset of edges
whose disappearance is accompanied by the disappearance of faces, E∅λ , and a subset
of edges whose disappearance is followed by the occurence of a compound vertex or
thereafter another edge, E↷λ . See also the discussion at the end of Sec. 3.1.1.

An edge is bound by two vertices which are each made up of three faces ijk and ijl ,
see Fig.s 3.2 and 3.3. It is assumed for the following analysis that the vectors ni , nj
and nk constitute a right-handed system, i.e., det Nijk > 0 , and correspondingly ni , nj
and nl establish a left-handed system, i.e., det Nijl < 0 . The coordinates of the vertices
are

vijk = N−1
ijkhijk (3.12a)

vijl = N−1
ijl hijl . (3.12b)

If the distances hi, hj, hk and hl are varied such that both vertices merge to a single
vertex (the coordinates coincide) the following equation must be fulfilled:

N−1
ijkhijk = N−1

ijl hijl . (3.13)

In Fig.s 3.2 and 3.3 this means a transition from (a) to (b) which both are structural
changes of the shape, that is, a morphological change. A closer look at Eq. (3.13)
reveals that they are linearly dependent, i.e., one scalar equation suffices to describe
the condition give above:

βij,kl ⋅ hijkl = 0 , (3.14)

where

βij,kl =
⎛
⎜⎜⎜⎜
⎝

− det Njkl
det Nikl

− det Nijl
det Nijk

⎞
⎟⎟⎟⎟
⎠

. (3.15)

The operator ⋅ in Eq. (3.14) produces the scalar product between the two vectors
standing left and right from it. The set of points fulfilling Eq. (3.14) is a 3D plane
in the space spanned by the coordinates hi, hj, hk and hl (hijkl-space), where βij,kl is
the unit normal of the plane. It separates the hijkl-space into a part in which the edge
Eij,kl can occur and another one in which it cannot. If the signs for the vector βij,kl
are chosen as in Eq. (3.15), βij,kl points away from the halfspace in which Eij,kl can
exist. The choice of the sign is insofar important, as we wish to produce only outer
normal vectors which is for instance helpful to keep the definition equation for the
morphology domain compact and to facilitate later the search for new morphological
domains. The conditional equation (3.14) can be extended to the full h-space by ex-
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panding βij,kl to an n-dimensional vector with zeros except on the positions i, j, k and
l:

bij,kl =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
⋮

− det Njkl
⋮

det Nikl
⋮

− det Nijl
⋮

det Nijk
⋮
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
⋮
i
⋮
j
⋮
k
⋮
l
⋮
n

. (3.16)

This vector is called a boundary vector. The necessary condition that the edge Eij,kl
exists is:

bij,kl ⋅ h < 0 . (3.17)

Since the edges have been classified into those whose disappearance is accompanied
by the disappearance of the ith face (superscript i → ∅) and those whose disappear-
ance involves the occurence of a compound vertex and a new edge (superscript ↷),
these indices are inherited by bij,kl if this distinction is required:

b ↷ij,kl → (ij, kl) ∈ E↷λ
bi→∅

ij,kl → (ij, kl) ∈ E∅λ
. (3.18)

3.1.3 Morphology Cone in h-Space

If the existence conditions after Eq. (3.17) are known for all edges of the C-morphology
λ , the existence domain of this morphology in h-space is

Mλ = {h ∶ Bλh < 0} , (3.19)

where the rows of Bλ are boundary vectors, see Eq.s (3.16), (3.17):

Bλ = [bT
ij,kl]ij,kl∈Eλ

∈ Rbλ×n , (3.20)

where bλ is the number of boundary vectors which of course equals the number of
edges on the crystal surface. Bλ is called a boundary matrix. The domainMλ is a cone
in h-space whose apex is the origin, see for example Fig. 3.4.

The boundary matrix defining the morphology cone can be split into two parts
which reflects the classification between boundaries in h-space where faces disappear
(superscript ∅) or the edge configuration changes (superscript↷):

B∅λ = [bT
ij,kl]ij,kl∈E∅

λ

∈ Rb∅
λ
×n (3.21a)

B↷λ = [bT
ij,kl]ij,kl∈E↷

λ

∈ Rb↷λ ×n . (3.21b)
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Figure 3.4: Morphology cones in h-space.

3.1.4 Morphological Variations

Using the procedure described above we are able to determine the existence domain
of a C-morphology. Starting with one C-morphology we now want to determine
adjoining S- and T-morphologies and even find new C-morphologies.

3.1.4.1 Faces of the Morphology Cone

The morphology cone is a convex set which can (like the crystal) be decomposed
into faces. Faces of dimensions 0, 1, (n − 2) and (n − 1) are called vertices, edges,
ridges and facets, respectively Ziegler (2006). The crystal shape which follows from
a state vector which lies on a facet (dimension (n − 1)) of the cone, rather than in the
interior, exhibits at least one edge less. This is because the inequality in Eq. (3.19)
corresponding to the disappearing edge is changed to an equality. In case that (n −
d) inequalities in Eq. (3.19) change simultaneously to equalities and if the resulting
set in h-space is of dimension d, the shape of the crystal exhibits (n − d) edges less.
Of course, there are different choices in different dimensions to select inequalities
which possibly form such a morphological subspace. This can be checked exhaustively
and the resulting set of possible combinations can be enumerated (index j). The jth
morphological subspace of the λth morphology is defined by

Mλ,j = {h ∶ B<
λ,j h < 0, B0

λ,j h = 0} (3.22)

where B<
λ,j and B0

λ,j are the boundary matrices containing the rows of Bλ which by
multiplication with h are less than zero or are zero, respectively, for the jth morphol-
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ogy. In order to keep a consistent notation, the index sets E<λ,j and E0
λ,j are introduced

with which the boundary matrices can be assembled in a similar way to Eq.s (3.20)
and (3.21):

B<
λ,j = [bT

ij,kl]ij,kl∈E<
λ,j

∈ R
b<λ,j×n (3.23a)

B0
λ,j = [bT

ij,kl]ij,kl∈E0
λ,j

∈ R
b0

λ,j×n . (3.23b)

As discussed before, the disappearance of edges on the crystal boundary is termed
a morphological change. That is to say, on the faces of the morphology cone we
find morphologies which differ from the morphology that can be found in the inte-
rior of the cone. However, they are in a sense not so different because only edges
(and possibly faces) have disappeared but no new edges can be found on the shape.
Therefore, the morphologies existing in the domain Mλ,j are recognized as special
species of the λth morphology. In Sec. 3.1.2 these subspecies have been termed S- and
T-morphologies. T-morphologies comprise at least one equality condition from the
set E↷λ , i.e., they comprise a compound vertex which occurs only due to the morpho-
logical transition from one edge configuration to another one as depicted in Fig. 3.3.
S-morphologies contain only conditions from the set E∅λ which corresponds to a dis-
appearing face as depicted in Fig. 3.2:

if E0
λ,j ⊂ E∅λ → Mλ,j is an S-morphology

if E0
λ,j⋂E↷λ ≠ ∅ → Mλ,j is a T-morphology

(3.24)

An example depicting these cases in h-space is given in Fig. 3.4. On the faces of the
morphology coneM1 we find two subspecies of that morphology: the cuboctahedron
on the upper face is a T-morphology and the octahedron below is an S-morphology.
In the interior ofM1 the truncated octahedron exists of which two examples are de-
picted (C-morphology). All three shapes look qualitatively different, however, they
can be described by the same set of edges. But for the two boundary morphologies
the length of one of the two kinds of edges is zero. The example in Fig. 3.4 also indi-
cates that in the neighborhood of the morphology cone other morphologies can exist
across boundaries on which T-morphologies exist. In the here considered example
this is the regionM2 in which the truncated cube exists above the morphology cone
M1.

3.1.4.2 Surrounding Morphology Cones

An (n−1)-dimensional facet of the morphology cone on which a T-morphology exists
is

Mλ,j =Mλ⋂{h ∶ b ↷
ij,kl ⋅ h = 0} . (3.25)

An example is the lineM1,1 between the 2D domainsM1 andM2 in Fig. 3.4 on which
the cuboctahedra exist. The outer unit normal of M1 at this boundary is denoted
b22,11 and points to the interior of a new morphology coneM2 . If onlyM1 is known
but recognized that on M1,1 transition morphologies exist, a new C-morphology is
found by moving from the boundary domain away in the direction of the outer unit
normal. Let the vector hλ,j (h1,1 in Fig. 3.4) be located in the interior of that boundary
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domain. It is the starting point to find a representative state vector of a neighboring
C-morphology:

hλ+1 = hλ,j + εb ↷
ij,kl ∈Mλ+1 , (3.26)

where ε is a small positive number so that one moves not too far away from the
boundary, thus avoids to miss the morphology cone lying across. In our computa-
tions we have chosen hλ,j so that its magnitude is unity and ε = 0.05 . From the shape
configuration produced by this vector, the associated morphology cone Mλ+1 can
be determined as described above, starting with the computation of all vertices and
the edges, Eλ, following therefrom, subsequently the boundaries for the existence of
the edges are derived, see Eq. (3.16), and finally the morphology coneMj+1 (M2 in
Fig. 3.4).

3.1.4.3 Joint Morphology Cone

In this way, all morphologies can be found by determining all morphology cones.
Starting with a state vector, e.g. h1 = 1, a shape which exhibits all n possible faces, the
morphology coneM1 is determined as described in Sec.s 3.1.2 and 3.1.3. The faces of
the cones of the newly found morphologies are again checked for other morphologies
which lie across of them until no new morphologies can be found. The union of the
set of all morphology cones is called the joint morphology cone and is denoted by

M =
m
⋃
i=1
Mλ , (3.27)

where m is the number of C-morphologies which can occur using the set of crystal
faces stored in N . A facet of the morphology cone can now be classified to belong
to the interior of the joint morphology cone or it is a facet of the joint morphology
cone as well. The conditions which make up the facets of the joint morphology cone,
denoted by B∅, lead to the disappearance of a face on the crystal shape. That is, the
joint morphology cone is defined by

M = {h ∶ B∅h < 0} , (3.28)

where

B∅ = [bij,kl]ij,kl∈E∅
∈ Rb∅×n , E∅ =

m
⋃
j=1

E∅λ . (3.29)

With the help of the boundary vectors stored in the matrix

B↷ = [bij,kl]ij,kl∈E↷
∈ Rb↷×n , E↷ =

m
⋃
j=1

E↷λ . (3.30)

standing for the transition between different edge configurations, the morphology
cone is partitioned into regions in which different morphologies are assumed by the
crystal.
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3.1.5 Symmetry

One of the most essential features of crystals is that the molecules of the crystal-
lized material form a regular pattern. The different lattice patterns which can be
formed with building blocks (molecules) of different symmetry features in 3D space
are known as the 230 space groups. The symmetry of the external shape of crystals
expresses to a certain degree the underlying symmetry and regular arrangement on
the molecular level. Since translational operations are omitted for external shapes,
overall 32 crystallographic point groups can be found representing all possible com-
binations of crystallographic symmetry operations Borchardt-Ott (2009).

Because of the regular arrangement, the crystal structure looks the same from dif-
ferent but related perspectives. That is, along these related directions the properties,
for instance the surface structure, of the material are the same. Directions normal
to crystal faces and featuring the same surface structure are combined to a crystal
form. The faces of a crystal form are related to each other by symmetry operations
(McWeeny, 1963). Overall, there exist 48 different kinds of forms, tabulated for in-
tance in Borchardt-Ott (2009).

If the crystal grows under ideal conditions, i.e., the environment of the crystal is
the same in every direction, the growth rate of every face of a form is the same. If the
distances of all faces of a form are equal at the beginning, they remain equal under
ideal conditions. Hence, it is then sufficient to keep track of the distance hi of only one
face of a form. The geometrical state vector for the ideal symmetric case is denoted by
hsy ∈ Rnsy , where nsy is the number of crystal forms. The full state vector is obtained
from the symmetric state vector by

h = M hsy , (3.31)

where M ∈ Rn×nsy is a mapping matrix with ones on positions where the ith face (row)
belongs to the jth form (column) and zero otherwise. The inequality conditions for
the existence of particular edges, Eq. (3.17), can be rewritten:

bsy
ij,kl

±
=Mbij,kl

⋅ hsy < 0 . (3.32)

By converting all conditions to the symmetrical case, the morphology cones and with
it all possible morphological variations of the symmetric crystal are obtained exactly
in the way as described in the preceding sections. However, it occurs that a condi-
tion is obtained multiple times due to the symmetry reduction from the asymmetric
case. The set of conditions (or the matrix Bλ) should be reduced such that a condi-
tion appears only once. A condition is classified to be an edge transition condition
(superscript↷) if all conditions of the asymmetric case which are associated with this
symmetric condition are transition conditions. If only one of the associated condi-
tions of the asymmetric case is a face-disappearance condition (superscript ∅), the
symmetric condition is classified as a face-disappearance condition. It is furthermore
assumed in the following that redundant conditions are removed from the matrix Bλ .
For example, a morphological change that implies for the symmetrical case necessar-
ily additionally other morphological changes involves redundant conditions which
do not form a facets on the morphology cone.
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(1) Define the crystal system

- unit cell,

- point group,

- faces.

(2) Compute unit normals N.

(3) Set up a list H of representative state vectors whose cones shall be determined. 

Add the first state vector, e.g. h1 = [1,…1]T, to that list.

(4) Compute the set of appearing vertices, Eq. (3.6), and the set of edges E
λ

, Eq. (3.11)

(5) Divide E
λ

into edges whose disappearance involves

- the disappearance of a face (set ) , Eq. (3.10a),

- the appearance of another edge (set ), Eq. (3.10b).

(6) Compute the conditions for the morphology cone, Eq.s (3.16) and (3.20).

(7) Reduce conditions to the symmetrical case, Eq. (3.32).

(8) Clear entries from H which are covered by the obtained cone.

(9) Compute new representative state vectors h
k

across the domains of (n-1)D

T-morphologies arising from conditions derived from , Eq. (3.26).

(10) Check wheter h
k

is covered already by another morphology cone. If not,

add it to the list H.

take the first entry of H

H is empty

No

N, h

Yes

(11) Assemble the joint morphology cone, Eq. (27)

Figure 3.5: Workflow of the computation of the morphology cone.

3.1.6 Morphology Cone Computations at a Glance

The determination of the morphology cone involves many different calculations. The
order of the topics and formulae presented in this section follows not exactly the order
as they should be used in a computer program. To facilitate the practical applicability
of the presented material, an overview of the major steps is depicted in Fig. 3.5. Start-
ing with the definition of basic crystallographic data, the unit normals of the crystal
faces are determined and a list of state vectors, denoted by H, is introduced for which
the morphology cones shall be determined. The first entry of that list can be chosen
arbitrarily but the shape produced from that state must exhibit all crystal faces, i.e.
h = (1, . . . , 1)T is a self-evident choice. Of that list the first (and at this stage only)
state vector is passed to a routine which computes the crystal vertices and edges,
and thus the set Eλ . With the help of this set, the morphology cones are determined
(B-matrices). Then the conditions are reduced to the (possibly) symmetric case and
entries of the list H are cleared if they are contained in the just determined cone (this
is of course not the case if the first cone is calculated). Across the boundaries on which
T-morphologies are found, new candidate states for the list H are calculated which
are added to H if they are not covered by a cone that has been found previously. Then
the procedure is started again for the next entry of H until the list is empty. That is,
the joint morphology cone can be assembled. We strongly conjecture that this proce-
dure guarantees locating all possible C-morphologies and thus the joint morphology
cone. However, a rigorous mathematical proof has not been established.
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Figure 3.6: Potassium alum with forms cube (1), rhombic dodecahedron (2) and octahedron
(3). All faces of one form are assumed to have the same distance to the crystal center. Thus,
a 3D state vector, h, suffices to quantify the shape.

3.1.7 Example: Potassium Alum

In order to clarify the usage of the equations presented in this section, an example
is examined which can easily be reassessed using elementary geometry. Potassium
alum crystallizes in the space group Pa3̄ (cubic crystal system) and thus possesses
point group symmetry m3̄. We consider only the forms {100} (cube), {110} (rhombic
dodecahedron), and {111} (octahedron), that is, the three mirror planes perpendicu-
lar to the unit cell axes are sufficient to capture the symmetry exhibited by these three
special forms. Note that the general form of this point group is the pyritohedron.

We follow the procedure described above and start to find all morphologies by
analyzing a particular shape where all faces are present (C-morphology), see Fig. 3.6.
For the symmetrical case three types of edges can be found, that is:

E1 = {13, 22; 21, 33; 23, 11} . (3.33)

With this information the morphology at hand is defined, in the sense of Sec. 3.1.2.
Using Eq. (3.9) and the distinction of cases given in Eq. (3.10), we find for the sym-
metric case:

w13,22 = (−
√

3,
√

2,
√

2)T → E ↷13,22

w21,33 = 1
4 (0,

√
6,

√
6)T → E2→∅

21,33

w23,11 = 1
2 (0,

√
2,

√
2)T → E2→∅

23,11

(3.34)

That is, if the edges E13,22 vanish, the crystal undergoes a morphological transition to
a different C-morphology because if (only) this edge disappears no face disappears.
Without paying attention to the quantification of the boundaries in state space, in
Fig. 3.7 this would mean a transition of the morphology from (e) to (f). If the edge
E21,33 disappears from the surface, the values of w21,33 indicate that faces of the rhom-
bic dodecahedron (h2) disappear which is also immediately clear by looking at the
crystal shape. In Fig. 3.7 this is a transition from (e) to (b). Upon disappearance of
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the edge E23,11 , the faces of the rhombic dodecahedron (h2) disappear as well and this
would mean a transition from (e) to (d).

The next step in our analysis is the determination of the morphological boundaries.
It is easily shown that for the symmetrical case, see Eq.s (3.15), (3.16) and (3.32):

b ↷
13,22 = (

√
1

12 ,−
√

2
3 , 1

2)
T

b2→∅
21,33 = (0,

√
2
5 ,−

√
3
5)

T

b2→∅
23,11 = 1

2 (−
√

2
3 ,

√
1
3 , 0)

T

. (3.35)

Therefore, the first morphology cone is

M1 = {h ∶ B1h < 0} , B1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(b ↷
13,22)

T

(b2→∅
21,33)

T

(b2→∅
23,11)

T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.36)

The projection of this cone into (h1/h3, h2/h3)-space is a triangular region as depicted
in Fig. 3.7. Using Eq. (3.26), a representative shape of the morphology cone which lies
across the morphological domain with unit normal b ↷

13,22 can be found. In a similar
way as for the first morphology cone, three kinds of edges can be found, denoted by
E22,13, E12,22 and E32,22 which determine the morphological boundaries of the second
morphology cone as

b ↷
22,13 = (−

√
1

12 ,
√

2
3 ,− 1

2)
T

b1→∅
12,22 = (

√
1
3 ,−

√
2
3 , 0)

T

b3→∅
32,22 = (0,−

√
3
5 ,

√
2
5)

T

. (3.37)

Similarly to Eq. (3.36), the point set contained by the second morphology cone can be
defined. In Fig. 3.7 this second morphology cone is sketched along with occuring S-
and T-morphologies. The joint morphology cone, see Eq. (3.28), is described only by
those boundaries which involve the disappearance of a face (superscript ∅), i.e.:

M = {h ∶ B∅h ≤ 0} , B∅ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(b1→∅
12,22)

T

(b2→∅
21,33)

T

(b2→∅
23,11)

T

(b3→∅
32,22)

T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.38)

Now we have analysed the accessible region in the state space in a sufficient detail
in order to describe the crystal shape evolution adequately.
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Figure 3.7: Morphologies of potassium alum. h1: {100} red cubic faces; h2: {110} green
faces; h3: {111} blue octahedral faces. The classification as introduced in Sec. 3.1.2: C-
morphologies: (e), (g); S-morphologies: (b), (c), (d), (h), (i), (j), (k); T-morphologies: (a),
(f).

3.2 Shape Evolution

The following section shows how to handle the shape evolution equation in a way
which exploits the notion of different morphological domains. Different morpholo-
gies with virtual faces evolve in a different way which is expressed by a special ma-
trix in the evolution equation, see Sec. 3.2.1. This is clarified by an example given
in Sec. 3.2.2. In Sec. 3.2.3 the analytical solution to the shape evolution equation is
presented for the case of constant growth rates.

3.2.1 Displacement of Real and Virtual Faces

The crystal shape as defined in Eq. (3.1) is time-dependent, i.e., the distances of the
faces undergo a dynamical evolution. The mode of this evolution is determined by
the perpendicular growth velocities of the faces:

G(Y, h) =
⎛
⎜⎜
⎝

G1
⋮

Gn

⎞
⎟⎟
⎠

, (3.39)

where Y is the state vector of the surrounding continuous phase and involves partic-
ularly the supersaturation. Very often, the dependency of G on h is neglected and
in fact it is one of the most challenging problems in crystal research to quantify this
dependency along with the dependency on Y. However, in the following we take the
growth rates as given. As long as a face is real, its advancement is indeed governed
by the growth rate:

dhi

dt
= Gi if i is a real face . (3.40)

But when the face has become virtual, its displacement is dictated by the advance-
ment of the vertex at which the virtual face touches the crystal (Gadewar and Do-
herty, 2004; Zhang et al., 2006). The distance of the virtual face i which lies on a
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vertex made up by the faces jkl, see Fig. 3.2 (b), is given by Eq. (3.14) which can be
reformulated to

hi = dT
i,jklh (3.41)

where

di,jkl =
1

det Njkl

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
⋮

− det Nikl
⋮

det Nijl
⋮

− det Nijk
⋮
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
⋮
j
⋮
k
⋮
l
⋮
n

. (3.42)

Compare this vector also to bij,kl given in Eq. (3.16). It can be seen that di,jkl is ob-
tained from bij,kl by dividing bij,kl through its ith element and setting the ith element
to zero. In order to keep the distance of a virtual face such that it remains on the
vertex (and does not move away from the crystal), its evolution is determined by the
velocity of the vertex:

dhi

dt
= dT

i,jklG if i is a virtual and jkl are real faces . (3.43)

The virtual face appears on the crystal surface if the growth rate Gi becomes smaller
than the displacement rate given in the previous equation Johnsen (1910); Zhang et al.
(2006). In order to obtain a compact notation, we introduce morphology-dependent
matrices which are assembled depending on which faces are real:

D(h, G) =
⎡⎢⎢⎢⎢⎢⎣

d1(h, G)T

⋮
dn(h, G)T

⎤⎥⎥⎥⎥⎥⎦

∞

∈ Rn×n , (3.44)

where

di(h, G) =
⎧⎪⎪⎨⎪⎪⎩

di,jkl if i is virtual for the state h and Gi > dT
i,jklG

ei if i is real or Gi < dT
i,jklG

, (3.45)

where ei is the basis vector for which the ith entry is one and all others are zero.
D is called the velocity delimiter matrix which must in principle be defined for every
morphology individually. Clearly, for C-morphologies on which all n faces are real,
the velocity delimiter matrix is the identity matrix: D = En . Note also the power
to infinity of the matrix on the r.h.s. of Eq. (3.44). The necessity of this operation
and properties of the velocity delimiter matrix are discussed in the following section
when the previously started example is further developed.

In general, when the disappearance of faces is considered, the state vector evolves
according to the differential equation

dh
dt

= D(h, G)G , h(t = 0) = h0 , (3.46)
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which is a system of ordinary differential equations with discontinuous (switching)
right-hand side. As such it can also be interpreted as a hybrid dynamic system since
it exhibits continuous as well as discrete dynamic behavior. In general, these systems
are difficult to solve but in the example at hand, the integration becomes only a lit-
tle more difficult than solving conventional ODEs, since the state vector h keeps its
dimensionality and does not perform any jumps within the state space. In general,
the integration across a discrete event can lead to incorrect or inaccurate results due
to a loss in differentiability of the continuous state across the event. This means that
the fourth- and fifth-order approximations commonly used by most ODE solvers will
not be fourth- or fifth-order accurate across an event, and can be no more accurate
than first order in time. Supported by our experiences with the practical implemen-
tation of Eq. (3.46) using Matlab’s ODE solvers ”ode23” and ”ode45” we conjecture
that a numerically stable ODE-solver accurately solves the particular hybrid systems
considered in this paper.

3.2.2 Continuation of the Potassium Alum example

The shape evolution equation (3.46) is now discussed by continuing the previously
started analysis on the cubic crystal with three kinds of faces as shown in Fig. 3.6. This
is done in two steps. At first, the mechanism of disappearance of faces is exemplified
and then the appearance of faces.

3.2.2.1 Disappearance of Crystal Faces

The initial morphology is given by

h0 = (1, 0.9, 0.8)T . (3.47)

Note that units are dropped in this illustrative example. h0 lies in the interior ofM1,
see Eq. (3.36), and thus all three kinds of faces are real on the crystal surface which
means that D(h0, G) = E3. The growth rates are set constant to

G = (0.5, 3, 2)T . (3.48)

The steady-state morphology is easily shown to be the cube which means that only
h1-faces are present on the crystal surface. The joint morphology cone, see Eq. (3.38),
bounds the state vector so that the h2-faces lie on the edges of the cube and the h3-
faces on the vertices. The steady state morphology is thus

hss ∝ (1,
√

2,
√

3)
T

. (3.49)

The task is to integrate the differential equation (3.46) for 0 ≤ t ≤ 1.

The trajectory in (h1/h3, h2/h3)-space together with some selected shapes along the
trajectory is depicted in Fig. 3.8. Initially, all three faces are present until at t ≈ 0.145
the boundary b2→∅

21,33h = 0, see Eq. (3.35), is hit. Before this event, the faces are displaced
with the natural growth rate G, which means:

dh
dt

= E3G until b2→∅
21,33 ⋅ h = 0 at t ≈ 0.145 . (3.50)
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From then on the h2-faces are not present on the crystal surfaces any longer. They
lie on the edge between two h3-faces of the truncated octahedron. Using Eq. (3.45)
and reducing it to the symmetrical case (similar to the normal vector of the boundary
as shown in Eq. (3.32)), the h2-faces are displaced with dh2

dt = dT
2,133G where dT

2,133 =
(0, 0,

√
3√
2
). Thus, the shape evolution is given by

dh
dt

=

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 0
√

3√
2

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

G until b2→∅
23,11 ⋅ h = 0 at t ≈ 0.249 .

