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CHAPTER

ONE

INTRODUCTION

The investigation of eigenvalue problems, see Definition 2.1.6, is one of the core topics of
numerical linear algebra. It is guessed that roughly 40% of the papers in SIAM Journal
on Matrix Analysis (SIMAX) deal with eigenvalue problems [45].

If we are able to compute the eigenvalues of a matrix, then we can solve a wide range of
problems like:

� vibrational analysis,

� ground states in density functional theory,

� stationary distributions of Markov chains,

� and many more.

The eigenvalue problem for unstructured (symmetric) matrices seems to be almost
solved. There have, however, been new eigenvalue algorithms for structured matrices in
the last decades. These algorithms are divided into two groups. On the one hand, there
are algorithms preserving the structure of the spectrum, like the symplectic algorithms
in [8, 9]. On the other hand, there are algorithms using the structure of the matrix to
accelerate the computations, like the eigenvalue algorithms for semiseparable matrices,
e.g., [39, 78, 88]. Here we will present eigenvalue algorithms of the second kind. We
will exploit the structure of hierarchical matrices for the construction of new, faster,
algorithms.

Hierarchical matrices are data-sparse. They do not only have O(n) non-zero entries, like
sparse matrices, but they can be represented with an almost linear amount of storage.
This is seen in the discretization of

λf(x) =

∫
Γ
g(x, y)f(y)dy
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which leads to

Mij =

∫
Γ

∫
Γ
g(x, y)φi(x)φj(y)dxdy.

If the kernel-function has a non-local support, then M is dense, even for basis functions φ
with local support. The exact definitions follow in Section 2.2. Further, if the kernel
function g(x, y) can be approximated by a piecewise separable function, then matrix
M is an H-matrix. Many kernel functions have such an approximation, which can be
computed by interpolation or Taylor expansion. If the kernel function is separable, then
M is a separable matrix. As such there is a connection between semiseparable and hier-
archical matrices. We will use a theorem on the structure preservation of semiseparable
matrices under LR Cholesky transformation [88] to explain the behavior of hierarchical
matrices. The hierarchical semiseparable matrices are a subset of hierarchical matrices
and a superset of semiseparable matrices. A further interesting subset of the hierarchical
matrices are the tridiagonal matrices. We will use an algorithm described as being for
tridiagonal matrices [87] for H`-matrices in Chapter 5. In Section 2.5 we explain the
relations in detail.

In [45] the eigenvalue problems are classified by their main properties. We already
mentioned that we assume the special data-sparse structure of hierarchical matrices.
Further, we will restrict the following investigations to real, symmetric matrices. The
symmetric eigenvalue problem for real matrices is somehow easier than the general one
but the problem is still interesting enough since many applications lead to symmetric
matrices, e.g., as mentioned previously. In the preface of [87], B.N. Parlett explains that
the differences between symmetric and general eigenvalue problems make it advantageous
to treat them separately.

The last point of G. Golub and H. Van der Vorst’s classification in [45] is the question;
which eigenvalues are required? Here we are not satisfied with computing only the
largest or smallest eigenvalue in magnitude, but we also want to have some or all inner
eigenvalues.

This special structured eigenvalue problem has been investigated by Hackbusch and Kreß
[60], Delvaux, Frederix, and Van Barel [34], and Gördes [47]. Their eigenvalue algorithms
will be reviewed in Section 2.6.

In the remainder of this chapter we introduce some notation that have not been men-
tioned in the list of symbols and explain the structure of this thesis.

1.1 Notation

The notation in the following chapters is mainly following Householder notation. That
means: matrices are denoted by capital letters M,N,A,B, lower roman letters x, v, w
stand for column vectors, Greek letters λ, µ, ν denote scalar variables or, i.e., µ(M),
scalar valued functions, and BT stands for the transpose of the matrix B. This is
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especially the case in indices of matrices where the colon notation is used, where i : n :=
{1, . . . , n}. With Mij we denote the element of M in the i-th row and j-th column. So
Mi:j,k:l is a submatrix of M .

Further, we follow the usual notation in the field of hierarchical matrices. So we reserve
the matrices A and B for low-rank factorizations in the form ABT . The value k often
stands for the rank of ABT .

Sometimes the symbol k � n is used to indicate that k is much lower than n. If k � n,
then k < n and k ∈ o(n).

The absolute resp. relative errors of computed vectors of eigenvalues are measured using
the maximal distance within the set of the eigenvalues:

eabs =
∥∥∥λi − λ̂i∥∥∥∞ resp. erel =

∥∥∥∥∥λi − λ̂iλi

∥∥∥∥∥
∞
.

1.2 Structure of this Thesis

In the next chapter known definitions, facts, theorems and properties are collected. We
first explain the eigenvalue problem and follow this with a list of the used dense matrix
algorithms and their complexity. We review the hierarchical matrix format following the
definitions in [48]. The weak admissible condition leads to simple structured H-matrices.
Afterwards, we present the examples used in the subsequent chapters. The basics are
completed by a short review of the related matrix formats and existing eigenvalue algo-
rithms for hierarchical matrices.

Chapter 3 deals with the QR decomposition of H-matrices. A new QR decomposition
is presented. The comparison with two existing QR decompositions, see [6, 73], shows
that none of the three are superior in all cases. We try to use the QR decomposition
in Chapter 4 for a QR-like algorithm for hierarchical matrices. In Chapter 4 we explain
why this leads to an inefficient algorithm for H-matrices but an efficient algorithm for
H`-matrices. Therefore, we use a new, more constructive proof for the theorem in [88].

A bisectioning method is used in Chapter 5 to compute the eigenvalues of H`-matrices.
This method was original described for tridiagonal matrices in [87]. In each bisection
step one has to compute an LDLT factorization. For H`-matrices this can be done
without truncation in linear-polylogarithmic complexity. The algorithm computes one
eigenvalue in O(k2n (log2 n)4) flops. The algorithm can also be used in H-matrices, but
there is no bound on the error or the complexity.

In Chapter 6 we use the preconditioned inverse iteration [68] for the computation of
the smallest eigenvalues of H-matrices. Together with the folded spectrum method
[104], inner eigenvalues can also be computed. We compare the different algorithms in
Chapter 7 and summarize this thesis in a final conclusion chapter.
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The aim of this chapter is to collect well known basic facts, definitions, lemmas, theorems,
and examples necessary for the understanding of the following chapters. Since everything
is well known, the lemmas and theorems will mostly be given without proofs. Further, a
review of existing algorithms for the computation of eigenvalues of hierarchical matrices
is given. At the end of the chapter we briefly describe the compute cluster Otto used
for the numerical computations.

2.1 Linear Algebra and Eigenvalues

In the following section we summarize the known facts on matrices, eigenvalues, and
standard dense matrix algorithms. This section gives a narrow excerpt of the wide
mathematical field of linear algebra. We focus on those aspects important for the thesis.

First we require the definitions of a vector and a matrix, since they are important
concepts in linear algebra.

Definition 2.1.1: (vector)
An n-tupel v of scalar variables v1

...
vn

 =: v

is called a vector. The space of vectors with n real entries is called Rn, we say v ∈ Rn.

In the H-matrix context it is advantageous to construct vectors over general index
sets I ⊂ N and not only over {1, . . . , n}. The set of vectors (vi)i∈I is denoted by RI ,
cf. [56].

Definition 2.1.2: (matrix, symmetric matrix)
With Rn×m we denote the vector space of real matrices of dimension n×m.

M ∈ Rn×m ⇒M =

M11 · · · M1m
...

. . .
...

Mn1 · · · Mnm


Like for vectors, we will use M ∈ RI×J for the matrix

M = (Mij)i∈I,j∈J ,

with the index sets I for the rows and J for the columns, cf. [56].

If Mij = Mji for all pairs (i, j), then M is called symmetric.
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If nothing else is stated, then M ∈ Rn×n resp. M ∈ RI×I , with |I| = n and M = MT .
This restriction to symmetric matrices is a strong simplification, but as we have seen in
the previous chapter, symmetric problems are of particular interest in applications for
mechanics and physics.

Each matrix has a rank. The concept of the rank is important for the hierarchical
matrices as we will approximate almost all of their submatrices by low-rank matrices.

Definition 2.1.3: [46]
The rank of a matrix N ∈ Rn×m is the dimension of the image of N

rank (N) = dim(im(N)).

Corollary 2.1.4: The rank of N ∈ Rn×m is equal to the number of non-zero singular
values of N , see also Section 2.1.2,

rank (N) = |{σi|0 < σi ∈ Σ(N)}| .

If N is a square matrix (m = n), then the rank is also equal to the number of non-zero
eigenvalues

rank (N) = |{λi|0 6= λi ∈ Λ(N)}| .

Since one can not determine the exact rank in finite precision arithmetic one uses the
numerical rank of a matrix instead.

Definition 2.1.5: [15]
The numerical rank with respect to a threshold τ of N is the number of singular values
larger than σ1/τ .

The SVD, see Section 2.1.2, can be used to compute the (numerical) rank of N . Besides
this, the rank can be computed by special implementations of the QR decomposition,
taking care of correct rank computations like, for example, the rank-revealing QR de-
composition [25]. The rank revealing QR for N ∈ Rn×m has a complexity of O(rnm),
with r = rank (N).

The next subsection lists the basic facts of the matrix eigenvalue problem.

2.1.1 The Eigenvalue Problem

Definition 2.1.6: (eigenpair) [107]
Let M ∈ Rn×n be a matrix. A pair (λ, v) with v ∈ Cn \ {0} and λ ∈ C that fulfills

Mv = λv (2.1)
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is called an eigenpair of M . The vector v is called an eigenvector and λ an eigen-
value. The set of all eigenvalues of M {λ1, . . . , λn} is called the spectrum and is

denoted by Λ(M). Sometimes the column vector
[
λ1, . . . , λn

]T
or the diagonal ma-

trix diag (λ1, . . . , λn) are also called Λ(M) ∈ Rn. It is clear from the context whether
the set or the column vector is intended.

The computation problem of some or all eigenpairs is called the eigenvalue problem
(EVP), e.g., [107, 87, 3].

Remark 2.1.7: The eigenvalue problem is, in general, only solvable by iterative
algorithms, since otherwise this would be a contradiction of the Abel–Ruffini theo-
rem [45].

The following lemmas deal with invariance of the spectrum under similarity and con-
gruence transformations. These invariances are the basis for the QR algorithm, see
Chapter 4, and for the slicing algorithm, see Chapter 5.

Lemma 2.1.8: [87, Fact 1.1]
Let M ∈ Rn×n and P ∈ Rn×n be invertible. Then the similarity transformation
P−1MP preserves the spectrum,

Λ(M) = Λ(P−1MP ).

If P is further orthogonal, P TP = I, then the transformation

Λ(M) = Λ(P−1MP ) = Λ(P TMP )

is called an orthogonality transformation.

Theorem 2.1.9: (Sylvester’s inertia law, e.g., [87, p. 11])
Let M = MT ∈ Rn×n and G ∈ Rn×n invertible. Then for the congruence transfor-
mation it holds, that

ν(M) = ν(GTMG),

with ν(M) := |{λ ∈ Λ(M)|λ < 0}| the number of negative eigenvalues. The rank of
M and the number of positive eigenvalues is also preserved. The triple number of
negative, zero, and positive eigenvalues is called inertia of M .

Further, the trace of the matrix M , which is defined by

tr (M) :=

n∑
i=1

mii =

n∑
i=1

λi, (2.2)
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will be required.

Here we will only investigate the symmetric eigenvalue problem, where M is a symmetric
matrix M = MT . In case where the matrix is symmetric, the eigenvalue problem is easier
since the following lemmas hold.

Lemma 2.1.10: [87, Fact 1.2]
Let M ∈ Rn×n be a symmetric matrix and (λ, v) an eigenpair of M . Then it holds,
that v ∈ Rn and λ ∈ R.

So we can handle the symmetric eigenvalue problem completely in the field of reals.

Lemma 2.1.11: (spectral theorem) [87, Fact 1.4]
For any symmetric matrix M ∈ Rn×n, there is an orthogonal matrix V , so that

M = V Λ(M)V T =

n∑
i=1

λiviv
T
i .

The columns vi of V form an ortho-normalized set of the eigenvectors of M .

The condition number κ(V ) is defined by

κ(V ) = ‖V ‖2
∥∥V −1

∥∥
2
. (2.3)

A large condition number κ(V ) means that the system of equations V x = b is ill-
conditioned. The solution x is then very sensitive to perturbations in b. The following
lemma states that the symmetric eigenvalue problem is well conditioned.

Lemma 2.1.12: [46, Corollary 7.1-3]
If M ∈ Rn×n is normal (MTM = MMT ), then the condition number of the eigenvalue
problem of M is

κEVP(M) := κ(V ) = 1,

where V is the matrix of eigenvectors from Lemma 2.1.11.

In the symmetric case all the eigenvalues are real. As such, we will use the following
ordering:

λ1 ≤ λ2 ≤ · · · ≤ λn.

2.1.2 Dense Matrix Algorithms

In this subsection the main properties of algorithms for dense matrices are discussed.
The dense algorithms play two roles here. On the one hand, a special algorithm for a
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data-sparse structure should have an advantage over the corresponding dense algorithm,
since otherwise there is no need for the special algorithm. This is particularly reflected
through comparisons between the dense QR algorithm and the eigenvalue algorithms for
hierarchical matrices. On the other hand, dense algorithms are used on the lowest level
of the hierarchical structure in the hierarchical arithmetic, see next section.

In this thesis the terms dense, sparse and data-sparse matrix are used frequently. The
following definition distinguishes these types of matrices.

Definition 2.1.13: (sparse, dense and data-sparse matrix)
A matrix M ∈ Rn×n is called sparse, if there is a constant c� n, so that

|{i|Mij 6= 0}| ≤ c ∀j = 1, . . . , n.

One needs at most O(cn) entries of storage for M if one stores only the non-zero
entries.

If the number of non-zero entries in M is large (c ∈ O(n)), then M is called dense
and should be stored in a dense matrix format requiring n2 storage-entries.

If there is a representation of (the dense matrix)M , which requires onlyO(n (log2 n)β)
storage entries, where β is a positive real constant independent of n, then we will call
this representation of M a data-sparse representation.

Further, if a vector v ∈ Rn consists of only c� n non-zero entries, then the vector is
called sparse, too.

The set of pairs (i, j), with Mi,j 6= 0 is called the sparsity pattern of M . Some-
times, for M ∈ RI×J , this set is regarded as the edge set of a graph with the node
set {(i, j)|i ∈ I, j ∈ J}, [92]. Analog for a vector v, we call

{i ∈ I|vi 6= 0} ,

the sparsity pattern of v ∈ RI .

Definition 2.1.14: (bandwidth, tridiagonal matrix, diagonal matrix) [92]
Let b ∈ {0, . . . , n− 1}. A matrix M ∈ Rn×n is called band matrix if there is no non-
zero entry Mij with |i− j| > b. The matrix M has then the bandwidth b. A matrix
of bandwidth 1 is called tridiagonal matrix. Diagonal matrices have the bandwidth 0.

If b� n, then a band matrix with bandwidth b is also sparse.

Definition 2.1.15: (Hessenberg form) [107]
A matrix N ∈ Rn×n is called to be of upper Hessenberg form if Nij = 0 for all i, j with
i > j + 1. The matrix N is of lower Hessenberg form if NT is of upper Hessenberg
form.
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dense sparse data-sparse

Figure 2.1: Dense, sparse and data-sparse matrices.

A symmetric matrix in upper or lower Hessenberg form is tridiagonal.

In the remainder of this subsection we discuss the dense matrices. We focus on the
complexity of the storage and the algorithms. In the later comparison with the H-
arithmetic we will see that for matrices large enough, the H-arithmetic is more efficient
than the dense matrix arithmetic.

Storage If M is sparse, then M can be stored in a sparse matrix format in O(n). For
instance one can store for each non-zero entry of Mij a triple (i, j,Mij) as it is done in
the sparse matrix format used by MATLAB to display sparse matrices.1 If M is dense,
then the costs of storing M in a sparse matrix format will exceed the costs of the dense
matrix format.

In the dense matrix format all entries of a matrix are stored column by column, row by
row, or sometimes in a special blocking. In each case one has to store n2 elements for
M ∈ Rn×n, so the storage complexity is O(n2). Storing column by column is used in
the Fortran-based implementation of BLAS.

In the next but one section, we will see that H-matrices are dense but data-sparse, so
that neither the sparse nor the dense matrix formats are efficient for them.

Matrix-Vector Product To compute y = Mx with x, y ∈ Rn and M ∈ Rn×n, one
requires 2n2 − n flops.

Matrix-Matrix Product The computation of AB, with A ∈ Rn×k and B ∈ Rk×m,
requires 2nmk flops. If m, k ∈ O(n), then O(n3) flops are necessary for naive imple-
mentations. Sophisticated implementations can reduce the effort to O(n≥2.376) flops,
see [31].

1There are more efficient sparse matrix formats, like compressed sparse column, which MATLAB uses
for the sparse computations [43].
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The dense matrix-matrix multiplications used in the numerical examples are performed
by BLAS and cost O(n3) flops.

QR Decomposition The QR decomposition is an important tool in the field of matrix
computations. Every matrix N ∈ Rn×m can be factorized in an orthogonal matrix
Q ∈ Rn×n and an upper triangular R ∈ Rn×m (or trapezoidal if m < n),

N = QR = [ ] . (2.4)

This factorization is called the QR decomposition of N . The computation of the decom-
position consists of several Householder rotations and requires 3n2(m− n/3) flops [46].
Further properties of the QR decomposition can be found in many textbooks on numer-
ical linear algebra, e.g., in [37, 46].

LU Decomposition Let N ∈ Rn×n. If all leading principal submatrices of N are
invertible, then N has also an LU decomposition in a lower triangle with unit diagonal
L and upper triangle U ,

N = LU = [ ] .

The LU decomposition is related to Gaussian elimination and requires O(n3) flops. One
should use pivoting for stability reasons, see, e.g., [64].

Cholesky Decomposition If M = MT > 0, then one can find a symmetric factorization
similar to the LU decomposition with

M = LLT = [ ] ,

where L is a lower triangular with a diagonal of positive entries. Due to the symmetry,
the computation of the Cholesky factoriazation is cheaper than the LU decoomposition
but still of cubic complexity. Here we are permitted to omit pivoting, since M is positive
definite [64].

LDLT Decomposition

Definition 2.1.16: (LDLT factorization [46])
If M ∈ Rn×n is a symmetric, but not necessarily positive definite, matrix and all
the leading principal submatrices of M are invertible, then there exists a unit lower
triangular matrix L and a diagonal matrix D = diag (d1, . . . , dn) such that

M = LDLT = [ ] .

This factorization is called LDLT factorization or LDLT decomposition.

The computation of LDLT factorizations is of cubic complexity. Theorem 2.1.9 tells us
that M and D have the same inertia.



2.1. Linear Algebra and Eigenvalues 13

QR Algorithm The implicit, multi-shift QR algorithm, based on the invention by
Francis [41, 42], is the most widely used algorithm for the computation of all eigenvalues
of small dense matrices. Modern implementation used now in LAPACK/MATLAB are
based on aggressive early deflation by R. Byers et al., see [22]. The QR algorithm is
of cubic complexity [3], since the transformation to upper Hessenberg resp. tridiagonal
form needs O(n3) flops. The explicit QR algorithm is explained in Subsection 4.1.2.

Eigenvalue Algorithms for Symmetric Matrices The symmetric matrix M is first
transformed into tridiagonal form, which costs O(n3) flops. The eigenvalues of tridiag-
onal matrices can be computed by the QR algorithm, too. Further, one can use the
divide-and-conquer algorithm [32], the modern implementation of Rutishauser’s qd al-
gorithm [89], the dsqd algorithm [40], or the MR3 algorithm [108]. These algorithm are
of quadratic complexity.

An alternative is the transformation of M into a semiseparable matrix, see, e.g, [103],
which also costs O(n3) flops. For semiseparable matrices there are efficient algorithms
based on the implicit QR algorithm [102], the divide-and-conquer algorithm [78], and
the LR Cholesky algorithm [88]. The complexity is dominated by the transformation
into semiseparable form.

