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Abstract: This paper is concerned with stabilizing open loop unstable fluidized bed spray
granulation with internal product classification by means of low order control methods. The
process under investigation can be described by a population balance equation. In order to
design a low order controller numerical approximation and model reduction methods are applied
resulting in a low order design model. Stability when applying the low order control to the
original plant can be guaranteed under certain conditions on the approximation and reduction
methods and the robustness of the designed controller. The controller is validated by simulation

of the nonlinear plant model.
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1. INTRODUCTION

Granulation is an important process in many industries,
for example food, detergents, and pharmaceuticals. The
aim often is the production of a solid, free-flowing powder
from liquid raw materials, because powders are often
easier to handle, to transport or to store than their liquid
basis components. Additionally, it is possible to change
properties of the particles in the powders.

One process that allows for the production of particles
from liquid starting material is fluidized bed layering
granulation. Here, a liquid suspension, containing the
dissolved solid material, is sprayed on particles that are
kept in a fluidized state by a gas flow. Due to fluidization
of the particles by hot gas, the liquid in the suspension
evaporates and the solid content forms a layer on the
surface of the carrier particle, involving heat and mass
transfer (liquid to solid, liquid to vapor) and particulate
processes (growth of the layer).

The process can be run either in batch mode, which
is heavily used for instance in pharmaceuticals for the
application of protective layers on active ingredients, and
also in a continuous way: Here the suspension is sprayed
onto the particles, a growth of particles results, and by
some classifying mechanism particles that have reached a
certain size are removed from the process as product. In
order to maintain the continuous operation, a continuous
flow of new initial particles (nuclei) is required, because
otherwise all particles will at some time reach the required
product size and no particles remain in the apparatus.
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Classification schemes can be separated into two groups:
internal and external classification. Internal classification
means that the particles are classified before they leave the
apparatus; in contrast, in external classification particles
of all possible sizes leave the apparatus, are then screened
and the rejected portion of the outlet flow is fed back into
the apparatus for further growth [1].

In Vreman et al. [2] the authors proposed a model for
a continuous fluidized bed spray granulator with internal
product classification, where nuclei are produced by spray
drying, i.e. the drying conditions are such that the liquid
in a fraction of all the droplets sprayed from the nozzle
evaporates before it comes in contact with a particle in
the apparatus. These nuclei then form particles in their
own right. For certain ranges in the region of operating
parameters, an oscillating behavior in product properties
is observed. In view of given product specifications, this
effect is unwanted. This gives a motivation of product
control in particulate processes.

As particles in a process in general are not uniform, i.e.
they possess a distribution with respect to characteristic
properties, for example the size, the process behavior can
only be described if the distributed character is taken
into account. This can be done within the framework
of population balance equations [5] which allows for the
modeling of the temporal evolution of particle property
distributions n by considering the particles as individuals
in a population (the granular product). The resulting
balance equations are in general nonlinear partial integro-
differential equations, and thus from a system-theoretic
point of view infinite-dimensional problems.
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General obstacles in the design and implementation of
feedback control for distributed parameter systems are:
(a) there is no complete theory for nonlinear infinite-
dimensional systems, (b) feedback controllers are often
also infinite-dimensional systems, that have to be approx-
imated as finite-dimensional systems in order to be im-
plementable in process control systems, and (c) although
there is a theory for finite-dimensional systems, the ques-
tion always remains whether a controller designed on the
basis of a finite-dimensional approximation is sufficient to
guarantee closed-loop stability when it is applied to the
infinite-dimensional process.

In this contribution a control scheme for the feedback
control of a fluidized bed spray granulation process as
presented in Vreman et al. [2] for the stabilization of the
oscillating particle size distribution is presented. Starting
with an infinite-dimensional populations balance model for
the particle size distribution a finite-dimensional system
is derived. In a further step this model is reduced in
complexity by application of balanced truncation of the
transfer function model, i.e. the linearization of the non-
linear finite-dimensional approximation. The total error in
approximating and reducing the population balance model
is then quantified by the concept of gap-metric. Following,
a feedback controller for the reduced dynamic model is
designed. Here the focus lies on controller structures that
are easily available and accepted in industries, e.g. PI
controllers. Finally, by using gap-metric results, it will be
shown that the simple controller is able to stabilize the
infinite-dimensional system.