At the intersection of the boundaries b2→∅
21,33 ⋅ h = 0 and b2→∅

23,11 ⋅ h = 0 the cuboctahedron
appears and the transformation from the truncated octahedron to the truncated cube
takes place. The virtual h2-faces on the truncated cube, however, lie on the edge
between two h1-faces, that is, the shape evolution now proceeds according to

dh
dt

=
⎡⎢⎢⎢⎢⎢⎣

1 0 0√
2 0 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦
G until b3→∅

32,22 ⋅ h = 0 at t ≈ 0.822 .

The crystal is on the path towards the cube because the octahedral h3-faces grow
out. At the boundary b3→∅

32,22 ⋅ h = 0 the h3-faces have disappeared from the crystal
surface and their displacement is – if only the boundary b3→∅

32,22 ⋅ h = 0 is considered –

now dictated by the displacement of the h2-faces because dT
3,222 = (0,

√
3√
2
, 0), see also

Fig. 3.7, i.e.,
dh3

dt
=

√
3√
2

dh2

dt
. (3.51)

However, at the intersection of b3→∅
32,22 ⋅ h = 0 and b2→∅

23,11 ⋅ h = 0, the displacement of the
(virtual) h2-faces is itself dictated by the displacement of the (real) h1-faces:

dh2

dt
=
√

2G1 . (3.52)

Therefore, the displacement of the h3-faces is given by inserting Eq. (3.52) into Eq. (3.51):

dh3

dt
=
√

3G1 . (3.53)

The evolution equation for the crystal shape after the trajectory has hit the boundary
b3→∅

32,22 ⋅ h = 0 is

dh
dt

=
⎡⎢⎢⎢⎢⎢⎣

1 0 0√
2 0 0√
3 0 0

⎤⎥⎥⎥⎥⎥⎦
G =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0√
2 0 0

0
√

3√
2

0

⎤⎥⎥⎥⎥⎥⎥⎦

∞

G , (3.54)

which is – as indicated on the rightmost side – also obtained from multiplying the
“raw” matrix D with itself infinitely many times (in general). In this particular case
it is sufficient to do this once but for more complex cases it can happen that the limit
value must be determined (which is practically done by using 1000 instead of ∞). In
general, the matrix D is a projection matrix and thus idempotent, which means that
DD = D , see Zurmühl and Falk (1996).
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Figure 3.8: Shape evolution of a cubic crystal with disappearing and reappearing faces.

If the last part of the trajectory has been integrated according to Eq. (3.54) the state
vector at the end of the integration interval is

h(t = 1) ≈ (1.500, 2.121, 2.598)T . (3.55)

3.2.2.2 Appearance of Crystal Faces

Let us now assume that, at t = 1, the crystal with the state vector h(t = 1), Eq. (3.55),
is moved to an environment leading to the growth-rate vector

G = (1, 0.7, 0.4)T . (3.56)

which means that the ‘real’ growth rates of the (currently virtual) h2- and h3-faces, G2
and G3, are slower than the displacement rate following from Eq. (3.54). Therefore,
the h2- and h3-faces appear again on the crystal surface and thus the velocity delimiter
matrix becomes the unity matrix again. Integrating this differential equation until
t = 2 yields a trajectory moving into the interior of the region M1. The resulting
crystal shape is shown at the bottom of Fig. 3.8.

3.2.2.3 The Representation of Crystal Shape Evolution as a Hybrid System

The switching between different velocity delimiter matrices makes Eq. (3.46) a hy-
brid system in which the geometrical state is the continuous state variable and the
morphology, respectively the velocity delimiter matrix and the coefficients for the
volume evaluation (see Sec. 3.3), are the discrete states. Also the guard conditions are
given with which a discrete event (switch to a different morphology) is detected by
the crossing or reaching of morphological boundaries (Eq. (3.14)) or if the velocity of a
virtual face falls below a critical value (Eq. (3.45)) and thus a morphological boundary
is left. In Fig. 3.9 a typical graphical representation of the example crystal as a hybrid
system is depicted. The discrete states (morphologies) are connected by conditions
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at which the switch (arrows) between different discrete states is recognized. Details
on hybrid systems can be found in Matveev and Savkin (2000); van der Schaft and
Schumacher (2000); Lunze (2002).

3.2.3 Analytical Solution for Constant Growth Rates

The analytical solution to the differential equation (3.46) under the constraint of a
constant growth vector and constant velocity delimiter matrix is

h(h0, G, t) = h0 +D(h0, G)Gt ∈Mλ,j . (3.57)

But in general, a morphological boundary will be hit and the above solution applies
only until before another boundary is reached. If the trajectory leaves a morphologi-
cal domain, the matrix D changes instantaneously. This can be checked directly using
the conditions B<

λ,jh which are less than zero for h ∈Mλ,j. The instances when the
rows of B<

λ,jh become zero are obtained by multiplying Eq. (3.57) with B<
λ,j :

B<
λ,jh0

´¹¹¹¹¹¹¸¹¹¹¹¹¹¶=p

+B<
λ,jD(h0, G)G

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶=q

t = 0 , (3.58)

which gives a set of b<λ,j time intervals after which the (next) boundary is reached. Of
these times the smallest positive one, denoted by ∆t1, is chosen and the solution after
Eq. (3.57) is applied in this time interval. This procedure must be repeated, say ns

times, until the desired end-time has been reached. The solution can be assembled of
the so obtained sections:

han(h0, G) = h0 +
ns

∑
j=1

D(hj−1, G)G ∆tj (3.59a)

where

hj = hj−1 +D(hj−1, G)G∆tj (3.59b)

∆tj = min
k

{t ∶ t = −
pk,j

qk,j
, t ≥ 0, k = 1 . . . b<λ,j} (3.59c)

G = const. (3.59d)

The quantities pk,j and qk,j are components of the vectors

pj = B<
λ,jhj−1 (3.59e)

qj = B<
λ,jD(hj−1, G)G (3.59f)

compare also to Eq. (3.58). Though it is unrealistic that the growth rates can be kept
constant in a crystallization process, this solution can be helpful when a nonlinear
supersaturation profile is decomposed into piecewise constant supersaturation seg-
ments.
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3.3 Measures

From the geometrical state vector all geometrical quantities can in principle be cal-
culated of which volume and surface area are the most important ones. In Borchert
et al. (2009) a practical method is presented which allows the calculation of the crystal
volume. The crystal faces are partitioned into triangles, which are the base planes of
polyhedra that involve the crystal center from where the distances hi are measured.
The volume of such a polyhedron is readily found if the coordinates of the vertices
are given (see Fig. 3.10 and Borchert et al. (2009); Bronstein et al. (2001)):

Vijk,pqr =
1
6

det [vijk vipq viqr] . (3.60)

Insertion of the vertex coordinates, Eq. (3.5c), gives a third order polynomial in h:

Vi,jk,pqr = hi

( hi det Njkq − hj det Nikq+
hk det Nijq − hq det Nijk)

( hi det Npqr − hp det Niqr+
hq det Nipr − hr det Nipq)

6 det Nijk det Nipq det Niqr
. (3.61)

The signs are given for the case that the order of the indices is such that det Nijk > 0,
det Nipq > 0 and det Niqr > 0. It can be seen here already that the determination of the
volume from the h-vector is morphology-dependent. The marked triangle on the ith
face shown in Fig. 3.10 disappears if the edge that is formed between the faces i and q
(and bound by r and p) collapses to a 4-compound vertex. This morphological tran-
sition is also reflected in the above equation in the second factor of the numerator.
The expression equals (except for the sign) the condition given in Eq. (3.14) which
indicates a morphological transition and becomes zero in this case. Similar consider-
ations can be inquired about the first term of the numerator of Eq. (3.61). Therefore,
the shorthand notation for the above equation is:

Vi,jk,pqr = hi
(βij,kq ⋅ hij,kq)(βip,qr ⋅ hip,qr)
6 det Nijk det Nipq det Niqr

. (3.62)

The tetrahedra volumes can be summed up and the coefficients of the third order
polynomial can easily be determined to calculate the volume of a convex crystal:

Vλ = ∑
(i,j,k)

Cλ
ijkhihjhk . (3.63)

This formula is different for every C-morphology because for every morphology the
faces must be triangulated in a different way. However, for S- and T-morphologies
the coefficients are inherited from the enclosed C-morphology except that some terms
cancel each other out, i.e., terms in the numerator of Eq. (3.62) become zero when a
morphological boundary is reached.

The surface area of the crystal can be determined directly using the coefficients of
the volume equation (3.63). If the above equation is compared to the classical equa-
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i 

j 

k 

p 

q 

r 

Figure 3.10: The volume of a polyhedron can be obtained by decomposing it into tetrahe-
dra whose common vertex is the crystal center from where the distances hi are measured.

tion for the determination of the volume of a polyhedron, V = 1
3 ∑i Aihi, it follows

that Cardew (1985)
Aλ

i = 3 ∑
(j,k)

Cλ
ijkhjhk . (3.64)

3.4 A more Complex Example – 4D Paracetamol
Crystal

The analysis taken out so far is useful for a better understanding of the structure of the
accessible region in h-space. It is possible to calculate for example the volume directly
if the state is known – without calculating the vertices of the crystal polyhedron.
For simple systems as discussed in the previous sections this can of course also be
done manually but as the crystal coordinate systems become skew and the number of
faces increases, it is advantageous to take out the above calculations with a computer
program. As an example for such a slightly more complex example we discuss the
evolution of paracetamol.

For this, a state space analysis is taken out as described in the previous sections, see
Sec. 3.4.1. Then in Sec. 3.4.2 a simple process model for the (batch) growth of a single
crystal is presented. The solution of the model under variation of the cooling policy
is discussed in Sec. 3.4.3.

3.4.1 Geometry of Monoclinic Paracetamol

Monoclinic paracetamol has space group symmetry P21/a (unit cell parameters a =
12.651Å, b = 8.887Å, c = 7.236Å, β = 114.848○) and thus exhibits point-group symme-
try 2/m (Boerrigter et al., 2002). The symmetry elements of this space group are an
inversion center, a twofold rotation axis and a mirror plane, see Fig. 3.11. In an article
by Ristic et al. (2001) face-specific growth rates as a function of supersaturation have
been determined for the forms {1, 1, 0}, {2, 0, 1}, {0, 1, 1}, and {0, 0, 1}. Their distances
to the crystal center are denoted by h1, h2, h3, h4, respectively, see the upper crystal
shape in Fig. 3.11. If these forms are taken into account for a state space analysis as
described in the above sections, it is found, that overall 13 qualitatively different C-
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Figure 3.11: The 13 C-morphologies of Paracetamol.
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Figure 3.12: The facets of the paracetamol morphology cone in 4D h-space are 3D poly-
hedra (mostly tetrahedra) as can be seen from the projection of the morphology cone into
the subspace spanned by h1, h2 and h3. The morphologies shown lie on the edges of the
morphology cone.
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morphologies are obtained which are shown in Fig. 3.11. In Fig. 3.12 the projection of
the morphology cone into the space spanned by h1, h2, and h3 is shown along with
the (partially degenerated) crystal shapes existing on the edges of the morphology
cones. The matrices B∅ and B↷ of the joint morphology cone, see Eq.s (3.29), (3.30),
are given in Tab. 3.1. Additionally, the outer boundary normals (rows of B∅ and B↷)
of the 13 morphology domains are given. In Tab. 3.2 the coefficients required to de-
termine volume and surface area are presented for the C-morphologies which occur
in the case study.

3.4.2 A Simple Process Model

A paracetamol crystal is assumed to be surrounded by a liquid phase consisting of
water and paracetamol dissolved therein. The system is cooled below the saturation
temperature and thus a supersaturation is built up which induces crystal growth.

The dynamic evolution of the state of the crystal is captured by Eq. (3.46). Let mL,A
be the mass of dissolved paracetamol, mL,B the mass of water and T the temperature
which is assumed to not vary spatially within the whole system (crystal and liquid).
The volume of the crystal is denoted by VS and its density is ρS . If the mass of the
solvent is assumed to be constant, the dynamic evolution of the liquid phase compo-
sition is fully captured by the differential equation for the solute which describes the
transfer of dissolved paracetamol to the solid phase:

dmL,A

dt
= −ρS G ⋅ ∇hVS(h) . (3.65)

For the practical implementation Eq. (3.64) is used since

∂V
∂hi

= Ai . (3.66)

The face-specific growth rates of paracetamol were measured by Ristic et al. (2001).
We have used polynomials to fit the growth laws (values are given in Tab. 3.3):

G1 = { g1,1σ σ < 0.1076
g1,2σ2 + g1,3σ + g1,4 otherwise

(3.67a)

G2 = g2,1σ3 + g2,2σ2 + g2,3σ (3.67b)

G3 = g3,1σ3 + g3,2σ2 + g3,3σ (3.67c)

G4 = { g4,1σ2 + g4,2σ σ < 0.0533
g4,3σ3 + g4,4σ2 + g4,5σ otherwise .

(3.67d)

The supersaturation is defined as:

σ = x − xsat

xsat
. (3.68)

The equilibrium mole fraction is given by Hojjati and Rohani (2006)

ln xsat = b1 +
b2

T
+ b3 ln T , (3.69)
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where
x = mL,A

mL,A + NA
NB

mL,B
. (3.70)

The temperature in the system is assumed to be perfectly controllable and given by

T = T0 − (T0 − Tf)(
t
tf
)

p

, (3.71)

where T0 and Tf are the initial and final temperature, respectively, tf is the end-time
and p is a parameter which determines the shape of the temperature curve.

3.4.3 Case Study – Variation of the Cooling Policy

The numerical solution to the shape evolution equation (3.46) together with the mass
balance (3.65) has been computed. The parameter p of the temperature profiles ac-
cording to Eq. (3.71) has been varied between 1 and 4. The initial conditions, temper-
ature and supersaturation profiles, as well as the resulting crystal shapes are shown
in Fig. 3.13. It can be seen that the plate-like initial crystal shape which is typically
produced under high-supersaturation conditions Garekani et al. (1999); Ristic et al.
(2001) develops to a more compact crystal. For the linear cooling profile (p = 1) the
h2- and h3-faces grow out. The supersaturation profile for this case is such that at a
relatively early stage a maximum is reached. After this the supersaturation is kept
around 0.1 and decreases slowly. In this regime G2 and G3 are large compared to
G1 and G4. For higher values of p the maximum of the supersaturation is shifted
to later times and the supersaturation at the end of the process is increased as p is
increased. However, the growth rate G1 compared to all other growth rates is sig-
nificantly increased at higher supersaturations. Therefore, the h2- and h3-faces occur.
This is clearly seen for the final crystal shape which is produced from the temperature
profile with p = 4. Here, the fraction of h2- and h3-surfaces is almost 22%.

The practical implications of the different cooling strategies is not a direct concern
of this section. This example shall only serve to show the applicability of the re-
sults which have been produced in the above sections. Of course, the results we have
shown here could have been obtained also by using the shape evolution equation and
constructing the crystal polyhedron in every time step to check whether a structural
evolution like disappearance of faces has happened in order to correctly integrate
the system. It would also be necessary to compute the surface area from the crystal
polyhedron when the coupling to the mass balance is included. The computation of
the crystal polyhedron can in principle be done by exhaustively checking all intersec-
tions between crystal planes. Alternatively, a primal-dual method for computing the
vertices can be used Bremner et al. (1998). However, using the techniques described
above, the computation of the polyhedron is avoided and only the preprocessing of
the boundaries in state space, coefficients for volume computation and velocity de-
limiter matrices must be performed prior to the integration. By this, the CPU-time
(measured with the Matlab functions tic-toc) for integration of the paracetamol sys-
tem (2.64 s on a 3GHz Intel Core Duo with Windows XP and Matlab R2010b) is re-
duced by a factor 134 compared to the exhaustive checking (353 s) and reduced by a
factor of 5.5 compared to a primal-dual method (14.26 s). The ode-solver (ode23 in
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Matlab) was set to a maximum time step of 100 s. The determination of the morphol-
ogy cones and volume evaluation coefficients requires circa 3 s, i.e. it is computation-
ally advantageous to determine the morphology cones and to avoid the computation
of the polyhedron even for the determination of a single crystal shape trajectory.

3.5 Conclusion

In this chapter the shape evolution of convex, polyhedral crystals has been discussed
with regard to an elegant and efficient way of formulating the model equations ac-
counting for appearance and disappearance of crystal faces. Previous models re-
quired the thorough detection of discrete events (face and edge appearance or disap-
pearance) in every integration step. With the approach introduced above the shape
analysis is separated from the integration of the evolution equations and can be taken
out in a preprocessing step. The shape analysis as discussed in this paper is an algo-
rithm which enables the computation of all theoretically possible shapes which can
be obtained from a given set of faces. Due to the possibly high dimensionality of the
resulting state space the complexity of that analysis increases fast. Therefore, only
symmetric crystals can be analysed in a justifiable time.

Practically, the results of this chapter can be used to implement differential equa-
tions for crystal shape evolution in an efficient way. Albeit this may not be required
if a single crystal trajectory has to be calculated, the computational benefit is of great
value if many crystal trajectories must be integrated. This is the case in optimization
tasks and in the case of crystal populations in mass crystallizers.

More important is that from the methodological point of view, the analysis of the
state space gains a deeper insight into the shape evolution process. The transparency
with which the hybrid dynamic equations of shape evolution are formulated pace the
way towards a profound framework for large populations of convex crystals.



What I cannot create I do not understand.

Richard P. Feynman
Photograph of his blackboard at the time of his death

shown in Stephen Hawking’s The Universe in a Nutshell

Chapter 4

Shape Evolution of Crystal
Populations

In the previous chapter we have learned how a single faceted crystal evolves and
travels through h-space. It enters different regions in which distinguished geometri-
cal properties occur, that is particularly the presence of certain edges and faces on the
crystal surface. The growth of the crystal influences the dynamics of its environment,
especially the concentration in the surrounding continuous phase. In this chapter
it will be dissected how an essential part of the dynamics of a whole population of
faceted crystals can be synthesized from insights we have gained on the dynamics of
a single crystal. The population balance that has been discussed in Ch. 2 is the natural
implement to characterize the dynamics of the number density in h-space.

At first, the population balance is introduced for an example system: Potassium di-
hydrogen phosphate (KDP) crystal populations are modeled in Sec. 4.1. This system
is relatively simple to handle since for the process conditions we shall consider, the
number of real crystallographic faces is constant. An algorithm for the computation
of numerical solutions is developed along this 2D system. The kinetic coefficients re-
quired as input to the population balance model are identified in Ch. 6 on the basis
of experiments presented in Ch. 5 where KDP crystallization from water is observed.
Disappearance and appearance of crystal faces enables the structuring of the state
space as it has been shown in the preceding chapter. In Ch. 2 generic equations have
been developed which enable the incorporation of these structures in a population
balance model. This is – as the second step – exemplified for a simple 2D system in
Sec. 4.2. Sec. 4.3 discusses the generalization of the concept to nD state spaces. Sec. 4.4
summarizes this chapter in brief.

4.1 Evolving Potassium Dihydrogen Phosphate (KDP)
Populations

Potassium dihydrogen phosphate (KDP) is a popular model substance for crystal re-
search for several reasons. It is well soluble in water, not hazardous, cheap and it
produces well developed faceted crystals. This is especially due to the relatively high

73
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r2 r1 r1 

h1 h1 

h2 

(100) 
(010) 

(101) (011) 

(101) (011) 

[001] 

α 

Figure 4.1: Quantification of the crystal shape according to Ma and Braatz (2001) and Gu-
nawan et al. (2002) (left) and as used in this work (right).

hardness which avoids abrasion at stirrers and in sampling loops. The identification
of the kinetic parameters for KDP solution crystallization has been discussed by Gu-
nawan et al. (2002). For this, a population balance model along with a mass balance
is fitted to experimental data of a whole crystallization experiment. The parameters
identified involve face-specific growth rates and a nucleation rate. Ma et al. (2002a)
employ these parameters for simulation studies with a high resolution algorithm. In
Ma et al. (2002b) the model is further refined by compartmentalization of the crystal-
lizer and optimal control studies are taken out.

Hereafter, the crystal system KDP is introduced, Sec. 4.1.1, and the population bal-
ance model derived, similar to the above cited works of Braatz and coworkers, see
Sec. 4.1.2. Albeit the aforementioned high resolution scheme provides accurate so-
lutions, as an alternative, a further development of the popular 1D moving pivot
technique of Kumar and Ramkrishna for pure growth and nucleation processes is
developed in Sec. 4.1.3. Finally, in Sec. 4.1.4, simulation results are presented for a
reference experiment which is further discussed in Ch. 6.

4.1.1 Potassium Dihydrogen Phosphate

Potassium dihydrogen phosphate (KDP) crystallizes in space group I4̄2d (Yang et al.,
2006) and thus has point-group symmetry 4̄2m (Borchardt-Ott, 2009); the lengths of
the crystallographic axis are a = 74.51 nm and c = 69.73 nm (Mathew and Wong-Ng,
1995). KDP grown from water is bound by the crystallographic faces {001} and {011}
(Yang et al., 2006), as depicted in Fig. 4.1. Assuming that the crystal exhibits perfect
symmetry, the geometry is quantified by a 2D state vector containing the distances to
the prismatic {001} and pyramidal {011} faces:

h = ( h1
h2

) = ( h{001}
h{011}

) , (4.1)
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see Fig. 4.1 (right). Using the partitioning of the state space introduced in the previous
chapter, the region of the state space in which both pyramidal and prismatic faces are
real is given by the morphology cone

M1 = {h ∶ Bh < 0} , B ≈ [ 0.5638 −0.8259
−1 0

] , (4.2)

which is depicted in Fig. 4.2. It can be seen that on the two bounding lines of the mor-
phology cone, the prismatic (M1,1 , upper row of B) and pyramidal (M1,2 , lower row
of B) crystal faces disappear. Clearly, the disappearance of the pyramidal faces cor-
responds to the disappearance of the crystal, see the indicated ’line’ crystal beneath
M1,2 . Within the morphology cone, the crystal habit varies. For instance, more com-
pact shapes are found above the M1,1 boundary, see the two shapes drawn on the
lower dotted line in Fig. 4.2 (this line does not stand for a morphological manifold
but shall serve to lead the eye). On the upper dotted line (lower h1-values), crystals
are more elongated while the height is kept constant in comparison to the crystals on
the lower gray line.

An alternative to the h-vector is to measure the side length of the pyramid’s base
square, r1 , and the distance between the pyramid’s apices, r2 , as used by Ma and
Braatz (2001) and Gunawan et al. (2002), see Fig. 4.1. The transformation between h-
and r-representation is

( h1
h2

) = (
1
2 r1

cos α
2 r2

) , cos α = n{001} ⋅ n[010] ≈ 0.73073 , (4.3)

see also Fig. 4.1 . As a side note it should be mentioned that the formula for the
volume calculations used by Ma et al. (2002a,b):

Vcry(r) = 1
3

r3
1 + (r2 − r1)r2

1 , (4.4)



76 Chapter 4. Shape Evolution of Crystal Populations

is not correct. They assume an angle of 135○ between the pyramidal and prismatic
faces but its value is actually ≈ 133.02○ . The error which is made by this assumption
is small, but for the sake of completeness we give here the right formula:

Vcry(r) = r2
1r2 −

2c
3a

r3
1 , (4.5)

where a and c are the lengths of the crystallographic axes, see the work of Zinser
(2010). Using the volume computation scheme applicable to crystals described by
h-vectors, see Sec. 3.3, the volume is obtained by

Vcry(h) ≈ 10.9479h2
1h2 − 4.9825h3

1 . (4.6)

4.1.1.1 Kinetic Parameters from Literature

In Gunawan et al. (2002) the growth and nucleation rates in the r-framework, denoted
by Gr = (Gr

1, Gr
2)T as a function of supersaturation have been determined. In two

simulation studies (Ma et al., 2002a,b), authors of the same group refer to Gunawan
et al. (2002) for the kinetic parameters which are, however, not the same. Since the
simulation work appeared later, we assume that the kinetic data given in (Ma et al.,
2002a,b) is appropriate. The growth rates in the r-framework are:

Gr
1 = kr

1σgr
1 , kr

1 = 12.21× 10−6 m/s , gr
1 = 1.48 , (4.7a)

Gr
2 = kr

2σgr
2 , kr

2 = 100.75× 10−6 m/s , gr
2 = 1.74 . (4.7b)

Transformation to the h-framework using Eq. (4.3) yields:

G1 = k1σg1 , k1 = 6.105× 10−6 m/s , g1 = 1.48 , (4.8a)

G2 = k2σg2 , k2 = 36.8105× 10−6 m/s , g2 = 1.74 , (4.8b)

which is depicted in Fig. 4.3. Gunawan et al. (2002) observed large amounts of nuclei
in their experiments and estimated the following nucleation rate1 (the values again
taken from the later papers of Ma et al. (2002a,b) and not from Gunawan et al. (2002)
wherein their determination is described):

Bnuc = knucσbVcry,popV , knuc = 3.75× 1013 #/m3/m3/s , b = 2.04 , (4.9)

where
Vcry,pop(t) = ∫M1

f (h, t)Vcry(h)dh1dh2 (4.10)

is the volume of the crystalline phase and V is the volume of the overall system (crys-
talline plus continuous phase). The dependency of the nucleation rate on the mass
of the crystal population accounts for the fact that in the environment of a crystalline
phase, nucleation is more probable to occur (Mullin, 2001).

1Note that the value for knuc given in Eq. (4.9) has been divided by the volume of the system and thus
this volume multiplication is added because the system volume in Ma et al. (2002b,a) is different from
the value used in the simulations and experiments of this work.
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Figure 4.3: Comparison of the KDP growth kinetics measured by Gunawan et al. (2002)
and determined in this work.