Singular Value Decomposition Each matrix N ∈ Rn×m has a singular value decompo-
sition (SVD)

N = UΣV T = [ ] , (2.5)

with orthogonal matrices U ∈ Rn×k, V ∈ Rm×k and a diagonal matrix Σ ∈ Rk×k,
see [44]. The entries σi of D are positive and are called singular values. The σi are in
decreasing order. The number of singular values is k = min{n,m}. If some singular
values are zero, then one can also compute the thin SVD [46], where only the singular
vectors for nonzero singular values are stored in U and V :

N =
[
U1, U2

] [Σ1

0

] [
V T

1

V T
2

]
= U1Σ1V

T
1 .

By setting the smallest singular values to zero, one can compute the best approximation
in the 2- and Frobenius-norms.

Theorem 2.1.17: [46, p. 72], [64]
Let N = UΣV T ∈ Rn×n be the singular value decomposition of N , with r = rank (N).
If k < r and Nk =

∑k
i σiuiv

T
i , then

min
S∈Rn×n, rank(S)=k

‖N − S‖2 = ‖N −Nk‖2 = σk+1,

min
S∈Rn×n, rank(S)=k

‖N − S‖F = ‖N −Nk‖F =

(
r∑

i=k+1

σ2
i

) 1
2

.
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The computation of the SVD costs, in general, O(n3) flops [46].

Corollary 2.1.18: Let N ∈ Rn×n with rank (N) = k. Then there are matrices
A,B ∈ Rn×k, with

N = ABT = [ ] .

Proof. There is a singular value decomposition of N with k nonzero singular values.

N =
k∑
i

σiuiv
T
i

Set

A =
[
u1 u2 · · · uk

]
and B =

[
σ1v1 σ2v2 · · · σkvk

]
.

�

All these algorithms are well known. However, except the matrix-vector product, all
these algorithms are of cubic complexity in time and require a quadratic amount of
storage. This means that a matrix of size 16 384× 16 384 requires 2 GB of storage and
a computation of the eigenvalues by the QR algorithm will take about one hour on a
standard desktop machine. Thus, on today’s single core Intel® Pentium® D 3.00 GHz
the computation will take 53 minutes. A matrix of size 32 768× 32 768 would take 8 GB
RAM and about 8 hours to compute all eigenvalues and this is already too much for
many of today’s desktop machines.

It is not advisable to handle larger matrices in the dense matrix format. So it is worth
looking deeper into the hierarchical matrix format, since this enables us to handle larger
dense matrices approximately. Before this, we should have a look at integral operators,
since they are a field of application for H-matrices.

2.2 Integral Operators and Integral Equations

The discretization of non-local integral operators leads to dense matrices, which often
have good H-matrix approximations. E.g., integral operators occur in the inversion of
(partial) differential operators or in population dynamics [72]. The discretization of
integral equations leads to linear systems of equations [54].

2.2.1 Definitions

For simplification we restrict ourselves to the linear Fredholm integral equations of first
kind, see [54] for the classification of integral equations.
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Definition 2.2.1: (integral operator, kernel function)
Let Ω ⊂ Rd. The operator F (·), defined by

F (φ) :=

∫
Ω
g(x, y)φ(y)dy,

is called an integral operator. The funktion g(·, ·) is called the kernel function of F (·).
The equation

f(x) =

∫
Ω
g(x, y)φ(y)dy

is called linear Fredholm integral equations of first kind.

The discretization of F using the basis sets (φi)i∈I and (ψj)j∈J leads to the matrix

Mij :=

∫
Ω
ψj(x)F (φi(x))dx i ∈ I, j ∈ J.

Often, basis functions have a local support like linear hat-functions. If the kernel function
g(x, y) is non-zero only for x ∈ Bc(y) and the basis functions are sufficiently uniformly
distributed over Ω, then the matrix M is sparse. Otherwise, if g(x, y) is a non-local
kernel (g(x, y) 6= 0 for almost all (x, y)) then M is dense.

Definition 2.2.2: (separable function) [54, Definition 3.3.3]
A (kernel) function g̃(x, y) is called separable, if there are functions ζν(x) and ξν(y),
so that

g̃(x, y) =
k∑
ν=1

ζν(x)ξν(y).

In the context of approximating the kernel g(x, y) by a separable function g̃(x, y), the
kernel g̃(x, y) is called a degenerate approximation of g(x, y). However, there are sepa-
rable kernels whose discretization leads to separable matrices.

Lemma 2.2.3: [56, p. 75]
Let M be the discretization of an integral operator F (·), as in Definition 2.2.1. If the
kernel function g(x, y) is separable,

g(x, y) =
k∑
ν=1

ζν(x)ξν(y),

then M is a matrix of rank k and can be written in the form

M = ABT .
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Sometimes the kernel function g is inseparable but can be approximated by a separable
function g̃ on the subdomain Ωt×Ωs, with Ωt,Ωs ⊂ Ω. Let t be the set of basis functions
ψi with supp (ψi) ⊂ Ωt and s the set of basis functions φj with supp (φj) ⊂ Ωs. Then
the submatrix M |t×s is of low rank.

The goal is to approximate almost all submatrices ofM by such low rank approximations.
In Section 2.3 we will see how the hierarchical matrix format can be used to find and
handle such submatrices efficiently. But before this, we will have a look at the boundary
element method and the integral operators which occur there.

2.2.2 Example - BEM

The boundary element method (BEM) is a method for solving partial differential equa-
tions. Compared with the finite element method (FEM), one does only require basis func-
tions for the discretization of the boundary of the domain. This reduces the number of ba-
sis function since the boundary of a d-dimensional domain Ω is only (d− 1)-dimensional.

Lemma 2.2.4: Let Ω ∈ R3 be a connected space with a connected boundary δΩ.
The function

φ(x) =
1

4π

∫
δΩ

f(x)

‖x− y‖2
dy, (2.6)

with f : δΩ→ R, fulfills the equation

∆φ(x) = 0 ∀x ∈ Ω.

Proof. [54, Lemma 8.1.3].
�

Remark 2.2.5: There are generalizations of this lemma for other differential opera-
tors, other dimensions d 6= 3, and non connected boundaries, see, e.g., [93].

This lemma transforms a differential equation on Ω into the integral equation (2.6) on
δΩ. The discretization of Equation (2.6) yields

Mx = b, Mij =
1

4π

∫
δΩ

∫
δΩ

φi(x)φj(y)

‖x− y‖2
dydx, (2.7)

bi =

∫
δΩ
f(x)φi(x)dx.

The kernel function

1

4π ‖x− y‖2
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is smooth enough to be approximated by a piecewise separable function, except in the
case where x = y. For instance, these approximations can be done by Taylor expansions,
see [75] for example. So we can approximate the discretization matrix M of this problem
through a hierarchical matrix. In the next section the set of hierarchical matrices is
introduced. After that section, in Subsection 2.4.2 we will revisit this example again.

2.3 Introduction to Hierarchical Arithmetic

2.3.1 Main Idea

Hierarchical matrices were introduced by Hackbusch in 1998 [55]. The concept of hier-
achical, or H-, matrices for short, is based on the observation that submatrices of a full
rank matrix may be of low rank resp. have low rank approximations.

This observation was already used in, e.g., the fast multipole method (FMM) [52], in
the panel clustering [61], or in the matrix-skeleton approximation [98].

There is a second important observation: The inverses of finite element matrices have,
under certain assumptions, submatrices with exponentially decaying singular values.
This means that these submatrices have also good low rank approximations.

Example 2.3.1: Let

∆h =



2 −1 0 · · · 0

−1 2 −1
. . .

...

0 −1 2
. . . 0

...
. . .

. . .
. . . −1

0 · · · 0 −1 2


∈ R64×64

and ∆2,h = I⊗∆h+∆h⊗I. The matrix ∆2,h is sparse. Then
(

∆−1
2,h

)
3585:4096,1:512

has

only 12 singular values larger than 10−12, see Figure 2.2. The inverse is computed by
the MATLAB function inv and the singular values by svd, once with single precision
arithmetic and once with double precision. The singular values smaller than 10−15

seem to be perturbed, so we should only trust the singular values shown in Figure 2.3.
These singular values show the expected exponential decay.

The hierarchical matrices are superior to these predecessors, since they permit much
more algebraic operations like approximate inversion, approximate Cholesky decompo-
sition, and approximate multiplication within the format.

Let Mr×s be a submatrix that admits low rank approximations, then

Mr×s ≈ ABT , A ∈ Rr×k, B ∈ Rs×k,
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double precision

single precision

0 50 100 150 200 250 300 350 400 450 500
10−27

10−22

10−17

10−12

10−7

10−2
σ
i
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Figure 2.2: Singular values of
(

∆−1
2,h

)
3585:4096,1:512

.
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10−16

10−13

10−10
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σ
i

Figure 2.3: Singular values of
(

∆−1
2,h

)
3585:4096,1:512

.
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with rank k. If k is much smaller than r and s, then storing A,B is much cheaper than
storing Mr×s.

The definitions in the next subsection introduce all the essential objects necessary for
the definition of hierarchical matrices, the hierarchical arithmetic, the understanding of
the properties of hierarchical matrices, and for the subsequent chapters.

2.3.2 Definitions

We follow the notation of [48] and [56], where further explanations can be found. Before
we define hierarchical matrices, we need some other definitions first:

Definition 2.3.2: (hierarchical tree, see [48, Definition 3.3])
Let I be an index set. We call a tree TI = (V,E) with vertices V ⊂ P(I) \ {∅} and
edges E ⊂ V × V a hierarchical tree, or H-tree for short, of the index set I if the
following conditions are fulfilled:

� the root of TI is I,

� a vertex v ∈ V is either a leave TI or the disjoint union of its sons:

v =

·⋃
s∈S(v)

s.

The set of sons of a vertex r ∈ TI is denoted by S(r). We define the set of descendants
S∗(r) of a vertex r ∈ TI using [18, Definition 3.5]

S∗(r) =

{
{r} if S(r) = ∅,
{r} ∪⋃s∈S(r) S

∗(s) otherwise.
(2.8)

We count the levels beginning with the root of the tree. On level 0 there is only one

vertex I ∈ T (0)
I . The set T (i) is defined as the set of the sons of vertices out of T (i−1),

T (i) :=
{
s ∈ S(r)

∣∣∣r ∈ T (i−1)
}

and T (0) := {I}. (2.9)

The depth of the tree TI is defined by

depth (T ) := max
{
i ∈ N

∣∣∣T (i) 6= ∅
}
. (2.10)

If a cardinality balanced clustering strategy is used, then the depth (TI) is inO (log2 n) [49,
p. 320ff]. The vertices without sons form the set of leaves of the tree TI and are denoted
by

L(TI) := {v ∈ TI |S(v) = ∅} . (2.11)
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{1, 2, 3, 4, 5, 6, 7, 8}

r = {1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

{5, 6, 7, 8}

{5, 6}

{5} {6}

{7, 8}

{7} {8}

S(r)

S∗(r)

Figure 2.4: H-tree TI .

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8

τ = supp (φ1, φ2) σ = supp (φ7, φ8)
dist (τ, σ)

diam (τ)

Figure 2.5: Example of basis functions.

The leaves on level i are denoted by

L(i)(TI) := L(TI) ∩ T (i)
I . (2.12)

A simple example of an H-tree, based on [4, Example 2.3.3], is shown in Figure 2.4.

Remark 2.3.3: (Construction of TI)
There are different possibilities of constructing the H-tree TI . We require the basis
functions φi, i ∈ I and their support

supp (φi(x)) := {x|φi(x) 6= 0}.

We have to split the indices in the index set I into two subsets s and t. The indices
with neighboring basis functions are grouped together, so that

τ = Ωt :=
⋃
i∈t

supp (φi) and σ = Ωs :=
⋃
i∈s

supp (φi)
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have a small diameter, see Figure 2.5. In the geometrically balanced clustering, one
tries to make the diameters of τ and σ equal. Therefore, one divides the domain
ΩI according to the space direction with maximal diameter. Choosing the space
direction with maximal diameter is useful in order to prevent Ωt from degenerating.
The splitting is stopped if the minimal block size nmin is reached. For quasi-uniform
meshes, hmin ∼ hmax, it was shown in [49] that

depth (TI) = O(log2 n).

Besides this, there is a cardinality balanced clustering where one tries to make the
cardinality of t and s equal. The depth of a cardinality balanced tree is

depth (TI) ≈ log2 n− log2 nmin.

A matrix is built over the product index set I × J . Hence we require a hierarchical
partitioning in the form of the block hierarchical tree or block cluster tree. Since the
product of two H-trees leads to a dense block hierarchical tree, we require before the
admissible condition, which tells us whether a block of M can be approximated by a low
rank factorization or if the block needs further subdivision.

Definition 2.3.4: (admissibility condition, [18])
Let TI×J be a block H-tree. The function

A : TI × TJ → {true, false}
is called admissibility condition if

A(r × s)⇒ A(r′ × s) ∧ A(r × s′) ∀r ∈ TI , s ∈ TJ , r′ ∈ S(r), s′ ∈ S(s).

A block b = (r, s) with A(b) = true is called admissible, otherwise inadmissible.

The admissibility condition decides which blocks are stored in low rank factorized form.

There are two commonly used admissibility conditions. The standard η-admissibility
condition is defined in [48, p. 9]

Aη(r, s) =

{
true, if min {diam (τ) , diam (σ)} ≤ 2η dist (τ, σ) ,

false, else,

where τ =
⋃
i∈r supp (φi) and σ =

⋃
i∈s supp (φi), with φi the basis function related to

index i. This admissibility condition is sometimes simplified by replacing τ and σ with
the minimal axis-parallel bounding boxes.

Further, we will use the weak admissibility condition [58]:

Aweak(r, s) :=

{
true, r ∩ s = ∅,
false, otherwise.

(2.13)
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We will now use the admissibility condition for the definition of the hierarchical block
tree.

Definition 2.3.5: (hierarchical block tree)
Let TI and TJ be hierarchical trees. The hierarchical tree TI×J is called hierarchical
block tree, short H×-tree or block H-tree, or block cluster tree, if ∀b = (r, s) ∈ TI×J :

(i) r ∈ TI ∧ s ∈ TJ and

(ii) If A(r, s) = false, then STI×J (b) = {(r′, s′) ∈ TI×J |r′ ∈ STI (r) ∧ s′ ∈ STJ (s′)}.
(iii) If A(r, s) = true, then STI×J (b) = ∅.

The set of leaves of TI×J that are additionally admissible, is denoted by

L+(TI×J) := {r × s ∈ L(TI×J)|A(r, s) = true} . (2.14)

The inadmissible leaves form the set

L−(TI×J) := {r × s ∈ L(TI×J)|A(r, s) = false} . (2.15)

Now we are able to define the set of H-matrices:

Definition 2.3.6: (hierarchical matrix) [49]
We define the set of hierarchical matrices for the block H-tree TI×J with admissibility
condition A, maximal block-wise rank k and minimal block size nmin by

H(TI×J ,A, k) :=

M ∈ RI×J
∣∣∣∣∣∣
∀r × s ∈ L(TI×J) :
if (A(r, s) = true) then rank (Mr×s) ≤ k,
else min {|r| , |s|} ≤ nmin

 .

If the standard admissibility condition is used, then we write also H(TI×J , k). If the
tree is determined by the context, then we also omit the TI×J and write simply H(k)
for the set of H-matrices.

The admissible blocks of M are, at most, of rank k. We store them in a factorized form
M |b = ABT , with b ∈ L+(TI×J), A,B rectangular matrices with k columns. Matrices
of rank k, which are given in the factored form ABT , are called Rk-matrices. The
inadmissible leaves of a block size less than or equal to nmin in one dimension are stored
in the dense matrix format, since they neither have a cheap factorization, nor is a further
subdivision useful regarding the storage or computational complexity.

A simple example of an H-matrix with the different levels is shown in Figure 2.6a (stan-
dard admissibility condition) and in Figure 2.6b (weak admissibility condition). The
green blocks are admissible, the red ones are inadmissible. The structure of theH-matrix
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(a) Standard admissibility condition Aη, η = 1
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(b) Weak admissibility condition Aweak.

Figure 2.6: H-matrix based on TI from Figure 2.4.

with the weak admissibility condition is simpler. The H-matrices with weak admissibil-
ity condition have special properties. In Subsection 2.3.4 we will investigate that subset
of H-matrices.

If nothing else is stated, we will assume that the H-matrices are built over the product
index set I × I by using the same H-tree TI for the row and column index sets. This
is a natural assumption for the eigenvalue problem, since the H-matrix M is a map-
ping from RI to RI . Otherwise we can not define eigenvalues and eigenvectors of M .
Further, we assume M to be symmetric. Using twice the same H-tree TI ensures that
the structure of M is also symmetric. Without this assumption the H-Cholesky and
H-LDLT decomposition of M become much more complicated. Further we assume for
simplicity that only binary trees are used with depth (T ) ∈ O (log2 n). This assump-
tion only simplifies the presentation of the arithmetic operations, which can also be
formulated for non-binary trees.

The following constants are necessary for the complexity estimation of the H-arithmetic.
The constants are properties of the structure.

Definition 2.3.7: (sparsity constant) [49, Definition 2.1]
The sparsity constant of an H-matrix is defined as

Csp := max

{
max
r∈TI
|{s ∈ TI | r × s ∈ TI×I}| ,max

s∈TI
|{r ∈ TI | r × s ∈ TI×I}|

}
. (2.16)

In [49] it is shown how TI×I has to be constructed to get H-matrices with sparsity
constants Csp independent of the dimension n.
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Definition 2.3.8: (idempotency constant) [49, Definition 2.22]
The idempotency constant of an H-matrix that is built over a hierarchical product
tree TI×I = TI × TI is defined as

Cid(τ × σ) :=

∣∣∣∣{τ ′ × σ′∣∣∣∣ τ ′ ∈ S∗(τ), σ′ ∈ S∗(σ) and
∃ρ ∈ TI : τ ′ × ρ ∈ TI×I ∧ ρ× σ′ ∈ TI×I

}∣∣∣∣
Cid := max

τ×σ∈TI×I
Cid(τ × σ) (2.17)

Lemma 2.3.9: [49, Lemma 2.4]
Let M ∈ H(TI×I , k) be an H-matrix with sparsity constant Csp, with a minimal block
size nmin, and n = |I|. Then the required storage for M , NH,st(M), is bounded by

NH,st(M) ≤ 2Csp max {k, nmin} (depth (TI×I) + 1)n ∈ O (Cspkn log2 n) .

The storage complexity depends on the matrix size n, on the sparsity constant Csp, on
the minimal block size nmin, and on the block-wise rank k. A complexity of the form

O
(
CspCidk

αn (log2 n)β
)
,

with α and β independent of n will be called almost linear or linear-polylogarithmic.

Construction of H-Matrices First, we have to construct the H-tree, by, for example,
cardinality or geometrically balanced clustering. Second, we use the admissibility con-
dition to construct an H×-tree. Now we have the structure for our H-matrix. If the
matrix M is given in a dense or sparse matrix format, then we can simply truncate M
in the admissible leaves so that the rank condition is fulfilled. In the inadmissible leaves
we copy M .

This approach has the main drawback that giving M in the dense format requires O(n2)
storage entries. Alternatively, we often can access M only element-wise, since the entry
Mij is computed using a quadrature formula like in the BEM example, but only in the
moment it is required. In the inadmissible leaves we again need all entries, but in the ad-
missible leaves we can, however, use sophisticated techniques. This techniques compute
the approximation by using only a few entries so that constructing the H-matrix can
be done in linear-polylogarithmic complexity. Examples of this techniques are adaptive
cross approximation [5] and hybrid cross approximation [20], which are based on the
incomplete cross approximation [99].

2.3.3 Hierarchical Arithmetic

In the last lemma we have seen that H-matrices can be stored in a cheap and efficient
way, with an almost linear amount of storage (in the matrix dimension n). Now we will
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Algorithm 2.1: H-matrix-vector multiplication.

Input: M ∈ H(TI×I), v ∈ Rn
Output: Mv = w ∈ Rn

1 w := 0;
2 forall r × s ∈ L(TI×I) do
3 wr = wr +Mr×svs;
4 end

review some of the existing arithmetic operations for hierarchical matrices. There are
two different approaches of arithmetic operations forH-matrices; one fixes the block-wise
rank of the intermediate along with the final results and the other fixes the approximation
accuracy.

H-Matrix-Vector Product The H-matrix M has the following block structure:

M =

[
M11 M12

M21 M22

]
.

If one partitions v =
[
vT1 vT2

]T
in the same row way, then one can split the H-matrix-

vector product into four smaller H-matrix-vector-products

Mv =

[
M11v1 +M12v2

M21v1 +M22v2

]
.