2. PROCESS MODELING

In the following the main equations and relations derived
by Vreman et al. [2] for a continuous fluidized bed spray
granulation process with internal product classification as
depicted in Fig. 1 are summarized.
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Fig. 1. Process scheme

The suspension sprayed by the nozzle leads to a growth of
size of the particles in the bed. Assuming spherical parti-
cles, the characteristic size of the particles is the diameter.
For the growth of particles a surface-proportional law can
be derived. The main assumption in the derivation is that
the droplet spreads over the total particle surface. Vreman
et al. [2] modified the growth law, to account for nuclei
formation by spray drying, yielding:
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Here, V, denotes the volumetric low of suspension sprayed
onto the particles, the total surface area of all particles
in the bed is given by mwus, where ps depends on the
particle size distribution n. The fraction b accounts for
the formation of nuclei and depends, according to Vreman
et al., on the distance of the particle bed from the nozzle
With increasing bed height h the free distance for the spray
droplets decreases yielding a decreasing nuclei formation.
The minimum for the nucleation parameter b is reached,
if the bed reaches the height of the nozzle. For larger
bed heights the nucleation parameter b is fixed at by,. If
the bed height vanishes, it is assumed that 100 % of the
injected suspension forms new nuclei giving a nucleation
parameter b = 1. In between these two extrema the curve
is interpolated linearly.

b = bs + max <0,(1—boo)h"°z_h). (2)

(1)
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The bed height can be calculated for a given bed porosity
¢ from the granulator area and the overall particle volume.

v
h=—— 3
(1—e)A’ ®)
The particles created are assumed to be normally dis-
tributed about the mean length L¢ resulting in the fol-

lowing birth function B.
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The outlet flow of particles can be modeled as
Nprod = KT (L)n, (5)

where K is the drain and T the separation function due to
the internal classification, which is achieved by an air sifter
with a counter-current stream that separates particles with
respect to their sinking velocities. Here, the following non-
ideal classification is assumed.
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The population balance model for this process thus reads
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Starting with an initial particle size distribution as de-
picted in Fig. 2, which is the steady state particle size
distribution for V&O = 16700%, the model shows an
interesting dynamical behavior: For sufficiently high sus-
pension injection rates and an associated bed height higher
than the nozzle height, a stable steady state in the particle
size distribution is reached, as shown in Fig. 3 (left). By a
decrease in the suspension rate below a critical value the
steady state becomes unstable and nonlinear oscillations
occur as depicted in Fig. 3 (right).
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The mechanism yielding these oscillations can be described
as follows:

e For a bed height smaller than the nozzle height an
increased nuclei production takes place due to spray
drying.

e This results in a high number of small particles and
a reduced growth rate.

e After a certain time the bed height reaches the nozzle
height, resulting in a small and constant production
of nuclei and a higher growth rate.

e When the peak of the particle size distribution
reaches the critical classifying particle radius L,
which passes the air sifter, the associated particles
are removed from the granulator. This is connected
with a decrease of the bed height below the nozzle
height and hence the process repeats.

In contrast, a high suspension rate results in a permanent
high nuclei production, a higher growth rate and therefore
a bed height being bigger than the nozzle height. Hence,
after a transition a stable steady state particle size distri-
bution is reached and no oscillations occur.
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Fig. 3. Open loop Simulation in the stable (left) Ve =1.1-
Ve,0 and unstable (right) V., =0.9- V.

2.1 Control structure

In order to stabilize the continuous fluidized bed spray
granulation with internal product classification a con-
troller will be derived using a transfer function model with
the suspension rate V. as the control input u and the
third moment of the particle size distribution ps as the
controlled variable. The resulting control scheme is shown
in Fig. 4.

3. MODEL REDUCTION OF POPULATION
BALANCES BY NUMERICAL APPROXIMATION

For simulation and finite dimensional control design nu-
merical discretization has to be applied to the presented
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Fig. 4. Control scheme

model. Due to the fact that the presented population
balance model can be written as a scalar conservation law
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application of finite volume discretization is preferable.
Here, convergence results are typically stated for the full-
discrete case [3], i.e. discretization in space and time,
for simulation and control design the semi-discrete case,
i.e. applying the method of lines first discretizing in
space and then using a possibly different method for
time discretization, is more appropriate. The reasons are
twofold:

(1) applying a discretization in two steps allows the
use of high-order accurate time integration methods,
e.g. Runge-Kutta methods, and variable time step
methods.