4.1.1.2 Kinetic Parameters Determined in Ch. 6

In Ch. 6 of this work the following growth rates have been determined (Fig. 4.3):

G1 = k1σg1 , k1 = 643.2× 10−6 m/s , g1 = 3.89 , (4.11a)

G2 = k2σg2 , k2 = 2.07× 10−6 m/s , g2 = 1.23 . (4.11b)

In the experiments which were used for the estimation of the growth rates, the amount
nucleation was relatively low. Therefore, the nucleation rate could not be determined
with the sufficient accuracy. As the simulation studies in Sec. 4.1.4.2 suggest, this is
also not necessary, since the state of the continuous phase could be predicted well
even for a process model that neglects nucleation and includes only growth of the
seed population.

4.1.1.3 Accessible Morphology Domain

In principle it is possible that the prismatic {001} faces disappear from the crystal
surface. However, if only growth is considered and only crystals with shapes within
the interior ofM1 are seeded and all nuclei occur withinM1 , the faces of the mor-
phology cone cannot be reached if G2 > 0.6827G1

2. This is the case for both growth
laws (Eq.s (4.8), (4.11)) within large parts of the supersaturation observed in the ex-
periments and simulations. Also, if the crystals are far away from the morphological
boundary and if G2 ≤ 0.6827G1 only for relatively short times, the boundary will not
be reached. This was the case in all experiments and simulations we show in the fol-
lowing. Hence, for practical calculations none of the morphological boundaries will

2The value 0.6827 is obtained from dividing 0.5638 by 0.8259 the entries of the boundary matrix B see
Eq. (4.2).
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be reached which means for the shape evolution of a single crystal that the differential
equation for the crystal state is simply given by

d
dt

( h1
h2

) = ( k1σg1

k2σg2
) , (4.12)

i.e., the velocity delimiter matrix D , with which switches between morphological
domains are accounted for according to Ch. 3, can be omitted.

4.1.2 Population Balance Model for KDP

Because Eq. (4.12) is a continuously evolving system, the population balance equation
reads for a batch crystallizer, according to Sec. 2.6.1, see also Cardew (1985); Ma et al.
(2002a); Ramkrishna (2000),

∂ f
∂t

+∇h ⋅ (G f ) = Bnucδ (h − hnuc) , t > 0 , h ∈M1 , (4.13)

subject to the initial, boundary and regularity conditions

I.C. ∶ f (t = 0, h) = fseed(h) , (4.14a)

R.C. ∶ f (t, h)→ 0 , ∣h∣→∞ , (4.14b)

B.C. ∶ b ⋅G f = 0 , h ∈M1,1⋃M1,2 . (4.14c)

The right hand side of Eq. (4.13) accounts for nucleation which is assumed to occur at
a specified point hnuc . Clearly, the nucleation as well as the growth rate depend on
the supersaturation which is in this work considered to be induced by cooling of the
solution below the equilibrium. Mullin (2001) has measured the solubility of KDP in
water; supplemented by own measurements in the relevant temperature interval, the
solubility has been fitted to a parabolic curve:

wKDP,sat(T) = 5.5843× 10−5T2 − 0.028159T + 3.6832 , (4.15)

see also Fig. 4.4. wKDP,sat is the ratio of the maximally soluble mass of KDP per unit
mass of water, thus has the unit [kgKDP/kgH2O] .

Mass balances for the batch crystallization must account for the transfer of dis-
solved KDP (dis) to the crystalline state (cry) due to growth (gr) and nucleation (nuc),
whereas the amount of solvent (water) does not change:

dmH2O

dt
= 0 , mH2O(t = 0) = mH2O,0 , (4.16a)

dmKDP,cry

dt
= ṁKDP,gr + ṁKDP,nuc , mKDP,cry(t = 0) = mKDP,cry,0 , (4.16b)

dmKDP,dis

dt
= −ṁKDP,gr − ṁKDP,nuc , mKDP,dis(t = 0) = mKDP,dis,0 . (4.16c)

The amount of crystal mass is also obtained from the number density:

mKDP,cry = ρcry ∫M1
Vcry(h) f (h, t)dVh , (4.17)
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Figure 4.4: Solubility of KDP in water, data points taken from Mullin (2001) and own
measurements.

that is, Eq. (4.16b) can be omitted if f is known. Recognizing that the r.h.s. of
Eq. (4.16b) equals the r.h.s. of Eq. (4.16c) except for the sign, the amount of dissolved
KDP can be calculated as:

mKDP,dis = mKDP,dis 0 − (mKDP,cry −mKDP,cry,0) . (4.18)

The concentration of the dissolved KDP in the fluid phase is in this work defined by
the mass-ratio of KDP and solvent (Mullin, 2001):

wKDP =
mKDP,dis

mH2O
= [kgKDP

kgH2O
] . (4.19)

The supersaturation is defined by (Mullin, 2001; Ma et al., 2002a):

σ = wKDP

wKDP,sat
− 1 . (4.20)

The temperature is in general obtained from an energy balance. Within this work,
however, temperature profiles are pretended which can be accurately realized by
cooling the batch crystallizer with a thermostat if the heat of crystallization is small.
For the remainder of this work, the heat of crystallization is neglected. The set of
Eq.s (4.13), (4.14), (4.8) or (4.11), (4.9), (4.15), (4.17), (4.18), (4.19), (4.20) together with
a temperature profile makes up the crystallizer model.

4.1.3 Numerical Scheme

In order to solve the population balance numerically, an extension of the well estab-
lished moving pivot technique developed by Kumar and Ramkrishna (1996b, 1997)
is employed. In principle, in this method, the evolution of representative particles,
so called pivots, is tracked and additionally the change of the number of particles
which are represented by the pivot. The collection of pivots is regarded as a moving
grid, thus covers different parts of the state space at different instances. The region
in which nucleation occurs may thus not be contained in the region of the original
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Figure 4.5: Numerical scheme at two instances. The region in which the seed population
exists is partitioned into finite cells which are each represented by a state in their interior.
The representative states (and thus the cell) is moved in accordance to the vector field G .
Nucleation is included by continuously adding new representative cells in the vicinity of
the nucleation point. Also the nucleation cells move in accordance to G , i.e., a new cell
must be started when the nucleation point is not covered by the closest cell.

moving grid. Therefore, new pivots are continuously added around the nucleation
point in order to absorb the nucleated particles (Kumar and Ramkrishna, 1997). For
the multivariate case discussed in the following, the crystal distribution is separated
into two parts: (i) crystals which have been seeded at t = 0 and grow and (ii) crystals
which nucleate during the crystallization process and subsequently grow. This sep-
aration is sketched in Fig. 4.5: The seed region Λseed only moves in the state space
whereas the nucleation ’line region’ is continuously expanding.

Discretization and growth of the seed crystal population is dissected in Sec.s 4.1.3.1
and 4.1.3.2. Sec. 4.1.3.3 explains how nucleation is captured by the numerical scheme.

4.1.3.1 Seeds

Let the domain of interest in which the seeds are located at t = 0 withinM1 be denoted
by Λseed(t = 0) which is assumed to be a material control volume. Λseed is partitioned
into nseed cells Λseed,k which cover Λseed , see Fig. 4.5. It can also be seen that every cell
contains a representative so called pivot hseed,k . The practical partitioning of Λseed at
t = 0 into cells is explained in a more detail in Sec. 4.1.3.2.

For t > 0 the cells Λseed,k are time-dependent and move according to the veloc-
ity field G, i.e., they are – like Λseed – material control volumes. Integration of the
population balance (4.13) over Λseed,k yields

∫
Λseed,k

∂ f
∂t

+∇h ⋅ (G f ) dVh = ∫
Λseed,k

Bnucδ (h − hnuc) dVh . (4.21)
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By the virtue of the transport theorem (Ramkrishna, 2000; Slattery, 1999) we obtain

d
dt ∫Λseed,k

f dVh = ∫
Λseed,k

Bnuc δ (h − hnuc) dVh . (4.22)

The number of particles within a cell is

Nseed,k = ∫
Λseed,k

f dVh , (4.23)

i.e., Eq. (4.22) makes up an evolution equation for this quantity. Usually, the nuclei
are significantly smaller than the seed particles, that is, hnuc is not located within
Λseed . Hence, the integral on the r.h.s of Eq. (4.22) vanishes which gives the trivial
differential equation

dNseed,k

dt
= 0 , Nseed,k(t = 0) = Nseed,k,0 , k = 1 . . . nseed . (4.24)

Additionally, the motion of the cells must be accounted for. It is assumed that all par-
ticles within Λseed,k are concentrated on the representative pivot hseed,k . This pivot
can be interpreted as a representative state and moves like a single particle in accor-
dance to the velocity field G:

dhseed,k

dt
= G , hseed,k(t = 0) = hseed,k,0 , k = 1 . . . nseed . (4.25)

4.1.3.2 Discretization of the Seed Region

The representative pivots hseed,k,0 must be chosen in a way that they properly support
the approximation of the original number density of the seeds. The projection of
fseed (see Eq. (4.14a)) on a regular, rectilinear or structured grid would allow a good
numerical approximation. However, the number of grid points especially for higher-
dimensional state spaces would be relatively large while the possibilities for local grid
refinement are limited. Therefore, an unstructured mesh is used that is generated
with an algorithm in Matlab along the ideas of Persson and Strang (2004) which is
shortly sketched in the following paragraphs.

Firstly, the geometry of the region of interest must be represented. The choice of
this region, denoted by Λseed ⊂ M1, is in our case only determined by the seed’s
number density function, i.e., only regions with sufficiently high number densities
are taken into account. Preliminary nodes pk,0 , k = 1, . . . , ν are distributed within
the region and passed to a Delaunay triangulation routine which connects the nodes,
see Fig. 4.6 (left). This formation is now considered to be a truss with nodes and
elastic bars being the connecting lines between nodes. Due to an interaction between
connected nodes, they are moved according to the differential equation

dp
dτ

= F(p) , p(τ = 0) = p0 , (4.26)

with p = [p1, . . . , pν] and p0 = [p1,0, . . . , pν,0]. The velocity function F allows to ma-
nipulate the mesh with regard to spacing between nodes. This function is chosen
such that the equilibrium length between connected nodes is small in parts of the
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Figure 4.6: Meshing of the population region. Left: randomly distributed nodes. Right:
equilibrated mesh.

state space with high number densities and sparsely covered with nodes in regions
with lower densities. Note that τ and F have no physical meaning, though a physical
analogy has been used for illustration.

The steady state solution of Eq. (4.26), F(pss) = 0, provides well distributed points
pk,ss . A Voronoi tesselation is taken out, assigning cells to the nodes pss,k as depicted
in Fig. 4.6 (right). The nseed cells of finite size3 are taken as continuously evolving
cells Λseed,k covering nearly the whole region Λseed . The nodes pss,k are now the
previously introduced pivots hseed,k,0 and serve as the initial condition to Eq. (4.25).
I.e., the remaining network of nseed < ν pivots covers almost the whole region Λseed ,
see Fig. 4.6 (right).

The initial conditions to the seed cell’s number equation (4.24) is obtained by inte-
grating the number density function over the cell domain:

Nseed,k,0 = ∫
Λk

fseed(h)dVh , k = 1, . . . , nseed . (4.27)

With the cell volume
VΛ,seed,k = ∫

Λseed,k
dVh , (4.28)

The approximate number density within a cell is obtained by

f̂seed,k =
Nseed,k

VΛ,k
, k = 1 . . . nseed . (4.29)

An alternative point of view is to consider the particles being concentrated on the
pivots, i.e., the approximated seed part of the number density function is a sum of
moving Dirac delta distributions:

f̂seed =
nseed

∑
k=1

Nseed,k δ(h − hseed,k) , (4.30)

3If the mesh parameters are well chosen, this excludes nodes that were moved towards the boundary ∂Λ .
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see also Kumar and Ramkrishna (1996a, 1997); Chakraborty and Kumar (2007).

4.1.3.3 Nuclei

Usually, the seed crystals are significantly larger than the nuclei, that is, Λseed does
not include the domain in state space where nuclei occur. Therefore, a circular cell
Λnuc,1 is introduced which covers the nucleation point, see Fig. 4.7 (left). The number
of particles within that cell is denoted by Nnuc,1 . It is assumed that the number of
particles carried by this pivot is initially zero. The evolution equation for Nnuc,1 is –
similar to Eq. (4.22) – derived by integrating the population balance over Λnuc,1:

dNnuc,1

dt
= ∫

Λseed,k(t)
Bnuc δ (h − hnuc) dVh (4.31a)

= Bnuc , Nnuc,1(t = 0) = 0 , 0 < t ≤ tcross,1 . (4.31b)

For the integral on the right hand side the sifting property of the Dirac delta distribu-
tion (Bronstein et al., 2001) has been exploited. The time tcross,1 denotes the instant at
which the boundary of the cell Λnuc,1 crosses the nucleation point, see Fig. 4.7 (mid-
dle). This is the case because the material control volume Λnuc,1 is – like Λseed,k –
moved in accordance to G which is reflected by displacing the representative pivot
hnuc,1 according to the differential equation

dhnuc,1

dt
= G , hnuc,1(t = 0) = hnuc,1,0 , (4.32)

where the starting point is chosen such that the distance to the nucleation point is
small:

∣hnuc − hnuc,1,0∣ < εnuc . (4.33)

The distance εnuc has – for the computations taken out in this work – been chosen
to be equal to the radius of the cell, see Fig. 4.7 (middle). From Eq. (4.32) it follows
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that Λnuc,1 moves from hnuc away and eventually covers hnuc not any longer. The
integration region in Eq. (4.31a) does not include hnuc which results in:

dNnuc,1

dt
= ∫

Λseed,k(t)
Bnucδ (h − hnuc) dVh (4.34a)

= 0 , t > tcross,1 . (4.34b)

Therefore, a new material control volume Λnuc,2 is introduced that covers hnuc again.
Then the differential equations describing the nucleation-induced part of the crystal
population read:

dhnuc,1

dt
= G ,

dNnuc,1

dt
= 0 , tcross,1 < t , (4.35a)

dhnuc,2

dt
= G ,

dNnuc,2

dt
= Bnuc tcross,1 ≤ t < tcross,2 , (4.35b)

which describe the nucleation until also the boundary of Λnuc,2 crosses the nucleation
point. Then yet another Λnuc,3 is introduced and so forth until the process’ end time
is reached. That is, in general the differential equations capturing nucleation read:

dhnuc,k

dt
= G ,

dNnuc,k

dt
= { Bnuc tcross,k−1 ≤ t < tcross,k

0 tcross,k < t
k = 1 . . . nnuc(t) . (4.36)

4.1.3.4 The Discretized Population Balance

The discretized number density function can, according to the previous sections, be
expressed as

f̂ =
nnuc(t)
∑
k=1

Nnuc,kδ(h − hnuc,k)+
nseed

∑
k=1

Nseed,k δ(h − hseed,k) . (4.37)

In summary, the differential equations for Nnuc,k, Nseed,k, hnuc,k and hseed,k read

dhnuc,k

dt
= G ,

dNnuc,k

dt
= { Bnuc tcross,k−1 < t < tcross,k

0 tcross,k < t
k = 1 . . . nnuc(t) . (4.38)

dhseed,k

dt
= G ,

dNnuc,k

dt
= 0 (4.39)

This set of ordinary differential equations can be implemented in Matlab and is solved
in time with standard higher order Runge-Kutta schemes (ode23 or ode45 in Matlab).
In the next section the above developed model is solved using this numerical proce-
dure.

4.1.4 Simulation Results

For the system KDP not only the model equations as described in Sec. 4.1 are pre-
sented but also experiments that have been performed. For these experiments the
evolution of the number density function is extracted from intensity images, see for
details Sec. 5.4.3. In these experiments a temperature trajectory is imposed that in-
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Figure 4.8: Temperature profile of Exp. 1 and the resulting supersaturation profile using the
parameters from the literature presented in Sec. 4.1.1.1. The supersaturation can obviously
not be reproduced well for the conditions of Exp. 1.

duces supersaturation in the fluid phase and causes the seed crystals to grow. In the
following two sections the experimental temperature trajectories are retraced and the
evolution of the shape distribution is calculated along with the induced supersatu-
ration profile. At first, in Sec. 4.1.4.1, the simulation is taken out with growth and
nucleation parameters from the literature, whereas the system with growth parame-
ters identified in Ch. 6 without nucleation is solved.

4.1.4.1 Simulation with Literature Parameters

The pretended temperature profile of Exp. 1, presented in Sec. 5.4.3.1, is depicted in
Fig. 4.8 (left). Between the sampling points (circles), the temperature is evaluated
by linear interpolation (line) for the simulation. The growth and nucleation param-
eter from the literature used for the simulation are specified in Eq.s (4.9) and (4.8).
The resulting supersaturation profile is shown in Fig. 4.8 (right). The measured ex-
perimental results (circles) deviate significantly from the simulation (line), however,
the qualitative development is similar. For t < 500 s the supersaturation of the sim-
ulation increases as a result of the undercooling of the solution. Until t = 200 s the
slope is almost constant, as this is the case for the temperature profile, because the
transfer of dissolved material to the crystalline phase by nucleation and growth is
rather low. Subsequently, the driving force for growth and nucleation (supersatura-
tion) is large enough to provoke significant transfer to the crystalline phase which
results in a decrease of the slope of the supersaturation and for t > 500 s even the
decrease of supersaturation. The amount of crystalline material that grows onto the
crystals originating either from the seed population or are produced by nucleation
during the process is depicted in Fig. 4.9 (left). The mass fraction of crystals arising
from nucleation is shown in Fig. 4.9 (right). In Sec. 5.4.3.1 this quantity is estimated
from the images of the experiment (circles). It can be seen that the deviation between
experiment and simulation is rather large. The amount of observed nucleated (and
subsequently grown) crystals is about ten times larger in the simulation. With the de-
viations perceived in the supersaturation profile, Fig. 4.8 (right) it can be stated that
the literature parameters do not furnish the population balance model adequately to
reflect the observed dynamics. This is further supported by the simulated evolution
of the number density function depicted in Fig. 4.10. Qualitatively, the evolution of
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Figure 4.9: Crystal mass over time for the simulation of Exp. 1 using the parameters from
the literature presented in Sec. 4.1.1.1. The mass of the (grown) nuclei is relatively large
(left) and makes up well above 15% at the end of the batch. In the experiments the amount
of nuclei has been estimated to be less than 1.5%, see also Fig. 5.29 for a more detailed view
on the increase of the nuclei mass.

the mean state (thick black line) deviates from the observed mean path as the com-
parison to the measured trajectory, drawn as a gray line in the distribution plot at the
bottom, indicates. The experimental mean shape is more compact than the one ob-
tained by the simulation. Compare the simulated distribution evolution of Fig. 4.10
also to the measure one depicted in Fig. 5.24. The amount of nucleated particles as
already indicated by Fig. 4.9 (right) is low which gives rise to the assumption that
this effect can be neglected for a first order model which is solved in the following
section.
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Figure 4.10: Evolution of the simulated shape distribution using the temperature profile
of Exp. 1 and the parameters from the literature presented in Sec. 4.1.1.1. The mean state
trajectory of the seeds is drawn as a thick black line ending in center of the seed distribution.
At the right of each coordinate system the shape of the mean state is drawn. In the lower
left the measured mean trajectory of the seeds is added as a gray line. It can be seen that
the computed and the measured trajectory differs significantly. The black lines starting in
the origin of the coordinate systems are the locations of the pivots with which the nuclei
have been captured.
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Figure 4.11: Temperature profile of Exp. 1 and the resulting supersaturation profile using
the growth parameters determined in Ch. 6.

4.1.4.2 Simulation with Estimated Parameters

The same temperature profile of Exp. 1 – like in the preceding section – is applied to
a population balance model equipped with growth parameters determined in Ch. 6,
see also Eq. (4.11). The experimental results suggest that the nucleation rate is low.
Therefore, for this first-order model only growth is taken into account and nucleation
neglected. It should be noted that for the determination of the growth rates in Ch. 6
the measured supersaturation profile and the trajectory of the mean state is directly
used for the parameter estimation and not a full process model is fitted. That is in par-
ticular important because the mass balance of the continuous phase is not used in the
estimation procedure but only the growth kinetics with respect to the geometry of the
crystals is fitted to the measured values. In that sense, the simulation using a popula-
tion balance model coupled to the mass balance constitutes a test whether the growth
kinetics can not only reproduce the measured shape evolution using a pretended su-
persaturation profile but whether the supersaturation profile is correctly determined
by the mass balance. The simulated supersaturation profile obtained in this way is
depicted in Fig. 4.11 (right) which is close to the measured one. An additional simu-
lation has been performed for the temperature profile that has been applied in Exp. 2.
Also for this setup, the supersaturation evolution is reproduced well by the mass bal-
ance. The evolution of the simulated shape distribution for the simulation of Exp. 1
is depicted in Fig. 4.13. It can be seen that the simulated shape evolution agrees well
with the measured evolution which is indicated in the bottom of Fig. 4.13 by the gray
line. Similar results on the simulated mean state evolution are obtained for Exp. 2.



4.1. Evolving Potassium Dihydrogen Phosphate (KDP) Populations 89

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time t [s]

S
up

er
sa

tu
ra

tio
n

σ

Simulation
Exp. 2

0 500 1000 1500 2000 2500 3000 3500 4000 4500
306

307

308

309

310

311

312

313

Time t [s]

T
em

pe
ra

tu
re

 T
 [K

]

Simulation
Exp. 2

Figure 4.12: Temperature profile of Exp. 2 and the resulting supersaturation profile using
the growth parameters determined in Ch. 6.
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Figure 4.13: Evolution of the simulated shape distribution using the temperature profile of
Exp. 1 and the parameters from Ch. 6. The mean state trajectory of the seeds is drawn as
a thick black line ending in center of the seed distribution. At the right of each coordinate
system the shape of the mean state is drawn. In the lower left the measured mean trajectory
of the seeds is added as a gray line. It can be seen that the computed and the measured
trajectory compare well.
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4.2 Evolving Crystal Populations with Varying
Number of Faces – An Example

In the previous section, the population balance model as well a means for its nu-
merical solution for the case of continuously evolving systems has been introduced.
That is, the trajectories of the crystals were not subject to run into a morphological
boundary which was for the general single crystal case pointed out in Ch. 3. In this
section, a rather simple 2D example is worked out in which crystal faces can disap-
pear. In Sec. 4.2.1 the crystal system is introduced and the evolution of a single crystal
is revisited on the basis of this example. Sec. 4.2.2 introduces the population balance
along the framework that has been developed in Ch. 2.

4.2.1 Cubic Crystal Model and Single Crystal Evolution Revisited

Various substances crystallize in the cubic system, for instance table salt, most metals
such as copper, iron, gold and silver but also diamond (Borchardt and Turowski,
1999). In our example, the crystallographic faces {001} and {111} may occur leading
to the following geometrical state vector:

h = ( h1
h2

) = ( h{001}
h{111}

) , (4.40)

see Fig. 4.14. Readers familiar with Ch. 3, can switch directly to the sentence be-
fore Eq. (4.41). It can be seen from Fig. 4.14 that under the variation of the h-vector
the shape of the crystal can be changed qualitatively. Take for instance the shape
(d) (truncated cube) and move to the left on the horizontal line: If the distance h2 is
increased relative to h1, the area of the h2-faces (or {111}-faces or octahedral faces)
becomes smaller until they finally disappear which happens when h2 =

√
3h1, see the

drawn shape (c) and the line on which such shapes exist. Note that the octahedral
faces at the shape (c) do not belong to the crystal but lie on the corners of the cube in
order to indicate that they are taken into account for the model, thus have the possi-
bility to exist but are currently not present on the crystal. By moving from the point
(c) directly towards the origin, the shape remains the same and becomes only smaller,
see (a). In the following we restrict ourselves to confine the crystal states to the ones
below the line h2 =

√
3h1 because for all states above, the resulting shape would still

be a cube. But whilst the (non existing, thus virtual, see Ch. 3) h2-faces touch the
corners of the cube on the line, they are distant from the cube for states above the line
as the sketched shape (b) shall indicate. That is, all faces which cannot be seen on the
crystal surface shall be tangential to the remaining crystal polyhedron and because
of this, the accessible region in h-space is restricted. If we move from the point (d)
to the right, the crystal shape changes as well. When the point (e) (cuboctahedron)
is reached, which is the case for h1 =

√
3/2h2 , the previously separated h2-faces meet

at a so called 4-compound vertex, i.e., the edge between the h1-faces disappears. By
moving even further towards (f), shapes are obtained on which an edge between the
h2-faces occurs (truncated octahedron). Keeping h1 constant and decreasing h2 pro-
duces shapes with smaller h1-faces (g) until the (cubic) h1-faces disappear and become
virtual on the line h1 =

√
3h2 , see shape (h). Below that line the virtual h1-faces are

distant from the octahedron, see (i), i.e., the region h1 >
√

3h2 shall not be accessible
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Figure 4.14: Left: The h-vector is made up by the distance of the cubic faces (h1) and the
octahedral faces (h2). Right: State space partitioning for the example of the cubic crystal
system.

because the real crystal shape cannot vary in this domain and only the distance of the
virtual faces is larger than zero. Clearly, by moving on the line h1 =

√
3h2 from (h) to-

wards the origin, the shape remains the same (octahedron) and only the size becomes
smaller, see for example (j). The discussion on crystal shapes in different parts of the
state space revolves around distinguished morphological features which can be seen
on the crystal surface. In the basic example of this section, this analysis is driven by
intuition but for more complex cases it is easily imaginable that the bookkeeping and
imagination for the possible variations in higher-dimensional state spaces becomes
difficult. Therefore, Ch. 3 addresses this topic in full generality and implements the
necessary means to resolve the possible shape variations and restriction of the acces-
sible domain for arbitrary cases.