We can repeat this process down to the leaves through recursion. In the leaves we
have to form wr = wr + M |(r,s) vs. If (r, s) is inadmissible, then this is a standard
matrix vector product. If (r, s) is admissible then we can use the low rank factorization
wr = wr +ABT vs to reduce the complexity of this operation.

Lemma 2.3.10: [49, Lemma 2.5]
Let M ∈ H(TI×I , k) be an H-matrix with sparsity constant Csp, minimal block size
nmin, and n = |I|. Then

NH·v(M) ≤ NH,st(M) ∈ O (Cspkn log2 n) . (2.18)

Proof. During this process we have to access each storage entry of M once.
�

H-Matrix-Matrix Addition The exact addition of M,N ∈ H(T, k) is trivial. Since M
and N have the same hierarchical structure, it is sufficient to add the submatrices in the
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leaves. In the inadmissible leaves we have to add two dense matrices.

M +H N =

[
M11 M12

M21 M22

]
+

[
N11 N12

N21 N22

]
=

[
M11 +H N11 M12 +H N12

M21 +H N21 M22 +H N22

]
However, in the admissible leaves we add two low rank matrices of rank at most k. In
general, this leads to a low rank matrix of rank at most 2k. This means that in general
M +N ∈ H(T, 2k). This exact addition costs NH+H = NH,st(M) +NH,st(N).

One often requires only an approximate addition of two matrices that already contain an
error like discretizations. In this case it is desirable to get a result with block-wise rank
k, too. One should therefore perform a truncation step after the addition, which will
reduce the ranks. The truncation increases the cost of one addition, but further additions
with the resulting matrix are cheaper, since the block-wise ranks becomes smaller. The
truncation is described in the next paragraph. The approximate addition is defined by

H(T, k)×H(T, k)→ H(T, k) : M +H N = Tk←2k(M +N).

Sometimes one requires the addition of two H-matrices that are not based on the same
tree or the same admissibility condition. In this case one has to do a truncation of the
matrices M and N to a common hierarchical structure first, see [48, 56]. This common
structure is often the one of M or N depending on which one is finer.

If M ∈ H(k1), N ∈ H(k2), and M +H N ∈ H(k), with k < k1 + k2, then the truncated
addition costs ([56, Lemma 7.8.4]) are

NH+H ≤ 6(k1 + k2)NH,st(M +N) + 44(k1 + k2)3Cspn.

For k = k1 = k2 we get

NH+H ∈ O(Cspk
2n log2 n+ Cspk

3n).

Truncation of an H-Matrix In many arithmetic operations it is necessary to transform
an H-matrix M ∈ H(T,A, k) into an H(T ′,A′, k′)-matrix. We define

T(T ′,A′,k′)←(T,A,k) : H(T,A, k)→ H(T ′,A′, k′).

Some of these transformations, like T(T,A,2k)←(T,A,k), are trivial.

The most important truncation is Tk′←k := T(T,A,k′)←(T,A,k), k
′ < k, which has the same

tree T and the same admissibility condition A. This truncation is processed block by
block in the admissible blocks while the inadmissible blocks stay unchanged.

Let ABT be the factorization of an admissible block M |b with rank k. First compute the
QR factorizations A = QARA and B = QBRB, then compute the SVD RAR

T
B = UΣV T .

The singular values in Σ are ordered in decreasing order. Reducing the rank to k′ means
setting all singular values except the first k′ values to zero. Approximating the block
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with a block of lowest rank with a maximal approximation error of ε′ in the 2-norm
means setting all singular values smaller than ε′ to zero. In the Frobenius norm we
have to set σk′+1, . . . , σk to zero, so that the sum σ2

k′+1 + . . . + σ2
k ≤ ε′. In the case of

approximation to a given accuracy, we have to distribute the given maximal error ε for
the whole matrix to the single blocks.

The truncation of an H-matrix M ∈ H(T, k) to an H(T, k′)-matrix can be computed
with complexity

NH,k′←k ≤ 12Csp max {k, nmin}2 (depth (TI×I) + 1)n+ 46Cspk
3n

∈ O
(
Cspk

2n log2 n+ Cspk
3n
)
.

This has been proved in [49, Lemma 2.2/2.9].

The other truncations consists of two steps; first bring the matrix to the target block-
structure and then reduce the ranks by the truncation described above.

H-Matrix-Matrix Product The product between M and N is also done by recursion,
since

M ∗H N =

[
M11 M12

M21 M22

]
∗H
[
N11 N12

N21 N22

]
=

[
M11 ∗H N11 +HM12 ∗H N21 M11 ∗H N12 +HM12 ∗H N22

M21 ∗H N11 +HM22 ∗H N21 M21 ∗H N12 +HM22 ∗H N22

]
.

The computations in the leaves are more complicated, especially since some blocks have
to be divided resp. combined to do the multiplication.

Again, truncation is necessary. Depending on whether we use truncation for the inter-
mediate results or not, we get H ∗ H or H ∗ H, best. The second one is of course more
expensive. The H-matrix-matrix product costs ([56, Lemma 7.8.21])

NH∗H ∈ O
(
C2
sp max{Csp, Cid}kn (log2 n)2 + CspCidk

3n log2 n
)
,

and in best approximation

NH∗H,best ∈ O
(
C3
spC

3
idk

3n (log2 n)3
)
.

H-Cholesky/LU Decomposition TheH-Cholesky decomposition in the symmetric case
and the H-LU decomposition, in general, are approximate triangular factorizations,
which can be used as preconditioners for the solutions of linear equations. Both fac-
torizations decompose M in a lower and upper triangular matrix. Up to this point we
have done all the definitions without introducing an ordering of the indices in I. Such
an ordering is thus required to define the lower/upper triangular.

The factorizations are done in a block recursive way, so the ordering should be chosen
with respect to this. We use the following recursive mapping from I to {1, . . . , n}:



28 Chapter 2. Basics

(i) we number root(TI) = I with indices out of {1, . . . , n},
(ii) let v ∈ TI have the new indices

{
v1, . . . , v|v|

}
, then the sons s1 and s2 ∈ S(v) get

the indices
{
v1, . . . , v|s1|

}
and

{
v|s1|+1, . . . , v|v|

}
, and

(iii) number the indices in v ∈ L(TI) arbitrary.

Definition 2.3.11: (lower/upper triangular H-matrix) For two blocks r and s with
r ∩ s = ∅, we say r < s if ∀i ∈ r, j ∈ s : i < j. For an upper triangular H-matrix all
blocks b = (r, s) with s < r are zero and all leaves b = (r, r) are inadmissible blocks,
with an upper triangular dense matrix inside. A lower triangular H-matrix is the
transpose of an upper triangular one.

Let M be an H(T, k)-matrix with an ordering of the indices, as described above. Then
we can compute the LU decomposition by the following block recursion:

M =

[
M11 M12

M21 M22

]
=

[
L11 0
L21 L22

] [
U11 U12

0 U22

]
⇔M11 = L11U11, M12 = L11U12

M21 = L21U11, M22 = L21U12 + L22U22.

For the computations of U12 and L21 we have to solve a triangular system. The compu-
tations of L11, U11, L22 and U22 are done by recursion. The recursion is working only on
the diagonal. We should assume that the leaves on the diagonal are all inadmissible, so
that we have only to do dense LU factorizations for dense matrices.

The H-LU factorization and the H-Cholesky decomposition have the same complexity
as the H-matrix-matrix multiplication, see [56, Lemma 7.8.23].

The hierarchical block structure does not permit permutation of indices, so that we are
not able to do pivoting. This may lead to large errors in the LU decomposition. The
Cholesky decomposition for hierarchical matrices is analog, see Algorithm 2.2. Since
the Cholesky decomposition is computed only for symmetric positive definite matrices,
accuracy is guaranteed without pivoting. In Subsection 6.2.3 a two-step version of the
Cholesky decomposition is discussed, which allows for a way to choose the H-matrix
accuracy so that a given accuracy in the Cholesky decomposition is achieved.

H-Inversion The inversion of hierarchical matrices is already treated in the first H-
matrix paper [55]. In many subsequent publications the H-inversion is a subject of
constant investigation, in [48, 73, 21, 49, 58, 6, 56] among others.

The inverse of an H-matrix M can be computed through a recursive block Gaussian
elimination [55], a Schulz iteration [48], or multiplying the inverses of the LU factors
of M [4]. The Schulz iteration [94] computes the inverse by solving

MX = I
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Algorithm 2.2: H-Cholesky Decomposition [56].

Input: M ∈ H (TI×I), r = I
Output: L ∈ H (TI×I), with LLT = M

1 Function H-Cholesky factorization(M |r×r , r)
2 if r × r ∈ L (TI×I) then
3 L|r×r :=Cholesky factorization(M |r×r); /* M |r×r is dense, use

standard Cholesky factorization */

4 else
5 Assume {s1, s2} = S(r); /* TI is a binary tree */

6 L|s1×s1 :=H-Cholesky factorization(M |s1×s1 , s1);

7 Compute L|s2×s1 , so that L|s2×s1 L|s1×s1 = M |s2×s1 ;

8 L|s1×s1 :=H-Cholesky factorization(M |s2×s2 − L|s2×s1 L|
T
s2×s1 , s2);

9 end
10 return Lr×r;

by a Newton method. This is inefficient, as many iterations are required and a truncation
is necessary in each iteration.

The block Gaussian elimination seems to be the method of choice, so in Subsection 6.2.2
the two-step version of this inversion [48] is used.

The H-inversion is also as expensive as the H-matrix-matrix multiplication, see [56,
Lemma 7.8.22].

All these arithmetic operations are of linear-polylogarithmic complexity. These opera-
tions (and a lot more) are implemented in the HLib [65], which is used for the numerical
computations in the subsequent chapters.

H-Matrix Structure Diagrams The HLib provides a visualization function for the
structure of an H-matrix. We will have a look at such diagrams in Chapter 4, as such
it is appropriate that they should also be explained here. In Figure 2.7 the structure of
an H-matrix is shown.

The rectangles represent the submatrices of the matrix as well as the nodes of theH-block
tree TI×I . Green rectangles stand for admissible blocks resp. factorized submatrices.
Red rectangles stand for inadmissible blocks resp. dense submatrices. The dark green
blocks are admissible blocks like the green ones, but have become full rank by interme-
diate computations. The rank of the factorization of a submatrix is given by the number
in the rectangle. The number in the red rectangles give the size of the block. In the
admissible blocks the green bars show the logarithmic value of the singular values of
the submatrix. Empty rectangles stand for admissible blocks, where the corresponding
submatrices are zero, meaning that the rank is also 0.

In the next subsection H`-matrices are investigated. Afterwards we have a look at some
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Figure 2.7: H-matrix structure diagram.

examples of H-matrices, which will be used for the numerical examples.

2.3.4 Simple Hierarchical Matrices (H`-Matrices)

Already in the first paper on hierachical matrices [55] the subset of simple hierarchical
matrices was mentioned. In [56] these matrices are called Hp-matrices, with p the depth
of the hierarchical structure. The following definition is slightly different, since we stop
the subdivision for blocks smaller than nmin like forH-matrices, this increases the storage
efficiency and the efficiency of the arithmetic operations. Here they are called H`-
matrices, with ` = depth (T ) as in [47].

Definition 2.3.12: (H`-matrix)
Let I = {1, . . . , n} be an index set and n = 2` n0 with ` ∈ N. A matrix M ∈ RI×I
is called an H`-matrix of block-wise rank k, M ∈ H`(k) for short, if it fulfills the
following recursive conditions:
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Figure 2.8: Structure of an H3-matrix.

1. ` = 0: n0 ≤ nmin, M ∈ H0(k) if M ∈ Rn0×n0 and

2. n` = 2` n0: M is partitioned in

M =

[
M11 M12

M21 M22

]

with M11,M22 ∈ H`−1(k), M12 = A1B
T
1 and M21 = B2A

T
2 , where Ai, Bi ∈

Rn`−1×k′ , with k′ ≤ k.

We are interested only in symmetric H`-matrices, so we have M12 = MT
21, A1 = A2 and

B1 = B2. A symmetric H3-matrix is depicted in Figure 2.8.

Lemma 2.3.13: If M ∈ H`(k), then M is a hierarchical matrix of block-wise
rank k, too.

Proof. The minimum block size is n0 ≤ nmin. The H-tree TI is a binary tree, which
divides each node r = {i1, . . . , im} into r1 =

{
i1, . . . , im/2

}
and r2 =

{
im/2+1, . . . , im

}
on the next level. In the H×-tree only nodes of the type r × r are subdivided. The
other nodes r× s, with r ∩ s = ∅, correspond to blocks M12 or M21, which have at most
rank k.

�
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Remark 2.3.14: The H`-matrices are H-matrices with the weak admissibility con-
dition Aweak, see Equation (2.13), and binary, cardinality based clustering. These
H-matrices with weak admissibility condition are investigated in [58].

Corollary 2.3.15: Let M ∈ H`(k). Then the sparsity constant of M is Csp = 2
and the idempotency constant is Cid = 1.

Corollary 2.3.16: Let M ∈ H`(k). Then NH`,st(M) = 2kn log2 n+ nnmin.

The following remark shows that H`-matrices originate typically from one-dimensional
problems.

Remark 2.3.17: If M ∈ H(TI×I , k) origins from the discretization of a one-dimen-
sional problem with standard admissibility condition and ` = depth (TI×I), then M
is also an H-matrix with weak admissibility condition and block-wise rank k′ < `k,
M ∈ H`(k′), see again [58].

The following is a further inclusion:

Lemma 2.3.18: Let T ∈ R2`n0×2`n0 be a tridiagonal matrix, Tij = 0 ∀i, j with
|i− j| > 1. Then T ∈ H`(1) ⊂ H(1).

This lemma is used for Figure 2.11. Tridiagonal matrices are well studied. Here there
are several good eigenvalue algorithms for tridiagonal matrices, e.g., dsqd algorithm [40]
or the MR3 algorithm [108]. Due to this inclusion, we should not expect to find a faster
eigenvalue algorithm for H`-matrices than for tridiagonal matrices. The best known
eigenvalue algorithms for symmetric tridiagonal matrices have quadratic complexity.

The structure of H`-matrices is poorer than the structure of H-matrices, but the arith-
metic operations are cheaper. For instance, there is an exact inversion.

Lemma 2.3.19: Let M ∈ H`(k) be invertible. Then M−1 ∈ H`(k`).

This is a loose version of [58, Corollary 4.7]. To prove this we require the following
definition.

Definition 2.3.20: [58, Definition 4.1]
A matrix M belongs to the set Mk,τ , if

rank
(
M |τ ′×τ

)
≤ k and rank

(
M |τ×τ ′

)
≤ k, (2.19)

with τ ′ = I \ τ .
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Proof. (Lemma 2.3.19)
This proof is based on the argumentation leading to [58, Corollary 4.7].

We have M ∈ Mkp,τ for all τ ∈ T (p)
I , since M ∈ H`(k) and τ × I \ τ have intersections

with p blocks of rank at most k, see [58, Lemma 4.5]. So we have M ∈ Mk`,τ for all
τ ∈ TI , since depth (TI) = `.

In [58, Lemma 4.2] it is shown that if M ∈ Mk,τ , then M−1 ∈ Mk,τ . The proof uses
the inversion by Schur complement with S = M |τ ′×τ ′ − M |τ ′×τ M |−1

τ×τ M |τ×τ ′ , so that

rank
(
M−1

∣∣
τ ′×τ

)
= rank

(
−S−1 M |τ ′×τ M−1

∣∣
τ×τ

)
≤ rank

(
M |τ ′×τ

)
≤ k.

If M |τ×τ is not invertible, one has to introduce a small perturbation to make the block
invertible.

Obviously if for all τ ∈ TI : M ∈Mk`,τ , then M ∈ H`(k`), see [58, Remark 4.4].
�

In Chapter 5 we will investigate an eigenvalue algorithm that performs especially well
for H`-matrices. Further we will show in Chapter 5 that there is an efficient and exact
LDLT decomposition forM ∈ H`(k). In the next section some series of example matrices,
which will be used for testing the algorithms, will be defined.

2.4 Examples

The following examples are used to measure and compare the quality of the (eigenvalue)
algorithms in the subsequent chapters.

2.4.1 FEM Example

As we have seen in Example 2.3.1, the inverse of

∆2,h = I ⊗∆h + ∆h ⊗ I (2.20)

has a good approximation by H-matrices. The matrix itself is sparse with, at most
5 non-zero entries per row and can be represented as an H-matrix. Therefore, one
has to partition the index set, that follows the geometrically balanced clustering. This
leads to a matrix with a larger bandwidth then the standard indexing as suggested in
Equation (2.20). However, the inverse has a better approximation by an H-matrix.

Lemma 2.4.1: The finite difference method (FDM) discretization of the 2D Laplace
problem

∆f(x) = 0 for x ∈ [0, 1]2 , (2.21)
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with n inner uniform distributed discretization points gives the matrix ∆2,h.

This example is part of the HLib [65]. We choose nmin = 32.

For the 3D Laplace problem we get analogously

∆3,h = I ⊗ I ⊗∆h + I ⊗∆h ⊗ I + ∆h ⊗ I ⊗ I

as the FDM discretization of

∆f(x) = 0 for x ∈ [0, 1]3 .

Lemma 2.4.2: The eigenpairs of ∆2,h ∈ Rn2×n2
are (λi + µj , ui ⊗ vj), where (λi, ui)

and (µj , vj) are eigenpairs of ∆h. Analogously for ∆3,h ∈ Rn3×n3
the eigenpairs are

(λi + µj + νk, ui ⊗ vj ⊗wk), where (λi, ui), (µj , vj) and (νk, wk) are eigenpairs of ∆h.

Proof. We have

∆2,h(ui ⊗ vj) = (I ⊗∆h)(ui ⊗ vj) + (∆h ⊗ I)(ui ⊗ vj)
= ui ⊗ (∆hvj) + (∆hui)⊗ vj = µj(ui ⊗ vj) + λi(ui ⊗ vj).

There are n2 sums λi + µj , since i, j ∈ {1, . . . , n}. So we have found all n2 eigenvalues
of ∆2,h. Analog for ∆3,h.

�

The eigenvalues of ∆2,h are

4

(
sin

(
iπ

2(n+ 1)

))2

+ 4

(
sin

(
jπ

2(n+ 1)

))2

∀i, j ∈ {1, . . . , n}

and the eigenvalues of ∆3,h are

4

3∑
j=1

(
sin

(
ijπ

2(n+ 1)

))2

∀i1, i2, i3 ∈ {1, . . . , n}.

For the test, we use the 2D FEM matrices with 4 to 2 048 inner discretization points
and 3D FEM matrices with 4 to 64 inner discretization points. The properties of these
matrices are listed in Tables 2.1 and 2.2. Further, the matrices are the H-matrix rep-
resentations of sparse matrices. This means they have large blocks of rank 0. The low
rank factorization of the non-zero blocks also leads to sparse matrices. They are not,
however, stored as sparse matrices.

In Figure 2.9 and 2.10 the smallest eigenvectors of these matrices are shown.
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Name n Csp Cid Condition κ NH,st in kB

FEM8 64 2 1 3.2163 e+01 21
FEM16 256 6 5 1.1646 e+02 101
FEM32 1 024 10 13 4.4069 e+02 449
FEM64 4 096 14 13 1.7117 e+03 1 890
FEM128 16 384 14 13 6.7437 e+03 7 750
FEM256 65 536 14 13 2.6768 e+04 31 384
FEM512 262 144 18 13 1.0666 e+05 126 321
FEM1024 1 048 576 30 17 4.2580 e+05 506 872
FEM2048 4 194 304 20 17 1.7015 e+06 2 030 704

Table 2.1: 2D FEM example matrices and their properties.

Figure 2.9: Eigenvectors of FEM32 corresponding to the four smallest eigenvalue
(λ1, λ2 = λ3, λ4).

Name n Csp Cid Condition κ NH,st in kB

FEM3D4 64 2 1 9.4721 e+00 25
FEM3D8 512 8 9 3.2163 e+01 302
FEM3D12 1 728 32 129 6.7827 e+01 1 083
FEM3D16 4 096 20 257 1.1646 e+02 2 954
FEM3D32 32 768 32 257 4.4069 e+02 26 266
FEM3D64 262 144 148 449 1.7117 e+03 227 166

Table 2.2: 3D FEM example matrices and their properties.
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Figure 2.10: Eigenvectors of FEM3D8 corresponding to the four smallest eigenvalues
(λ1, λ2 = λ3 = λ4).