(2) a discretization in space results in a high-order
continuous-time state-space model, which can be
investigated by finite dimensional continuous-time
analysis and control methods, whereas a discretiza-
tion in space and time results in a high-order discrete-
time state-space model.

In order to prove convergence of a semi-discrete approxi-
mation towards a weak solution n the full-discrete case is
studied first. Applying appropriate numerical discretiza-
tion methods to a scalar conservation law results in a
discrete conservation law in conservation form.
At
’Il‘];+1 = 7’L§f — E [FJ — Fj—l] .

Here F} is the numerical flux function, which may depend
on the numerical solution n’; at time step k at different
grid points p. A special case of this general approximation
scheme is the first order upwind scheme (11).

(10)

At
N LA IR (Y] B G,

In the following it will be assumed that time and space
discretization At and Az fulfill the basic CFL condition
(3]

k+1 __
ngoo =Ny

Atf!
<
A, <1 (12)

where f’ is the characteristic wave propagation speed.
Then the main ingredients to prove convergence of a
numerical method in conservation form, here the upwind
scheme, to a weak solution are total variation stability,
which guarantees convergence, and consistency together
with Lipschitz continuity, which gives that the limit is a
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weak solution. It can be shown that the upwind scheme
gives a convergent approximation [3].

As has been stated earlier, full-discretization is not pre-
ferred from a control design point of view when focus
is on continuous control design methods. Therefore the
discretization is mostly done in two stages, first discretiz-
ing in space. This approach is called the method of lines.
It reduces the distributed parameter system to a high
dimensional system of ordinary differential equations.

du

dt

Here, u is the spatially discretized approximation of the
solution and L(u) represents the discrete flux approxima-
tion of the true flux. Obviously, the semi-discrete repre-
sentation (13) is equivalent to the fully-discrete method
(10), when applying the forward Euler method for time
discretization.

= L(u) (13)

u™ =™ 4+ AtL(u")

One advantage using the method of lines approach is, that
applying standard high order ODE solvers, e.g. Runge-
Kutta methods, high temporal accuracy is possible. The
open question here is, whether applying a high order ODE
method still guarantees convergence, i.e. total variation
stability. In the following a general Runge-Kutta scheme
[4] is assumed.

(14)

u® =y (15)
1—1

u®=3" (ai,ku(k) + AtﬁML(u(k))) i=1,...,n(16)
k=0

un = (™ (17)

The coefficients o; j, and 3, are assumed to be nonnega-
tive, i.e. a; 1 > 0 and B, > 0. In addition by consistency
the coefficients c; 5, fulfill the following equality

i—1
E =1 1=1,...,m.
k=0

This Runge-Kutta scheme is different from standard
Runge-Kutta schemes typically represented by their Butcher
tableau. The main advantage using this representation is
that for a; > 0 and 3;, > 0 the Runge-Kutta schemes
are just a combination of Euler forward steps. The fol-
lowing theorem shows that if the semi-discrete scheme is
TV-stable for the Euler forward step, i.e. if the equiva-
lent full-discrete scheme is total variation stable, then the
semi-discrete scheme is total variation stable applying an
appropriate high order Runge-Kutta scheme.

Theorem 1. [4] If the forward Euler method is total vari-
ation stable and fulfills the CFL condition with a time
step At, then the Runge-Kutta method with «;, > 0
and B;r > 0 is total variation stable and fulfills the CFL

condition
At ;
2% max (Bl’k> <1
Az i,k Q5 |

For numerical time integration among others the following
third order Runge-Kutta scheme [4] could be used

(18)

(19)
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u® =y (20)
u) = + AtL (u(o)) (21)
3 1 1
(2) = 2,0 4 Z, D) 4 = 1)
u® = Zul® 4 ou® g AL (u ) (22)
1 2 2
B =240 4 2,24 = (2)
u U + U + 3AtL (u ) (23)
untt =y, (24)

The coefficients o; j, and B;, clearly satisfy the aforemen-
tioned assumptions.