Using the methods of Ch. 3 (or the intuitive investigation above), it turns out that
there exist in principle five different morphology domains, i.e., two 2D morphology
conesM1 andM2 (C-morphologies4) which are bound by two morphological subdo-

4C-morphology (or complete morphology) refers to the case where all faces can be seen on the shape, see
Ch. 3.
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Figure 4.15: Growth rates for the example of the cubic crystal system, see Eq. (4.43).

mainsM2,2 andM1,2 (S-morphology5) and a transition lineM1,1 (T-morphology6):

M2,2 = {h ∶ h2 =
√

3h1} , (4.41a)

M2 = {h ∶ h1 <
√

3/2h2, h2 <
√

3h1} , (4.41b)

M1,1 = {h ∶ h1 =
√

3/2h2} , (4.41c)

M1 = {h ∶ h1 >
√

3/2h2, h1 <
√

3h2} , (4.41d)

M1,2 = {h ∶ h1 =
√

3h2} , (4.41e)

see Fig. 4.14. The shape evolution for the case that all faces are present on the crystal
surface is determined by the ordinary differential equation

dh
dt

= G , h(t = 0) = h0 , (4.42)

where G contains the growth rates normal to the crystal surface, see Eq. (3.39). Let
the growth law for this example be defined by

G1 = k1σg1 , k1 = 10−6 m/s , g1 = 1 , (4.43a)

G2 = k2σg2 , k2 = 10−5 m/s , g2 = 2 , (4.43b)

see also Fig. 4.15. If not all faces can be seen on the crystal, as this is the case for the
octahedron (h or j) in Fig. 4.14, the virtual, tangential faces must be displaced by a ve-
locity that keeps the virtual faces virtual but at the corners of the crystal polyhedron.
For this, the condition equation in Eq. (4.41a) is differentiated which yields the 2D

5S-morphology (or submorphology means that only some faces can be seen on the shape and that their
existence domain is adjacent to the domain in h-space which is not accessible, see Ch. 3.

6T-morphologies (or transition morphologies) are special shapes which connect morphology regions (of
C- or S-morphologies) in which the same set of crystal faces can be observed but in a different configu-
ration, i.e., the transition between the truncated cube (d) and truncated octahedron (f) via the cubocta-
hedron (e), see details in Ch. 3.
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system of ordinary differential equations whose dynamics is controlled by the scalar
G2:

dh1

dt
=
√

3G2 , (4.44a)

dh2

dt
= G2 , for h ∈M1,2 and G1 ≥

√
3G2 , (4.44b)

which means that the trajectory remains on the line M1,2 . This is only the case if
the natural growth rate of h1 , G1 , is larger than the virtual displacement rate

√
3G2

in order to retard the movement across the accessible region (e.g. to the point (i) in
Fig. 4.14). If however, the natural growth rate G1 becomes smaller than the virtual
displacement rate, the h1-faces reappear by setting

dh1

dt
= G1 for G1 <

√
3G2 , (4.45)

which means that the trajectory leavesM1,2 and enters the domainM1 . In general,
the evolution equation for a single crystal can be formulated by switching the growth
vector G with the help of a state- and velocity-dependent so called velocity delimiter
matrix D(h, G) , see also Eq. (3.46) in Ch. 3:

dh
dt

= D(h, G)G , (4.46)

where in the example at hand this is

D(h, G) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ 1 0√
3 0

] , for h ∈M2,2 , G2 >
√

3G1

[ 1 0
0 1

] , for h ∈M1⋃M1,1⋃M2 .

[ 0
√

3
0 1

] , for h ∈M1,2 , G1 >
√

3G2

(4.47)

The technique to assemble such matrices for more complex cases is described in
Sec. 3.2.

Example Trajectory For the system at hand we consider the shape evolution of a
crystal with initial state

h0 = (50, 50)T × 10−6 m (4.48)

at a low supersaturation value of σ = 0.05 which gives, according to Eq. (4.43), a
constant growth rate vector of

G = (5, 2.5)T × 10−8m/s . (4.49)

Under these conditions the crystal shall grow for 10, 000 s and for yet another 750 s at
a high supersaturation value of σ = 0.3 which gives a constant growth rate vector of

G = (3, 9)T × 10−7m/s . (4.50)
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Figure 4.16: Trajectory in h-space for the example system under growth conditions as
stated in Eq.s (4.49) and (4.50).

The resulting trajectory can be seen in Fig. 4.16. The initial state lies in the coneM1
and moves towards the boundaryM1,2 until it reachesM1,2 at t ≈ 5464.2 s . At this
state, the h1-faces have disappeared from the crystal surface and thus only the oc-
tahedral faces can be seen. If the path were continued with the velocities given in
Eq. (4.49), the trajectory would crossM1,2 and the cubic faces would become distant
to the octahedron as shown in Fig. 4.14 (i). In order to prevent this, the cubic faces are
displaced onM1,2 as determined by the octahedral growth rates, see Eq. (4.44) or in
more general terms according to Eq. (4.46) using the third velocity delimiter matrix
of Eq. (4.47). The trajectory is continued onM1,2 until the growth rate is switched to
the values given in Eq. (4.50) which means that the natural growth rate of the cubic
faces is smaller than its virtual displacement rate, i.e., Eq. (4.45) applies. Hence, the
cubic faces reappear and the state evolution is continued as a truncated octahedron in
the coneM1, crosses the T-morphology lineM1,1 and enters the regionM2 in which
it assumes the shape of a truncated cube. From the slope of the trajectory it can be
seen that if the simulation were continued even the upper boundary ofM2 would be
reached, i.e., a transformation to a shape with only cubic faces would occur.

An alternative to keep the trajectory for the case of the octahedron for the interval
5464.2 s < t < 10, 000 s moving within the S-morphology line M1,2 is to not further
track the state of the virtual h1-state but consider only the evolution of h2 . Instead of
moving on the lineM1,2 , the trajectory is imagined to be instantaneously transferred
to the h2-coordinate or generally speaking to the line M′

1,2 . That is, it performs a
jump as depicted in Fig. 4.17. The differential equation which must be solved for this
configuration is simply

dh2

dt
= G2 , (4.51)
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Figure 4.17: Trajectory in h-space for the example system under growth conditions as
stated in Eq.s (4.49) and (4.50) using a state jumps.

along with a trivial algebraic equation equipped with the condition that supervises
the validity of its application:

h1 = 0 , for h ∈M′
1,2 and G1 ≥

√
3G2 . (4.52)

If the natural growth rate for G1 is again lower than its virtual displacement rate of√
3G2 (as this is the case for t > 10, 000 s in the example), the state h1 is instantaneously

shifted to h1 =
√

3h2 in order to continue the evolution withinM1 starting at the ap-
propriate point on M1,2 , see Fig. 4.17. That means, instead of binding the crystal
shape state on a morphological subdomain7, the trajectory is switched to and from
the lower dimensional real part of the state space by performing jumps. At the mo-
ment, the notion of jumps in state space may be found to be more complicated but for
the population case, which requires the definition of number densities in subspaces,
it shall serve as a means for a more straightforward formulation of the dynamical
model equations. This concludes the discussion on the example trajectory that also
introduced state jumps which are easily imagined also for the morphological subdo-
main of the cube.

In the following the presented two approaches for the evolution of crystals with
virtual faces are distinguished and termed modeling with discontinuous right-hand sides
and modeling with state jumps. Both approaches have their advantages and drawbacks
but model the same situation and lead to the same results.

It is clear that the growth vector G , pointing into different directions, decides
whether the morphological manifolds, e.g. M1,2 or M2,2, can be reached. In or-
der to classify the single crystal evolution equation, also in view of Ch. 2, it must be
perceived whether the growth vector G (velocity in state space) points towards or

7more precisely within the domain of an S-morphology
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away fromM1,2 and/orM2,2 . For that purpose, the unit normals of the domains are
introduced, see Fig. 4.16:8

b12,22 → unit normal onM1,2 , (4.53a)

b22,11 → unit normal onM1,1 , (4.53b)

b21,11 → unit normal onM2,2 , (4.53c)

Depending on the orientation of G, three cases can be distinguished as denoted in
the Condition column of Table 4.1. The line M1,1 is always simply crossed by the
trajectories because none of the faces becomes virtual but only the transition from the
truncated cube to the truncated octahedron (or vice versa) takes place. However, for
the population balance model it is important to distinguish whether a crystal (or a
full population) lies inM1 orM2 because for the coupling to the mass balance, the
volume or volume change of the crystalline phase must be calculated. The coefficients
for the volume evaluation are different for different morphological configurations, in
fact we have (see also the formal procedure given in Sec. 3.3 or the work of Zinser
(2010) using pencil-and-paper-geometry):

V(h) = 4h3
1 − 12

√
3h2

1h2 + 36h1h2
2 − 8

√
3h3

2 for h ∈M1⋃M1,2⋃M1,1 , (4.54a)

V(h) = −28h3
1 + 36

√
3h2

1h2 − 36h1h2
2 + 4

√
3h3

2 for h ∈M2⋃M1,1⋃M2,2 . (4.54b)

In the following, the three cases are further discussed in view of the classification
in Ch. 2. For the modeling with discontinuous right-hand sides, this makes use of the
following classification of the surfaces9 M1,2 ,M1,1 andM2,2 which are termed:

one-sided stable if trajectories move towards it from one side and stay therein,

one-sided transition if trajectories that are currently within the domain leave
it by the following instant, and

transition if trajectories approach the region, pass through it and continue on
the opposite side.

The three configurations for the example system are given in Tab. 4.1 in the column
Types of domains. For all cases M1,1 is a transition surface except for b22,11 ⋅ G = 0 .
Revisiting the example trajectory shown in Fig. 4.16 reveals that the evolution in the
interval 0 < t < 10, 000 s (the growth rates given by (4.49)) must be assigned to Case 1
and the trajectory from 10, 000 s ≤ t ≤ 10, 750 s to Case 3 of Tab. 4.1.

If the model is formulated with state jumps, the one-sided stable and one-sided
transition surfaces are replaced by

jump in stable surface if trajectories jump into it when they reach the jump
surface, and

8Details on the notation can be found in Ch. 3. The main idea behind the collection of numbers is that
a morphological change is associated with the disappearance of an edge. For instance, if the edges
bounding the area of the cubic faces on the truncated octahedron disappear, this means a transition to
a pure octahedron. This edge is given the number 12, 22 meaning that the edge lies between an h1-
and an h2-face and is bound by two h2-faces. Therefore, the unit normal of that region in state space is
denoted by b12,22 .

9Even though for the example at hand the mentioned domains are not surfaces as understood in everyday
language, we use it nevertheless because we consider for the nD case a manifold of codimension one
to be a surface in the state space.
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jump from unstable surface if trajectories leave the surface by jumping into
another surface and continuing their evolution from there,

respectively. The three configurations for the example system (Fig. 4.17) are sum-
marized in the last column of Table 4.1. As for the modeling with discontinuous
right-hand sides,M1,1 is a transition surface except for the special case b22,11 ⋅G = 0 .

Using the notion of the three different cases either for the modeling with discontin-
uous right-hand sides or using state jumps, the derivation of the population balances
that model the evolution of shape distributions rather than single crystal trajectories
is tackled below.

4.2.2 Population Balance Model for Cubic Crystals

In contrast to the population model that was presented for potassium dihydrogen
phosphate in Sec. 4.1.2, the state space of the cubic crystal example exhibits morpho-
logical manifolds on which crystals with either only cubic or octahedral faces exist,
M2,2 and M1,2 (or M′

2,2 and M′
1,2 for the modeling with state jumps), respectively,

and two different regions, namelyM1 andM2 separated byM1,1, in which the crys-
tal shape is qualitatively different. That is in particular, the volume computation,
Eq.s (4.54), is different in the regionsM1 andM2 . Therefore, in principle five differ-
ent kinds of crystals exist:

Octahedra existing inM1,2 (or alternativelyM′
1,2 for modeling with state jumps),

Truncated Octahedra existing inM1 ,

Cuboctahedra existing inM1,1 ,

Truncated Cubes existing inM2 , and

Cubes existing inM2,2 (orM′
2,2 for modeling with state jumps) .

The cuboctahedron existing inM1,1 can of course exist steadily only for the special
case b22,11 ⋅G = 0 , otherwise this shape is only assumed during the transfer fromM1
to M2 or vice versa. Number densities in M1 and M2 are in general 2D, whereas
they are 1D inM1,2 (M′

1,2) andM2,2 (M′
2,2). Therefore, number densities are defined

separately for the four crystal types:

fz2(z2, t) (or fh2(h2, t) for model with jumps) for the octahedra (h2-faces) (4.55a)

f1(h, t) for the truncated octahedra (existing inM1) (4.55b)

f2(h, t) for the truncated cubes (existing inM2) (4.55c)

fz1(z1, t) (or fh1
(h1, t) for model with state jumps)for the cubes (h1-faces) . (4.55d)

The introduction of the z’s in the subscripts of the number densities will be explained
in Sec. 4.2.2.1.

4.2.2.1 Modeling with Discontinuous Right Hand Sides

We assume that the particles exist within the morphology cone or on its boundaries,
i.e. the concept of state jumps is disregarded. Number densities are introduced as
stated in (4.55). On the boundaries of the morphology cones, the densities are essen-
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tially one-dimensional. For this, new coordinates are introduced whose basis vec-
tors have the same length as the basis vectors of the h-coordinates. That is, for a
z-coordinates we find in general:

z =
√

h2
1 + h2

2 . (4.56)

Inserting the definition equations specifying the domains, Eq.s (4.41), yields

z1 = 2h1 (points onM2,2) (4.57)

z2 = 2h2 (points onM1,2) . (4.58)

Without loss of generality we consider Case 1 (see Table 4.1) in which the growth
vector points towards M2,2 . The population balance for the interior domains M1
andM2 reads

∂ f1

∂t
+ ∂G1 f1

∂h1
+ ∂G2 f1

∂h2
= δ(h − hnuc) , for h ∈M1 (4.59a)

∂ f2

∂t
+ ∂G1 f2

∂h2
+ ∂G2 f2

∂h2
= δ(h − hnuc) , for h ∈M2 (4.59b)

subject to the initial conditions

f1(h, t = 0) = f1,0(h) (4.59c)

f2(h, t = 0) = f2,0(h) . (4.59d)

Within the one-sided transition surfaceM1,2 particles practically do not exist except
if they are added at the beginning or later by nucleation. If the latter is not the case,
we find according to Sec. 2.6.2,

fz2(z2, t) = { fz2,0(z2) for t = 0
0 for t > 0

. (4.60)

The seed population in M1,2 is added to the interior population of M1 at t = 0, i.e.
the initial condition (4.59d) is changed to:

f1(h, t) = f1,0(h)+ fz2,0(z2(h2))δ(h1 −
√

3h2)
∂z2

∂h2
±
=2

, (4.61)

see also Eq. (2.74). The population balance for the one-sided stable surface M1,2 to
which particles are added, read, if nucleation in this region is omitted (see the deriva-
tion in Sec. 2.6.2.4, Eq. (2.76)):

∂ fz1

∂t
+

∂Gz1
1 fz1

∂z1
= (G f2(h, t)) ∣M2,2 ⋅ b21,11 (4.62)

with the initial condition
fz1(z1, t = 0) = fz1,0(z1) . (4.63)
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The velocity in z1-coordinates is directly obtained by differentiation of Eq. (4.57) with
respect to time, i.e.

Gz1
1 = 2G1 . (4.64)

The particles are directly passed through the transition surfaceM1,1 . Therefore, it is
not necessary that a number density is defined on this line. It serves only to couple the
population balances forM1 andM2 . In view of Eq. (2.61) and under the assumption
that nucleation does not take place directly withinM1,1 , the coupling equation is

(( f1G) − ( f2G)) ⋅ b22,11 = 0 for h ∈M1,1 . (4.65)

This completes the discussion on modeling with discontinuous right-hand sides for
the moment until the implementation using state jumps is finished for this example.
For the sake of brevity, only Case 1 is presented in detail since the other two cases do
not add further complexity to the model equations and can be easily derived if the
steps are followed equivalently.

4.2.2.2 Modeling with Jumps in State Space

Introducing the coordinates z1 and z2 allows to track the evolution of the popula-
tion directly on the facets of the morphology cone. However, the transformation to
surface-intrinsic coordinates is disadvantageous because the original model formu-
lation in terms of the h-vector is lost. As discussed for the single crystal case, the
introduction of state jumps avoids the introduction of new coordinates. In Tab. 4.1,
the dynamic properties of the lower dimensional manifolds (see also Fig. 4.17) for the
three different cases induced by the orientation of the growth vector G . As for the
previous model formulation, we consider only Case 1 since the other cases do not
add further complexity and are easily derived likewise.

The population balance equation for the interior domains of the cone are given by
Eq. (4.59). Their coupling on the common boundaryM1,1 is described by Eq. (4.65).
M′

1,2 (see Fig. 4.17) being an unstable surface from which particles jump directly to
M1,2 , its dynamics reduced to the transfer of the seed population fromM′

1,2 toM1,2 if
nucleation inM′

1,2 can be neglected. Following Sec. 2.6.3.3, the initial number density
fh2,0(h2) along the h2-coordinate is lifted to a true 2D number density along the h2-
coordinate:

fh2,0(h) = fh2,0(h2)δ(h1 −
√

3h2) h ∈M′
1,2 , (4.66)

derived from the general case stated in Eq. (2.90).10 The jump fromM1,2 to the cone’s
facetM′

1,2 is given by

h∣M′
1,2

= [ bT
12,22

0 1
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ξ1,2

h∣M1,2 , (4.67)

where bT
12,22 = 1

2(1,−
√

3) , see Fig. 4.16. However, for the present case, the jump is
performed fromM′

1,2 toM1,2 , i.e. the transfer

h∣M1,2 = Ξ−1
1,2h∣M′

1,2
(4.68)

10Note that the surface intrinsic coordinates, z ∈ Rn−1 in Eq. (2.90), is h2 in the present case, i.e., the Jacobian
matrix determinant is unity.
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is required. In view of Eq.s (2.91) and (2.92), this yields

f1(h, t = 0) = f1,0(h)+ fh2,0(h2)δ(h1 −
√

3h2)det(Ξ−1
1,2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=2

. (4.69)

According to Tab. 4.1 (Case 1)M′
2,2 is a stable surface to which particles jump from

M2,2 . The relationship between a point on M′
2,2 to the corresponding position on

M2,2 is given by

h∣M′
2,2

= [ 0 1
bT

21,11
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ξ2,2

h∣M2,2 , (4.70)

where bT
21,11 = 1

2(−
√

3, 1) . Using Eq. (2.89), the evolution of the number density is
given by

∂ fh1

∂t
+

∂G1 fh1

∂h1
= (G f2(h, t)) ∣M2,2 ⋅ b21,11 det(Ξ2,2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 1

2

, (4.71)

when nucleation is ignored. This completes the derivation of the population balances
required to represent the dynamics of the number density if the particles are modeled
to not exist on the boundaries of the morphology cone but rather jump into linear
manifolds on the coordinate axis. The similarity of the approaches becomes evident
when the population balances are compared. Obviously, the population balances for
the interior domains of the cone are equal. Comparing the transfer of the number
density from an unstable manifold, as stated in Eq.s (4.61) and (4.84), it becomes
clear that both approaches yield the same modified initial condition for the number
density inM1 , except that the number density on the lower dimensional manifold is
directly given in terms of the h-coordinate system for the modeling with state jumps.
Comparing the population balances forM′

2,2 andM2,2 , see Eq.s (4.62) and (4.86), it
turns out that with the transformation

z1 = 2h1 (4.72a)

fz1 = 2 fh1
(4.72b)

Eq. (4.62) can be converted to Eq. (4.86). The advantage of the formulation using state
jumps for the derivation, Eq. (4.86), is that the resulting equations are directly given
in terms of h-coordinates rather than in surface-specific coordinates, z, on the facets
of the morphology cone. For that reason the derivation of the generalized popula-
tion balances, see next section, applicable to n-dimensional state spaces is taken out
directly using state jumps.

4.3 Population Balance Model for Faceted Crystals –
Generalization

The generalization of the concept of population balances taking appearing and disap-
pearing crystal faces into account can be sketched by following the procedure given
for the 2D example of the previous section. At first, a single crystal analysis as de-
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scribed in Ch. 3 must be taken out. This procedure requires as inputs only the orienta-
tion vectors of the crystal’s face normals, collected in the matrix N (Eq. (3.2)), and pos-
sibly the symmetry relationships expressed by a mapping matrix M (see Eq. (3.31)).
From this, the morphology cones and the joint morphology cones are derived. This
involves in particular the determination of the normals of the facets of the morphol-
ogy cones which are divided into two groups. The first one surrounds the joint mor-
phology cone and the other one divides the joint morphology cone into the several
morphology cones. On the former cone facets, states are found whose crystal shapes
exhibit less faces than in the interior of the cone, i.e. this group of normal vectors is
collected in the matrix B∅, see Eq. (3.29). The latter ones, their normals being com-
bined in B↷, see Eq. (3.30), serve as transition manifolds between morphologically
distinct regions in the state space. The region of a morphology cone is denoted by

Mλ = {h ∶ B∅λ h < 0, B↷λ h < 0} (4.73a)

= {h ∶ Bλh < 0} , (4.73b)

where B∅λ and B↷λ contain rows of the joint morphology cone matrices B∅ and B↷ ,
respectively, see Sec. 3.1. Bλ is the matrix obtained from stacking B∅λ and B↷λ , see
Eq. (3.20). The (n−1)-dimensional facets of this cone can be either transition surfaces,
i.e., involve the fulfillment of a condition that a compound vertex appears

M↷
λ,j = {h ∶ Bλh < 0}⋂{h ∶ b↷λ,j ⋅ h = 0} (4.74a)

or a condition that implies the disappearance of a face

M∅
λ,k = {h ∶ Bλh < 0}⋂{h ∶ bi→∅

λ,k ⋅ h = 0} . (4.74b)

The notation for the unit normals of the cone facets is here adapted in accordance to
the linear facet enumeration scheme, i.e. b↷λ,j and bi→∅

λ,k rather than b ↷
ij,kl and bi→∅

ij,kl
as in Sec. 3.1. For the 2D example discussed in the previous section, the morphol-
ogy cones M1 and M2 were each enclosed by one transition and one disappear-
ance facet. Though in higher dimensions the number of such facets is larger, and
(n − 1)-dimensional facets are themselves bound by (n − 2)-dimensional facets and
so forth, for the generic derivation of the model equations it suffices to consider an
n-dimensional cone Mλ and two representative facets M∅

λ,k , M↷
λ,j . The latter one

constituting the boundary to a neighboring morphology cone Mλ+1 as depicted in
Fig. 4.18. Without loss of generality we assume that if a particle reaches M∅

λ,k the
i-th face disappears. As it was shown for the 2D example in the previous section, the
modeling using state jumps from and into lower dimensional subspaces spanned by
the basis vectors (rather those spanned by the cone edges) yields model equations
directly in terms of h-coordinates and the introduction of a separate coordinates sys-
tem, z-coordinates, on the cone facet can be spared out.

In principle, the growth vector G can point towards a facet or away from it gen-
erating two generic cases, see Fig. 4.18, yielding different sets of equations for the
number density evolution. Both cases are further specified in Tab. 4.2. The transition
from or to the coneMλ through the facetM↷

λ,j occurs in any case. Case 1 involves
the transition of particles existing inM∅ ′

λ,k toM∅
λ,k whereas for Case 2 the reverse sit-
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Figure 4.18: Generic cone configuration for n-dimensional state spaces.

Table 4.2: Dynamic characteristics of n-dimensional shape domains.

Condition Types of domains
Case 1 b↷λ,j ⋅ G > 0 and bi→∅

λ,k ⋅ G < 0
→ G points towards M↷

λ,j
and fromM∅

λ,k away

M↷
λ,j is a transition surface through

which particles flow fromMλ into the
coneMλ+1 andM∅′

λ,k is a one-sided un-
stable surface from which the particles
jump directly toM∅

λ,k to continue inM
Case 2 b↷λ,j ⋅ G < 0 and bi→∅

λ,k ⋅ G > 0
→ G points from M↷

λ,j away
and towardsM∅

λ,k

M↷
λ,j is a transition surface through

which particles come fromMλ+1 flow-
ing intoMλ andM∅ ′

λ,k a one-sided sta-
ble surface to which particle jump from
M∅

λ,k leaving the domainMλ

uation occurs. Before the derivation of the population balance equations is taken out
the number densities are defined as follows:

fλ(h, t) for the population withinMλ (4.75a)

fλ+1(h, t) for the population withinMλ+1 (4.75b)

f∅ ′
λ,k (h′, t) for the population withinM∅ ′

λ,k . (4.75c)

For the sake of brevity, the following equations disregard nucleation in any domain of
the state space. However, this effect is easily incorporated in the model equations as
the general source terms occurring in any type of manifold are thoroughly considered
in Ch. 2. In order to simplify the notation, the geometrical state vector h is split
into the scalar hi for the distance of the (potentially) virtual face i and the (n − 1)-
dimensional vector

h′ = (h1, . . . , hi−1, hi+1, . . . , hn)T (4.76)

containing the distances for the remaining real faces, see Fig. 4.18. That is, the popu-
lation existing inM∅ ′

λ,k can be addressed using h′, see Eq. (4.75c).
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4.3.1 Case 1 – Jump from Unstable Surface

The population balances for the fully dimensional interior domainMλ andMλ+1 are
directly derived from the general continuous case as given in Eq. (2.58a):

∂ fλ

∂t
+∇h ⋅ (G fλ) = 0 , for h ∈Mλ (4.77)

∂ fλ+1

∂t
+∇h ⋅ (G fλ+1) = 0 , for h ∈Mλ+1 , (4.78)

where their coupling at the cone facetM↷
λ,j is according to Eq. (2.61)

( fλG − fλ+1G) ⋅ b↷λ,j = 0 for h ∈Mλ,j (4.79)

The initial populations within Mλ and Mλ+1 are denoted as fλ,0 and fλ+1,0 . The
initial population accommodated inM∅ ′

λ,k , defined by the number density f∅ ′
λ,k,0(h′)

must be added to the initial population at the boundary ofMλ . For this, the number
density f∅ ′

λ,k (h′, t) is lifted to the full state space according to Eq. (2.90):

f∅ ′
λ,k (h, t) = f∅ ′

λ,k (h′, t)δ(bi→∅
λ,k ⋅ h) , (4.80)

still being defined onM∅ ′
λ,k . The shift to the domainM∅

λ,k is obtained with the help
of the jump function, relating points onM∅

λ,k with their counterparts onM∅ ′
λ,k :

h∣M∅ ′
λ,k

= Ξλ,kh∣M∅
λ,k

, (4.81)

where
Ξλ,k = [e1, . . . ei−1, bi→∅

λ,k , ei−1, . . . en]
T

, (4.82)

with the basis vectors ej containing zeros on all positions except on the j-th one. For
the present case, the transfer fromM∅ ′

λ,k toM∅
λ,k is needed, i.e., the inverse function

to the one given in Eq. (4.81):

h∣M∅
λ,k

= Ξ−1
λ,kh∣M∅ ′

λ,k
. (4.83)

In view of Eq.s (2.91), the number density f∅ ′
λ,k (h, t) is shifted toM∅

λ,k by

f∅λ,k(h∣M∅
λ,k

, t) = f∅ ′
λ,k (h∣M∅ ′

λ,k
, t)det(Ξ−1

λ,k) . (4.84)

Inserting Eq. (4.80), and adding this number density to the initial number density of
Mλ , we arrive at:

fλ(h, t = 0) = fλ,0(h)+ f∅ ′
λ,k (h′, t)δ(bi→∅

λ,k ⋅ h)det(Ξ−1
λ,k) . (4.85)

4.3.2 Case 2 – Jump into Stable Surface

As for Case 1, the interior of the morphology cones is determined by continuous evo-
lution. For the regionsMλ andMλ+1 the population balances are equivalent to the
previous case, stated in Eq.s (4.77) and coupled by Eq. (4.79). The dynamics inM∅ ′

λ,k
is coupled to the number density inMλ , because particles reachingM∅

λ,k are trans-



106 Chapter 4. Shape Evolution of Crystal Populations

ferred to M∅ ′
λ,k instantaneously by a jump, see Fig. 4.18, i.e. feeding the population

inM∅ ′
λ,k . Using Eq. (2.89) and the jump function (4.81), the evolution of the number

density is given by

∂ f∅ ′
λ,k

∂t
+∇h′ ⋅ (G′ f∅ ′

λ,k ) = (G fλ(h, t)) ∣Mλ,k ⋅ b
i→∅
λ,k det(Ξλ,k) , for h ∈M∅ ′

λ,k , (4.86)

where G′ = (G1, . . . Gi−1, Gi+1, . . . Gn)T .