Remark 2.4.3: For finite element problems the nested dissection (ND), a domain
decomposition based method, is often superior to geometrically balanced cluster-
ing as shown in [51]. The author tested the usage of FEM matrices based on ND.
Nested dissection is not useful for the LR Cholesky algorithm, since the computa-
tion in Table 4.1 would need more iterations and more time (about 40%) to compute
approximations with larger errors compared with geometrically balanced clustering.
Further, the author’s implementation of the algorithm in Chapter 5 does not work
for FEM matrices based on ND. On the other hand the usage of nested dissection
would accelerate the computations in Table 6.1.

2.4.2 BEM Example

Beside the sparse FEM matrices, the algorithms should be tested with dense matrices.
Therefore, we use the boundary element example from theHLib [65] with the single layer
potential operator. The single layer potential operator is the one from Equation 2.6. We
choose

Ω =
{
x ∈ R3

∣∣‖x‖2 ≤ 1
}

and hybrid cross approximation for the approximation in the admissible blocks. The
eigenvalues of these matrices are small (10−2 . . . 10−9), so that we decide to normalize
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Name n Csp Cid Condition κ NH,st in kB

BEM4 66 2 1 1.3730 e+02 45
BEM8 258 6 5 4.8990 e+02 450
BEM16 1 026 13 9 1.3903 e+03 2 991
BEM32 4 098 29 17 3.3556 e+03 19 239
BEM64 16 386 53 41 7.4343 e+03 112 723
BEM128 65 538 61 100 1.5884 e+04 662 141

Table 2.3: BEM example matrices and their properties.

the matrices to ‖M‖2 = 1. We use matrices of dimension 66 to 65 538 with minimal block
size nmin = 32. The largest matrices is 662 MB large, which is fairly small compared
with the 32 GB storage needed when storing in the dense matrix format.

Since the kernel function has an unbounded support, the matrices are dense. The other
properties of the matrices are shown in Table 2.3. The italic condition numbers are
computed using the algorithm from Chapter 5.

2.4.3 Randomly Generated Examples

The H`-matrices are a subset of the H-matrices and have a simple structure, see Corol-
lary 2.3.15. We will test some of our algorithms with these simple structured matrices,
too. Therefore, we generate the structure with n = 2` nmin, nmin = 32 and fill the ad-
missible blocks in the lower triangle with randomly-generated, low-rank factors of rank
k = 1, 2, . . . , 16. The upper triangular part is the transposed copy of the lower triangle
to ensure symmetry. The matrices are shifted to become positive definite. Finally, the
matrices are normalized to a spectral norm of 1. We name these matrices with H` r1
(` = 1, 2, . . . , 15) and H9 rk (k = 1, 2, 3, 4, 8, 16). Here we pick an arbitrary value for
the depth ` = 9 to generate examples with different block-wise rank. H1 r1 has the size
64× 64 and H15 r1 has the size 1 048 576× 1 048 576. The properties of these matrices
are listed in Table 2.4. The condition numbers of the matrices H` r1, ` = 1, 2, . . . , 10, are
computed via the smallest and largest eigenvalues computed by the LAPACK eigensolver
dsyev. For the condition numbers of the larger matrices, we use the slicing algorithm
described in Chapter 5 and write the condition numbers in italics.

The HSS matrices, see Subsection 2.5.3, have even more structure than the H`-matrices.
In Chapter 5, randomly generated examples, with respect to the common row and column
spaces, are used. These matrices are normalized and are called HSS` r1, with size
n = 2` nmin, nmin = 32.
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Name n Csp Cid Condition κ NH,st in kB

H1 r1 64 2 1 2.9136 e+00 18
H2 r1 128 2 1 5.1427 e+00 41
H3 r1 256 2 1 9.0674 e+00 103
H4 r1 512 2 1 1.7764 e+01 263
H5 r1 1 024 2 1 3.4028 e+01 670
H6 r1 2 048 2 1 7.1787 e+01 1 692
H7 r1 4 096 2 1 1.4036 e+02 4 213
H8 r1 8 192 2 1 2.7369 e+02 10 352
H9 r1 16 384 2 1 5.5160 e+02 25 056
H10 r1 32 768 2 1 1.0963 e+03 59 840
H11 r1 65 536 2 1 2.2181 e+03 107 392
H12 r1 131 072 2 1 4.5436 e+03 231 168
H13 r1 262 144 2 1 9.2921 e+03 495 104
H14 r1 524 288 2 1 1.9539 e+04 1 055 744
H15 r1 1 048 576 2 1 3.7755 e+04 2 242 560

Table 2.4: H`(1) example matrices and their properties.

2.4.4 Application Based Examples

We will also test our algorithms using example matrices from applications. Therefore,
we take four sparse matrices from the “University of Florida Sparse Matrix Collec-
tion”, [33]. We use the matrices bcsstk08 (n = 1 074, nnz = 12 960), bcsstk38 (n = 8 032,
nnz = 355 460), msc10848 (n = 10 848, nnz = 1 229 776), and msc23052 (n = 23 052,
nnz = 1 142 686). These matrices originate from structural problems and are symmetric
positive definite. We transform the sparse matrices into the H-matrix format. We start
with the whole matrix and partition it into four submatrices. If such a submatrix has
less than 32 (bcsstk) or 1 024 (msc) non-zero entries and is not on the diagonal, then
we store the submatrix as rank-k-matrix in factorized form. Otherwise we continue by
recursion. We choose the minimal block size nmin = 32 and finally we normalize the
matrices to ‖M‖2 = 1.

2.4.5 One-Dimensional Integral Equation

The last test example is the integral equation eigenvalue problem

∫
Γ

log ‖x− y‖2u(y)dy = λu(x).
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Figure 2.11: Set diagram of different matrix formats.

We choose the diagonal of the 2D-unit square for Γ. The variational formulation is

∑
j

∫
Γ
φi(x)

∫
Γ

log ‖x− y‖2φj(y)dycj = λ
∑
j

∫
Γ
φi(x)φj(x)dxcj = λci.

We use piece-wise constant functions with
∫

Γ φi(x)φj(x)dx = δij for the discretization.
The eigenvector to λ is then (xi)

n
i=1. The kernel-function can be approximated by a

piecewise separable function, see, e.g., [6]. Integral equations with the kernel function
log ‖x− y‖2 occur in the BEM discretization of the 2D Poisson problem.

The resulting matrices are symmetric but not positive definite. They are shifted and
normalized so that all eigenvalues lie between 0 and 1. The minimal block size is chosen
to be 32. We choose an approximation of the kernel function by interpolation of order 3
given in the HLib [65]. The matrices have the structure of H2-matrices (see next section)
that we ignore. We use the weak admissible condition and get H`-matrices with block-
wise rank 5 after a slight truncation. We use matrices from dimensions 64 to 16 384 and
name them log64 to log16384.

In the next section the relations between the H-matrices and other data-sparse matrix
format are reviewed.

2.5 Related Matrix Formats

There are matrix formats that have some properties in common with the H-matrix
format. In this section a brief explanation of H2-, HSS, and semiseparable matrices is
given. The inclusions of these matrix formats are shown in Figure 2.11.
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2.5.1 H2-Matrices

The admissible blocks of a hierarchical matrix have all their own factorization ABT .
In some applications, such as the discretization of some integral equations, the As for
the blocks in one block-row are in the same low-dimensional space. This is used in the
H2-matrices to make the costs linear in n.

There is a row and a column cluster basis, which are defined as the families

V = (Vr)r∈TI and W = (Ws)s∈TJ .

Further, we require a block H-tree TI×J and an admissibility condition A to define

H2(TI×J ,A, k, V,W ) :=

M ∈ RI×J

∣∣∣∣∣∣∣∣∣∣
∀r × s ∈ L(TI×J) :
if (A(r, s) = true) then
Mr×s = VrSr×sW T

s , with Sr×s ∈ Rk×k,
else
min {|r| , |s|} ≤ nmin

 .

A complete description of H2-matrices can be found in [18].

2.5.2 Diagonal plus Semiseparable Matrices

The inverses of symmetric tridiagonal matrices have a special structure. This was prob-
ably first observed by Gantmacher and Krein [100] and was the starting point for the
investigation of semiseparable matrices. There are different definitions for semiseparable
matrices. In the one given below we will use MATLAB notation for the lower/upper
triangular part of a matrix. The functions tril (M, j) and triu (M, j) are defined by

tril (M, s) : Rn×n × Z→ Rn×n : (tril (M, s))i,j =

{
Mi,j if i ≥ j + s,

0 else
(2.22)

and

triu (M, s) : Rn×n × Z→ Rn×n : (triu (M, s))i,j =

{
Mi,j if i ≤ j + s,

0 else.
(2.23)

If s = 0, we omit s. The small example below explains the usage of tril (M, s) and
triu (M, s).

Example 2.5.1: Let

M =

1 2 3
4 5 6
7 8 9

 .
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Then we have

tril (M) =

1 0 0
4 5 0
7 8 9

 , triu (M) =

1 2 3
0 5 6
0 0 9

 ,
tril (M,−1) =

0 0 0
4 0 0
7 8 0

 , and triu (M, 1) =

0 2 3
0 0 6
0 0 0

 .
In Chapter 4 we will use the definition of generator representable semiseparable matrices.

Definition 2.5.2: (diagonal plus semiseparable matrix)
Let M = MT ∈ Rn×n. If M can be written (using MATLAB notation) in the form

M = diag (d) +
r∑
i=1

(
tril
(
uiviT

)
+ triu

(
viuiT

))
, (2.24)

with d, ui, vi ∈ Rn, then M is a symmetric (generator representable) diagonal plus
semiseparable matrix of semiseparability rank r.

Remark 2.5.3: The representation of M by ui, vi, i = 1, . . . , r, is for small r a data-
sparse representation, since (2r + 1)n parameters are sufficient for the description
of M . In Chapter 5 we will also use this representation for r > n. The representation
is thus neither data-sparse nor efficient, but is nonetheless useful for our theoretical
argumentation.

Remark 2.5.4: The discretization of semiseparable kernels,

k(x, y) =

{
g(x)f(y) if x ≤ y,
f(x)g(y) if y ≤ x,

leads to semiseparable matrices, see [103, Subsection 3.5.1].

Semiseparable matrices are a special case ofH`-matrices as the following corollary shows.

Corollary 2.5.5: Let M be a generator representable diagonal plus semiseparable
matrix of rank r and TI×I a cluster tree over I × I with an admissibility condition,
for which σ × σ is inadmissible for all σ ⊂ I. Then M is also an H(TI×I , k)-matrix
with k = r. Moreover, M is in H`(r).
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Remark 2.5.6: The opposite direction of the corollary is generally only true for

r ≥ k. If M ∈ H`(k), then M is a semiseparable matrix of rank
(

2n
nmin
− 1
)
r.

There is a strong relation between tridiagonal matrices and semiseparable matrices,
since the inverse of an invertible semiseparable matrix is a tridiagonal matrix as seen, for
example, in [96]. This relationship can be used to form efficient eigenvalue algorithms for
semiseparable matrices. For instance, there are eigenvalue algorithms for semiseparable
matrices that are, for example, based on:

� transformation into a similar tridiagonal matrix [77],

� QR algorithm [102] resp. LR Cholesky algorithm [88] for semiseparable matrices,
or

� divide-and-conquer algorithm [27, 78].

The data-sparsity of semiseparable matrices is used in the eigenvalue algorithms which
have quadratic complexity for the computation of all eigenvalues. This is relevant here,
since we cannot expect to get better results for hierarchical matrices than for semisepa-
rable matrices, due to the inclusion in Corollary 2.5.5.

2.5.3 Hierarchically Semiseparable Matrices

Hierarchically semiseparable matrices combine (as the name suggests) ideas from semisep-
arable matrices and from hierarchical matrices. Hierarchically semiseparable matrices,
HSS matrices for short, have the block structure of a hierarchical matrix with weak
admissibility condition. Further, the block rows and block columns span a common
low rank space, meaning that hierarchically semiseparable matrices form a subset of the
H2-matrices.

The idea of hierarchically semiseparable matrices was first presented in [26], where it was
used to construct a fast and stable solver for the Nyström’s discretization of an integral
operator of second kind. In recent years there have been more recent publications on
equation solvers for HSS matrices [29, 30, 38, 109].

Before we look at the definition of HSS matrices, we should have a look at the following
4× 4 HSS matrix [28, (2.2)]:

[
D1 U2;1B21V

T
2;2

U2;2B22V
T

2;1 D2

] [
U2;1R21

U2;2R22

]
B11

[
W T

23V
T

2;3 W T
24V

T
2;4

]
[
U2;3R23

U2;4R24

]
B11

[
W T

21V
T

2;1 W T
22V

T
2;2

] [
D3 U2;3B23V

T
2;4

U2;4B24V
T

2;3 D4

]
 .

The following definition uses the structural identity between HSS and H`-matrices. This
means that this definition is different from the definitions in [29] or [109], but defines
the same set of matrices.
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Definition 2.5.7: (HSS matrices)
Let M ∈ H`(k). To shorten the notation we use Mj;r,s for the submatrix of size
2`−jnmin× 2`−jnmin. There are 2j × 2j such submatrices indexed by (r, s) from (1, 1)
to (2j × 2j). The low rank factorization of Mj;r,s is

Mj;r,s = Aj;r,sB
T
j;r,s.

We will call M a hierarchically semiseparable matrix of (HSS) rank k, M ∈ HSS(k)
for short, if M fulfills the following conditions:

� |r − s| = 1⇒ M |(r−1)2`−jnmin+1:r2`−jnmin,(s−1)2`−jnmin+1:s2`−jnmin
= Aj;r,sB

T
j;r,s

� ∀i ∈ {1, . . . , 2`} : ∃U`;i ∈ Rnmin×k and ∃Uj;r ∈ R2`−jnmin×k, j = 1, . . . , `− 1,

r = 1, . . . , 2j with range (Uj;r) ⊂ span

([
Uj+1;2r−1

0

])
⊕ span

([
0

Uj+1;2r

])
and

range (Aj;r,s) ⊂ span (Uj;r);

� ∀i ∈ {1, . . . , 2`} : ∃V`;i ∈ Rnmin×k and ∃Vj;s ∈ R2`−jnmin×k, j = 1, . . . , `− 1,

s = 1, . . . , 2j with range (Vj;s) ⊂ span

([
Vj+1;2s−1

0

])
⊕ span

([
0

Vj+1;2s

])
and

range (Bj;r,s) ⊂ span (Vj;s).

In the example above one would define

U1;2 :=

[
U2;3R23

U2;4R24

]
.

Corollary 2.5.8: If M ∈ Rn×n is a semiseparable matrix of semiseparability rank k,
then M ∈ HSS(k).

Lemma 2.5.9:

(a) Let M ∈ HSS`(k) be an HSS matrix of HSS rank k with a hierarchical structure
depth of `. Then M ∈ H`(k).

(b) Further, if N ∈ H`(k) is an H`-matrix of block-wise rank k and depth `, then
N ∈ HSS`(k`).

Proof. Part (a): trivial. Part (b): There are parts from ` blocks and the inadmissible
diagonal block in each block row. Each block is of rank k, meaning that the block row
except the diagonal block is of rank at most k`.

�

The HSS matrices are somehow of one-dimensional structure since the discretization of
one-dimensional problems primarily leads to HSS matrices. This makes the structure of
HSS matrices not very rich. They are mentioned here only for completeness.
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2.6 Review of Existing Eigenvalue Algorithms

The aim of this section is to give a short review on other approaches for the computation
of eigenvalues of hierarchical matrices as Chapter 6 is on vector and subspace iterations.
Several authors have used power and inverse iterations to compute eigenvalues of H-
matrices or norms. These existing algorithms will be reviewed there.

2.6.1 Projection Method

In [60] Hackbusch and Kreß present a projection method that computes a matrix M̃p.
The eigenvalues of M , which are contained in the interval (a, b), are (almost) retrieved
in M̃p. The other eigenvalues are projected to (almost) zero. The effect of this is that
a subspace iteration on M̃p converges really fast. Besides this, one can use subspace
iteration for the computation of inner eigenvalues.

The best projection is

χ : R→ R : χ(λ) =

{
λ, λ ∈ (a, b),

0, else.

As this projection requires the computation of the invariant subspace of the eigenvalues
in (a, b), it is too expensive. In [60] the following approximation is used

χ̃(λ) =
λ

1 + T (λ)2p
with T (λ) =

2λ− (b+ a)

b− a .

The projected matrix M̃p is then computed using

M̃p := χ̃(M) = (I + T (M)2p)−1M.

This computation is relatively cheap in H-arithmetic. The effect of the projection is
shown in Figure 2.12. The green marked eigenvalues of the projected matrix are prob-
lematic, since they lie in (a, b). The projection does not effect the eigenvectors, so we
can compute an invariant subspace X of M̃p and use the generalized matrix Rayleigh
quotient XTMX for the computation of the sought eigenvalues.

For large p, say p = 3 or 4, the inversion of (I+T (M)2p) is badly conditioned. This leads
to large errors in the computed eigenvalues. Hackbusch and Kreß use a preprocessing
step to cure this problem.

The author implemented this method without preprocessing. The eigenvalues are com-
puted by subspace iteration. The subspace dimension is chosen to be twice the number
of eigenvalues in (a, b). The iteration is stopped if the residual of the eigenvalue problem
for M falls below ε:

‖R‖2 =
∥∥MX −XXTMX

∥∥
2
< ε,
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Figure 2.12: Eigenvalues of matrix M = FEM8 before and after projection (p = 4,
a = 1.5, b = 3.5).

with X being an orthogonal basis for the subspace in the current iterate. In Chap-
ter 7 this implementation will be compared to the LDLT slicing algorithm presented in
Chapter 5.

2.6.2 Divide-and-Conquer for H`(1)-Matrices

In [47] J. Gördes uses a divide-and-conquer method for the computation of the eigen-
values of an H`(1)-matrix. Like the solver described in [19], this method leads to an
algorithm of almost quadratic complexity.

The main idea of the divide-and-conquer method for symmetric tridiagonal matrices [32]
is that every tridiagonal matrix T can be writen as

T =

[
T1 0
0 T2

]
+ αbbT ,

with T1 ∈ Rn1×n1 , T2 ∈ Rn2×n2 tridiagonal, and

bi =

{
1, i = n1 or i = n1 + 1,

0, else.

The H`(1)-matrices have a similar block recursive structure of two rank-1 perturbations.
Here two rank-1 perturbations are necessary, as otherwise the local rank of the diagonal
submatrices would be increased by 1. Further, the H`-matrix-structure does not permit
an easy computation of the eigenvectors, as it is done in [27] for semiseparable matrices.
The computation of the eigenvectors is expensive, so only with the solver in [19] the
costs are quadratic.

The main drawback is the limitation of H`(1)-matrices. A generalization to H`(k)-
matrices seems to be expensive. There are currently no ideas how to generalize this
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Figure 2.13: Block structure condition [34].

method to H-matrices based on the standard admissibility condition, since the rank of
M(I\τ)×τ is large for M ∈ H(TI×I , k).

2.6.3 Transforming Hierarchical into Semiseparable Matrices

In [34] an algorithm is described that transforms a hierarchical semiseparable matrix
or an H2-matrix with a special condition on the block structure into a semiseparable
matrix in Givens-vector representation, requiring O(k3n log2 n) flops. The eigenvalues
of semiseparable matrices in Givens-vector representation can be computed by a QR
algorithm [39] or an LR Cholesky algorithm [88]. Both eigenvalue computations require
O(n2) flops.

The transformation does not work for general H-matrices. Furthermore, the special
condition on the block structure is only fulfilled by a small subset of H2-matrices. This
condition demands that the H2-matrix has a block structure, which becomes coarser
to the lower left corner and, due to symmetry, to the upper right corner. In the lower
triangle, neighboring blocks have to resemble the pictures in Figure 2.13. In the upper
triangle we assume a structure symmetric to the lower triangle.

One can show that the discretization of one-dimensional integral equations can lead to a
hierarchical block structure that will fulfill this condition. For higher dimensional prob-
lems it seems to be much more difficult to get a block structure as shown in Figure 2.13.

The H`-matrices have this block structure, such that they can be transformed into a
semiseparable matrix. This transformation is explained in Subsection 4.3.5, but as we
see there, the transformation is not necessary, since we can perform the LR Cholesky
algorithm directly on the H`-matrices.