4. CONVERGENCE IN THE GAP METRIC

So far, convergence of the approximate solution of the
particle size distribution has been studied. However, for
control design this type of convergence is not sufficient. For
a successful finite dimensional control design convergence
should be stated in terms of certain error bounds, which
can be identified with appropriate model uncertainties.
Here, we will focus on normalized coprime factor uncer-
tainties. The motivation is that deriving a controller with
an appropriate robust stability margin closed loop stability
can be guaranteed embedding the linearized population
balance model into a set consisting of a nominal system
Go(s) and a set of bounded, stable uncertainties.
Therefore, in the following it is assumed that the popula-
tion balance model has been linearized resulting in a linear
distributed parameter system on a Hilbert space X, where
A is the generator of a strongly continuous semigroup 7'(t)
and the input/output spaces are finite dimensional, i.e.
B e LR™ X) and C € L(X,R™).

= Ax + Bu
y=Cx

The approximations resulting from the semi-discrete up-
wind discretization give finite dimensional approxima-
tions.

&= A,z + Bpu (27)

(28)
In the following P,, will be the projection operator, which
restricts C' to C,, and gives B,, = P, B. For the practical
implementation the linear approximations are derived by
linearization of the nonlinear semi-discretized population
balance model.

From a control perspective, it would be desirable if the
linear distributed parameter system could be embedded
into a set consisting of a nominal system Gy and a set
of bounded, stable uncertainties. As the process shows
a change of stability this should be reflected by the set
of uncertainties, therefore the set of normalized coprime
factor uncertainties is chosen. Here the plant is represented
by its normalized left coprime factorization with additive
uncertainties AM (s), AN(s) in each factor.

y=Crx

G(s) = (M(s) + An(9) " (N(s) + An(s))  (29)
The nominal system therefore reads
Go(s) = M(s)"*N(s). (30)

The normalized left coprime factor uncertainty is assumed
to be stable with |[[Ax An ]|l <e
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As, in contrast to multiplicative or additive model uncer-
tainties, coprime factor uncertainties do not give a unique
realization for Ajs(s) and Ap(s) for a given plant to be
embedded, the choice of Ajps(s) and Ay (s) is an additional
degree of freedom. Therefore one could derive a A/ (s) and
An(s), which gives a minimal H.,-norm for [Ay Apy].
04(Go,G) = inf An A @)} (31

(G G)i= it {J[Ax Aull G (1)
As 4, is not symmetric in its arguments, the gap metric
dg is introduced [6, 7].

04(Go, G) = max{d4(Go, G),04(G,Go)} (32)
Using this gap metric two systems Gi(s) and Ga(s)
are close if the associated value of the gap metric
04(G1(s),Ga(s)) is close to zero, implying that both can
be embedded in a family of linear models using a nominal
model and a small, with respect to H..-norm, coprime
factor uncertainty. The maximum gap metric is one.

In order to show convergence of the finite dimensional
approximations (A, By, Cy,) to the linear distributed pa-
rameter system (A4, B, C) in the sense of the gap metric it is
assumed that the sequence of approximations (4,,, By, Cy,)
of the o-stabilizable/detectable bounded control system
(4, B, C) satisfies the following assumptions.

A1l For all z € X, lim,, o0 || Pz — z|| = 0.
A2 For some s € p(A) and for all z € X

nh_}rrgo |PnR(s; A)X (s) — R(s; Ap) P X (s)|| =0. (33)

A3 The semigroups T, (t) generated by A,, are uniformly
bounded. That is, there exist M, k such that

| T (t)|| < Me* for all n > N. (34)

A4 The approximations are uniformly o-stabilizable if the
original system is o-stabilizable, i.e.

lim K, P,x = Kz

n—oo
and for sufficiently large N the semigroups generated by
A, — B, K, are uniformly bounded by Me~%! for some
M >0,a>0 and all n > N.

(35)

The following theorem then states that the sequence of
finite dimensional approximations G, (s) of the infinite
dimensional linearized population balance model G(s)
converge in the sense of the gap metric. Further details
can be found for example in [10, 9].