4.4 Summary

In this chapter the multivariate population balances accounting for crystal shape have
been derived. At first, the example of potassium dihydrogen phosphate has been
studied, where the conditions have been restricted such that no faces on the crystals
can disappear. In this sense, it is a rather simple case which nonetheless captures
the basic concept of multidimensional modeling. The more challenging case of dis-
appearing faces, leading to the possible reduction of the dynamic part of the state
space to morphological manifolds on the facets of the morphology cone, was then
addressed in order to exemplify the derivation of population balances in subspaces.
Clearly, the general mechanisms studied in Ch. 2 enabled for a rather straightfor-
ward development of the equations. In the last section this concept was extended to
n-dimensional state spaces. The universal and detailed treatment of the state space
structure for arbitrary convex crystals taken out in Ch. 3 together with the tools pro-
vided by Ch. 2 made it possible to master the complexity by providing the generic
cases.



I call our world Flatland, not because we call it so, but to make its
nature clearer to you, my happy readers, who are privileged to live
in Space.

Edwin Abbott Abbott
Flatland – A romance of many dimensions

§1 – Of the Nature of Flatland

Chapter 5

Observation of Crystal Shape

Modeling of the evolving shape distribution in a crystallization process as delineated
in the previous chapter is only useful when it can be equipped with proper kinetic
expressions. If this is available, the shape distribution can be (pre)computed for dif-
ferent process conditions. For example, based on a population balance model, the
shape distribution could be reconstructed from the evolution of the supersaturation
and seed distribution. Due to the complexity of numerous interacting process vari-
ables governing the dynamics of crystallizers, the quantitative knowledge of kinetic
parameters as a function of a full set of process variables is usually not available. Par-
ticularly crystal shape can be perturbed dramatically by minor changes in impurity
concentration or simply through the switching to a different supersaturation level,
see for instance the review by Sangwal (1998), or different original research articles
by Boerrigter et al. (2004); Gilmer (1980); Weissbuch et al. (1991, 1995) and others. Be-
cause of the high sensitivity, it is necessary to observe a crystallization process with
regard to the shape features. However, compared to size analysis, the monitoring of
shape is far less developed for good reasons of which to our opinion the most impor-
tant ones are: (i) Sensors enabling the quantification of the full 3D shape, examples
are given below, require thorough sample preparation and are costly; (ii) In situ and
ex situ microscopes deliver a 2D information from which it is rather difficult to extract
quantitative information.

The aim of this chapter is to develop a scheme with which the 3D shape in terms
of the geometrical state vector h can be estimated from a 2D photograph of the crys-
tal. The acquisition of these images can be performed with different commercial de-
vices of which the probe QICPIC, built and sold by the company Sympatec GmbH
(Clausthal, Germany) has been chosen because it yields high quality images with re-
gard to sharpness of the particle projection boundary. The only information which is
extracted from the photo to estimate the 3D shape is the boundary curve (contour) of
the 2D particle projection. If the 3D crystal is not attached to others, i.e., it is a single,
convex crystal, the projection from any orientation is a convex region as well. If the
face orientations are known, the set of projection shapes from different directions of
a crystal with fixed geometrical state, can be precomputed. This knowledge can in
turn be used conversely to relate the 2D projection to the 3D object. Of course, this
inversion is not always unique, that is, the estimation is subject to possibly large – but
quantifiable – errors.

107
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The following Chapter is organized as follows. In Sec. 5.1 basic techniques for
the measurement and estimation of 3D structures are presented in order to clearly
classify the techniques discussed in the then following sections. The specification of
the form of 2D projections in terms of parameters, so called shape descriptors, is part
of the Sec. 5.2. From the shape descriptors of the 2D projection, the 3D shape shall be
obtained which is subject to Sec. 5.3 which includes the especially important analysis
on the error of this estimation scheme. In Sec. 5.4 an image processing procedure
is sketched and the proposed estimation scheme is applied to the so treated images
recorded in experiments. Finally, Sec. 5.5 summarizes the chapter.

5.1 Crystal Observation

The information we are aiming for in order to be able to compare a real experiment
to a simulation is the 3D crystal shape, at best expressed in terms of the orientations
of the crystal faces and their distances to the crystal center, see Ch. 3. However, there
does not exist a probe with which this information can be obtained directly, neither
for an individual crystal, nor for a full population. Different techniques are available
to determine the real 3D crystal shape or in general the 3D structures of objects un-
der investiagation, namely tomography and sectioning. These two major directions are
shortly explained in order to differentiate it from a third approach – in the following
called estimation from projection – to which this work contributes in major parts of this
chapter.

P1 P2 

S1 S2 S3 

(a) 

(b) 

(c) 

Figure 5.1: Techniques to elucidate 3D structures. (a) Tomography uses a number of im-
ages, e.g. P1, of the object generated with a pentrating wave from different angles. (b) Op-
tical sectioning relies on images which have been recorded in different focal planes (S1−3).
(c) The estimation approach followed in this work is based on a single projection of the
object to a 2D plane (P2).
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5.1.1 Tomography

The 3D geometry of a crystal can be represented by a 3D array of voxels1 to which
a numerical value (grayscale level) is assigned allowing for the distinction between
(possibly different kinds of) solid material and other surrounding matter. Such a
precise, non-parametric description of the crystal can be obtained with the help of
tomograpy. Tomography reconstructs a 3D object from a set of images taken from
different directions. For this, a wave is generated that penetrates through the ob-
ject and is partially absorbed, depending on the density and kind of material present
within the sample. From every perspective, a different image is obtained since the
absorption pattern of the waves varies for different directions for a nonhomogeneous
and nonspherical object. Hence, the set of grayscale images collected in this way
contains information about the inner structure of the sample. The Radon transform
captures this concept mathematically, and by using the inverse Radon transform, the
photographed 3D structure can be restored from the set of images (Gonzalez and
Woods, 2008). Nowadays, more advanced tomographic restoration algorithms su-
perior to the Radon transform exist, for example the direct Fourier reconstruction,
backprojection methods and iterative reconstruction algorithms (Midgley et al., 2007;
Gonzalez and Woods, 2008; Buzug, 2008). Tomographs are in first order classified by
the wave which is sent through the object. For medical applications X-Rays (CT), ra-
dio waves (MRI) and positrons (PET) and combinations thereof are most commonly
used. The resolution currently reaches about 10 µm with commercially available de-
vices (Buzug, 2008) and can be used to determine size distributions (Jerram et al.,
2009). Specialized X-Ray microscopes yield resolutions down to 15 nm (Midgley et al.,
2007; Chao et al., 2005). For even smaller structures, the electromagnetic wave is re-
placed by a penetrating electron as used in transmission electron microscopy (TEM).
This technique is thus called 3D TEM or electron tomography (Koster et al., 2000;
Midgley and Weyland, 2003; Weyland et al., 2001; Midgley et al., 2007). The resolu-
tion achieved with this technique, for example for studying of catalyst structures, lies
in the sub-nanometer range (Ward et al., 2005; Tariq et al., 2011).

Tomography offers promising applications with regard to shape characterization
and quantification of dispersed phase systems in general. However, its utilization is
costly and specialized staff must be trained to ensure correct and efficient operation.
The major disadvantage is that it requires a thorough, time intensive sample prepara-
tion, which may alter the sample. Furthermore, with current devices it is not possible
to image 3D structures (e.g. crystal suspensions) in motion with the necessary spa-
tiotemporal resolution eligible for dynamic shape distribution measurements. This is
primarily due to the fact that a large number of images must be taken from different
directions if a high-quality image shall be obtained. By the virtue of the ever evolving
tomographic techniques with regard to speed and spatial precision and as the devices
may become less costly, one can expect it to be applied as a powerful and widespread
method to investigate dispersed phase systems in the future.

1In 3D the equivalent to a pixel in 2D.
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5.1.2 Optical Sectioning

By dissecting a crystal population – at best fixed in a glassy solid – mechanically into
thin slices, one obtains an immediate impression of the inner and outer geometry of
the crystals. Re-stacking of the measured quasi 2D shapes of the slices to a 3D ob-
ject, the crystal geometry can be reconstructed accurately. Serial sectioning is used in
volcanology to analyze the spatial spreading and the shape- and size distributions of
mineral grains in igneous rocks (Jerram et al., 2009). This approach is experimentally
much more expensive than using a single 2D slice with which one usually tries to de-
termine the size distribution with the help of a shape model, for example as described
by Higgins (2000) and Holden et al. (2009) for olivine in kimberlite. Though useful
in volcanology, mechanical slicing does not come into question to analyze samples of
industrial crystallizers because they are not fixed in a glassy phase and the process of
mechanical slicing is too expensive. Instead, non-destructive slicing, making use of
optical means only is better suited to obtain shape information.

For transparent crystals, suspended at a low density, images can be acquired in dif-
ferent focal planes with a classical optical bright field microscope. The so obtained
image stack is combined to a 3D array which reproduces the underlying 3D struc-
ture. For example, Castro et al. (2003) use this technique to measure size distribu-
tions of microlites in volcanic glass. Modern microscopic techniques, heavily used in
3D imaging of biological structures, namely laser confocal microscopy, allow for the
acquisition of detailed structure information of at least partly transparent samples
(Conchello and Lichtman, 2005; Wilson, 2011). Roughly speaking, this method does
not record the fully exposed object at one instant but sends light waves of a defined
wavelength to a particular part of the object. The region can be controlled in all three
spatial directions. Sending light waves to a particular point, only a small region is
illuminated and the emitted wave is observed with the microscope. A further devel-
opment of this technique causes – in the specially prepared sample – fluorescence of
markers adhering at particular substances. The lightening and recording of the sam-
ple is performed point by point, which avoids the interference of light emitted from
different parts of the sample. Combining the recorded information to one 3D array,
yields a high-quality image of the object. Biological structures can be observed with
this technique with a spectacular clarity, see for instance the book by Pawley (2006).
The application of this method to crystals is in principle possible as shown by Vivares
et al. (2007) and Fukura et al. (2004). The recorded geometry data could be used to
identify different crystal planes and the geometrical state vector as Singh et al. (2010)
presented in an in-silico study.

Optical sectioning and particularly laser scanning microscopy is a promising meth-
od to elucidate the 3D shape of crystals. However, the recording of 3D images cur-
rently takes a few minutes for a crystal of a few 100 µm in size. Thus, it is unrealistic
that a crystal population in a moving suspension can be imaged with the necessary
accuracy in a short time. As with tomography, optical devices still undergo a vast
evolution and the temporal resolution should in the future reach a level that makes
true 3D structure information available in large quantities at a high sampling rate.
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5.1.3 2D Observation

Though the full 3D shape information is desirable to be available in future devices,
this work is focused on extracting useful information from a single 2D projection
of the particle. The main advantage is the comparatively easy probe operation and
handling. In principle, three sampling techniques can be distinguished:

Offline Imaging of Dry Samples A sample of the crystal suspension is taken, fil-
tered, dried, dispersed on a microscope slide and imaged with a standard lab-
oratory microscope. Classical optical microscopes, available as standard equip-
ment in the lab, offer the least costly method to implement this means of image
acquisition. The manual scanning of the microscope slide and image acquisi-
tion can be automatized using programmable stages, e.g. from Prior Scientific
Inc. (Rockland, MA)2. Malvern (Houston, TX)3 offers also a ready-to-use op-
tical microscope, for instance MORPHOLOGI G3 from Nikon, equipped with
an automatized stage, a dispersing unit for dry samples and image process-
ing software especially designed for particle analysis. Alternatively to dispers-
ing the crystal onto a microscope stage, systems with a vibratory feeder are
offered (QICPIC from Sympatc GmbH (Clausthal, Germany)4 and CAMSIZER

from Retsch GmbH (Haan, Germany)), which transports the crystals to a free
fall imaging shaft with a light source and a camera, see Patchigolla and Wilkin-
son (2009) and Brown et al. (2005). However well developed the automation
and thus possibilities to increase the number of measured crystals is, a careful
sample preparation is necessary, particularly involving drying, which may alter
the crystals (Puel et al., 1997). Further, for direct process control it is desirable to
record and process crystal images in-line or even in situ within the suspension.

In-line Imaging of Suspension The crystal suspension is pumped through a cuvette
which is installed on a microscope stage. The crystals within the suspension are
imaged while flowing through the cuvette which is possible due to a powerful
light source enabling a very short exposure time. This technique can in princi-
ple be installed on a standard microscope in the lab with custom-made cuvettes
as presented for instance by Patience and Rawlings (2001a); Eggers et al. (2008);
Kempkes et al. (2010) and Ferreira et al. (2011). However, this kind of ex situ
sensor is also available on the commercial market, for instance the QICPIC sys-
tem of Sympatc GmbH (Clausthal, Germany) equipped with a flow-through
cuvette. In-line imaging of the suspension usually yields a higher image qual-
ity than in situ probes because the particles are better aligned within the focal
plane of the optical system. However, this comes at the cost of an additional
sampling loop subject to the risk of clogging and selective sampling. Crystals
possessing low hardness may undergo breakage within the pump which is nec-
essary to convey the suspension into the flow cell. Also aggregation may occur
preferentially within feed pipes to the microscope. A further disadvantage oc-
curs for high-density suspensions which must be diluted with clear solution in
order to keep the suspension density low so that within an image, crystals that
are not merged in an aggregate do not overlap.

2http://www.prior.com/
3http://www.malvern.com/
4http://www.sympatec.com/
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In Situ Imaging of Suspension A camera is directly installed within the crystallizer,
thus taking images of the suspension directly in the growth environment. Com-
mercially available in situ sensors, e.g. PVM from Mettler-Toledo AG (Greifen-
see, Switzerland)5 or PARTICLEEYE from HiTec Zang GmbH (Herzogenrath,
Germany)6, can be installed directly in standard laboratory crystallizers. The in
situ microscope III-XTF by Sartorius Stedim Biotech GmbH (Göttingen, Ger-
many)7 is particularly developed for dispersed phase applications in biotech-
nology (Bluma et al., 2009; Prediger et al., 2011). An alternative to placing the
camera directly within the vessel is to install it outside the reactor at an imaging
window, e.g. Li et al. (2006); Larsen et al. (2006). The advantage of setting the
camera outside of the crystallizer is that it does not influence the growth envi-
ronment, particularly with respect to the flow-field. A disadvantage, however,
is that only crystals at the wall of the vessel can be seen. Clearly, in situ (or quasi
in situ) probes deliver the most immediate impression of the crystal population
since they can be observed directly in their growth environment without being
pumped through a sampling loop or even dried. Compared to in line imaging,
however, the quality of the acquired images is lower in the sense that only few
particles pass the window within the focal plane of the camera and thus posses
the desired sharpness necessary for quantitative, single particle based image
processing. Furthermore, if the suspension is of a high density, different over-
lapping particles can hardly be distinguished and opposite to in-line imaging it
is not even possible to dilute the photographed suspension.

The further processing of images obtained with which method whatsoever, can be
distinguished in two directions. The first one deduces shape and size measures from
the 2D projection and uses this information for further applications, for instance for
process monitoring, model calibration or quality control. This utilization of imaging
techniques is a rather simple but powerful means to gain better insight in a crystal-
lization process. The next section shall give a short overview on this. The second
direction which can be identified aims at reconstructing the true 3D shape from the
2D projection. In a further section, the relevant work on this – far less developed –
path is discussed.

5.1.3.1 Simple 2D Observation

Imaging or better to say visual inspection of particles is the oldest and most trusted
analysis practice in mechanical process engineering in general and specifically in
crystallization. The automated observation of the evolving crystal morphology has
been of interest to researchers for years over a widespread class of substances. Hence,
the following survey cannot be comprehensive but claims to give a representative se-
lection.

Size distribution analysis is of course the most prevalent task in particle image pro-
cessing. Monnier et al. (1996) use automatic image analysis in order to determine
the size distribution of samples which are taken online for adipic-acid crystallization.
The observed size distribution along with a calorimetric supersaturation measure-

5http://www.mt.com/
6http://www.hitec-zang.de/
7http://www.sartorius-stedim.de/
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ment has been used to identify a full population balance model of the crystallization
process. Puel et al. (1997) measure hydroquinone crystals dispersed on a microscope
slide in length and width to obtain 2D shape distributions of the population. They
discuss particularly the transient behavior of crystal habits in an industrial crystal-
lizer. Patchigolla and Wilkinson (2009) use images of α and β L-glutamic acid and
monosodium glutamate monohydrate obtained with CAMSIZER to measure size and
shape distributions. They compare the measured size distribution with results ob-
tained from manual microscopic image analysis, ultrasonic attenuation spectroscopy
and laser diffraction spectroscopy and find all measurements in reasonable agree-
ment. Alander et al. (2004, 2003) investigate the agglomation behavior of paraceta-
mol (acetaminophen) in different solvents with the help of off-line microscopic im-
ages. Not only scalar shape measures of the identified particles are taken but also the
intensity variation of the grayscale within the particle region. For the image analysis
they used commercial software, namely Image-Pro-Plus® by MEDIACYBERNETICS8.
Sucrose crystallization from water has been investigated with regard to crystal mor-
phology by Ferreira et al. (2011) with a custom flow-cell equipped with a microscope
camera. The recorded data is used for a mass-based growth rate determination at
different impurity concentrations (calcium chloride and D-fructose). Similarly to the
aforementioned study of Alander et al. (2004) also the agglomeration behavior in
chemically differently environments is studied.

A couple of papers with qualitative image analysis studies has been published by
the groups of Wang and Roberts: In De Anda et al. (2005) the segmentation of images
obtained from Mettler-Toledo’s PVM-probe and subsequent identification of particle
regions is discussed. In De Anda et al. (2005) and De Anda et al. (2005) a pragmatic
approach is used to distinguish α and β polymorphs of L-glutamic acid on the basis of
Fourier descriptors together with a neural network. In Wang et al. (2007), the length-
and width growth rates of needle shaped L-glutamic acid crystals are estimated over
a small supersaturation range (0.47 − 0.51) taken at seemingly arbitrary instances. In
Wang et al. (2008) growth laws are presented on this small data basis of six mea-
surements at virtually the same supersaturation level. Furthermore, the titles of their
work, e.g. ’Real-Time Measurement of the Growth Rates of Individual Crystal Facets
Using Imaging and Image Analysis – A Feasibility Study on Needle-shaped Crystals
of L-Glutamic Acid’, pretend that face specific growth rates are measured. However,
within the text the authors withdraw the announcement from the title and admit that
with their method only growth rate in length and width have been measured by ne-
glecting for instance the influence of crystal orientation. Though from studying the
titles of a number of publications particularly those by the above mentioned groups it
may seem that detailed crystal shape evolution measurements on a population basis
have reached a mature status but in fact the authors themselves recognize the fact
that this is not the case.

5.1.3.2 Estimation of the 3D State from the 2D Projection

When the 3D geometrical state of the crystal has to be reconstructed from a single 2D
image, only model based methods can be used in contrast to non-parametric shape
quantifications of true 3D sensors. The model is needed because features of the pro-

8http://www.mediacy.com/
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jection can then be used as an indicator for the 3D shape, that is, the space of possi-
ble objects throwing the projection is confined to those which are as well obtainable
by the shape model. Shape recognition in grayscale in-situ images of a crystal sus-
pension has for instance been discussed by Larsen et al. (2007) and Larsen (2007).
The method presented therein mainly relies on the detection of linear features in
the grayscale image and is designed for well faceted high aspect-ratio crystals. A
further development is capable of reconstructing wire frame models of the crystals
with which crystal morphologies can be estimated (Larsen et al., 2006). Mazzotti and
coworkers developed a flow-through microscope in which the passing particles can
be seen from two different directions (Kempkes et al., 2010). Based on former work
(Eggers et al., 2008) which estimated the height and width of needle-like crystals from
a photograph from a single direction which was also applied to ascorbic acid crystal-
lization, they estimate the height, width and depth distribution, i.e., a 3D property
distribution, for glutamic acid and ascorbic acid crystals using a 4D axis length dis-
tribution (Eggers et al., 2009). The strength of the approach followed by Mazzotti and
coworkers is the validation against simulated measurements in order to verify the
correctness of the applied estimation scheme which relates the projected data to the
full 3D shape. Clearly, this verification problem does not arise in the context of the
previously discussed ’simple 2D observation’ since it is not the aim of that approach
to identify the 3D shape. One weakness of the work of Mazzotti and coworkers is
the fact that only the major and minor axis lengths of the projections are used to as-
sess the 3D shape model. In this sense, the present work can in a certain sense be
seen to further develop the proposed approach on a larger data basis. Another dis-
advantage of the work of Mazzotti and coworkers is that the orientation distribution
must be known in order to achieve correct results. In the hereafter proposed method,
this is not necessary, i.e. the method can be applied regardless of possibly existing
preferential orientations.

Estimation in this work In order to identify the shape, the crystal geometry model
in terms of the state vector h is used. Clearly, h is the quantity we wish to measure.
An additional difficulty to this is that the orientation of the crystal in space has a
decisive influence on the shape of the photoprojection but is, depending on the sensor,
a more or less stochastic process. In practice, the acquisition of images is performed
with flow-through microscope as discussed above. For the design and evaluation of
the estimation scheme, however, synthetic images have been generated so that the
measured state and orientation can be directly and quantitatively compared to the
actual state.

The matching of a crystal projection with the actual crystal shape constitutes a
highly nonlinear optimization problem which is tractable by different means. Using
continuous, gradient-based optimization techniques in orientation and geometrical
state space would be a possibility, but the starting point must be chosen well beneath
the true values in order to avoid the solver to run into a local minimum. Global
optimizers using heuristic or stochastic techniques require a large number of rela-
tively costly function evaluations and thus the estimation of a large number of crystal
shapes becomes infeasible. Therefore, in this work a lookup table is used in which
the shape descriptors as functions of state and orientation are precomputed. With
this it is also possible to go the inverse way: the determination of state and orienta-
tion which corresponds to a specific descriptor. This is a commonly used approach in
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Figure 5.2: The projection of a 3D convex crystal to a 2D plane produces a convex region
on the plane whose shape depends on the shape of the crystal (essentially the geometrical
state vector h and the orientation of the crystal relative to the plane. The same crystal shape
projected from different perspectives (left and middle). Different shapes photographed
from the same direction (middle and right).

object recognition (DeMenthon and Davis, 1995, 1992) and has for instance been used
to distinguish crystal polymorphs (De Anda et al., 2005; Li et al., 2006).

Before the estimation method is described in detail, the next Sec. gives an introduc-
tion to shape descriptors which shall be used to quantify a projection of a 3D particle.

5.2 Shape Descriptors

Crystals that are observed with microscopes are viewed from one perspective and
essentially a projection of the particle can be seen, see Fig. 5.2. Though there is a
huge information content in the grayscale landscape within a particle, see for instance
Fig. 5.20, this information is particularly sensitive to the system under consideration,
complex to analyze and difficult to interpret by quantitative means. Therefore, we fo-
cus on the shape of the projection which is given by its boundary curve; also referred
to as contour. This curve is determined by the shape of the crystal and its orientation
in space, see Fig. 5.2. The same crystal shape can produce clearly different contours
depending on the orientation from which the projection is taken. However, different
crystal shapes, projected onto the 2D plane from the same direction usually produce
distinct projections. Hence, the projection can be used as an indicator for the shape of
the original 3D crystal shape. But the inversion from the 2D to the 3D shape is usually
not unique.

For a convex crystal, the boundary curve is determined by the convex hull of the
projection of the crystal vertices which are connected by straight lines. I.e., the crystal
projection exhibits characteristic features reflecting features of the original 3D state.
Essentially, scalar and vector-valued shape descriptors are distinguished. Scalar mea-
sures for the shape of the projection are for example :

• Solidity, the ratio between actual and convex area

• Aspect ratio, the ratio between maximum and minimum Feret diameter
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• Convexity, the ratio between convex perimeter to perimeter

• Circularity, the ratio between actual area to the area of a circle with the same
perimeter

• Eccentricity, the ratio between major and minor axis lengths or the ratio be-
tween the major and minor side length of the smallest box containing the parti-
cle .