Summarizing this section, one can say that there are two eigenvalue algorithms for
H`-matrices and other simple structured H-matrices and one eigenvalue algorithm for
general H-matrices computing some inner eigenvalues. In the following chapters new
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Figure 2.14: Photos of Linux-cluster Otto.

algorithms for general H- and H`-matrices are investigated. This chapter is closed by a
short description on the computing facilities we use for the numerical computations.

2.7 Compute Cluster Otto

The numerical computations, which are presented at the end of the chapters and in
Chapter 7, were all done on the Max Planck Institute for Dynamics of Complex Technical
Systems’ compute cluster Otto. One node of Otto has two Intel®Xeon®Westmere
X5650 with 2.66GHz and 48GB DDR3 RAM. Each X5650 has 6 cores. There are also
nodes with AMD processors, but they are not used for the numerical computations within
this thesis. Except for the computations for parallelization of the slicing algorithm, see
Chapter 5, all the computations were performed only on a single core of a single node.
We take care that no other computation runs simultaneously on the same node. In
summary, most of the numerical computations are done in a setting with performance
characteristics comparable to desktop computers.

Nevertheless, the parallel computations in Chapter 5 use the cluster to its full capability.
In one example we use up to 32 nodes with totally 384 cores. Each core investigates its
own part of the spectrum. Here we take care that the 4GB RAM provided per core are
sufficient for the computations. We do not use a parallel version of the HLib [65].

In this chapter the essential basics for the remainder of this thesis are discussed. The
next chapter is on the QR decomposition of hierarchical matrices. This is again a chapter
that does not deal directly with the eigenvalue problem for hierarchical matrices, but
instead we will use the H-QR decomposition in Chapter 4 to construct a QR algorithm
for H-matrices.
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3.1 Introduction

The QR decomposition, see Equation (2.4), is used in the explicit QR algorithm, which
will be applied to H-matrices in the next chapter. So we require a QR decomposition for
H-matrices. Further QR decompositions are used in a variety of matrix algebra problems
(e.g., least squares problems and linear systems of equations). We should have available
as many arithmetic operations as possible for hierarchical matrices and therefore it is
also useful to have a QR decomposition for hierarchical matrices.
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We will call a QR decomposition

QR = M ∈ H(T, k),

with Q,R ∈ H(T, k′) an H-QR decomposition. The matrix R has to be an upper trian-
gular H-matrix, see Definition 2.3.11. Since many arithmetic operations for H-matrices
have linear-polylogarithmic complexity, the H-QR decomposition should also have such
a complexity.

Besides having a complexity that is to be expected for formatted arithmetic operations,
the H-QR decomposition should be a good orthogonal decomposition, too. Firstly that
means

rQR := ‖QR−M‖2 (3.1)

should be small, and secondly, that the matrix Q should be orthogonal. We will call Q
a nearly orthogonal matrix if

rorth(Q) :=
∥∥QTQ− I∥∥

2
(3.2)

is small.

So far, two H-QR decompositions have been suggested in the literature, see [6, 73]. Both
have deficiencies in one of the above requirements as we will see later in Section 3.4.
Therefore, we will investigate an alternative approach that does not yet overcome all
difficulties, but offers some advantages over the existing methods to compute the H-QR
decomposition.

The outline of this chapter is as follows. In the next section we will briefly review the
two known methods to compute an H-QR decomposition. The following section focuses
on the presentation of a new H-QR decomposition including some complexity estimates
and a comparison with sparse QR decompositions. In Section 3.4 we compare the three
methods using some numerical tests. Some concluding remarks will be given in the end.

This chapter is based in large parts on [11].

3.2 Review of Known QR Decompositions for H-Matrices

In this section we will review the two existing H-QR decompositions. After the presen-
tation of the new H-QR decomposition we will compare the three using three numerical
examples.

3.2.1 Lintner’s H-QR Decomposition

Let M = QR be the QR decomposition of M . Obviously

MTM = RTQTQR
QTQ=I

= RTR (3.3)
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Algorithm 3.1: Lintner’s H-QR Decomposition.

Input: M
Output: Q,R, with M = QR

1 B := MT ∗HM ;
2 RT := H-Cholesky factorization(B);
3 Solve M = QR; /* HLib function SolveLeftCholesky */

Algorithm 3.2: Polar Decomposition [63].

Input: M
Output: Q,P , with M = QP

1 Q0 := M ;

2 Qi+1 := 1
2

(
γiQi + 1

γi
Q−Ti

)
; /* γi 6= 1 improves convergence, see [63] */

3 Q := Q∞; P := QTM ;

holds. In his dissertation thesis [73] and later in [74], Lintner describes an H-QR de-
composition, which first computes R by the Cholesky factorization of MTM and then
Q by solving an upper triangular system of equations. This leads to Algorithm 3.1, the
first algorithm for computing an H-QR decomposition.

This algorithm consists only of well known hierarchical operations of linear-polyloga-
rithmic complexity. The solution of a linear upper triangular system is part of the
Cholesky decomposition. This H-QR decomposition can be implemented easily using
the HLib [65], since the three required functions are included.

As the matrix R is computed without any care to the orthogonality of Q, we can not
expect a nearly orthogonal matrix Q. Indeed in many examples, see Section 3.4, the
computed Q is far from being orthogonal. Lintner suggests to compute the H-QR
decomposition of Q yielding

M = QR = Q′R′R = Q′(R′R)

and to use Q′ times R′R as QR decomposition. We hope that rorth(Q′) < rorth(Q). If
Q′ is still not orthogonal enough, we may repeat this reorthogonalization process.

The condition number of MTM is

κ(MTM) ≈ κ(M)2.

For badly conditioned problems, squaring the condition number increases the error-
sensitivity dramatically and causes the low orthogonality.

Lintner uses the polar decomposition to reduce the condition number to the square
root of κ(M), see Algorithm 3.2. The polar decomposition is computed by an iterative
method similar to the sign-function iteration, see [63]. One can show that the polar
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decomposition of an H-matrix can be computed in almost linear complexity. In each
iteration step an H-inversion is needed, this makes the polar decomposition expensive.
Lintner suggests the following steps: first determine the polar decomposition M = QM ′,
then compute the Cholesky factorization M ′ = RTR, and finally use Algorithm 3.1 to
decompose RT = Q′R′. If we insert these equations, we get

M = QM ′ = QRTR = QQ′R′R ≈
(
Q ∗H Q′

) (
R′ ∗H R

)
.

Multiplying Q by Q′ gives the orthogonal and R′ by R the upper triangular factor of the
H-QR decomposition of M . Lintner shows that the condition number of the last step is

κ
(
RT
)

=
√
κ (M).

So far the biggest disadvantage, the squaring of the condition number, is more than
made up. In the next subsection we will see a second possibility to avoid squaring the
condition number. First, a remark on the solution of the linear least squares problem:

Remark 3.2.1: If we are interested in the solution of the linear least squares prob-
lem, then this method is not the best one, since it will compute the solution using
the normal equations and this is dangerous for ill conditioned matrices M , see [64,
p. 386ff].

3.2.2 Bebendorf’s H-QR Decomposition

Algorithm 3.3 is described in [6, p. 87ff]. This algorithm computes a series of orthog-
onal transformations that triangularize M . On the first recursion level the matrix is
transformed to a block upper triangular form. The two resulting diagonal blocks are
triangularized by recursion. In line 10 of Algorithm 3.3 the orthogonal transformation
on the current level is described by the product[

L−1
1 0

0 L−1
2

] [
I XT

−X I

]
=

[
L−1

1 L−1
1 XT

−L−1
2 X L−1

2

]
.

This is a kind of block Givens rotation, because

det

[
L−1

1 L−1
1 XT

−L−1
2 X L−1

2

]
= detL−1

1 det
(
L−1

2

(
I +XXT

))
= 1.

On each recursion level the matrix M11 has to be inverted. This probably makes the
algorithm expensive. Further, not all matrices have an invertible first diagonal block,
i.e., [

0 I
I 0

]
has a QR decomposition, but 0 is not invertible.
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Algorithm 3.3: Bebendorf’s H-QR Decomposition.

Input: M =

[
M11 M12

M21 M22

]
Output: Q,R, with M = QR

1 Function [Q,R] = H-QR (M) begin
2 if M /∈ L(T ) then

3 X := M21 ∗H (M11)−1
H ;

4 L1L
T
1 := H-Cholesky factorization(I +XTX);

5 L2L
T
2 := H-Cholesky factorization(I +XXT);

6 R :=

[
LT1 M11 L−1

1

(
M12 +XTM22

)
0 L−1

2 (M22 −XM12)

]
=

[
R11 R12

0 R22

]
;

7 [Q1, R11] := H-QR (R11);
8 R12 := QT1 R12;
9 [Q2, R22] := H-QR (R22);

10 Q :=

[
I XT

−X I

]T
∗H
[
L−1

1 0

0 L−1
2

]T
∗H
[
Q1 0
0 Q2

]
;

11 end
12 else [Q,R] := QR(A) ; /* standard QR decomposition */

13 end

Bebendorf shows that the complexity of Algorithm 3.3 is determined by the complexity
of the H-matrix multiplication, so this is also an algorithm of linear-polylogarithmic
complexity. He further shows that increasing the H-arithmetic precision from level to
level as ε/l ensures rorth(Q) ∼ ε log (depth(TI×I)).

Remark 3.2.2: If we assume that the block A21 has the structure

A21 =


0 · · · 0 ∗
0 · · · 0 0
...

. . .
...

...
0 · · · 0 0

 ,

as may be the case in QR iterations of a Hessenberg-like structured H-matrix, then
inverting the last diagonal block of A11 is enough to zero A21. The matrix Q then
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has the structure

Q =



I
. . .

I

L−1
1 L−1

1 XT

−L−1
2 X L−1

2

I
. . .

I


.

This leads to a considerable reduction of cost. For this Q, it is easy to see that we
use a block generalization of Givens rotations.

3.3 A new Method for Computing the H-QR Decomposition

In this section we present a new H-QR decomposition. The main idea is to use the
standard QR decomposition for dense matrices as often as possible. This new algorithm
works recursively dividing the matrix into block-columns.

First, we will investigate what to do on the lowest level of the hierarchical structure.
Later, we will describe the recursive computation for non-leaf block-columns. On these
higher levels we will use a block modified Gram-Schmidt orthogonalization (MGS). In
particular we demonstrate that MGS can be used in the hierarchical matrix format and
leads to an orthogonalization process of almost linear complexity. Hence, we can reduce
the usualO(n3) complexity of MGS when applied to dense matrices significantly. For this
block-orthogonalization we use only H-matrix-matrix multiplications and additions. In
contrast to the two otherH-QR decompositions, we do not use the expensiveH-inversion.

3.3.1 Leaf Block-Column

Let M be an H-matrix and TI×I the corresponding H×-tree based on TI × TI . We will
call a block-column MI×s a leaf block-column if s is a leaf of TI , s ∈ L(TI). In this
subsection we will compute the QR decomposition of such a leaf block-column.

Our leaf block-column MI×s consists of blocks Mi. These blocks are elements of the
block-hierarchical tree H× of our H-matrix. In this subsection we will assume that the
block ri × s corresponding to Mi includes a leaf ri of our H-tree. The other cases will
be treated in the next subsection.

The block ri×s is an admissible or a non-admissible block. If the block is non-admissible,

we will treat this block like an admissible one by substituting Mi by I
(
MT
i

)T
or MiI.
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So all blocks of M have the structure AiB
T
i ,

M =


M1

M2
...
Mp

 =


A1B

T
1

A2B
T
2

...
ApB

T
p

 .
We now write M itself as a product of two matrices:

M = ABT =


A1 0 · · · 0

0 A2
. . .

...
...

. . .
. . . 0

0 · · · 0 Ap

 [B1 B2 . . . Bp
]T
.

We notice that B is a dense matrix.

We will compute the QR decomposition of this block-column in two steps. First we
transform A to an orthogonal matrix and after that we compute the QR decomposition
of the resulting B′.

The matrix A is orthogonalized block-by-block. Every Ai has to be factorized into
QAiRi using the standard QR decomposition, since Ai is dense. The matrices Ri will be
multiplied from the right hand side to Bi, B

′
i = BiR

T
i .

The second step is as simple as the first one. The matrix B′T is dense, so we use
the standard QR decomposition for the decomposition of B′T = QTBRB. We get an
orthogonal matrix QAQB and an upper triangular matrix RB:

M = ABT =

QA1 · · · 0
...

. . .
...

0 · · · QAp


R1B

T
1

...
RpB

T
p

 =

QA1 · · · 0
...

. . .
...

0 · · · QAp

QBRB.
The resulting matrix QTB is subdivided like BT , denoting the blocks QTBi . We combine

the matrices QAiQ
T
Bi

again and get a block-column matrix Q with the same structure
as M ,

M = QAQBRB =

QA1 · · · 0
...

. . .
...

0 · · · QAp


Q

T
B1
...

QTBp


︸ ︷︷ ︸

=:Q

RB. (3.4)

We have

QTQ = QTBdiag
{
QA1 , . . . , QAp

}T
diag

{
QA1 , . . . , QAp

}
QB

= QTB diag
{
QTA1

QA1 , . . . , Q
T
ApQAp

}
︸ ︷︷ ︸

=diag{I,...,I}

QB = QTBQB = I
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Algorithm 3.4: H-QR Decomposition of a Block-Column.

Input: MI×s =
[
AiB

T
i

]p
i=1

Output: Q,R, with MI×s = QR
1 for i = 1, . . . , p do
2 if Mi is admissible then
3 [QAi , Ri] := QR(Ai);
4 Ai := QAi and BT

i := RiB
T
i ;

5 else
6 Mi ∈ Rci×di ;
7 if ci ≤ di then BT

i = Mi (Ai := I); /* Ai is already orthogonal */

8 else
9 [QAi , Ri] := QR(Mi); /* e.g. LAPACK dfeqrf [2] */

10 Ai := QAi and BT
i := Ri;

11 end

12 end

13 end

14 Assemble BT =
[
B1 B2 . . . Bp

]T
;

15 [QB, RB] := QR(BT);
16 Partition QB into blocks as in (3.4), BT

i := QTBi ;

17 for i = 1, . . . , p do
18 if Mi is admissible then AiB

T
i is a block of Q;

19 else if Ai = I then BT
i is a dense block of Q;

20 else Compute AiB
T
i to get a dense block of Q;

21 end

so that Q is orthogonal.

These steps are described in Algorithm 3.4. We only use matrix-matrix multiplications
and QR decompositions for standard matrices, so the accuracy of the computation can
be regarded as perfect when compared with the approximation error of theH-arithmetic.

3.3.2 Non-Leaf Block Column

In the last subsection we have factorized a leaf block-column MI×s, s ∈ L(TI). In
this subsection we will use this to recursively compute the H-QR decomposition of a
hierarchical matrix. In general an H-matrix M ∈ RI×I is a non-leaf block-column.

Let MI×t be a non-leaf block column of M , that means S(t) 6= ∅. We have chosen the
numbering of the indices, so that we can order the sons si ∈ S(t):

s1 < s2 < s3 < · · · ,

see Definition 2.3.11 and the paragraph before.
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We get the QR decomposition of the first block-column MI×s1 by using this recursion.
The QR decomposition of the second block-column starts with the orthogonalization
w.r.t. the first block-column by using a block modified Gram-Schmidt orthogonalization.
We compute

Rs1×s2 = QTI×s1 ∗HMI×s2 and

M ′I×s2 := MI×s2 −H QI×s1 ∗H Rs1×s2 .

Now we apply again the recursion to compute the QR decomposition of M ′I×s2 . If t has
more than two sons, the other block-columns can be treated analogously. Algorithm 3.5
describes these steps in algorithmic form.

We have chosen the H×-tree in order to find large admissible blocks. Let ra × t be an
admissible block and C ∈ Rsi×t = ABT the corresponding Rk-matrix. We must split
C into two submatrices before we continue with the steps above. We will do something
similar to Algorithm 3.4 to get a dense, easily partitionable matrix: computing the
standard QR decomposition of A = QARA, multiplying RAB

T and storing QA. Using
QA we factorize our block-column as

MI×t =


I 0 · · · 0

0
. . .

. . .
...

...
. . . QA 0

0 · · · 0 I




Mr1×s1 Mr1×s2
Mr2×s1 Mr2×s2

...
...

RAB
T

...
...

 .

The matrix RAB
T ∈ Rk×|t| is a small rectangular dense matrix. Splitting a dense matrix

into two block-columns in a columnwise organized storage simply means setting a second
pointer to the first element of the second matrix. Note: on the next levels we have to
split this dense matrix again.

Apart from the adaptively chosen ranks of the admissible blocks, the matrix Q has the
same structure as M . The matrix R is also an H-matrix. In the next section we will
investigate the complexity of this algorithm.

3.3.3 Complexity

The following theorem analyzes the complexity of the H-QR decomposition.

Theorem 3.3.1: Let M be an H-matrix with the minimum block size nmin. Then
Algorithm 3.5 has a complexity of O(k2

maxn (log2 n)2) with

kmax = max
r×s∈L+(TI×I)

max {rank (Mr×s) , rank (Qr×s) , rank (Rr×s)} .
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Algorithm 3.5: H-QR Decomposition of an H-Matrix.

Input: MI×t, {s1, . . . , sq} ∈ S(t)
Output: Q ∈ RI×t, R ∈ Rt×t, with M = QR

1 if t ∈ L(T ) then
2 Compute the QR decomposition using Algorithm 3.4;
3 else
4 for k = 1, . . . , p do
5 if rk × t is admissible then [Qrk×t, RA] := QR(Ark×t); BT

rk×t := RAB
T
rk×t;

6 Split all dense matrices that overlap more than one block-column,
according to the block-partitioning given by the H-tree;
/* see Figure 3.1 */

7 end
8 for j = 1, . . . , q do
9 for i = 1, . . . , j − 1 do /* modified Gram-Schmidt orthog. */

10 Rsi×sj := QTI×siMI×sj ;
11 MI×sj := MI×sj −QI×siRsi×sj ;
12 end
13 Compute the QR decomposition of MI×sj recursively;

14 end
15 for k = 1, . . . , p do
16 if rk × t is admissible then use the stored Qrk×t and the computed

rectangular matrix B′ to form the Rk-matrix QB′T ;
17 Recombine overlapping matrices; /* see Figure 3.2 */

18 end

19 end

1 2

=

A
r
k
×

t

Brk×t

=

Q
r
k
×

t

RABrk×t

1 2

Figure 3.1: Explanation of Line 5 and 6 of Algorithm 3.5.

QB QB

1 2

= QBi
QBi  

Q
r
k
×

t

QBi
QBi

 

1 2

Figure 3.2: Explanation of Line 16 and 17 of Algorithm 3.5.
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Proof. For all r × s ∈ L+ we have Mr×s = Ar×sBT
r×s. Each matrix Ar×s is decomposed

using the standard QR decomposition. The matrix Ar×s has the dimension mr×k, with
k the rank of the block r × s. The standard QR decomposition of a matrix F ∈ Re×f
needs O(f2e) flops, so the QR decomposition of Ar×s needs O(k2mr) flops. The matrix
Ar×s needs NAr×s,st = O(mrk) storage. If we sum over all admissible leaves r× s ∈ L+,
we get ∑

r×s∈L+
NQR(Ar×s) ∈ O (kmaxNH,st) .

Analogously, the number of flops required for line 9 in Algorithm 3.4 is in O (nminNH,st).

For each block-column MI×s of the lowest level we compute another QR decomposition
to treat the remaining factor of compounded Bi. The vertex s should have at most nmin

indices, otherwise the non-admissible diagonal block of M would be divided once more.
It follows that such a block-column has at most nmin columns, |s| ≤ nmin. Further we
need the number of rows ρ of BT . The block-column is composed of matrix-blocks Mi

(and parts of such blocks) of the form ri×si, with ri×si ∈ L(TI×I) and s ∈ S∗(si). The
number of rows ρ is the sum of the ranks of Mri×si and the size of the non-admissible
blocks,

ρ =
∑

ri×si∈L+(TI×I)
s∈S∗(si)

rank (Mri×si) +
∑

ri×si∈L−(TI×I)
s∈S∗(si)

min {|ri| , |si|} .

In the non-admissible leaves we use the test in line 7 in Algorithm 3.4 to ensure that
the number of rows of the corresponding BT

i is min {|ri| , |si|} ≤ nmin. The condition
s ∈ S∗(si) means that si is a father or an ancestor of s. There is only one si on each
level fulfilling this condition. The Definition 2.3.7 of the sparsity constant Csp gives∑

ri×si∈L+(TI×I)
s∈S∗(si)

rank (Mri×si) ≤ Cspdepth(TI×I)kmax.