Theorem 2. [9] Let (A,, By, Cy) be a sequence of approx-
imations of a o-stabilizable/detectable bounded control
system (A, B, C), satisfying assumptions (A1)-(A4). Then
the approximating systems G,, converge to the original
system G in the gap metric, i.e.

lim 6(G,,G) = 0.

n—oo

(36)

4.1 Estimation of the gap metric

Typically the calculation of the distance between a finite-
dimensional approximation G,,(s) and the original system
G(s) in the sense of the gap metric §(G,,, G) is a very hard
task. Therefore in this section an estimation procedure [8]
is used. As the gap metric satisfies the triangular inequality

0(Gk, G) < §(Gk, Git1) + 6(Gr1, G) (37)

and using the fact that the numerical approximation G,
converges to G, i.e. lim, ., G, = G, yields
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oo
6(GTL7 G) < Z 6(Gka Gk+1)'
k=n
Assuming that the gap metric 6(Gg, Gi+1) can be bounded
from above by a sequence (k) for which the associated
series converges, gives the following for the gap metric
of the finite-dimensional approximation G,(s) and the
original system G(s):

(oo} oo

8(GnyG) <Y 0(Gr, Gryn) < > (k). (39)
k=n k=n

As can be seen in Fig. 5 the sequence of gap metrics

0(Gk,Gr+1) can be bounded from above by a sequence

5(k) = 42/(i + 32)? with i = k — 149 for which the

associated series converges.

(38)
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k

Fig. 5. Sequence of gap metrics 6(Gg, Gg+1)

oo

8(Gn,G) <>

4
—— <0.232
< (i +32)?

(40)

As the interest lies on a low order controller design
the finite-dimensional design model Ggy(s) should be of
minimum order. Therefore, the Hankel singular values of
a high order finite-dimensional approximation G, (s) with
n = 150 are studied. As can be seen in the diagram of
the Hankel singular values o; in Fig. 6 (left) a truncation

down to order 3 is reasonable.
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Fig. 6. Hankel singular values of G(s) (left) and Bode
Diagramm of G, (s) (solid black and Gy(s) (dotte

gray) (right)

Applying balanced truncation to the normalized coprime
factors M (s) and N (s) of G, (s) and reducing each to order
3 results in a reduced system of third order.
Gols) 1.99(s? 4 0.00028s + 3.5 - 1079)
O (54 0.0005)(s2 — 5.2- 1055 + 1.2 - 10-7)

(41)

As shown in the Bode diagram in Fig. 6 (right) the additive
approximation error |G — G| is small over the whole
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frequency range of interest. In addition, this low order
model gives a good approximation of the high order finite
dimensional model in the sense of the gap metric.

§(Go,Gp) <1-1073 (42)

5. CONTROL DESIGN

Using the reduced transfer function model (41) standard
control design methods can be used to design a control
candidate. Here, a PI controller is designed by applying
standard root locus methods (Fig. 7).

_g.qg6lt18-10%

K(s) -

(43)

x10°
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Re x10*

Fig. 7. Root locus of G,(s) (black) with PI controller
(gray)

In order to assure that the designed controller stabilizes
not only the reduced design model G, (s) but also the
original distributed parameter plant G(s) it has to be
checked that

<e (44)

b

[ﬂ (I+GK)"' M

o0

where € has to be smaller than the gap metric §(Go, G). An
appropriate estimate can be calculated taking into account
the numerical approximation error §(G,,, G) and the model
reduction error §(Go, Gy,).

0(Go, G) < 6(Go,Gp) +6(Gr, G) <0.233 (45)
As the designed PI controller achieves a robustness margin
of approximately ¢ = 0.7 this condition is met. Nonlinear
simulations depicted in Fig. 8 show that closing the control
loop after 60h the suggested controller is able to stabilize
the system with reasonable control effort.

6. CONCLUSION

A low order controller for continuous fluidized bed
spray granulation with classifying product removal has
been developed. For the control design the main steps
are model discretization, linearization of the discretized
model, model reduction, control design and verification of
the controller robustness, which guarantees stability in the
neighborhood of steady state. The proposed control strat-
egy was validated by means of simulation of the nonlinear
plant model. A good control performance with reasonable
control effort was observed.
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Fig. 8. Stabilization by closing the control loop at ¢t = 60h

A 5 - 105mm?
hnoz 440mm

€ 0.5

Vo 1.67 - 105 mm>
boo 0.028

a 0.05

L(] 0.3mm

Ly 0.7mm

K 1921041

Table 1. Plant parameters
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