Definitions of these descriptors can for instance be found in Gonzalez and Woods
(2008); Alander et al. (2003); Burger and Burge (2008) and also in the Matlab manual
under the help document for the function regionprops (MathWorks, 2011). Help-
ful are also manuals of microscopes and image processing software, e.g. Sympatec
(2006); MathWorks (2009); Cybernetics (2005). Note that shape descriptors tend to be
defined in different ways by different authors/companies. For a comparison between
measurements taken by different devices and computer programs, it is thus always
necessary to agree on one definition of the shape descriptor. Scalar shape descriptors
are of course very useful in quantifying the shape of a projection in a pragmatic and
simple way. Particularly shape distributions can be produced in an straightforward
way and the structure evolution of particles can be observed in such a manner, as
for example shown in Borchert and Sundmacher (2011a). Multiple scalar shape de-
scriptors can be assembled to a descriptor vector which is a point in the descriptor
space involving for example also a quantity for size. Therein, a number density can
be identified whose evolution reveals the structure evolution in a rather detailed way
(Borchert and Sundmacher, 2011a).

Though scalar shape descriptors can be helpful for classification, they are a rather
coarse measure compared to the rich information that is exhibited by the full pro-
jected shape. For the identification of the 3D state, a descriptor carrying a more de-
tailed shape information is requisite. Inevitably, vector valued shape descriptions
have to be employed. Clearly, this information must be extracted from the bound-
ary curve whose detailed deduction from the 3D object is discussed next. In the
then following section the signature and the abstraction of the same – making up
the information-rich descriptor vector we are aiming for – is introduced.

5.2.1 2D Boundary Curve

The shape of the crystal is given by a point set defined by the geometrical state h
and the orientation N of the planes, or – which is a more appropriate terminology in
crystallography – the crystal faces, see Ch. 3:

S = {r ∶ N r ≤ h} . (3.1)

Alternatively, this set can be expressed as the convex domain bound by the crystal
vertices, the so called V-representation, see Ziegler (2006):

S =
⎧⎪⎪⎨⎪⎪⎩

r ∶ r =
nS
∑
j=1

αjvj ,
nS
∑
j=1

αj = 1
⎫⎪⎪⎬⎪⎪⎭

, (5.1)

where the crystal vertices, vj , can be calculated from the plane orientations, N, and
the geometrical state vector, h , using Eq. (3.6). As discussed in Sec. 3.1, the number
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of vertices, denoted by nS , is a function of the geometrical state and thus varies in
different domains of the morphological state space. The projection of S onto the
photoplane is given by

P =
⎧⎪⎪⎨⎪⎪⎩

x ∶ x =
nP
∑
j=1

αjpj ,
nP
∑
j=1

αj = 1
⎫⎪⎪⎬⎪⎪⎭

, (5.2)

where x = (x, y)T ∈ R2 is the coordinate vector on the projection plane and pj are
projected vertices of the crystal:

pj = Pvj . (5.3)

The projection matrix is composed of a true projection matrix and a product of rigid
body rotation matrices specifying the relative orientation between the crystal and
plane in terms of the Euler angles ψ = (ψ, θ, φ) (Bronstein et al., 2001; Eggers, 2008):

P = PPPψ (5.4a)

PP = [ 1 0 0
0 1 0

] (5.4b)

Pψ =
⎡⎢⎢⎢⎢⎢⎣

cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦
×
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 cos θ − sin θ

0 sin θ cos θ

⎤⎥⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎢⎣

cos φ − sin φ 0
sin φ cos φ 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦
, (5.4c)

see also Fig. 5.3, which depicts a projected KDP crystal. In Eq. (5.2) not all nS vertices
of the crystal are used but only the nP ones which form the convex hull of the pro-
jection, i.e., which lie on the boundary of the projection. Let the projected vertices, as
Fig. 5.3 depicts, be ordered in a counterclockwise direction, that is, the boundary of
the projection is composed of linear sections between two successive projected ver-
tices. With this, the boundary can be expressed as

B = {x ∶ x = (1− λ)pj + λpj+1 , 0 ≤ λ ≤ 1 , j = 1 . . . nP} . (5.5)

Properties of the projection which can be computed from the projected vertices effi-
ciently and turn out to be useful later are area (Burger and Burge, 2008):

A = 1
2

nP
∑
j=1

det [pj pj+1] (5.6)

and centroid (Eggers, 2008; Burger and Burge, 2008):

xc =
1

6A

nP
∑
j=1

(pj + pj+1)det [pj pj+1] . (5.7)
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Figure 5.3: Relationship between 3D crystal shape and Fourier descriptors. Left: Projection
of a KDP crystal onto a projection plane.The orientation of the crystal in terms of the Euler
angles is ψ = [1.12, 2, 1] , the geometrical state is hT

= [0.177, 0.464] . The crystal is projected
on an array simulating a CCD chip whose pixel size is 5× 10−6 in both directions. The over-
all number of pixels of the boundary is 1485 which is a value comparable to well developed
crystals as recorded in experiments. Right: The signature function ’centroid to boundary
versus angle’ of the projection evaluated for a sequence of 128 angles. Major features like
corners can be clearly identified (top). The absolute values of the Fourier coefficients of
the signature yield a description that is independent of rotations on the projection plane
(bottom).

5.2.2 Signature

In principle, the boundary surrounding the 2D object is a 1D curve and thus can be
represented by a 1D functional which can be defined in different ways (Gonzalez
and Woods, 2008). The simplest of these so called signature functions is obtained by
measuring the distance between the centroid of the object to the boundary curve as a
function of the angle, see Fig. 5.3. This signature function is referred to as centroid-to-
boundary distance (Loncaric, 1998). It is transformed to polar coordinates whose origin
is the centroid of the projection (Bronstein et al., 2001):

r = ∣x − xc∣ (5.8a)

θ = { +arctan x−xc
r for (y − yc) ≥ 0

−arctan x−xc
r for (y − yc) < 0

. (5.8b)

For a convex polygon defined by the edges p1, . . . , pnP , the function r(θ) is composed
of linear connecting lines between the edges:

r(θ) = −
det [pj pj+1]

(pT
j − pT

j+1)q
for 0 ≤ −

pT
j q

(pT
j − pT

j+1)q
≤ 1 , (5.9a)

where

q = ( − sin θ

cos θ
) , 0 ≤ θ ≤ 2π . (5.9b)
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Figure 5.4: Evaluation of the signature functional at defined angles for pixelated images.

The functional r(θ) is invariant under translation of the object on the projection plane
but clearly depends on the orientation. This can be remedied by a transformation
which displaces r(θ) such that it starts at a characteristic feature, for instance at the
maximum. Such an operation corresponds to a shape-preserving rotation on the pho-
toplane. A typical example of the centroid to boundary signature is shown in Fig. 5.3:
The signature of the projection which can be seen in the left part is depicted in the
upper right corner. It exhibits two maxima which correspond the projected apices of
the pyramids and two minima reflecting the drawn-out prismatic part of the crystal.
Points of high curvature of the signature function are associated with corners in the
projection.

Alternatives to the centroid-to-boundary approach use the tangent angle versus
arc length function, directly a complex function in the x − y-plane, or the distance be-
tween the centroid and special feature points on the boundary, for instance points of
high curvature which are usually associated with corners as can be seen in Fig. 5.3
(Loncaric, 1998; Gonzalez and Woods, 2008). However, these variants require ad-
ditional processing steps (e.g. an algorithm to detect high curvature points) which
reduces the robustness compared to the centroid-to-boundary distance signature as
used in the following.

5.2.3 Sampled Signature

So far the signature of the projection contour has been discussed in continuous terms,
i.e., the form given in Eq. (5.9) can be evaluated with an arbitrary accuracy. In practice
the boundary can be recorded only at a finite resolution on a CCD-chip. For example,
the flow-through microscope QICPIC which is used for the observation of experi-
ments presented below, has a resolution of 5 µm (or 1 µm depending on the chosen
measurement range) in the vertical and horizontal direction. That is, the boundary is
in practice given as a set of mean pixel coordinates, bj = (xj, yj)T ∈ R2, which make
up the discretized boundary,

B = [b1, . . . , bb] , (5.10)
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see also Fig. 5.4. The sampling of the signature obtained from the discrete digital
image is obtained by measuring the distance from the centroid to the boundary in the
respective direction

r(B) = [dist(xc, B, θ1), . . . , dist(xc, B, θN)]T ∈ RN , (5.11)

where dist(⋅) is the Eucledian distance between xc and the intersection between (i)
the ray with angle θ starting at xc and (ii) the straight line connecting the two bound-
ary points bj and bj+1 which are closest to the ray, see Fig. 5.4. N is the number of
sampling points of the signature which was in all studies in this work set to N = 128.

The sampled signature function not taken from a discretized image but directly
from the analytical form of the boundary, Eq. (5.8), evaluated at predefined angles
θ1, . . . , θn is simply obtained from solving Eq. (5.9) at the respective angles:

r(B) = [r(θ1), . . . , r(θN)]T ∈ RN . (5.12)

Of course, this sampling of the signature function is not used for the analysis of im-
ages but will be utilized to build up a database with which images shall be analyzed.

5.2.4 Abstraction of the Signature: The Fourier Transform

The centroid-to-boundary distance is in principle a good representation form of the
projection shape. It characterizes the boundary in any detail and in an identification
scheme for the 3D state it would be possible to take all these details into account.
However, the boundaries in real crystal images are subject to noisy variations since
in general, the crystal shape is not ideally formed but featured with irregular bumps
for instance caused through smaller crystals attached to the surface or growth irreg-
ularities. Also the real projection boundary is not recorded with an infinitely well
resolving plane but on a finitely resolving CCD-chip. That is, recording the bound-
ary of a real crystal with a digital microscope, the discretization allows only for a
limited accuracy of subtle boundary features. For this reason, it is desirable to trans-
fer the centroid-to-boundary function to a representation in which slight variations
are captured with descriptors that assume values of a magnitude well below those
descriptors which carry the principal shape data.

Since the centroid-to-boundary function is a 1D signature of the 2D projection con-
tour, the well developed 1D signal processing tools can be used in order to analyze
and classify the projection. The Fourier transform is the most widely used concept
in signal processing and has in fact been used for shape analysis some fifty years
ago for the first time in a research group of the Ohio State University, see Zahn and
Roskies (1972) and references therein. From the seventies onwards Fourier descrip-
tors have been employed for pattern recognition. Of the numerous applications, the
identification of handwritten characters has been the most vividly studied problem,
see for example the papers by Granlund (1972); Zahn and Roskies (1972); Persoon
and Fu (1977). A major difference – whether advantageous or disadvantageous – is
that Fourier descriptors do not resolve the contour locally but all major and minor
details are distributed globally onto the Fourier coefficients. Thus, a small number
of Fourier coefficients suffices to reconstruct the gross shape (Gonzalez and Woods,
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2008). The Fourier transform of the sampled signature is given by (Bronstein et al.,
2001):

Rk+1 =
N−1
∑
n=0

r (θn+1) e
−2π i kn

N , k = 0, . . . , N − 1 , (5.13)

where i denotes the imaginary unit. The Fourier coefficients Rj are in general com-
plex valued and specify amplitude and phase of periodic components in the original
sequence r , see Eq.s (5.11) and (5.12). That is, a shift of the signature function, corre-
sponding to a rotation on the projection plane, is reflected in the phase of the Fourier
transformed signal. Therefore, a rotation-invariant shape description is obtained by
the magnitude of the Fourier coefficients:

∣Rk∣ =
√

Re(Rk)+ Im(Rk) . (5.14)

In order to achieve scale invariance, the Fourier coefficients are resized by division
through the largest coefficient. The so obtained values make up the shape descriptor
vector

d = (d1, . . . , dN)T = s (R1, . . . , RN)T , s = max
j

(Rj) . (5.15)

which shall be used in the subsequent section for the identification of the 3D shape.
As described in the Sec.s 5.2.1-5.2.4, see also Fig. 5.5, the descriptor is obtained from
the 3D state quantified for a particular crystal system by the geometrical state vector
h and the orientation ψ, i.e., the descriptor vector can be seen as a function of these
inputs:

d = fdescr (h, ψ) . (5.16)

In principle, other descriptor vectors can be used as well. Of course, the direct use of
the sampled signature would be possible which must be scaled for scale-invariance
and shifted in order to achieve rotation invariance as presented by Borchert and Sund-
macher (2009). In Borchert and Sundmacher (2011b) yet another alternative is used
in which the linear features of the boundary curve are extracted with the help of a
Hough transformation. The linear boundary segments are ordered according to their
lengths and the angle between them is measured. The descriptor vector is made
up by the lengths of linear segments and the angles between them. Borchert and
Sundmacher (2011b) show that this vector is a useful, however, relatively compact
indicator to relate to the 3D geometry.

5.3 Shape Estimation Scheme

It is obvious that a loss of information is caused by the projection and in general there
is not a unique mapping from the descriptor vector d to the state vector h . I.e., the
same set of descriptors can be produced from different states and orientations so that
the inverse operation to Eq. (5.16)

(h, ψ) = f−1
descr(d) (5.17)

must not necessarily be unique. However, when the geometrical state is given, it is an
easy task to project the vertices on a plane and determine the descriptor vector d. The
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Figure 5.5: Shape estimation scheme.

main idea of the following part is to build up a lookup table or database of descriptors
for which the geometrical state is known. By comparing a measured descriptor vector
to this data set, a guess can be made which crystal shape is at hand.

5.3.1 Shape Estimator Setup

In principle, it is possible to formulate an optimization problem that estimates the
state and orientation on the basis of the measured descriptor vector, d̂ , by minimizing
the difference to the descriptor obtained from the model:

minh,ψ (d̂ − fdescr (h, ψ))T (d̂ − fdescr (h, ψ)) . (5.18)

However, this optimization problem must be solved for every single particle that is
extracted from an image. The objective, though continuous, exhibits several local
minima and thus a global optimization strategy has to be employed which is com-
putationally expensive. Since the dimensionality of the problem is not too high, the
joint (h, ψ)-space can be screened previously in order to calculate the descriptor vec-
tors in different regions of the state and orientation space. The descriptor vectors are
stored in a lookup table which is compiled from numerical experiments: The descrip-
tor vectors dlut,j are acquired for boundary curves of crystals with randomly chosen,
uniformly distributed states hlut,j and orientations ψlut,j . The random choice of the
orientation is achieved with random numbers, which are equally distributed for the
Euler angles φ and ψ and for θ the arcsine of random number in the inverval −1 to 1
is taken:

0 ≤ φ < 2π (5.19a)

θ = arcsin(m) , −1 ≤ m < 1 (5.19b)

0 ≤ φ < 2ψ , (5.19c)
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see for details Eggers (2008) and Eisenschmidt (2009). The whole set of (random)
states and therefrom determined descriptors:

D = {dlut,1, . . . , dlut,nlut
} (5.20a)

H = {hlut,1, . . . , hlut,nlut
} (5.20b)

Ψ = {ψlut,1, . . . , ψlut,nlut
} (5.20c)

is the boundary descriptor lookup table, see Fig. 5.5. The number of entries in the
lookup table is denoted by nlut and is made up of nlut,h different random state vectors
which are each imaged from nlut,ψ different orientations, i.e., nlut = nlut,hnlut,ψ . An
estimator uses this database and compares a measured descriptor d̂ to those given in
the table:

dist (d̂, dlut,j) = (d̂ − dlut,j)T(d̂ − dlut,j) , dlut,j ∈ D , j = 1, . . . , nlut . (5.21)

Finally, the entry in the database that deviates least from the measured one is taken
as the hit and the geometry of the crystal can be identified:

hest,sc(d̂) = hlut,j ∶ dist(d̂, dlut,j) ≤ dist(d̂, dlut,k)∀dlut,k ∈ D , (5.22)

where hest,sc must be rescaled to original dimensions reversing the scaling as intro-
duced in Eq. (5.15):

hest = fest(d̂) = shest,sc . (5.23)

The accuracy of this estimation scheme depends on the complexity of the crystal, the
quality of the images and the degree of consistency with which the real crystals are
reflected in the polyhedral crystal model. The following section asseses the quality of
the estimates under various circumstances ranging from the theoretical situation of a
descriptor acquisition from a CCD chip with infinite resolution to pixelated images
of asymmetric crystals photographed with poor boundary resolution. The following
case studies are based on synthetic images, i.e., they serve to compare the measured
with the actual state to test the estimation quality which can in principle and in prac-
tice be achieved.

5.3.2 Performance of the Estimator

A population consisting of three subpopulations of KDP crystals is examined which
are all normally distributed with means and variances

µT
1 = (2, 6)× 10−4 σ1,11 = 2× 10−5 σ1,22 = 2× 10−5

µT
2 = (4, 3)× 10−4 σ2,11 = 5× 10−6 σ2,22 = 1.25× 10−5

µT
3 = (2, 3)× 10−4 σ3,11 = 1× 10−5 σ3,22 = 1× 10−5

(5.24)

and vanishing covariances. From each subpopulation 200 samples are generated, see
Fig. 5.7 (top left), randomly oriented according to Eq. (5.19), and the descriptor vector
d̂ = fdescr(h, ψ) is determined. The procedure described in Sec. 5.3.1 is used to reesti-
mate the geometrical state. An exemplary result is depicted in Fig. 5.7 (bottom left):
The features of the original population (top left) can be reconstructed well. Especially
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(a) (b) (c)

Figure 5.6: Real world effects considered in the assessment of the estimation scheme: pix-
elated image (a), blurred crystal boundary (b) and asymmetric crystals (c).

the distinction between different subpopulations is possible in a reliable way. The
error of the estimate of the j-th particle with respect to the quantity hk is measured by

ejk,est =
hk,est − hk,true

hk,true
. (5.25)

The assessment of the estimation scheme is carried out in several steps in which suc-
cessively several ’real world effects’ are added which make the estimation more dif-
ficult due to the resulting lower data quality. At first, the images are taken on a plane
with infinite resolution, i.e., the Fourier descriptors are directly computed from the
analytical (but sampled) contour (Eq.s (5.9) and (5.12)), see Sec. 5.3.2.1. The first effect
to assess the performance under more practical circumstances is the finite resolution
(discretization) of the projection plane as depicted in Fig. 5.6 (a), see Sec. 5.3.2.2. The
projection of the crystal can in practice become diffuse as depicted in Fig. 5.6 (b) due
to two effects: (i) small crystals adhering to the ’actual’ large crystal or (ii) crystals are
imaged out of focus, see Sec.s 5.3.2.3 and 5.3.2.5. The crystal model that shall be iden-
tified is in a particular point highly idealized: In stirred systems the crystals rarely
grow perfectly symmetric but the distances of individual faces of one form usually
fluctuate around a mean value, see Fig. 5.6 (c). This effect is discussed in Sec. 5.3.2.4
and jointly with the diffuse boundary in Sec. 5.3.2.5.
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5.3.2.1 Projection on Plane with Infinite Resolution

Fig. 5.7 (right) shows the error distribution for each of the three populations for both
quantities h1 and h2 . It can be seen that the majority of the estimates comes with an
error well below 5%. The standard deviation of the error distribution ranges from
5.12 × 10−2 to 1.50 × 10−1 as specified in the titles of the error distributions shown in
Fig. 5.7. Note also that the standard deviation of the error distribution is relatively
high because erratic outliers for which the estimate is very poor exist in all popula-
tions. This is due to the fact that is is not always possible to reconstruct the 3D shape
from the projection uniquely. For instance, if the three representative shapes shown
in 5.7 (top left) are viewed from top, i.e., only pyramidal faces can be seen, the state
of the pyramidal faces cannot be determined. Such outliers can thus only be elimi-
nated by analyzing the inner structure of the particle region or increasing the number
of perspectives from which the crystal is imaged, see the works of Larsen (2007) and
Kempkes (2009). Both approaches are not further pursued in this work. The me-
dian as well as the mean of the error distribution is for all error distributions below
1 × 10−2, i.e., below 1%, that is, the mean value of a population – wherever located in
the state space – can be measured with a good accuracy. But the error distribution in-
dicates that the estimation scheme is not working equally well in all areas of the state
space (but the mean value of the population being estimated well). Particularly the
distribution of population 3 can be identified with a better quality than populations
1 and 2. The accuracy of the estimates of h2 in populations 1 and 2 is rather poor
compared to estimates of h1 . In population 1 this is due to the lower prominence
of the h2 faces on the crystal surface, see examples of these shapes in Fig. 5.7 (top
left). Therefore, features of h2 faces are less expressed in the projections and thus the
distinction between subtle differences in h2 requires highly resolved lookup tables to
achieve better results. However, a standard deviation of the error, denoted by σek , of
less than 10% shall be considered sufficient for our purposes especially with regard
to the well measurable mean values of the population. This result has been achieved
with a lookup table which was made up of nlut,h = 300 different state vectors whose
resulting crystal shapes are each photographed from nlut,ψ = 150 different random
directions.

Assessing the improvement of the estimation quality with varying configurations
of the lookup table can be done by considering the standard deviation of the error
distribution σek . This is depicted for population 1 in Fig. 5.8 with a variation of the
lookup table size from nlut,h = 100 . . . 1000 and nlut,ψ = 100 . . . 300 . As expected, a
blow-up of the table size improves the accuracy of the estimates. Particularly an
increase in the number of states, nlut,h , reproduces the population in a better way
while the effect of increasing the number of orientation variations nlut,ψ is weak. It
is clear now that the estimation scheme as described in 5.3.1 works in principle if the
shape descriptors d̂ can be measured with a high accuracy (infinite resolution of the
CCD chip). At next the case of pixelated images is presented.

5.3.2.2 Crystals Projected on Plane with Finite Resolution

The estimation performance for descriptors obtained from a pixelated synthetic im-
age, see Fig. 5.6 (a), is shown in Fig. 5.9. The major characteristics of the population
are again well reproducible (bottom left). The characteristics of the error distributions
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Figure 5.7: Estimator performance tested on a KDP population being concentrated in three
different areas of the state space. Each ’island’ consists of 200 individual crystals which
have been photographed in silico from a random perspective. The images are taken with in-
finite resolution, i.e., the contour is given in an analytical form, Eq. (5.9), and subsequently
sampled according to Eq. (5.12). Left column: Given shape distribution with sketches of
representative shapes for each region (top). Estimated distribution on the basis of synthetic
images from which Fourier descriptors are extracted and used to match them with the clos-
est entry in a precomputed database (bottom). Right column: Distributions of the relative
error of the estimated values for h1 and h2 separately for all three regions in which the crys-
tals are concentrated, i.e., sample 1 (top), sample 2 (middle) and sample 3 (bottom). The
size of the database used was nlut = 45, 000 (nlut,h = 300 and nlut,ψ = 150).
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Figure 5.8: Standard deviation of the error distribution for varying database size.

are similar to the case of infinite resolution, however, as expected, the distributions
become wider due to the additional data coarsening as a result of the pixelization. As
discussed for the previous case already, the enlargement of the lookup table which
resolves the joint state and orientation space finer, enhances the quality of the esti-
mates to a certain degree as is exemplary shown in Fig. 5.10. The higher estimation
quality can be seen immediately from the scatter plots of the estimated populations
in Fig.s 5.9 and 5.10 (bottom left). Also the error distribution is clearly narrowed for
the estimation with a larger database.

Yet another effect which usually improves the accuracy of the estimation is the pref-
erential orientation of the crystals. For instance, elongated shapes as they typically
appear in population 1 tend to be oriented such that the prismatic edges are parallel
to the projection plane, see the microscopic photo in Fig. 5.20 and the sketched view
directions in Fig. 5.11. The error distributions for an estimate is depicted in Fig. 5.11.
It can be clearly seen that the estimation performance is far better than even for the
case of an infinitely resolving plane on which the crystals are projected from a purely
random perspective. Especially outliers cannot be observed because in this particular
case all faces can be clearly seen and the inversion from the projection contour to the
3D state is in principle possible from this perspective. That is, the error that is still
present, as can be seen in the error distributions, is only due to the finite resolution of
the image and lookup table.
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Figure 5.9: Estimator performance tested on a KDP population similar to Fig. 5.7. The
images are taken on an array with finite resolution. Left column: Given shape distribution
(top). Estimated distribution on the basis of synthetic images (bottom). Right column:
Distributions of the relative error of the estimated values for samples 1 (top), 2 (middle) and
3 (bottom). The size of the lookup table was nlut = 45, 000 (nlut,h = 300 and nlut,psi = 150).
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Figure 5.10: Estimator performance tested on a KDP population similar to Fig. 5.7. The
images are taken on an array with finite resolution. Left column: Given shape distribution
(top). Estimated distribution on the basis of synthetic images (bottom). Right column:
Distributions of the relative error of the estimated values for samples 1 (top), 2 (middle) and
3 (bottom). The size of the lookup table was nlut = 300, 000 (nlut,h = 1000 and nlut,psi = 300)
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Figure 5.11: Estimator performance tested on a KDP population similar to Fig. 5.9 but with
a preferred orientation from which the crystals are viewed as indicated at the example
shape in the upper left region. The images are taken on an array with finite resolution. Left
column: Given shape distribution (top). Estimated distribution on the basis of synthetic
images (bottom). Right column: Distributions of the relative error of the estimated values
for samples 1 (top), 2 (middle) and 3 (bottom). The size of the lookup table was nlut = 45, 000
(nlut,h = 300 and nlut,psi = 150).
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Figure 5.12: Estimator performance tested on a KDP population similar to Fig. 5.7. The
images are taken on an array with finite resolution and the projection boundaries have been
blurred as shown in Fig. 5.6 (b). Left column: Given shape distribution (top). Estimated
distribution on the basis of synthetic images (bottom). Right column: Distributions of the
relative error of the estimated values for samples 1 (top), 2 (middle) and 3 (bottom). The
size of the lookup table nlut = 45, 000 (nlut,h = 300 and nlut,psi = 150).