So we can bound ρ by

ρ ≤ CspkmaxO(log2 n) + Cspnmin.

This bound on the number of rows is now used to bound the costs of this QR decompo-
sitions by

NQR(B,one column) ≤ Csp (kmaxO(log2 n) + nmin)nmin |s| .
Summing over all columns gives

NQR(B,all) ≤ Csp (kmaxO(log2 n) + nmin)nminn = O(kmaxn log2 n).

In summary the used standard QR decompositions needs O(k2
maxn log2 n) flops.

For the orthogonalizations of block-columns against the previous columns, in summation
we need not more H-operations than for two H-matrix-matrix multiplications. Hence
the total complexity is O(k2

maxn (log2 n)2).
�
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To conclude, Algorithm 3.5 is of the same complexity as the two other H-QR decompo-
sitions. Since kmax depends also on the block-wise ranks in Q and R, it is not ensured
that the bound kmax is independent of the matrix size n.

3.3.4 Orthogonality

In this subsection we investigate the dependency of the orthogonality on theH-arithmetic
approximation error. We will use a recursive approach, starting on the lowest level to
estimate

∥∥QTQ− I∥∥
2
. For simplification we will assume that the H-tree is a binary tree.

On the lowest level of the H-tree we use only the standard QR decomposition without
any truncation. This is so that we can neglect the errors done on this level since the
double-precision accuracy will, in general, be much higher than the precision of the
H-arithmetic approximations on the other levels.

For a binary tree the computation on level ` simplifies to

M = [M1,M2] ,

[Q1, R11] = H-QR (M1),

R12 := QT1 ∗HM2,

M̃2 := M2 −H Q1 ∗H R12,

[Q2, R22] = H-QR (M̃2).

For Q = [Q1, Q2] we want to estimate the norm of

QTQ− I =

[
QT1 Q1 − I QT1 Q2(
QT1 Q2

)T
QT2 Q2 − I

]
.

From level `+1 we already know that
∥∥QTi Qi − I∥∥2

≤ δ`+1, i = 1, 2. In order to compute

M̃2, two H-matrix-matrix-multiplications are necessary. From this it follows that there
is a matrix F , where ‖F‖2 ≤ 2ε`, ε` is the H-arithmetic approximation error on level `,
such that

M̃2 = M2 −Q1Q
T
1 M2 + F.

For QT1 Q2 we get

QT1 Q2 = QT1
(
M2 −Q1Q

T
1 M2 + F

)
R−1

22 = QT1 FR
−1
22 ,

and the norm is ∥∥QT1 Q2

∥∥
2
≤ ‖F‖2

∥∥R−1
22

∥∥
2
≤ 2ε`

∥∥R−1
22

∥∥
2
.

Now we obtain the bound

δ` =
∥∥QTQ− I∥∥

2
=

∥∥∥∥∥
[
QT1 Q1 − I QT1 Q2(
QT1 Q2

)T
QT2 Q2 − I

]∥∥∥∥∥
2

≤
√
δ2
`+1 + 4ε2`

∥∥R−1
22

∥∥2

2
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on level `. It follows that

δ2
` ≤ δ2

`+1 + 2cε2` ,

if
∥∥R−1

22

∥∥
2
≤ c. This is a strong assumption, which may not be fulfilled. For constant ε`

we get

δ2
1 ≤

L∑
i=1

2cε2` = 2cLε2` .

If we choose ε` = ε
/√

L , rorth(Q) will be in O(ε).

Remark 3.3.2: During the testing of this algorithm we observed that particularly
the last (or the last two) column(s) of Q are not orthogonal to the previous ones.
A reorthogonalization of the last column helps to get a nearly orthogonal Q.

3.3.5 Comparison to QR Decompositions for Sparse Matrices

First note that the H-QR decomposition can be applied to dense, but data-sparse ma-
trices arising from, for example, BEM discretizations. In such a case, sparse QR decom-
positions are inapplicable.

The H-QR decomposition is also feasible for sparse matrices. Further, the data-sparse
format of hierarchical matrices is related to the sparse matrix format. As such, it is useful
to compare the H-QR decomposition with the QR decomposition of sparse matrices.

The sparse QR decomposition of a large sparse matrix M leads in general to dense
matrices Q and R. The same happens for the approximations QH and RH, to the exact
Q and R we computed by the H-QR decomposition. There are O(n2) pairs (i, j) ∈ I× I
with:

(QH)i,j 6= 0 or (RH)i,j 6= 0.

But we only need a linear-polylogarithmic amount of storage to store the approximations
in the H-matrix format. In the LU decomposition there is also an analog fill-in problem,
meaning that the sparsity is not preserved. The hierarchical LU decomposition is of
linear-polylogarithmic complexity, too.

Some sparse QR decompositions only compute the matrix R as in [95]. This reduces
the required storage and the required CPU-time. Omitting the computation of Q may
be a way to accelerate the QR decomposition of H-matrices, too. Lintner’s H-QR
decomposition is most suitable in this situation, since the R is computed first, without
computing Q. The sparse QR decomposition discussed in [95] uses pivoting to improve
the sparsity pattern of R. Since pivoting destroys the proper chosen structure of the
indices, we do not use pivoting in the H-QR decomposition.
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In the next section a comparison between the different H-QR decompositions are given
by example.

3.4 Numerical Results

We use the FEM example series, a sparse matrix with large rank-zero blocks, from FEM4
with dimension 16 × 16 to FEM512 with dimension 262 144 × 262 144 and the BEM
example series, which is dense and without rank-zero blocks, from BEM4 (dimension
66× 66) to BEM128 (dimension 65 538× 65 538). Further, we test the algorithms with
the H`(1) series.

We will use the accuracy and the orthogonality of the H-QR decompositions and the
required CPU-time to compare the different algorithms. Some of our test matrices are
too large to store them in a dense matrix-format, so we will use

rHQR := ‖Q ∗H R−HM‖H2 and

rHorth(Q) :=
∥∥QT ∗H Q−H I∥∥H2

instead of the norms in (3.1) and (3.2) to measure the orthogonality and accuracy of
the H-QR decompositions. If we compute norms using H-arithmetic, the accuracy of
the computation is determined by the approximation error of the H-operations. If rHQR

or rHorth is smaller than 10−5, the H-arithmetic pretends an accuracy which Q and R
may not have. All we can say in this case is that the accuracy or the orthogonality
is in the range of the approximation error or lower. In Figures 3.4 and 3.6 we plot
max{rHQR, 10−5} and max{rHorth, 10−5}.
The computations were done on a single core of the cluster Otto, see Section 2.7 for
details. The RAM was large enough to store all matrices in the H-matrix format. In
the following, we comment on the obtained results as displayed in the Figures 3.3–3.8.

3.4.1 Lintner’s H-QR decomposition

The three different types of Lintner’s H-QR decomposition show very different behavior.
The version used in Algorithm 3.1 is the fastest H-QR decomposition in our test, but
the matrices Q are far from being orthogonal, especially for large matrices. This is the
only method which is faster than the H-inversion for the FEM matrices. This method
includes an H-Cholesky factorization, meaning that it is quite natural for this method
to be slower than an H-Cholesky factorization. We should not use this method if we
are interested in a factorization of our matrix as the H-LU or H-Cholesky factorization
are better for these purposes. If we are interested in an orthogonal factorization, this
method is also not the best one, since Q is often far from being orthogonal.

The second type, which uses the same method to reorthogonalize the result, is good
in the two categories of orthogonality and accuracy, as long as the reorthogonalization
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Figure 3.3: Computation time for the FEM example series.
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Figure 3.4: Accuracy (solid) and orthogonality (dotted) for the FEM example series.
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Figure 3.5: Computation time for the BEM example series.
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Figure 3.6: Accuracy (solid) and orthogonality (dotted) for the BEM example series.
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Figure 3.7: Computation time for the H`(1) example series.
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Figure 3.8: Accuracy (solid) and orthogonality (dotted) for the H`(1) example series.
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process converges quickly. For the shown numerical tests we stop if rHorth < 10−3 and if
we have reached the sixth step. For the matrices FEM256, FEM512, and BEM128 the
reorthogonalization does not converge within these six steps and more than six steps
make the method definitely far more expensive than the others.

The third type of Lintner’s H-QR decomposition is the most or second most expensive
H-QR decomposition in this test. The orthogonality and the accuracy ranks are in the
middle of the other algorithms.

3.4.2 Bebendorf’s H-QR decomposition

Algorithm 3.3 is cheaper than the last two algorithms, but the results are not as accurate
and the orthogonality is not as good. The algorithm has problems with preserving the
regularity of the submatrices during the recursion, and so the H-QR decomposition of
FEM512 failed. We have not tested the algorithm with a block Hessenberg matrix, but
we expect better results for this type of matrices, see Remark 3.2.2.

3.4.3 The new H-QR decomposition

Algorithm 3.5 performs best for the FEM example series. Only Lintner’s reorthogonal-
ization method attains better orthogonality, but it is not as accurate and about three
times slower.

The results for the BEM matrices are not as good. For large matrices the time con-
sumption increases too fast, making this method expensive for the largest BEM matrix.
The two other indicators are good. The accuracy is as good as for the FEM matrices
and the orthogonality is second or third best.

The simple structured H`(1) matrices are more suitable for the new H-QR decomposi-
tion. The accuracy is almost perfect and the computation takes only a little longer than
the H-inversion. The orthogonality is also the third best.

Summarizing the numerical tests, there is no method dominating all others. Some meth-
ods are good for special matrices, like Algorithm 3.3 for block Hessenberg matrices, or
Algorithm 3.5 for matrices with many large zero blocks. All but Algorithm 3.1 are at
least as expensive as the H-inversion. As such, one should note:

Remark 3.4.1: The H-QR decomposition should not be used as a preconditioner or
a solver for linear systems of equations, as either Q is not orthogonal or the H-LU/
H-Cholesky factorization or even the H-inversion are faster.
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3.5 Conclusions

We have discussed three different methods to compute an approximate QR decomposi-
tion of H-matrices. Such H-QR decompositions have been suggested previously in the
literature. As the known approaches have some deficiencies, either in efficiency or or-
thogonality of the Q-factor, we have derived a new method to compute an H-QR decom-
position. The new approach is not superior in all aspects, but offers a good compromise
of accuracy vs. efficiency. We have compared the three methods in three typical sets of
H-matrices and highlighted advantages and disadvantages of the three approaches using
these examples. We believe the experiments show that our approach to compute H-QR
decompositions presents a viable alternative to the existing ones. As none of the meth-
ods turns out to dominate the others’ w.r.t. overall performance, we hope the presented
examples help to choose the suitable H-QR decomposition for concrete problems.

In the next chapter, the LR algorithm and the QR algorithm for hierarchical matrices
are investigated. Here we apply the H-QR decomposition.
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4.1 Introduction

In the last chapter we have seen how we can compute the QR decomposition of a general
H-matrix. In this section we will use this algorithm to build an eigenvalue algorithm,
based on the explicit QR algorithm [41]. Further, we will use the related LR Cholesky
algorithm [90] for the symmetric eigenvalue problem. In the following subsections we will
describe both algorithms in the dense matrix case, before we apply them to hierarchical
matrices in the next section.

4.1.1 LR Cholesky Algorithm

In the 1950s H. Rutishauser investigated the numerical computation of eigenvalues of
matrices. Based on the qd algorithm that he published in [89], in [90] he presented the
LR Cholesky algorithm. A description of Rutishauser’s contributions to the solution of
the algebraic eigenvalue problem can be found in the recently published paper [53]. The
LR algorithm uses the following iteration:

Li+1L
T
i+1 = Mi − µiI

Mi+1 = L−1
i+1MiLi+1 = L−1

i+1

(
Li+1L

T
i+1 + µiI

)
Li+1 = LTi+1Li+1 + µiI,

(4.1)

where Li+1L
T
i+1 is the Cholesky decomposition of M . One has to take care that the

shifts µi are chosen properly, so that the shifted matrices are positive definite. More
complicated shifting strategies can be found in [91] or [107], but we will use a simple
shift strategy, see Subsection 4.2.2, here.

The sequence of matrices, Mi, converges to a diagonal matrix, with the eigenvalues on
the diagonal as shown in [107].

4.1.2 QR Algorithm

The LR Cholesky algorithm is the predecessor of the explicit QR algorithm [41]. One
simply replaces the Cholesky decomposition by the QR decomposition:

Qi+1Ri+1 = Mi − µiI
Mi+1 = QTi+1MiQi+1 = Q−1

i+1 (Qi+1Ri+1 + µiI)Qi+1 = Ri+1Qi+1 + µiI.
(4.2)

As a shifting strategy, one often uses the Wilkinson shift [107], the smallest eigenvalue
of the trailing 2 × 2 submatrix. This shift does not preserve positive definiteness, but
this is unnecessary for the QR decomposition.

In the QR algorithm the matrices Mi converge to an upper triangular matrix. Since
each step is a unitary transformation, the eigenvalues can be found on the diagonal. In
the unsymmetric case complex eigenvalues lead to 2 × 2 blocks on the diagonal. The
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eigenvalues can be found by computing the eigenvalues of all 1× 1 and 2× 2 blocks on
the diagonal. The matrices converge to a quasi upper triangular matrix.

This also works for many other decompositions of the form M = GR, [106, 10]. The
matrix G has to be non-singular and R an upper-triangular matrix. The algorithm of
the form:

Gi+1Ri+1 = fi(Mi),

Mi+1 = G−1
i+1MiGi+1,

is called GR algorithm, driven by f , see [105]. The functions fi are used to accelerate
the convergence. For instance fi(M) = M − µiI is used in the single shift iteration and
fi(M) = (M − µi,1I)(M − µi,2I) · · · (M − µi,dI) yields a multiple-shift strategy.

Sometimes the Cholesky decomposition is replaced by the LDU decomposition, too. One
can show that one step of the QR algorithm is equivalent to two steps of the LR Cholesky
algorithm respective LDU transformation, see [110].

4.1.3 Complexity

The QR algorithm for a dense matrix is performed on upper Hessenberg matrices to
reduce the costs of the QR decompositions to O(n2) flops. Further, one uses a deflation
strategy to remove found eigenvalues. Together with a good shifting strategy, typically,
O(n) iterations are sufficient to find all n eigenvalues. This leads to O(n3) for the whole
algorithm. Francis [42] and others improved the explicit QR algorithm to the implicit
multishift QR algorithm, which is widely used today for eigenvalue computations.

If the LR Cholesky algorithm is used to compute the eigenvalues of a tridiagonal matrix,
then each step costs only O(n) flops and the whole algorithm is of quadratic complex-
ity. The LR Cholesky algorithm for tridiagonal matrices is efficient, since the special
tridiagonal structure is exploited and preserved.

In recent years, QR-like algorithms have been developed for computing the eigenvalues
of semiseparable matrices [39, 35, 36, 101, 102]. The usage of the data-sparse structure
of semiseparable matrices permits the factorization in O(n) and so leads to algorithms
of quadratic complexity, too. We are able to use some of these ideas due to the relation
between semiseparable matrices and H-matrices.

In the next section we apply the LR Cholesky algorithm to hierarchical matrices. This
leads to a new eigenvalue algorithm for hierarchical matrices. Since one Cholesky de-
composition is of linear-polylogarithmic complexity, we expect to find an algorithm of
almost quadratic complexity. We will, however, see in the numerical results that this is
not the case. This behavior will be explained in the third section, before we conclude
this chapter.
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Algorithm 4.1: H-LR Cholesky Algorithm.

Input: M ∈ Rn×n
Output: Λ ≈ Λ(M)

1 Function [Λ] =H-LR Cholesky algorithm(M)

2 begin
3 while No deflation do
4 Compute shift µ;
5 L :=H-Cholesky-decomposition(M − µI);
6 M = LT ∗H L+ µI;
7 if ‖Mn,1:n−1‖ < ε then
8 Λ := Mn,n ∪H-LR Cholesky algorithm(M1:n−1,1:n−1);
9 break;

10 end
11 if ∃j : ‖Mj:n,1:j−1‖ < ε then /* use test from Section 4.2.3 */

12 Λ :=H-LR Cholesky algorithm(M1:j−1,1:j−1)∪
13 ∪ H-LR Cholesky algorithm(Mj:n,j:n);

14 end

15 end

16 end

4.2 LR Cholesky Algorithm for Hierarchical Matrices

4.2.1 Algorithm

In this section the implementation of the LR Cholesky algorithm for hierarchical matri-
ces is described. We replace the Cholesky decomposition by the approximate H-Cho-
lesky decomposition and the multiplication by theH-matrix-matrix multiplication. Both
arithmetic operations are of almost linear complexity and so we get Algorithm 4.1. For
the H-Cholesky decomposition we require an ordering of the indices in I. We use the
ordering described in Paragraph H-Cholesky/LU Decomposition, see page 27. In the
next subsections we will investigate the shift strategy and the deflation in detail.

4.2.2 Shift Strategy

The shift is necessary to improve the rate of convergence. The shift should be a value
next to the smallest eigenvalue, but smaller than the smallest eigenvalue. If we make the
shift too large, the Cholesky factorization will fail, leading to a new upper bound for the
smallest eigenvalue. In such a case, we should lower the shift by, for example, taking the
last one, and continue with the Cholesky factorization of the new shifted matrix. The
following simple shift strategy worked well in our examples:
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� Randomly choose a test-vector y.

� Compute LLT = M .

� Compute five steps of inverse iteration (see Section 6.1.2) yi+1 := L−TL−1µiyi;
µi+1 = 1

‖yi+1‖2
to get an approximation of the smallest eigenvalue.

� Since y5 is in the span of several eigenvectors, µ5 ≥ λn, so µ5 is too large.

� Set µ := µ5 − 1.5
∥∥∥M−1y5 − 1

µ5
y5

∥∥∥
2
, to make µ small enough.

The last step subtracts one and a half times the error estimate of the inverse iteration
from the eigenvalue approximation, so that the shift preserves positive definiteness often
enough. The numerical results indicate that all eigenvalues are found in O(n) iterations.

Every shift is smaller than the smallest eigenvalue not already deflated. The effect is
that, usually, the smaller eigenvalues will be computed earlier, but there is no guarantee.

4.2.3 Deflation

Besides the shifting it is important to deflate the matrix. Deflation enables us to con-
centrate the computations on the not already converged eigenvalues.

To find all deflation opportunities, we have to compute

‖Mj:n,1:j−1‖ ∀j = 1, . . . , n.

Unfortunately, this is too expensive. We compute ‖Mj:n,1:j−1‖ only for j = n, in order
to deflate the last row as soon as possible. The other tests are simplified by testing if
all H-matrix blocks on the lower left hand side have local block rank 0. E.g., we deflate
in the cases shown in Figure 4.1.

4.2.4 Numerical Results

In the previous subsections we described all the things one would need to implement an
LR Cholesky algorithm for H-matrices. The implementation of that algorithm uses the
HLib [65]. Testing the algorithm with the FEM example series leads to the computation
times shown in Table 4.1. The achieved accuracy is on the level of theH-matrix accuracy
ε times the number of iterations. That confirms our expectations. The computation time
grows like n3. Since the number of iteration is in O(n), the costs per iteration has to
be quadratic. As such, the reason for this is that the approximation in the arithmetic
operations does not prevent the local block-wise ranks from growing, see Figure 4.2. The
dark green blocks are of full rank and are together of size O(n)×O(n). The arithmetic for
the full rank blocks has cubic complexity, so that the complexity of the whole algorithm
is not almost quadratic, but cubic.
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Figure 4.1: Examples for deflation.

Name n ti in s ti/ti−1 rel. error Iterations

FEM8 64 0.05 1.5534 e−08 101
FEM16 256 4.09 82 5.2130 e−07 556
FEM32 1 024 393.73 96 5.2716 e−06 2 333
FEM64 4 096 45 757.18 116 1.6598 e−03 10 320

Table 4.1: Numerical results for the LR Cholesky algorithm applied to FEM-series.
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Figure 4.2: Structure of FEM32 (left) and FEM32 after 10 steps of LR Cholesky trans-
formation (right).
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Following an observation of the FEM32 example, we conclude that after a few hundred
iterations the convergence towards the diagonal matrix starts to reduce the ranks of
most off-diagonal blocks. Consequently, the effect of the convergence is too late, as the
steps in between are too expensive.