5.3.2.3 Projection on Plane with Finite Resolution and Blurred Boundaries

If the boundary of the projection is not mapped onto the projection plane perfectly
as depicted in Fig. 5.6 (b), the quality of the sampled signature and thus also of the
Fourier descriptors is of course lower, which deteriorates the achievable estimation
accuracy. The result of a case study following the previous ones is shown in Fig. 5.12.
The error distributions are clearly wider compared to the estimation test in which the
boundaries have not been diffused but all other parameters, particularly the lookup
table size, are kept constant (Fig. 5.9).
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Figure 5.13: Estimator performance for a KDP crystal population, equivalent to Fig. 5.9,
see the figure caption there. The boundary of the crystal region is – contrary to the results
shown in Fig. 5.12 – clear but now the original 3D crystal can exhibit asymmetries (see
Fig. 5.6 (c)) which are actually not reflected in the model used for the database employed
for the state estimation. This imperfection shall show the applicability of the estimation
scheme for real crystals which are seldom grown perfectly symmetrical.

5.3.2.4 Asymmetric Crystals Projected on Plane with Finite Resolution

The case of asymmetrically grown crystals, see Fig. 5.6 (c), for which the distance of
individual faces of one form fluctuates within in interval of 5% around a mean value
randomly (uniformly distributed) is depicted in Fig. 5.13. The performance should
be directly compared to Sec. 5.3.2.2 (Fig. 5.9). The estimation performance and error
distribution is worse – as expected – but still the features of the population can be
clearly identified and especially the mean values of the three distributions are well
reproducible.
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Figure 5.14: Estimator performance for a KDP crystal population, equivalent to Fig. 5.9,
see the figure caption there. The noise effects of a blurred boundary as separately studied
in Fig. 5.12 and of asymmetric crystals as included in Fig. 5.13 have been added.

5.3.2.5 Asymmetric Crystals Projected on Plane with Finite Resolution and
Blurred Boundaries

The joint impact of blurred projection boundaries and asymmetric crystals is shown
in Fig. 5.14. The error distributions are further widened compared to the previously
presented case studies. It is this magnitude of error that we shall in the worst case
be concerned with in experiments. As will be shown later, the blurring of the crystal
boundary as used in these studies (Fig. 5.6 (b)) is well worse than for the processed
experimental images. The standard deviation of the error can reach values as high
as 20%, however, the mean values of the populations (quantified by the almost zero
median) are still surprisingly well reproducible.
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5.4 Application to Real Images

The shape estimation method that has been developed and examined in the previous
sections of this chapter shall now be applied to real images rather than testing it only
on synthetic ones. The apparatus for the image acquisition is presented in Sec. 5.4.1.
Since the so obtained images cannot be fed directly to the shape estimation scheme,
several image processing steps have to be taken out which are shortly sketched in
Sec. 5.4.2. After this, two case studies on evolving KDP crystal populations are pre-
sented in Sec. 5.4.3.

5.4.1 Image Acquisition

Of the numerous methods and devices with which crystals could be imaged, the mi-
croscope QICPIC has been selected as discussed in detail in Sec. 5.1.3. This instru-
ment records up to 25 grayscale images per second of the passing suspension in a
flow cell of 2 mm width, see Fig. 5.15. The field of view is 5000-by-5000 µm (also
other modes are available but have not been used in our experiments) and projected
onto a CCD chip with a resolution of 1024-by-1024 pixel. The objects are illuminated
with laserlight which is transmitted through the suspension in the flow cell. Due to
the uniformity of the distance to the camera, the particles are relatively well focused,
see Fig. 5.16 (left), see also the discussion in Sec. 5.1.3.

Point
source

2 mm

Imaging
sensor

Aperture

Flow cell

Figure 5.15: Working principle of the flow-through microscope QICPIC.

The suspension which flows through the microscope’s cuvette is continuously with-
drawn from a vessel in which the suspension is well stirred in order to minimize bias-
ing of the sampling with respect to crystal size, see Fig. 5.19. The peristaltic pump is
operated at 200− 250 ml/min . In principle it is possible that the crystals break due to
mechanical stressing in the pump. However, since the crystal system under consid-
eration, KDP, has a relatively high Vickers hardness of 150 in contrast to comparable
model substances such as potassium alum (56) or sucrose (64) (Mullin, 2001), break-
age could not be observed even for prolonged continuous pumping.

5.4.2 Image Analysis

For the quantitative analysis of the images which are acquired with the QICPIC-
probe, an image processing routine has been assembled which accounts for the spe-
cial requirements due to the relatively dark background and partly transparent crys-
tals, see Fig. 5.16. The advantage over the software that comes with the probe is full
access to all image abstraction parameters necessary to identify particle regions and
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full access to all single-particle measures and their user-defined manipulation. Also
the analysis of multivariate distribution data with respect to number or mass density
can be performed.

To extract quantitative information – and especially the contours of single crystals
for the shape identification – from the images, the following main steps are taken out
and discussed in subsequent sections:

1. Image enhancement, Sec. 5.4.2.1 ,

2. Thresholding and region filling, Sec.s 5.4.2.2 and 5.4.2.3 ,

3. Particle identification and measurement, Sec. 5.4.2.4 .

The algorithm has been implemented in Matlab 2009b which was equipped with the
Image Processing Toolbox V6.4.

5.4.2.1 Image Enhancement

The data obtained from the camera are 8 bit intensity images, i.e., they can be rep-
resented by a matrix Ix,y ∈ 0, . . . , 255, where the pixel positions x and y can assume
values between 1 and 1024 (1 MP CCD chip). The intensity level of 0 represents a
black pixel and 255 is a white one. In Fig. 5.16 (left) an example image is shown with
its histogram. On the first sight, crystals are clearly distinguishable since they appear
darker. However, the background has relatively dark grayscale values which can
be found also in particle regions. This is because the crystals are partly transparent.
The background is practically constant in a series of images because the crystals flow
through the cell and images are taken in front of the same scenery. The background
and its histogram is shown in Fig. 5.16 (middle). The result of the procedure de-
scribed below is anticipated: consider the histogram of the image in Fig. 5.16 (right)
in which the background has been brightened and the intensity of particle regions
was kept constant. The histogram of the background, Fig. 5.16 (middle), and the his-
togram of the particles in Fig. 5.16 (right) overlap in the range 70-130, i.e., background
pixels cannot be separated from crystal pixels reliably by the grayscale level and thus
segmenting the image by direct, global thresholding (as performed in the original
QICPIC software) fails. This can be seen also in the histogram of the as-recorded im-
age, Fig. 5.16 (left), because the two histogram peaks of the (usually brighter) back-
ground pixels and (usually darker) particle pixels are not fully differentiated. An
extreme, though not exceptional case is highlighted in Fig. 5.16 by the red and green
circles. On closer inspection, it becomes clear that the dark spot within the red circle
belongs to the background (probably a dust particle on the outer face of the flow-cell)
whereas the relatively bright structure within the green circle is a crystal.

In order to fade out background features, the image Ix,y is compared to the back-
ground image Bx,y . Pixels of the original image whose intensity is at least 50 units
darker than the corresponding pixel of the background image are classified to belong
to the projection of a crystal. If the grayscale value between original and background
image is comparable, it is identified as a background pixel and brightened, i.e., the
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Figure 5.16: Image enhancement: well populated image and its histogram as obtained
from the microscope (left). About 20 % of the projection area is occupied by particles. The
background image is rather dark and exhibits features which cannot be distinguished from
particles directly by their intensity (middle). The enhanced image emphasizes particles and
suppresses background characteristics (right).

difference between original and background image is used. That is, the enhanced
image Ex,y is given by

Ex,y = { Ix,y if Bx,y − Ix,y > 50
255− (Bx,y − Ix,y) otherwise

. (5.26)

The result is shown in Fig. 5.16 (right). Crystals are far better distinguishable from
the background than in the original image. The encircled dark spot in the upper-
right corner belonging to the background has been erased whereas the subtle crystal
shadow marked by the green circle is still visible.

5.4.2.2 Adaptive Background Image

Since the photos are taken from within the flow cell, it can happen that a crystal
adheres to the glass walls and is continuously photographed. If the background is as-
sumed to be static and the same background image is used over the course of a whole
experiment, the adhering crystal is continuously identified as a particle, although it
should be eliminated because once it is a static part of the image, it belongs to the
background. The experiment is conducted in such a way that in the beginning only
clear solution is pumped through the flow cell, i.e., only images of the background
are recorded. Therefore, the average of the first 20 particle-free frames is taken as the
initial background image:

B1
x,y =

1
20

20
∑
j=1

I j
x,y . (5.27)

From then on the current background is calculated as the weighted sum of the current
image and of the background of the previous image:

B̃n
x,y = αBBn−1

x,y + αI In
x,y , αB + αI = 1 . (5.28)
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Because images with particles are darker, the so obtained background image is bi-
ased towards darker than actual grayscale values the more particles flow through the
system. Therefore, the average grayscale level of the background

g(B̃n
x,y) =

1
npix

∑
x,y

B̃n
x,y (5.29)

is adjusted such that it matches with the average grayscale level of the reference back-
ground B1

x,y:

Bn
x,y =

g(B̃1
x,y)

g(B̃n
x,y)

B̃n
x,y , (5.30)

which is the background image used to enhance the original image I according to Eq.
(5.26).

In Eq. (5.28) the weight αB of the previous background image should be a couple
of times higher than the weight αI of the current image because otherwise a (dark)
particle occuring in In

x,y would leave a considerable footprint on the new background
image. In fact, particles passing through the microscope and thus appearing only
once at a location in a series of images should have only a differential impact on the
background image. However, if a particle stays, e.g., glues to the cell’s glass wall,
it must be accumulated into the background image. Of course, this should be as
fast as possible which is in opposition to the demand that flowing particles should
only have a minor impact. Some case studies showed that with αB = 0.9 . . . 0.95 new
static background features are erased from the enhanced image relatively fast and the
adapted background image is practically unaltered from bypassing particles.

5.4.2.3 Binarization and Region Filling

In the enhanced image, see Fig. 5.16 (right), dark regions can reliably be identified as
belonging to a particle. Binarization converts the enhanced image into a logical (or
binary) image by simple, global thresholding

Lx,y = { 0 for Ex,y < Ithres → black, particle
1 for Ex,y ≥ Ithres → white, background

(5.31)

where Ithresh was set to 100 which gave good results for all crystal systems we have
tested (KDP, urea, paracetamol, threonin), see also the histogram in Fig. 5.16 (right).
With a morphological closing operation, using a 3-by-3 square structuring element,
smaller gaps in the particle countours are closed and smaller holes are eliminated,
see also Gonzalez and Woods (2008). Since some crystals have transparent sectors,
the true particle areas can comprise parts in the interior which are white, called holes.
A hole is a set of pixels not directly assigned to a particle region that cannot be reached
from the background without crossing a particle region. Therefore, hole regions most
probably belong to a partially transparent crystal and thus a filling operation is taken
out. The resulting binary image is shown in Fig. 5.17. In this image, black pixels
are directly identified to belong to a crystal, that is, particle regions are extracted and
measured with respect to different scalar quantities. Particles touching the border are
ignored (gray regions in Fig. 5.17).
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Figure 5.17: Binary image and scalar measures of some particles.

Table 5.1: Shape and size descriptors.

Descriptor Explanation Symbol
Area (µm2) Area of pixels occupied by a particle A
Perimeter (µm) Perimeter of the particle region P
Convex Area (µm2) Area of the particle area’s convex hull ACH
Convex Perimeter (µm) Perimeter of the particle’s convex hull PCH

Circle Equivalent Di-
ameter (µm)

Diameter of a circle with the same area D = 2
√

A
π

Solidity Ratio of area to convex area S = A
ACH

Convexity Ratio of convex perimeter by perime-
ter

O = PCH
P

Circularity Ratio of area to area of a circle with the
same perimeter

C = 4πA
P2

5.4.2.4 Feature Extraction and Distributions

The measures, which are easily calculated and interpretable but suffice to distinguish
between single crystals and the type of aggregates we found in our experiments, are
enlisted in Tab. 5.1. In Fig. 5.17 (right) some example particles from the binary image
on the left are picked out and their property values are given. It can be seen that
particles which are compact and correspond to single particles have higher values for
all three shape measurements, that is solidity, convexity and circularity. On the other
hand, formations which are built of attaching primary particles tend to have lower
values for the aforementioned quantities. For the experiments that are discussed be-
low we chose solidity as the only measure which is used to separate the single crystals
fed to the shape identification scheme of Sec. 5.3:

S = Area
Convex Area

{ < 0.95→ Aggregate
≥ 0.95→ Single Particle

, (5.32)

see also the discussion in Sec. 5.4.3 on the data processed for a real experiment.
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Figure 5.18: Example of a 1D kernel histogram based on 100 datapoints compared to a
classical histogram.

5.4.2.5 Density Estimation with Kernel Functions

Classical histograms are a useful implement to estimate distributions based on a suffi-
ciently large number of measurements taken on representative individuals of a popu-
lation. They can be viewed as sums of (discontinuous) step functions. Thus, they may
not be adequate when a continuously differentiable density should be observed. A
nearby solution to this problem would be the application of filter functions to smooth
the coarser original histogram. However, so called kernel histograms overcome this
difficulty and spare out the intermediate step of firstly generating a classical his-
togram. The kernel histogram (or kernel density estimation) technique assigns each
sample point a kernel function, for instance a Gaussian distribution. The resulting
kernel histogram is the average of all kernel functions assigned to every data point.
A 1D example is shown in Fig. 5.18: The individual measures (here: particle size)
are samples obtained using the true density function and indicated by dots on the
abscissa. The classical histogram gives a rough impression about the shape of the un-
derlying distribution, whereas the kernel density estimation allows a relatively good
approximation to the true density based on the measurements. Compared to ordinary
histograms for which the class width must be specified, the application of kernel his-
tograms requires the specification of kernel function parameters (bandwidth). In the
following the main ideas of this method is briefly sketched. More detailed informa-
tion can for instance be found in Wand (1995); Silverman (1986) or Ledl (2004).

Let xi ∈ Rn, i = 1 . . . N be vector-valued measurements, for example a crystal’s
geometrical state h and time at which it is recorded, t, i.e.:

xi = ( hi
ti

) , i = 1 . . . N . (5.33)

From the N samples we aim at determining the estimated number density function.
The kernel density estimator is given by (Wand, 1995; Silverman, 1986)

f̂ (x; H) = 1
N

N
∑
j=1

KH(x − xj) , (5.34)
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where x is an arbitrary point in x-space and

KH(x) = 1√
det H

K (H− 1
2 x) (5.35)

the n-variate kernel function K . The parameters of this functions are contained in the
positive definite n-by-n so called bandwidth matrix H . For instance, a multivariate
normal distribution can be used:

K(x) = 1
(2π)n/2

exp(−1
2

xTx) , (5.36)

which fulfills the necessary conditions for kernel density functions which says that
the integral of the kernel function over the whole support domain (for a gaussian
distribution Rn) is unity (Silverman, 1986). For the practical implementation of this
technique in Matlab we refer to a freely available code package, made available by
Ihler (2007), which has been used also throughout this work.

5.4.3 Two Case Studies on KDP Crystal Populations

Up to now the theoretical background of the image processing and shape identifica-
tion has been discussed which is in this section applied to real experimental data.9

A seeded batch cooling crystallization has been taken out for the system potassium
dihydrogen phosphate (KDP) (crystalline phase) and water (solvent). Basic physi-
cal properties, in particular its solubility and crystal shape have been presented in
Sec. 4.1. In Fig. 5.19 the experimental setup is sketched. The jacketed crystalliza-
tion vessel has a volume of about 3l and a thermostat allows the application of tem-
perature profiles to the vessel content. Crystal suspension is continuously pumped
through the microscope’s cuvette in which the suspension is imaged with QICPIC,
see Sec. 5.4.1 and particularly Fig. 5.15. The hardness of the crystals is relatively high
(Mullin, 2001) so that disintegration of single crystals due to mechanical stressing in
the peristaltic pump was not observable at the chosen flow rate of 250 ml/min .

In order to track the composition of the fluid phase, clear solution is continuously
withdrawn through a frit, heated to a reference temperature (here 40○C) and subse-
quently fed to a densitometer (Model: Mettler Toldeo DE 40 Density Meter) in which
the density of the clear mother liquor is measured. After the measurement pipe, the
solution is fed back to the vessel. Since the fluid phase consists of water and KDP only
which is, furthermore, relatively well soluble in water, the current composition can be
determined from the density. Before the start of the experiment, the densitometer was
fed with clear solution of known composition in order to obtain a calibration curve
with which the time series of the density evolution – recorded during the course of
crystallization – can be converted to a composition time series. With the help of the
temperature that is measured in the vessel, the equilibrium composition is calculated
using Eq. (4.15). The supersaturation is subsequently obtained by Eq. (4.20).

9The experiments shown in this work have been performed by Erik Temmel of the group Physical and
Chemical Foundations of Process Engineering at the Max Planck Institute in Magdeburg. The recorded
data (QICPIC videos and supersaturation measurements) have kindly been made available to the au-
thor. It is, however, self-evident that the author assumes the full resposibility for the correctness of the
material presented in the following.



5.4. Application to Real Images 141

Crystal suspension was continuously photographed at a rate of 10 Hz in order to
track the state of the crystalline phase. An example image is shown in Fig. 5.20. Col-
ored lines are traced around identified particles. Red stands for particles that have
been classified as aggregates (Solidity < 0.95, see Eq. (5.32)) and green refers to areas
which have been identified as single crystals (Solidity ≥ 0.95, see Eq. (5.32)). Addi-
tionally, a list of numbers beside or within each particle is added which are in the
depicted image from top to bottom: Circle equivalent diameter, major and minor
axes lengths, solidity and eccentricity. All these descriptors can be calculated using
the MATLAB IMAGE PROCESSING TOOLBOX’s command regionprops. The numbers
drawn onto the processed image as well as the particle boundaries serve to check for
the consistent operation of the algorithm. Though for storing the acquired informa-
tion it is not necessary to endorse the data onto the image that has been processed,
we have continuously filed every tenth so prepared image for visual inspection.

The identified single crystals in Fig. 5.20 are numbered from 1 to 7. It can be seen
that the distinction between single crystals and aggregates works well but not per-
fectly. The as such identified single crystal 1 consists of two crystals which are grown
together. However, the remaining six tagged single crystals are consistent with what
a human operator would classify as single crystals as well. It can also be observed
that the crystal boundaries can be seen clearly and are far less diffused than for the
reliability study of the identification scheme on synthetic images as carried out in
Sec. 5.3.2. Only small swells at particles 4, 6 and 7 cause the real shape to not per-
fectly fit the assumed model shape. However, due to the high frequency of these
deviations in the spectrum of the Fourier descriptors, their impact is small and does
not – like the diffused boundaries in the reliability studies – hinder the identifica-
tion of the geometrical state. Further characteristics of the image processing routine
are indicated by arrows a-c in Fig. 5.20: (a) If not only the interior of the crystal but
also its boundary is transparent, it can occur that an object that is by visual inspec-
tion easily recognized as a contiguous region is separated by the algorithm. (b) Small
particles which could be classified by visual inspection as single crystals are usually
not recognized as such due to the low resolution in that size range. The area of the
convex hull relative to the actual area of such pixelated convex objects is usually con-
siderably larger than for objects photographed at a higher resolution. Therefore, their
solidity is smaller and thus they are not recognized as single particles. But this effect
is advantageous because a low resolution is not eligible for quantitative 3D shape
identification. Furthermore, in order to obviate the processing of small crystals for
shape identification, the minimum size for assigning it to be a single crystal is set to
30 µm . (c) Objects recognized at the image border are not counted since in principle
no reliable evidence about their size and shape is given.

The experiments we have taken out have been inspired by the ones reported by
Yang et al. (2006). They have shown that the shape of the KDP crystals grown from
water-KDP solution strongly varies with the temperature profile and seed load – and
thus supersaturation – that is applied. We have performed two experiments to verify
their finding that at high supersaturations KDP assumes a more compact shape, see
Sec. 5.4.3.1, and that for lower supersaturations the form becomes more elongated,
see Sec. 5.4.3.2. Before the experiments are further discussed in a more technical de-
tail, the unsurprising major results – confirming the results of Yang et al. (2006) –
can be seen in the evolution of the mean states depicted in Fig.s 5.26 and 5.32. The
sharper temperature profile of the first experiment, see Fig. 5.21, yields higher super-
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saturation values which produce relatively compact crystals (Fig. 5.26). The relatively
gentle temperature decrease of the second experiment, see Fig. 5.27, leads to a lower
supersaturation level producing more elongated crystals than in the first experiment
(Fig. 5.32).

Cuvette

Thermostat

Densitometer

Frit

Camera

QicPic

Thermostat

Thermostat

Figure 5.19: Sketch of the experimental setup: From the batch crystallizer the suspension
is continuously pumped through the cuvette in which the crystals are imaged. The suspen-
sion vessel can be tempered which allows to take out cooling crystallization experiments.
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Figure 5.20: Example of a processed image of Exp. 1 at t ≈ 1500 s.
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5.4.3.1 KDP Growth at High Supersaturations (Exp. 1)

Basic technical data of Exp. 1 can be found in Tab. 5.2. The temperature profile
was set to linear cooling at −20 K/h which was not fully achieved as can be seen in
Fig. 5.21 (left). The seed crystals were added when the solution was slightly under-
cooled at t ≈ −60 s . Due to the increasing undercooling of the solution, the suspension
becomes supersaturated, reaching a level slightly below σ = 0.12 , see Fig. 5.21 (right).
The increase of the supersaturation is retarded by the transfer of KDP from the dis-
solved to the crystalline state by growth and nucleation. However, the amount of
nucleated particles is rather low as it can already be seen by visual inspection of the
suspension images (Fig. 5.20). In terms of the mass fraction of nucleated crystals,
this is quantitatively illustrated in Fig. 5.22 (right). It can be observed that the mass
of nuclei remains well below 2% . However, this should be seen only as a rough
estimate obtained by the following pragmatic approach. The number-based aver-
age sphere-equivalent diameter of that part of the (seed) population is taken which
has been identified as single crystals, see Fig. 5.22 (left). Initially, the average size
is about 210 µm, therefore particles whose size is lower than the average diameter
minus 200 µm are classified as nuclei. The mass of a particle is assumed to be pro-
portional to the power of 3/2 of the measured particle area for all particles regardless
of particle shape, that is, the estimated mass-ratio between nuclei and all particles is
obtained as

mnuc

mparticles
= ∑nnuc

i A3/2
i

∑
nparticles
i A3/2

i

, (5.37)

where nnuc and nparticle is the number of nucleated and the number of all particles,
respectively. Though this approach is rather simple, it can for instance be seen that
the slope of the nuclei mass fraction reaches its maximum at about t ≈ 1000 s , see
Fig. 5.22 (right), which corresponds to the maximum supersaturation level depicted
in Fig. 5.21 (right). This supports the commonly used hypothesis that the major driv-
ing force for nucleation is supersaturation.
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Figure 5.21: State of the continuous phase for Exp. 1. Due to the relatively high cooling
rate, the supersaturation becomes large.

The result of the application of the image processing routines discussed in detail
in Sec. 5.4 and the subsequent identification of the geometrical state vector using the
routines developed in Sec. 5.3 is depicted in Fig. 5.24: The contours of the normal-
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Figure 5.22: Evaluation of the amount of nuclei produced over the course of the experi-
ment. Left: Particles which are smaller than the average sphere equivalent diameter of the
single crystals minus 200 µm are classified as nuclei. Right: Nuclei mass-fraction.
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Figure 5.23: Total number of particles and number of particles classified as single crystals,
measured within a sampling interval of 25s for Exp. 1.

ized number density function in h-space estimated using the kernel density estima-
tor, Eq. (5.34), is shown at eight different instances starting at t = 0 . The bandwidth
of the Gaussian kernel was set to

H =
⎡⎢⎢⎢⎢⎢⎣

20 µm2 0 0
0 20 µm2 0
0 0 60 s2

⎤⎥⎥⎥⎥⎥⎦
, (5.38)

i.e. the influence domain of a single measurement (one particle) in terms of the vari-
ance of the Gaussian kernel function is 20 µm in each direction of the h-space and
60 s in time-direction, see also the composition of the x vector given in Eq. (5.33). In
Fig. 5.24, beside the number density, the trajectory of the mean state of the seed crys-
tals is drawn as a thick black line. This mean is calculated as follows: Firstly, the loca-
tion of the maximum, hmax , of the estimated number density is determined. Then the
first moment of the density function in the window of h1,max ±100 µm , h2,max ±100 µm
is calculated and taken as the mean of the seed population. At t = 0 the population
(and seed) mean is h1 ≈ 80 µm and h2 ≈ 110 µm . The seed crystals spread around
this value where the standard deviation in h1- and h2-direction is about 20 µm in all
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Table 5.2: Parameters of Exp. 1 and 2.

Quantity Unit Symbol Value Exp 1 Value Exp 2
mass of solvent kg mH2O 2 2
mass of dissolved KDP kg mKDP,diss 0.682 0.682
mass of seeds kg mKDP,seed 5× 10−4 5× 10−4

temperature gradient K/h ∆T −20 −5
Qicpic frame rate Hz 10 10 10
source of KDP Merck, CAS-No. 7778-77-0
seed preparation sieve fraction 150 − 200¯m taken from the as-

delivered crystal population

directions. Keep in mind that not all crystals are used to estimate the h-distribution
but only those which have been identified as single crystals and thus are eligible to
be fed to the shape estimation scheme. For this reason, the unquestionable presence
of aggregation producing considerably larger particles than can be seen here is not
observable. On the right side of the distribution snapshots, the geometry of the pop-
ulation mean of the single crystals is drawn. As time progresses and supersaturation
is built up by undercooling (Fig. 5.21), the population moves to the upper right in
state space. Clearly, the height and width of the population distribution increases,
which may be attributed to growth dispersion.

Clearly the relatively wide kernel (5.38) may obscure some of the underlying struc-
ture of the number density function. In order to verify the application of the kernel
density estimator yet another estimation has been taken out with a more narrow ker-
nel:

H =
⎡⎢⎢⎢⎢⎢⎣

10 µm2 0 0
0 10 µm2 0
0 0 30 s2

⎤⎥⎥⎥⎥⎥⎦
, (5.39)

which yields of course not as smooth contours as for the wider kernel, see Fig. 5.25.
However, the trajectory of the seed’s mean state remains practically unchanged. The
evolution of the mean state over time is additionally depicted in Fig. 5.26: The ratio
between h1 and h2 remains almost constant which is reflected also in the sketched,
quite compact shapes at t = 250 s and t = 1500 s .
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Figure 5.24: Evolution of the shape distribution of Exp. 1.
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Figure 5.25: Evolution of the shape distribution of Exp. 1 estimated using a tighter kernel
function than in Fig. 5.24.
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Figure 5.26: Mean geometry of the crystals that are recognized as single crystals in Exp. 1.

5.4.3.2 KDP Growth at Low Supersaturations (Exp. 2)

In the preceding Exp. 1 we have seen that at high supersaturation the crystals keep
their compact shape. Yang et al. (2006) report that crystals grown at low supersatu-
ration assume a more elongated shape. Therefore, we performed Exp. 2 under prac-
tically equal conditions like Exp. 1, see Tab. 5.2, except for the cooling rate which
was with −5 K/h set to a value of a quarter of that chosen in Exp. 1. The resulting
temperature and supersaturation profiles are shown in Fig. 5.27. The supersaturation
remains below σ = 0.08 . Fig. 5.28 (left) depicts the overall number of particles and
the number of detected single crystals which are recorded within a sampling interval
of 25 s . It can be seen that the number of particles which are observed remains over
the course of the whole experiment at around 7000 and the number of single crys-
tals decreases from around 2000 to about 200 at the end of the batch. In terms of the
number fraction this is a decrease from about 25% to below 5%. This is mainly due
to crystal aggregation which is – compared to Exp. 1, see Fig. 5.23 – better noticeable
owed to the longer processing time. In the interval 3000 − 3400 s the total number of
particles drastically increases and the fraction of single crystals significantly drops.
At this time problems with the feeding of the QICPIC-probe occured, that is, smaller
particles clogged the supply piping which was dispensed during that interval. After
4000 s similar problems issues occurred which finally led to the abortion of the ex-
periment. As in the previous case, also in this experiment nucleation was relatively
low as can be seen in Fig. 5.29. The drastic increase of the nucleated crystals after
about 3000 s is attributed to sampling problems due to clogging which caused the
preferential sucking of smaller particles.

The lower supersaturation caused the seed crystals to grow to a more elongated
shape which means that the values for h2 (pyramidal faces) become significantly
larger than for the prismatic h1-faces as depicted in an image of the suspension in
Fig. 5.31. In Fig. 5.30 this can be seen on the basis of the h-distribution evolution
but even clearer in the time series of the mean state shown in Fig. 5.32 (compare to
Fig. 5.26 of Exp. 1).
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Figure 5.27: State of the continuous phase for experiment 2. Due to the moderate cooling
rate, the supersaturation is lower than in Exp. 1, see Fig. 5.21.
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Figure 5.28: Total number of particles and number of particles classified as single crystals,
measured within a sampling interval of 25 s for Exp. 2.
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Figure 5.30: Evolution of the number density function in h-space, estimated using a kernel
density estimator.
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5.5 Summary

This chapter started with an overview on measurement techniques for crystal shapes.
It has been pointed out that a direct 3D measurement is possible only using true 3D
sensors which return a set of voxels with which a visual impression on the 3D shape
can be gained. Reconstruction of the 3D shape on the basis of a shape model that
rationally confines the variety of possible projections thrown by an object has been
identified as the method of choice. Relatively easy collection of crystal image data,
recording within suspension and justifiable image processing effort are the major ar-
guments supporting this decision. After this, the identification scheme has been in-
troduced that serves to match the boundary of a particle projection to its true 3D
shape. Instead of the original collection of boundary pixels, a Fourier transform of its
signature function is taken as an information-rich descriptor vector. Such descriptor
vectors can be obtained also from computer experiments, which simulate the imag-
ing process of the shape. With this implement, a database was built, which tabulates
Fourier descriptor vectors together with the state vector of the shape from which it
has been produced. The database then serves to determine the state vector for de-
scriptor vectors which have been extracted from images. This identification process
has been validated against synthetic data in order to show its robustness and relia-
bility. For practical applications the raw grayscale images which were in this work
acquired using the flow-through microscope QICPIC, must be preprocessed in order
to render them adequate to be fed to the shape identification scheme. Finally, the
scheme has been applied to real experimental image data of two crystallization ex-
periments (system KDP-water). It has been shown that the identification scheme is
applicable on large data sets and suited to quantitatively capture the shape evolu-
tion of growing crystal populations on the basis of a huge number of single-particle
measurements.





Theory must be of the nature of observation, not of doctrine.

Carl von Clausewitz
On War

Book II - On the Theory of War

Chapter 6

Connecting Observation and
Simulation

In the preceding parts of this work, the modeling of crystallization processes with
regard to shape has been discussed in Ch. 3 on the single crystal level and in Ch. 4 on
the population level. The observation of crystals was the major topic in Ch. 5. This
chapter aims at extracting kinetic data from the observed shape evolution that fur-
nishes the model equations in order to describe real processes. At first, in Sec. 6.1, the
population’s number density of a simulated experiment is artificially sampled. That
is, at different instants, a number of representative crystal state vectors is generated.
Based on these state vectors, the shape is calculated and imaged (in-silico) from a ran-
dom perspective as it has been done for the reliability analysis of the shape estimation
scheme in Sec. 5.3.2. The obtained shape distribution data is used to re-estimate the
evolution of the population distribution and particularly the mean state. This is done
in order to assess the reliability of the data that is obtained with the shape estima-
tion scheme on the basis of a simulated experiment. After this has been shown, the
mean state evolution is used to estimate the face-specific growth rates as a function
of supersaturation. Again, only synthetic data is used so that the reliability of the
estimation of the kinetic data can be validated. In Sec. 6.2, the procedure is applied
to the experiments that have been presented in Sec. 5.4.3 in order to determine the
growth rates. Further validation experiments show that the growth rate data that has
been extracted from the two experiments of Sec. 5.4.3 are applicable to predict the
outcome of differently conducted experiments. Though, we strongly conjecture that
the method that is developed can be applied directly to other crystallization systems,
it is only applied to crystallizing potassium dihydrogen phosphate (KDP) with water
as solvent; a model substance which is employed in this work for simulation studies
as well as in experiments. Finally, Ch. 6.3 concludes this short chapter in brief.

6.1 Identifiability Analysis

This section develops the implements that are used to estimate the growth rates of
the previously used example system potassium dihydrogen phosphate (KDP) (simu-
lations in Sec. 4.1 and experiments in Sec. 5.4.3). In Sec. 6.1.1 the sampling of a simu-
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lated number density function evolution is described. Because the kinetics are known
which are fed to the simulation, this synthetic data is used to verify the technique to
find the kinetic data as described in Sec. 6.1.2.

6.1.1 Synthetic Data

The computation of the shape distribution evolution has been discussed in Ch. 4 and
particularly Sec. 4.1.4 contains one of the simulation results that are subsequently
used to generate in-silico synthetic image data. In Sec. 4.1.4, only Exp. 1, see Fig. 4.13
has been simulated. A similar computation is set up for Exp. 2. The shape distri-
bution has been sampled at a number of instants, where each sample comprises of
nc = 200 crystals. An example is depicted in Fig. 6.1 which shows 200 samples for
the seven instants which have also been selected for the illustration of the solution of
the population balance model in Fig. 4.13. The crystal shape of each sample is com-
puted and imaged from a random perspective like for the reliability analysis of the
shape estimation scheme in Sec. 5.3.2. The shape estimation scheme is applied using
a lookup table with nh = 300 different state vectors for which the shape descriptor,
taken from nψ = 150 random perspectives, is recorded. From the 200 samples taken
at every instant, the mean state of the estimated population is calculated. The result
can be seen for the simulation of Exp. 1 in Fig. 6.2 (left). The mean state of the simu-
lation (dashed line) can be reproduced well by the mean value of measurements but
small disturbances occur. For each of the 41 sampling points, the state of 200 syn-
thetically imaged crystals is estimated and the mean value of the 200 measurements
is calculated. Using a 7-degree moving average filter, the variations of around the
simulated data is filtered out (solid line) and hence, the state measured from syn-
thetic data matches the simulated one very closely. Unsurprisingly, the quality of the
measured curve is further improved if the number of sample points is increased, see
Fig. 6.2 (right). Of course, the measurement assessment using synthetic data gener-
ated with the simulation of Exp. 2 producing more compact crystals, yields similar
results, which are depicted in Fig. 6.3.

It has been sketched that the time evolution of a crystal population can be tracked
accurately, the measurement data can in principle be used to recover the kinetic pa-
rameter that have been used in the simulation.

6.1.2 Parameter Estimation and its Verification Using Synthetic
Data for Potassium Dihydrogen Phosphate

The quantitative observation of a crystallization process is of value in its own right.
But even more desirable is the extraction of kinetic data from an observed process.
Since only crystal growth has been taken into account, we aim at restoring the growth
rates, which have been used in the simulation. One could also apply the estimation
techniquen directly to real experiments and determine growth rates. However, we
find it essential to test an observation and estimation scheme against artificial exper-
iments to gain information on the reliability of the applied technique.
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Figure 6.1: Sampling of the simulated shape distribution evolution shown in Fig. 4.13.
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Figure 6.3: Mean states of the sampled evolution of h1 and h2 from synthetic image data
generated using the simulation of Exp. 2 at 31 (left) and 61 instants (right). For each mea-
surement, the images of 200 particles are included.

If an exponential growth model (Eq. (4.11)) is assumed, the measured evolution of
the mean crystal shape h̄j can be compared to the mean crystal size following from
the growth law together with supersaturation measurements:

h̄mod(t) = h̄0 +∫
t

0
kgσg dt , kg = (k1, k2)T , g = (g1, g2)T . (6.1)

The deviation between measured and modeled mean size evolution is quantified by
the objectives

e1 =
ns

∑
j=1

(h̄1,j − h̄1,mod,j)2 (6.2a)

e2 =
ns

∑
j=1

(h̄2,j − h̄2,mod,j)2 . (6.2b)
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In Fig. 6.4 the estimated growth laws obtained by the minimization of the objective
functions using only the synthetic data of the simulation of Exp. 1 are depicted. It
can be seen that with increasing number of samples the accuracy of the estimates in-
creases not significantly. A similar result is obtained from the growth rate estimation
from the other simulation depicted in Fig. 6.5: The estimation accuracy of the param-
eters for G1 become even worse for a larger number of samples where the estimates
for G2 improve. Even though the parameter of the growth law may not be found per-
fectly, the evolution of the mean state is reproduced well using the estimated kinetics
and also the supersaturation-dependent growth law is matched almost perfectly with
better results for an increasing number of samples. The objective shows, independent
of the number of samples, stretched valleys which are undesirable when optimiza-
tion algorithms are applied. Also, if it comes to the measurement of real data, the
acquisition of images and measurement of shape distributions is further complicated
by crystal shapes which are not as ideally formed as in the simulation. This can in-
volve deviations from symmetry, formation of aggregates or broken crystals which
all lead to more complex (that is, a wider variety of) crystals. That is, the stochastic
process of crystal orientation, which has been thoroughly included in our analysis is
further superimposed by other stochastic processes. Some of these phenomena have
been shown to have a negligible influence on the estimation of the mean state, see
Sec. 5.3.2, where other particles, like aggregates, are systematically obviated to be
passed to the shape estimation scheme, see Sec. 5.4.2.4. Hence, the data quality in
real experiments may decrease to a certain degree compared to synthetic data and
therefore stretched valleys of the objective in the parameter space further complicate
the judgment over the quality of the estimated parameters. However, since the shape
of the growth laws could be recovered accurately, the method is eligible to extract
kinetic parameters from experiments with satisfactory precision.
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Figure 6.4: Estimation of growth rates with underlying model using a varying number
of samples of the simulation of Exp. 1. Upper row: 41 samples, bottom row: 81 samples.
Left column: evolution of mean crystal size estimated from synthetic image data and fit-
ted evolution. Middle columns: contour plots of the objective ej as a function of growth
parameters. The true parameter used in the simulation is indicated by a star, whereas the
minimum of the objective is marked by a circle. Right column: true (-) and estimated (- -)
growth laws.
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Figure 6.5: Estimation of growth rates with underlying model using a varying number
of samples of the simulation of Exp. 2. Upper row: 31 samples, bottom row: 61 samples.
Left column: evolution of mean crystal size estimated from synthetic image data and fit-
ted evolution. Middle columns: contour plots of the objective ej as a function of growth
parameters. The true parameter used in the simulation is indicated by a star, whereas the
minimum of the objective is marked by a circle. Right column: true (-) and estimated (- -)
growth laws.



6.2. Application to Potassium Dihydrogen Phosphate Crystallization 161

6.2 Application to Potassium Dihydrogen Phosphate
Crystallization

So far the recovering of growth laws has been taken out for simulated dynamic shape
distributions that were sampled and imaged in silico. In this section the estimation of
growth laws from grayscale images recorded in batch crystallizations of potassium
dihydrogen phosphate (KDP) is performed, see Exp.s 1 and 2, presented in Sec. 5.4.3.
This is based on the mean shape evolution for two kinds of crystal faces that are
present on KDP-shapes. The mean geometry evolution of Exp. 1 which was con-
ducted with a relatively fast undercooling is depicted in Fig. 5.26, the associated tem-
perature and supersaturation profile is shown in Fig. 5.21. For the second experiment
(Exp. 2), the measured mean geometry evolution can be found in Fig. 5.32 and the
temperature and supersaturation profiles in Fig. 5.27. The comparison of the mean
state with a model approach that uses the measured supersaturation profile directly,
see Eq. (6.1), under the variation of the growth rate parameters, yields the contours
of the objectives for both growth laws, Eq.s (6.2), as depicted in Fig. 6.6. At the min-
imum of the objectives (circles), the growth rate parameter are found that reflect the
measured shape evolution best which are concretely:

G1 = k1σg1 , k1 = 643.2× 10−6 m/s , g1 = 3.89 , (6.3a)

G2 = k2σg2 , k2 = 2.07× 10−6 m/s , g2 = 1.23 . (6.3b)

The evolution of the mean state obtained from Eq. (6.1) (together with the measure
supersaturation) in comparison to the measured values is shown in Fig. 6.7. The
growth laws are validated in two different ways. Firstly, the simulation of a process
model using the parameters is taken out, see Sec. 4.1.2. This process model com-
prises a mass balance from which the supersaturation is calculated. The estimation
of the growth rates does not involve a mechanism to match the mass uptake, as a
result of crystal growth, with the measured supersaturation. Therefore, the precision
with which the supersaturation curve is reproduced by the simulation is an indicator
for the correctness of the estimated growth laws. It can be seen from Fig.s 4.11 and
4.12 that the computed and the measured supersaturation profile are very close. Sec-
ondly, further experiments have been conducted with temperature and supersatura-
tion curves, see Fig. 6.8, different from the ones applied in Exp.s 1 and 2 (from which
the parameters had been determined). Fig. 6.9 shows that also these four experi-
ments are reproducible using the estimated growth laws. Even though the evolution
is not as accurately matched as for Exp.s 1 and 2, the principle trend can be predicted
with a satisfactory precision. Both practical test on the estimated kinetics, that is,
the achievement of the mass balance as well as the application to other experiments,
confirm that the determined parameters produce sensible results.

6.3 Conclusions

In this short chapter the experiments presented in Ch. 5 are used to derive growth
laws from the observed shape evolution. In order to assess the reliability of the de-
veloped procedure, it has been tested with the help of synthetic data. The tests show
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Figure 6.6: Contours of the objective functions, Eq.s 6.2, for the identification of the growth
parameters. Points: Least squares estimates.
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Figure 6.7: Mean geometry of the crystals which have been classified as single crystals in
Exp. 1 and 2 with model fits.

that the kinetics used for the generation of synthetic data could be reproduced with
sufficient precision. Having confidence in the method, it has been applied to experi-
mental data. The identified growth laws were tested in two different ways: firstly, it
has been proven that the supersaturation profile, calculated in simulations, meets the
measured one and secondly, the shape evolution observed in validation experiments
could be reproduced.
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The game of science is, in principle, without end. He who decides
one day that scientific statements do not call for any further test,
and that they can be regarded as finally verified, retires from the
game.

Karl Popper
The Logic of Scientific Discovery

Chapter 2 - On the Problem of a Theory of Scientific Method

Chapter 7

Summary, Conclusion, and Outlook

7.1 Summary

The topics of this thesis are primarily set in the field of crystal shape dynamics. In the
foreground stands the model-based description and identification of crystal growth
on the particle level and its integration to process-level models using population bal-
ances. That is, the underlying physico-chemical process of the attachment of molecu-
lar layers is not considered. It is assumed that the crystals grow as polyhedra and that
secondary phenomena like breakage and aggregation are not prevalent. The advance-
ment of a crystal face on the macroscopic particle level is assumed to be determined
by face-specific growth rates defining the velocity normal to the crystal planes. The
growth rate depends on environmental conditions, in particular supersaturation. In
this work, a methodology is developed to identify crystal shapes from microscope
images of the suspension. With a simultaneous supersaturation measurement, it is
possible to identify the kinetic parameters of crystal growth from laboratory exper-
iments. The chosen approach also allows the validation of the measurement and
identification processes on the basis of simulated, also called in-silico, experimental
data. A major difficulty in the model building is the possibly varying number of in-
dependently growing crystal faces. This phenomenon stipulates a structure on the
crystal state space that confines the accessible region to the morphology cone. The
boundary of the morphology cone is made up by surfaces of different co-dimensions
on which the shape evolution is qualitatively different. For crystallizers in which
many crystals exist, the dynamics of the shape distribution shall be described by a
population balance. With the aforementioned structure of the state space, however,
it is rather challenging to formulate the population balance in a rigorous way. The
detailed summary is given below.

Ch. 2 dissects the incorporation of special structures for spatially lumped systems
that describe the evolution of a single entity. These structures are for instance surfaces
at which the velocity field switches instantaneously, boundaries which capture trajec-
tories to continue in a lower-dimensional subspace or surfaces inducing state jumps
in the individual’s evolution. Such mechanism are well known from the theory of hy-
brid dynamical systems. This part is followed by the introduction of model equations
that describe the evolution of a whole population in state spaces exhibiting the above
mentioned structures. For that purpose, classical balancing in state space from the
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continuum mechanical perspective is employed. The results are of a rather general
nature and shall be seen as a population balance framework for hybrid dynamical
systems.

More specific and concrete explanations with regard to shape evolution are given
in Ch. 3. The aim of the single crystal analysis is the development of a general frame-
work for the description of single, convex, and polyhedral crystals taking face appear-
ance and disappearance (morphological changes) into account. Previously published
techniques require the tracking of morphological switches in shape evolution models
by the computation of the crystal polyhedron in every time step. With the shape anal-
ysis derived in this work it is possible to deduce regions and boundaries in the state
space where morphological changes occur. For this, simple linear algebra in 3D (for
the dissection of the crystal polyhedron) and in nD Cartesian spaces (for the deriva-
tion of morphology regions in state space) and heuristic search strategy is sufficient.
The applicability of the proposed technique is demonstrated for two example systems
of which one can be reassessed quickly by pencil-and-paper geometry and another
one (paracetamol) for which the exposed systematic method is practically inevitable.

Because in large scale crystallization crystals do not grow isolated from each other
but are embedded into a continuous phase as a whole population, process models
must capture the variability of the crystal shapes. The most flexible and elegant
framework for this is enabled by a number density function in the property state
space. Population balances track the evolution of that number density and thus allow
the assessment of property distributions for large collections of crystals. For systems
that do not undergo morphological transitions, this is performed in a straightfor-
ward way. A simple model system for which this is the case because not faces or
edges appear or disappear is potassium dihydrogen phosphate (KDP). Specifically,
the population balance for the system KDP is formulated and solved numerically.
The determination of the kinetic parameters is discussed in Ch. 6. The comparison
to experimental data, presented in Ch. 5, shows very good agreement. Using kinetic
data from the literature, however, it is not possible to retrace the outcome of the con-
ducted experiments. A more complex population balance model that captures mor-
phological changes is presented for a simple 2D system (cubic crystal with cubic and
octahedral faces). This example demonstrates the incorporation of hybrid structures
for the concrete case of shape evolution as it has been introduced from a rather gen-
eral perspective in Ch. 2. In a further section the concept is generalized to nD state
spaces of populations of arbitrary but convex and polyhedral crystals.

Sensors cannot directly measure the shape of a crystal. Hence, Ch. 5 is dedicated
to the extraction of shape information from images of the crystal suspension. After a
general idea of different techniques for the quantification of crystal shapes is given,
the focus is laid on matching projections of crystals on a 2D surface. That is in practi-
cal terms the imaging of crystals on a CCD-chip. The crystal projection is reduced to
its boundary curve of which a signature function is calculated. The Fourier transform
of that signature is taken as a descriptor vector of the projection. By simulating the
imaging process, in-silico image data is generated. From these artificial images, de-
scriptor vectors are collected for which the original 3D shape of the crystal is known.
In a rather simple – but therefore robust – scheme, the descriptor vectors of crys-
tal projections recorded from real experimental images of the crystal suspension are
compared to that database. This allows to inversely look up the original state of the
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crystal. Albeit mismatches occur, the main features, in particular the evolution of the
average shape, of a population can be reconstructed. This is validated by the appli-
cation of the scheme to in-silico data that also simulates imperfections as they can be
seen in experimental images of the crystal suspension.

Furthermore, shape distributions can be observed with this technique over time
as discussed in Ch. 6. Using synthetic experimental data, the reliable determination
of crystal growth rates is developed and validated. On the basis of the shape distri-
bution evolution of two experiments with different temperature – and thus different
supersaturation – profiles, kinetic expressions for the growth rate of potassium di-
hydrogen phosphate have been extracted. The validity of the obtained parameters
is confirmend in two ways. Firstly, the mass balance, which was not included in
the estimation procedure, is fulfilled in simulations using the parameters. Secondly,
the outcome of experiments, with different temperature and supersaturation profiles
than the ones used for the estimation, could be predicted with a satisfactory accuracy.

7.2 Conclusion

The major contributions of this work are:

1. Derivation of population balances for populations of hybrid dynamical sys-
tems.

2. Determination of existence domains of crystal morphologies in shape space.

3. Connection of these two implements and a rigorous derivation of multivariate
population balance models capable of incorporating morphology switches.

4. Development and employment of an image-based shape observation scheme,
used for tracking the evolution of the shape distribution in crystallization ex-
periments from which the growth kinetics can be identified.

Whilst the first chapters contribute to the theory of population balances and to the
general model formulation for shape dynamics on the single-crystal and population
level, later chapters mainly address the practical monitoring of shape evolution and
the identification of the growth kinetics leading to shape changes. Though the level
of the modeling tools goes well beyond the complexity that is necessary for the de-
scription of the system that is actually (potassium dihydrogen phosphate, KDP) used
in the experiments, a major achievement of this work is the connection between more
sophisticated models and reliable identification of kinetic parameters from experi-
ments. That is not to say that this is the first and foremost effort in this direction but
it is – in contrast to some of the earlier work – characterized by:

1. Generality and rigorousness of the model equations.

2. Systematic validation of the shape identification scheme and the technique to
estimate the growth rates with the help of synthetic data.

Hence, the most important achievements of this work are:

1. The widening of the class of crystallization systems which can be modeled with
population balances accounting for crystal shape. That is, all convex, polyhe-
dral crystals are analyzed and modeled in a generalized, consistent framework.
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2. Shape identification using image-based techniques has been further developed
with an additional validation of the robustness with regard to imperfections
that typically occur in experiments.

Though some progress has been achieved, clearly, this work is only a modest contri-
bution to master the herculean task of shape control.

7.3 Outlook

Despite the fact that the modeling and experimental tools to describe and observe
crystal shape distributions have gone through quite a development over the last
years, general methods for shape control in crystallization processes are still miss-
ing. Much effort has been invested in additive and solvent screening to support the
desired shape evolution. This work shall not be seen as an antithesis to such efforts
that are mainly taken out on the single crystal level or possibly only on isolated faces.
Rather, the non-dissipative incorporation of information gained on the smaller scale
of single crystals or facets into process-level models is pursued. Such models can in
principle be used for model-based feedforward or even feedback control strategies.
The model system that has been chosen in this work has some advantages which most
industrial substances probably not exhibit. For instance, a sufficiently high number of
single crystals, eligible for shape estimation could be found in the images. For denser
suspensions, this task becomes more difficult if not impossible. Also the number of
symmetric faces is low in the presented experiments, i.e., the identification of fea-
tures was relatively easy which may not be the case for crystals with a larger number
of faces. On the other hand, multi-perspective imaging systems can deliver a wealth
of additional information which can counterbalance the additional complexity.

In summary, it remains to be stated that the tools of this work ought to be used
in the future for the optimization of the process control of simple, well behaving
materials such as the chosen model system potassium dihydrogen phosphate. This
can involve supersaturation profiles, systematic feed of additives or changing the
solvent composition or other methods. Concerning the model building, a further
development towards the rigorous incorporation of crystal aggregation without ne-
glecting the notion of crystal shape poses a challenging task. This is due to the inher-
ent involvement of different scales, i.e., the single crystal scale which characterizes
the shape of the individual crystal and the relative position between single crystals
within an aggregate. Breakage is of course a challenging problem as well but less rel-
evant for shape evolution because broken crystals that grow, often heal and may even
reach a fully symmetric state after a while. But first and foremost, the observation of
crystals – whether single crystals in a population or aggregates – under more com-
plicated situations, i.e., in dense suspension and for a large number of facets – is the
field in which successful methodologies and techniques will have the largest impact.
Crystal observation is the enabling technology for crystal shape control in practice.
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