The author implemented and tested the algorithm using the QR decomposition instead
of the Cholesky factorization. Due to the equivalence between two LR Cholesky steps
and one QR step, this does not lead to qualitatively different results. The only difference
is that the QR algorithm does not require shifts preserving positive definiteness.

This is a disappointing result. In the next section we will give an explanation of this.
Further, we will see that the algorithm can be used to compute the eigenvalues of the
H`-matrices, which form a subset of H-matrices.

4.3 LR Cholesky Algorithm for Diagonal plus Semiseparable
Matrices

In this section we will explain the behavior we observed in the last section. We will give
an explanation why the LR Cholesky algorithm is efficient for symmetric tridiagonal
and band matrices, and is able to preserve the structure of rank structured matrices
but not the structure of general symmetric hierarchical matrices. Further, we will show
that a small increase in the block-wise rank is sufficient to allow the use of the LR
Cholesky transformation for H`-matrices. All these matrices are diagonal plus semisep-
arable matrices, see Definition 2.5.2 and Remark 2.5.3, even though the structure is not
storage efficient for all of them. In Subsection 4.3.4 it is explained how one can regard
an H-matrix as a semiseparable matrix with r > n generators.

In the next subsection we will prove a theorem on the structure preservation of symmetric
diagonal plus semiseparable matrices under LR Cholesky transformation.

4.3.1 Theorem

In this subsection we will prove that the structure of symmetric diagonal plus semisep-
arable matrices of rank r is preserved under LR Cholesky transformation. This is of
course not new, but afterwards we will use intermediate results from our new, more con-
structive proof, to investigate the behavior of hierarchical structured matrices under LR
Cholesky transformation. Therefore, we need the sparsity pattern of the generators of N ,
which is not provided by the proof in [39]. Also, the proof in [88] is insufficient to show
that the preservation of structure is proved for diagonal plus semiseparable matrices in
Givens-vector representation, as our matrices are in generator representation.

Theorem 4.3.1: LetM be a symmetric positive definite diagonal plus semiseparable
matrix, with a decomposition like in Equation (2.24). The Cholesky factor L of
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M = LLT can be written (using MATLAB notation) in the form

L = diag
(
d̃
)

+

r∑
i=1

tril
(
uiṽiT

)
. (4.3)

Multiplying the Cholesky factors in reverse order gives the next iterate, N = LTL,
of the Cholesky LR algorithm. The matrix N has the same form as M ,

N = diag
(
d̂
)

+
r∑
i=1

(
tril
(
ûiṽiT

)
+ triu

(
ṽiûiT

))
. (4.4)

Proof. Parts of this proof are based on [88, Theorem 3.1], where a similar theorem is
proved for diagonal plus semiseparable matrices in Givens-vector representation.

The diagonal entries of L fulfill:

Lpp =
√
Mpp − Lp,1:p−1LTp,1:p−1,

d̃p +
∑
i

uipṽ
i
p =

√
dp +

∑
i

2uipv
i
p − Lp,1:p−1LTp,1:p−1. (4.5)

This condition can easily be fulfilled when p = 1. Furthermore there is still some freedom
for choosing ṽi1 if we choose d̃p adequately.

The entries below the diagonal fulfill:

L1:p−1,1:p−1L
T
p,1:p−1 = M1:p−1,p

L1:p−1,1:p−1L
T
p,1:p−1 =

∑
i

vi1:p−1u
iT
p .

If we define ṽi1:p−1 by

L1:p−1,1:p−1ṽ
i
1:p−1 = vi1:p−1, (4.6)

then Lp,1:p−1 =
∑

i u
i
pṽ
iT
1:p−1 and the above condition is fulfilled. The diagonal diag

(
d̃
)

results from (4.5). So the Cholesky factor has the form as in Equation (4.3).

The next iterate N is the product LTL. We have

N = LTL

=

(
diag

(
d̃
)

+
∑
i

tril
(
uiṽiT

))T (
diag

(
d̃
)

+
∑
i

tril
(
uiṽiT

))
= diag

(
d̃
)

diag
(
d̃
)

+
∑
i

diag
(
d̃
)

tril
(
uiṽiT

)
+
∑
i

tril
(
uiṽiT

)T
diag

(
d̃
)

+

+
∑
i

∑
j

tril
(
uj ṽjT

)T
tril
(
uiṽiT

)
.
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We will now show that tril (N,−1) =
∑

i tril
(
ûiṽiT ,−1

)
:

tril (N,−1) =
∑
i

diag
(
d̃
)

tril
(
uiṽiT ,−1

)
+ tril

∑
i,j

tril
(
uj ṽjT

)T
tril
(
uiṽiT

)
,−1

 .

The other summands are zero in the lower triangular part. Define ũip := d̃pu
i
p, ∀p =

1, . . . , n. So we get

tril (N,−1) =
∑
i

tril
(
ũiṽiT ,−1

)
+ tril

∑
i

∑
j

tril
(
uj ṽjT

)T
tril
(
uiṽiT

)︸ ︷︷ ︸
:=T ji

,−1

 .

We have T jipq = ṽjpu
jT
p:nuip:nṽ

iT
q , if p > q. It holds that

ujTp:nu
i
p:n =

[
0 · · · 0 ujp ujp+1 · · · ujn

]
ui.

We define a matrix Z by

Zg,h :=

{∑
j ṽ

j
gu
j
h, g ≤ h,

0, g > h.

Thus,

Zp,: =
∑
j

ṽjp

[
0 · · · 0 ujp ujp+1 · · · ujn

]
.

Finally we get

tril (N,−1) =
∑
i

tril

(ũi + Zui
)︸ ︷︷ ︸

=:ûi

ṽiT ,−1

 =
∑
i

tril
(
ûiṽiT ,−1

)
. (4.7)

Since N is symmetric, the analogue holds for the upper triangle.
�

Remark 4.3.2: An analog proof for the unsymmetric case, where the semiseparable
structure is preserved under LU transformations, is given in Lemma 4.5.1.

Theorem 4.3.1 tells us that N = LCT(M) := LTL, with the Cholesky decomposition
M = LLT , is the sum:

N = diag
(
d̂
)

+

r∑
i=1

(
tril
(
ûiṽiT

)
+ triu

(
ṽiûiT

))
,
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with ṽi being the solution of

Lṽi = vi,

where L is a lower triangular matrix and

ûi :=
(
Z + diag

(
d̂
))

ui.

We define the set of non-zero indices of a vector x ∈ Rn by

nzi(x) = {i ∈ {1, . . . , n}|xi 6= 0} .

Let iv be the smallest index in nzi(vi). Then in general nzi(ṽi) = {iv, . . . , n}. The
sparsity pattern of ṽi is

nzi(ṽi) =
{
p ∈ {1, . . . , n}

∣∣∃q ∈ nzi(vi) : q ≤ p
}
.

Since ũip = d̃pu
i
p, we have nzi(ũi) = nzi(ui). It holds that ûi 6= 0 if either ũi 6= 0 or there

is a j such that βjip ṽ
j
p 6= 0, with βjip = ujTp:nuip:n. The second condition is, in general, (if r

is large enough) fulfilled for all p ≤ maxq∈nzi(ui) q. The sparsity pattern of ûi is

nzi(ûi) =
{
p ∈ {1, . . . , n}

∣∣∃q ∈ nzi(ui) : p ≤ q
}
.

The sparsity pattern of ûi and ṽi are visualized in Figure 4.3.

Theorem 4.3.1 shows that the structure of diagonal plus semiseparable matrices are
preserved under LR Cholesky transformations. In the following subsections we will
use the theorem to investigate the behavior of tridiagonal matrices, matrices with rank
structures, H-matrices and H`-matrices under LR Cholesky transformations.
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Figure 4.3: Sparsity pattern of ûi and ṽi.
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4.3.2 Application to Tridiagonal and Band Matrices

It is well known that the band structure of a matrix is preserved under LR Cholesky
transformation, as shown in [107]. The aim of this subsection is to introduce the argu-
mentation, which we later use for hierarchically structured matrices.

Let M now be a symmetric tridiagonal matrix. This means Mij = Mji and Mji = 0
if |i− j| > 1. The matrix M can be written in the form of Equation (2.24) by setting
d = diag (M) and

ui = Mi+1,iei+1,

vi = ei.

The matrix N = LCT(M) is again tridiagonal, since tril
(
ûiṽiT

)
has only non-zero entries

for the indices (i, i), (i+ 1, i) and (i+ 1, i+ 1).

Corollary 4.3.3: Let M = LLT ∈ Rn×n be a matrix of bandwidth b. Then N = LTL
has bandwidth b, too.

Proof. Set (ui, vi) to

ui =
[
0 · · · 0 MT

i+1:i+b,i 0 · · · 0
]T
,

vi = ei.

Then ûii+b+1:n = 0 and ṽi1:i−1 = 0 and so the bandwidth is preserved.
�

4.3.3 Application to Matrices with Rank Structure

Definition 4.3.4: (rank structure) [35]
A rank structure on Rn×n is a set of 4-tuples

R = {Bk}k ,Bk = (ik, jk, rk, λk) .

If M ∈ Rn×n fulfills

∀k : rank
(

(M − λkI)ik:n,1:jk

)
≤ rk,

then we call M a matrix with rank structure R.

Remark 4.3.5: If M has the rank structure (j + 1, j, r, 0), then M ∈Mr,{1,...,j}.

In [35] it is also shown that the rank structures are preserved by the QR algorithm.
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Corollary 4.3.6: Let M ∈ Rn×n be a matrix with rank structure R = {Bk}k. Then
N = LCT(M) has rank structure R, too.

Proof. We can write M as diagonal-plus-semiseparable matrix. Therefore, we use

tril (M − λI) = tril

([
M̃11 M̃12

ABT M̃22

])
with the low-rank factorization ABT = (M − λkI)ik:n,1:jk

of rank at most rk. This leads
to

tril (M − λkI) = tril

([
0
A

] [
BT 0

])
+ tril

([
I
0

] [
M̃11 M̃12

])
+ tril

([
0
I

] [
0 M̃22

])
.

After the LR Cholesky transformation we get:

tril (N) = tril

([
?
?

] [
? ?

])
+ tril

([
?
0

] [
? ?

])
+ tril

([
?
?

] [
0 ?

])
+ diag (d) .

In the first summand, we have still a low-rank factorization of rank at most rk. The other
summands are zero in the lower left block, so that the rank structure Bk is preserved.
This holds for all k, so that R is preserved, too.

�

4.3.4 Application to H-Matrices

Let M = MT now be a symmetric H-matrix, with a symmetric hierarchical structure.
Under a symmetric hierarchical structure, we will understand that the blocks M |b, where
b = s×t, and M |bT , where bT = t×s are symmetric, so that bT is admissible if and only if

b is admissible. Further, we assume for b ∈ L+ that M |b = ABT =
(
BAT

)T
= (M |bT )T ,

so that the ranks are equal, kb = kbT . Since the Cholesky decomposition of M leads to a
matrix with invertible diagonal blocks of full rank, we assume that the diagonal blocks
of M are inadmissible. Further, all other blocks should be admissible. Inadmissible
non-diagonal blocks will be treated as admissible blocks with full rank.

The matrix M can now be written in the form of Equation (2.24). First we rewrite the
inadmissible blocks. We assume that all diagonal blocks are inadmissible and that all
other blocks are admissible. We choose block b = s × s and the diagonal of M |b forms
d|s. For the off-diagonal entries Mpq and Mqp, we have |p− q| ≤ nmin. We need at most
nmin − 1 pairs (ui, vi) to represent the inadmissible block by the sum

diag (d) +
∑
i

tril
(
uiviT

)
+ triu

(
viuiT

)
.

We choose the first pair, so that the first columns of u1v1T and M |b coincide. The next
pair u2v2T has to be chosen, so that it is equal to M |b − u1v1T in the second column,
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tril
(
uiviT

)
=



0
0 0
0 0 0
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
 tril

(
ûiṽiT

)
=



0
0 ?
0 ? ?
0 ? ? ?
0 ? ? ? ?
0 ? ? ? ? ?
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
Figure 4.4: Example for sparsity patterns of tril

(
uiviT

)
and tril

(
ûiṽiT

)
.

and so on. Like for block/band matrices, these pairs from inadmissible blocks do not
cause problems to the H-structure, since tril

(
ûiṽiT

)
, with ui = Mpqep and vi = eq, has

non-zero entries only in the product index set p : q × p : q. This index set is part of the
inadmissible block b, which contains p× q. So these entries are non-zero anyway.

Further we have admissible blocks. Each admissible block in the lower triangular is a
sum of products:

M |b = ABT =

kb∑
j=1

Aj,· (Bj,·)
T .

For each pair (Aj,·, Bj,·) we introduce a pair (ui, vi) with uiT =
[
0 · · · 0 ATj,· 0 · · · 0

]
and viT =

[
0 · · · 0 BT

j,· 0 · · · 0
]
, so that M |b =

∑
uiviT

∣∣
b
.

After we have done this for all blocks, we are left with M in the form of Equation (2.24)
with, what is most likely to be, an upper summation index r � n. This means that a
constant number r of pairs (ui, vi) under LR Cholesky transformation is insufficient for
the preservation of the H-matrix structure. Further, we require the preservation of the
sparsity pattern of ui and vi, since otherwise the ranks of other blocks are increased (or
we have to find new low rank factors, so that

∑kb
j Ãj,·B̃T

j,· =
∑k

j=1 u
jvjT ). Exactly this is

not the case for general H-matrices, since these pairs have a more general structure and
cause larger non-zero blocks in N , as shown in Figure 4.3 for an example. The matrix
M has a good H-approximation, since for all i: tril

(
uiviT

)
has non-zeros only in one

block of the H-product tree. In the matrix N , the summand tril
(
ûiṽiT

)
has non-zeros

in many blocks of the H-product tree and we would need a rank-1 summand in each of
these blocks to represent the summand tril

(
ûiṽiT

)
correctly. This means that the blocks

on the upper right hand side of the original blocks have ranks increased by 1. Since this
happens for many indices i, recall r � n, many blocks in N have full or almost full rank.
In short, N is not representable by an H-matrix of small local rank resp. the H-matrix
approximation property of M is not preserved under LR Cholesky transformations.

The complexity of the LR Cholesky algorithm for H-matrices is in O(n4). The required
storage forN can only be bounded byO(n2). The Cholesky factorization of a matrix with
O(n2) storage entries costs O(n3) flops. Since typically O(n) iterations are necessary, the



82 Chapter 4. QR-like Algorithms for Hierarchical Matrices

algorithm requires O(n4) flops. This is a pessimistic bound, since we observe that there
are data-sparse iterates again after a few hundred iterations. In the next subsection
we will see that the structure of H`-matrices is almost preserved under LR Cholesky
transformation.

4.3.5 Application to H`-Matrices

H`-matrices are H-matrices with a simple structure. Let M be an H`-matrix of rank k.
On the highest level we have the following structure:

M =

[
M11 ∈ H`−1 BAT

ABT M22 ∈ H`−1

]
.

Like in the previous subsection we introduce k pairs (ui, vi) for each dyad in ABT . These
pairs have the following structure:

uiT =

[
0 · · · 0

(
A|i,·

)T]
and viT =

[(
B|i,·

)T
0 · · · 0

]
,

and so the sparsity patterns are

ûiT =
[
? · · · ? ? · · · ?

]
and ṽiT =

[
? · · · ? ? · · · ?

]
,

after the LR Cholesky transformation. Like for matrices with rank structure, the non-
zeros from the diagonal blocks do not spread into the off-diagonal block of ABT . The
rank of the off-diagonal block on the highest level will be k, as shown in Figure 4.5.

The rank of the blocks on the next lower level will be increased by k due to the pairs
from the highest level. By a recursion we get the rank structure from Figure 4.5.

Corollary 4.3.7: If M ∈ H`(k), then N = LCT (M) ∈ H`(`k).

Proof. One proof is given above. Another proof uses the relation between H`-matrices
and matrices with rank structure. With [58, Lemma 4.5] we have that

M ∈ H`(k) ⇒ M ∈M`k,τ ∀τ ∈ TI .

The sets M`k,τ are special rank structured matrices, so that Corollary 4.3.6 gives us
N ∈M`k,τ . The Remark 4.4 in [58] completes the proof.

So the structure of H`(k)-matrices is not preserved under LR Cholesky transformations,
but the maximal block-wise rank is bounded by `k. Since the smallest blocks have the
largest ranks, the total storage required by the low-rank parts of M is only increased from
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Figure 4.5: Ranks of an H3(k)-matrix after LR Cholesky transformation.

2nk` to nk`(`− 1), meaning that the matrix has a storage complexity of O(n (log2 n)2)
instead of O (n log2 n). This is still small enough to perform an LR Cholesky algorithm
in almost quadratic complexity.

If M has an additional HSS structure [109], this structure will be destroyed in the
first step and Mi will be only an H`-matrix. The argumentation is analog to the next
subsection on H2-matrices. Further the HSS structure gives only a small advantage in
the computations of the first step.

4.3.6 Application to H2-Matrices

The H2-matrices are H-matrices with the additional condition that

Mr×s = VrSr×sW T
s

in the admissible leaves, as shown in Subsection 2.5.1. We now apply the same argu-
mentation as before. We have

Lṽi = vi, with vi =



0
...
0
Vr
0
...
0


︸ ︷︷ ︸

=Yr

Sr×s.
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By computing

LỸr = Yr

the sparsity structure of Yr is destroyed meaning that the next iterate does not have a
common row span and so no H2-matrix structure.

4.4 Numerical Examples

In the last section it was shown that the LR Cholesky algorithm for hierarchical matrices
can be used to compute the eigenvalues of H` matrices. In this section we will test the
algorithm. Therefor we use randomly generated H`(1)- and H`(2)-matrices of dimension
n = 64 to n = 262 144, with a minimum block size of nmin = 32. Since the structure of
H`-matrices is almost preserved, we expect the required CPU time for the algorithm to
grow like

O
(
k2n2 (log2 n)2

)
.

In each iteration we compute a Cholesky decomposition for an H`(k`)-matrix, which

costs O
(
k2n (log2 n)2

)
, see [58]. Since we expect O(n) iterations, we obtain the above

mentioned complexity for the whole algorithm. In Figure 4.6 one can see that for the
H`(1)-matrices, the CPU time grows as expected. Due to the k2 in the complexity
estimate the computations for the H`(2)-matrices are more expensive.

The graph for the CPU time of the LAPACK [2] function dsyev is only for comparison,
as we use LAPACK 3.1.1. The CPU time of dsyev does not depend on the rank of the
H`-matrices.

For larger examples we expect an intersection between the graphs for LAPACK function
dsyev and for the H-LR Cholesky algorithm. Further, due to the lower memory con-
sumption larger matrices can be handled by the H-LR Cholesky algorithm. Due to the
large run times we have only used matrices with dimension ≤16 384.

4.5 The Unsymmetric Case

If M is not symmetric, then we must use the LU decomposition, which was called LR
decomposition by Rutishauser, instead of the Cholesky decomposition. The following
lemma is an analogue to Theorem 4.3.1.

Lemma 4.5.1: Let M ∈ Rn×n be a diagonal plus semiseparable matrix of rank
(r, s) in generator representable form:

M = diag (d) +

r∑
j=1

tril
(
ujvjT

)
+

s∑
i=1

triu
(
wixiT

)
.
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Figure 4.6: CPU time LR Cholesky algorithm for H`(1), nmin = 32.

Then the LU decomposition of M leads to

L = diag
(
d̃
)

+

r∑
j=1

tril
(
uj ṽjT

)
,

U = diag (ẽ) +

s∑
i=1

triu
(
w̃ixiT

)
.

The multiplication in reverse order gives the next iterate N = UL of the form

N = diag
(
d̂
)

+

r∑
j=1

tril
(
ûj ṽjT

)
+

s∑
i=1

triu
(
w̃ix̂iT

)
,

where r and s are unchanged.

Proof. From M = LU we know that

Lp,1:p−1U1:p−1,1:p−1 = Mp,1:p−1 Lp,p = 1 (4.8)

L1:p−1,1:p−1Up,1:p−1 = M1:p−1,p Up,p = Mp,p − Lp,1:p−1U1:p−1,p. (4.9)

The argumentation is now analog to the one in the proof of Theorem 4.3.1. For each p
we first compute the new column of U , then the diagonal entry of the last column of U ,
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and finally the new row of L. We assume U has the form

U = diag (ẽ) +

s∑
i=1

triu
(
w̃ix̃iT

)
,

then Equation (4.9) becomes

L1:p−1,1:p−1w̃
i
1:p−1x̃

i
p = wi1:p−1x

i
p ∀i ∈ {1, . . . , s}.

This equation holds for x̃i = xi and Lw̃i = wi. It can be solved up to row p − 1, since
Lp−1,p−1 = 1 by definition. The equation for the diagonal entry Up−1,p−1 is fulfilled by
choosing a suitable ẽp−1. Further, we assume L to be of the form

L = diag
(
d̃
)

+
r∑
j=1

triu
(
ũj ṽjT

)
,

meaning we must choose d̃p so that Lpp = 1. Further, we have to fulfill Equation (4.8),
so that

ũjpṽ
j
1:p−1U1:p−1,1:p−1 = ujpv

jT
1:p−1.

This can be achieved by setting ũ = u and

UT1:p−1,1:p−1ṽ
j
1:p−1 = vj1:p−1.

So both factors have the desired form.

The next iterate is computed by

N = UL =

(
diag (ẽ) +

s∑
i=1

triu
(
w̃ixiT

))diag
(
d̃
)

+
r∑
j=1

tril
(
uj ṽj

)
= diag (ẽ) diag

(
d̃
)

+
r∑
j=1

diag (ẽ) tril
(
uj ṽj

)
+

s∑
i=1

triu
(
w̃ixiT

)
diag

(
d̃
)

+

+
s∑
i=1

r∑
j=1

triu
(
w̃ixiT

)
tril
(
uj ṽj

)
.

We will now show that tril (N,−1) =
∑r

j=1 tril
(
ûj ṽjT ,−1

)
:

tril (N,−1) =
r∑
j=1

diag (ẽ) tril
(
uj ṽj ,−1

)
+ tril

 s∑
i=1

r∑
j=1

triu
(
w̃ixiT

)
tril
(
uj ṽj

)︸ ︷︷ ︸
:=T ij

,−1

 .



4.5. The Unsymmetric Case 87

The other summands are zero in the lower triangular part. We have T ijpq = w̃ipx
iT
p:nu

j
p:nṽ

jT
q ,

if p > q. We define a matrix Z by

Zp,: =
s∑
i=1

w̃ip
[
0 · · · 0 xip xip+1 · · · xin

]
and get

tril (N,−1) =

r∑
j=1

tril
((

diag (ẽ)uj + Zuj
)
ṽjT ,−1

)
=

r∑
j=1

tril
(
ûj ṽjT ,−1

)
.

We will now show with an analog argumentation that the upper triangular part is of
semiseparable structure, too. We have

triu (N, 1) =

s∑
i=1

triu
(
w̃ixi, 1

)
diag

(
d̃
)

+ triu

 s∑
i=1

r∑
j=1

triu
(
w̃ixiT

)
tril
(
uj ṽj

)︸ ︷︷ ︸
:=T ij

, 1

 .

The other summands are zero in the upper triangle. We have T ijpq = w̃ipx
iT
q:nu

j
q:nṽ

jT
q , if

q > p. We define a matrix Y by

Y:,q =

s∑
i=1



0
...
0

ujq
ujq+1

...

ujn


ṽjTq .

Finally we get

triu (N, 1) =
s∑
i=1

triu
(
w̃i
(
xi diag

(
d̃
)

+ xiTY
)
, 1
)

=
r∑
j=1

triu
(
w̃ix̂iT , 1

)
.

The result of the proof is similar to the symmetric case as in the lower triangular we
get sparsity patterns like in Figure 4.4 and analog in the upper triangular part, the
transposed version of Figure 4.4. This also means that for hierarchical matrices the
unsymmetric LR transformations destroy the structure.

Remark 4.5.2: Without pivoting in the LR decomposition, the LR algorithm is
unstable, see [107, Chapter 8]. There is no LR decomposition with pivoting for
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hierarchical matrices, since the pivoting would destroy the block structure. The
detailed discussion of these issues is beyond the scope of this thesis. As such, even if
we provide O(n2) storage to run the algorithm, regardless of whether the structure is
destroyed, the algorithm will not compute good approximations to the eigenvalues.

4.6 Conclusions

We have seen that the structure of diagonal plus semiseparable matrices is invariant
under LR Cholesky transformation. We used this fact to show once again that rank
structured matrices, especially the subsets of tridiagonal and band matrices, are invariant
under LR Cholesky transformation. Besides this, we showed that a small increase of
the block-wise ranks of H`-matrices is sufficient to compute the eigenvalues by an LR
Cholesky algorithm. The same is true for the subset of HSS matrices.

It was not possible to disprove the opportunity of an LR Cholesky transformation for
general H-matrices, but we gave a good reason why one should expect that such an
algorithm does not exist. The reason for this is that one step of the QR algorithm is
equivalent to two steps of LR Cholesky transformation, the same is true for the QR
algorithm. This is substantiated by a numerical example with similar results to the ones
presented in Subsection 4.2.4.

If one finds a way to transform H-matrices into H`-matrices, then one would be able to
compute the eigenvalues using the LR Cholesky transformation. Also we do not use a
generalized Hessenberg-form here. So we could not negate the existence of a subspace in
the set of H-matrices, in which the H-LR Cholesky algorithm can be performed without
increasing ranks.

At this point we end the investigation of QR-like algorithms for hierarchical matrices.
In the next chapters we will investigate eigenvalue algorithms of a different type. The
next chapter covers a slicing algorithm of high efficiency for the computation of single
eigenvalues of H`-matrices. The next but one chapter is on vector iterations, especially
the preconditioned inverse iteration.
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5.1 Introduction

The aim of this chapter is to present an application of the bisection method, which
was described by Beresford N. Parlett in “The Symmetric Eigenvalue Problem” [87,
p. 51], for the computation of the eigenvalues of a symmetric hierarchical matrix M . He
calls this process “slicing the spectrum”. The spectrum Λ of a real, symmetric matrix is
contained in R, see Lemma 2.1.10, and so the following question is well posed: How many
eigenvalues λi ∈ Λ are smaller than µ? We will call this number νM (µ) or ν(M − µI).
Obviously, νM is a function

νM : R→ {0, . . . , n} ⊂ N0 : νM (µ) = |{λ ∈ Λ(M)|λ < µ}| (5.1)
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Figure 5.1: Graphical description of the bisectioning process.

If there is only one matrix M , then we omit the index M .

If the function ν(·) is known, one can find the m-th eigenvalue as the limit of the following
process, see Figure 5.1:

a Start with an interval [a, b] with ν(a) < m ≤ ν(b).

b Determine νm := ν(a+b
2 ). If νm > m, then continue with the interval [a, a+b

2 ], otherwise

continue with [a+b
2 , b].

c Repeat the bisection (step b) until the interval is small enough.

The function ν(·) can be evaluated using the LDLT factorization of M − µI, since
Sylvester’s inertia law, see Theorem 2.1.9, implies that the number of negative eigenval-
ues is invariant under congruence transformations. For dense matrices the evaluation of
ν is expensive. Therefore, this method is not recommended if no special structure, like
tridiagonality, is available.

Here we consider H`-matrices, which have such a special structure. H`-matrices can be
regarded as the simplest form of H-matrices [55]. H`-matrices include, among others,
tridiagonal and numerous finite element matrices. We will see in the next section that
the LDLT factorization for H`-matrices (for all shifts) can be computed in linear-poly-
logarithmic complexity. We will also show that

O
(
k2n2 (log2 n)4 log (‖M‖2/εev)

)
flops (5.2)

are sufficient to find all eigenvalues with an accuracy of εev, where k is the maximal rank
of the admissible submatrices.
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There are other eigenvalue algorithms for symmetric H`-matrices. These algorithms are
described in Subsection 2.6.2 and Subsection 2.6.3 and are of quadratic-polylogarithmic
complexity.

The complexity of the LDLT slicing algorithm is competitive with the existing ones if
we are interested in all eigenvalues. If we are interested only in some (interior) eigenval-
ues, then the algorithm will be superior, since the two others mentioned in the previous
paragraph have to compute all eigenvalues. The LDLT slicing algorithm is fundamen-
tally different from the two other algorithms. The computational complexity depends
logarithmically on the desired accuracy, so that it is really cheap to get a sketch of the
eigenvalue distribution. In contrast, the algorithm can compute one eigenvalue, e.g., the
smallest, second smallest, or 42nd smallest, without computing any other eigenvalue in
almost linear complexity.

In the next section we will give details on how to compute all or some eigenvalues
of symmetric H`-matrices. The next section is followed by a section presenting some
numerical results, which demonstrates the efficiency of the algorithm. In Section 5.4
some extensions to related matrix formats are discussed. The chapter closes with a
conclusions section.

5.2 Slicing the Spectrum by LDLT Factorization

In this section the details of the slicing algorithm, mentioned in the first section, will
be explained. Essentially we use a bisection method halving the interval [ai, bi], which
contains the searched eigenvalue λi, in each step. This process is stopped if the interval
is small enough.

We will employ Algorithm 5.1 [87, p. 50ff]. If the function ν is computed exactly,
the algorithm will choose the part of the interval containing λi. The algorithm needs
O(log2((b − a)/εev)) iterations to reduce the interval to size εev. We know λi ∈ [ai, bi],
bi − ai < εev and λ̂i = (bi + ai)/2 and as such it holds that∣∣∣λi − λ̂i∣∣∣ < 1

2
εev. (5.3)

The evaluation of the function ν(·) is the topic of the next subsection.

5.2.1 The Function ν(M − µI)

We will need the following corollary.

Corollary 5.2.1: If M − µI has an LDLT factorization M − µI = LDLT with L
invertible, then D and M − µI are congruent and ν(M − µI) = ν(D).
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Algorithm 5.1: Slicing the spectrum.

Input: M ∈ H(TI×I), with |I| = n and a, b ∈ R, so that Λ(M) ⊂ [a, b];

Output:
{
λ̂1, . . . , λ̂n

}
≈ Λ(M);

1 for i = 1, . . . , n do
2 bi := b; ai := a;
3 while bi − ai ≥ εev do
4 µ := (bi + ai)/2;
5 [L,D] := LDLT factorization(M − µI);
6 ν(M − µI) := |{j|Djj < 0}|;
7 if ν(M − µI) ≥ i then bi := µ else ai := µ ;

8 end

9 λ̂i := (bi + ai)/2;

10 end

Proof. See Theorem 2.1.9.
�

Since D is diagonal, we can easily count the number of positive or negative eigenvalues,
which gives us ν(D) and, due to the corollary, νM (µ).

If a diagonal entry of D is zero, we have shifted with an eigenvalue. In this case one of
the leading principal submatrices of M − µI is rank deficient and, as such, the LDLT

factorization may fail. Such a case is a welcome event as an eigenvalue has been found.
The LDLT factorization computes the diagonal D entry by entry. If one of these com-
puted entries is zero, then we have detected a rank deficient principal submatrix and
should stop the factorization.

We investigate the LDLT factorization of H`-matrices in the next subsection.

5.2.2 LDLT Factorization of H`-Matrices

There is an algorithm to compute LDLT factorizations for hierarchical matrices, which
is first described in [73, p. 70]. The H-LDLT factorization is block recursive, see Algo-
rithm 5.2. This algorithm is similar to Algorithm 2.2 for the Cholesky decomposition
of hierarchical matrices. For a hierarchical matrix M ∈ H(T, k) this factorization has a
complexity of

O(k2n (log2 n)2) (5.4)

in fixed rank H-arithmetic. We note that the LDLT factorization for H-matrices is much
cheaper than for dense matrices, where O(n3) flops are needed. In standard arithmetic,
the stability of the factorization is improved by, e.g., Bunch-Kaufmann pivoting [24].
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Algorithm 5.2: H-LDLT factorization M = LDLT .

1 H-LDLT factorization(M);
Input: M ∈ H(T )
Output: L ∈ H(T ), D = diag (d1, . . . , dn) with LDLT = M and L lower

triangular

2 if M =
[
M11 M12
M21 M22

]
/∈ L(T ) then

3 [L11, D1] := H-LDLT factorization(M11);
4 Compute the solution L21 of L21D1L

T
11 = M21;

5 [L22, D2] := H-LDLT factorization(M22 − L21D1L
T
21);

6 else
7 Compute the dense LDLT factorization LDLT = M , since inadmissible

diagonal blocks are stored as dense matrices.
8 end
9 return L,D;

Pivoting can not be used here as it would destroy the hierarchical structure. Many
practical problems lead to diagonally dominant matrices where in theses cases, pivoting
is unnecessary for good results. Here we need only an exact evaluation of ν(µ), and for
this we do not necessarily require a highly accurate LDLT factorization.

We will use Algorithm 5.2 for H`-matrices, too. In this case the solution of the equation

L21D1L
T
11 = M21

is simplified, since M21 = ABT . If D1 has a zero entry the solution will fail. But in
this case we know that zero is an eigenvalue of M . After the computation of L21 an
update is performed. In general, this update increases the rank of the submatrix M22.
In fixed rank H-arithmetic the update is followed by a truncation step, which reduces
the rank again to k. For H`-matrices we will omit the truncation, since the growth of
the block-wise ranks is bounded. The next lemma gives this bound, which will be used
for the complexity analysis of Algorithm 5.2.

Lemma 5.2.2: Let M ∈ H`(k). If the assumptions of Definition 2.1.16 are fulfilled,
then the triangular matrix L of the LDLT factorization is an H`(k`)-matrix. Further,
the complexity of the computation of L and D by Algorithm 5.2 is

O(k2n (log2 n)4). (5.5)

Proof. We will first prove the statement on the block-wise ranks and then use this for
the complexity estimation. We number the blocks of M as in Figure 2.8, see Figure 5.2.
Each block has a number out of the index set S =

{
1, . . . , 2`+1 − 1

}
. First we will define
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= {12, 8}

Figure 5.2: Example H3-matrix.

some functions on S. The function m(i) is defined by

m(i) =

{
0, if i is odd,

1 +m(i/2), if i is even.

The size of block i is n0 2max{m(i)−1,0} × n0 2max{m(i)−1,0}. The next function t(i) gives
us the indices of blocks on the left hand side of block i:

t(i) =

{
∅, if i− 2m(i) = 0,

t(i− 2m(i)) ∪
{
i− 2m(i)

}
, else.

Finally we will need

u(i) = |t(i)| .

Algorithm 5.2 processes the blocks in the order of their numbering. Most operations of
Algorithm 5.2 do not change the block-wise ranks, only the update in line 5 increases
the rank of some blocks. We are interested in the final rank of block i. Obviously
only updates from blocks j ∈ t(i) act on i. We assume that t(i) =

{
j1, j2, . . . , ju(i)

}
.

Let the smallest index in t(i) be j1. We compute the solution of L11D1L
T
21 = MT

21 for
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block j1. The matrix L21 is low rank and L21 = Aj1BLj1 , with BLj1 being the solution

of L11D1BLj1 = Bj1 . So the update L21D1L
T
21 has the form Aj1X

T and is of rank k.

After the update, block j2 has the form [A′j1 , Aj2 ][X ′, Bj2 ]T , where A′j(1) and X ′ are the
suitable parts of Aj(1) and X. This means that the next update is of rank 2k and has the

form [A′j1 , Aj2 ]Y T . This second update increases the rank of block j3 only by k since the
block has the form [A′′j1 , Aj3 ]Z before the update. Finally, block i has rank k(u(i) + 1).

The maximum

max
i∈S

u(i) = `,

is attained only for odd i. The rank of the inadmissible diagonal blocks is not of interest,
since they are stored in dense matrix format. So the maximum rank of an admissible
block is bounded by k`.

The H-LDLT factorization does not change the hierarchical structure. As such, we have
L ∈ H`(k`). With Lemma 2.3.13, Equation (5.4) and ` = O(log2 n), we conclude that
the complexity of Algorithm 5.2 is in

O(k2n (log2 n)4).
�

Remark 5.2.3: L ∈ H`(k`) can be proven in a shorter way:

Proof. The proof is analog to the proof of Lemma 2.3.19. If M ∈ Mk,τ , see Def-
inition 2.3.20, then there is a permutation so that the indices are renumbered with
τ = {1, . . . ,m}, further the permuted M has the rank structure (m + 1,m, r, ·), see
Definition 4.3.4.

Analog to [58, Lemma 4.2], we get for the LDLT factorization of M = LDLT , that
L ∈Mk,τ , if M ∈Mk,τ , since

L|τ ′×τ Dτ ′ L|τ ′×τ ′ = M |τ ′×τ .

The matrices Dτ ′ and L|τ ′×τ ′ are of full rank, so that

rank
(
L|τ ′×τ

)
= rank

(
M |τ ′×τ

)
.

Remark 4.4 and Lemma 4.5 of [58] state that

M ∈Mk,τ ∀τ ∈ TI ⇒M ∈ H`(k) and

M ∈ H`(k)⇒M ∈ Hp·k,τ ∀τ ∈ T (p)
I .

So we get L` ∈ H(k`).
�
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Remark 5.2.4: We know from the first proof that block i has at most rank k(u(i) + 1).
Unfortunately, this tighter rank bound does not lead to a better complexity estima-
tion. Nevertheless, we use the tighter bound for numerical computations.

The main difference between the LDLT factorization for H`-matrices and H-matrices
is that the factorization for H`-matrices can be done without truncation and so exact
apart from round off respecting IEEE-double precision arithmetic.

Remark 5.2.5: Where M has a stronger condition, one can reduce the bound on
the block-wise rank from k` to k. If, for instance, the matrix M ∈ H`(k) fulfills
the following conditions (here for an H3(k)-matrix with the same notation as in
Figure 2.8):

range (A4) ⊂ span

([
F5

0

]
,

[
0
A6

])
,

range (A8) ⊂ span



F9

0
0
0

 ,


0
A10

0
0

 ,


0
0

A12


 and

range (A12) ⊂ span

([
F13

0

]
,

[
0
A14

])
,

or an analog generalization, then L ∈ H`(k). Examples of this structure are tridiago-
nal matrices, diagonal plus semi-separable matrices and HSS matrices. For all these
special structures there exists good eigenvalue algorithms.

5.2.3 Start-Interval [a, b]

The interval [a, b] must contain the whole spectrum. This is the case for a := −‖M‖2
and b := ‖M‖2. The spectral norm ‖M‖2 can be approximated from below using the
power iteration, see Chapter 6. Multiplying the approximation by a small factor 1 + δ
will give an upper bound for ‖M‖2.

5.2.4 Complexity

For each eigenvalue λi we have to do several H-LDLT factorizations to reduce the length
of the interval [ai, bi]. Each factorization halves the interval, since we use a bisection
method. So we need O(log(‖M‖2/εev)) H-LDLT factorizations per eigenvalue. One H-
LDLT has a complexity of O(k2n (log2 n)4). Multiplying both complexities gives us the
complexity per eigenvalue O(k2n (log2 n)4 log(‖M‖2/εev)) and the total complexity for
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all n eigenvalues is:

O(k2n2 (log2 n)4 log(‖M‖2/εev)). (5.6)

5.3 Numerical Results

We have implemented Algorithm 5.1 with the LDLT factorization for H-matrices, as
shown in Algorithm 5.2, using the HLib [65]. The HLib can handle H`-matrices, too,
since H`-matrices are a subset of H-matrices. We use the fixed rank arithmetic of the
HLib, with the known maximal block-wise rank k`, which we get through the factor-
ization of H`(k)-matrices. We also choose a minimum block size of nmin = 32. The
computations were done on Otto, see Section 2.7. Apart from the numerical results
regarding parallelization, we use only one core.

To test the algorithm we use tridiagonal, H`-, and HSS matrices. The matrices have
block-wise rank 1 in the admissible submatrices. The size of the matrices is varied from
64 to 1 048 576. Like in the H`-matrix example series, see Subsection 2.4.3, the HSS ma-
trices are randomly generated, fulfilling the additional conditions from Definition 2.5.7.
Further, we use a set of tridiagonal matrices with 2 on the diagonal and −1 on the
subdiagonals, representing the discrete 1D Laplace operator. Except for the tridiagonal
matrices, we normalize the matrices to ‖M‖2 = 1, since ‖M‖2 is part of the complexity
estimate.

To investigate the dependency on the local block-wise rank k we use H`-matrices of
dimension 16 384 with rank 2, 3, 4, 8 or 16 (H9 r2. . . 16).

For the matrices up to dimension 32 768, we compute their corresponding dense matrix
and use the LAPACK-function dsyev [2] to compute the eigenvalues. The difference
between the results of dsyev and the results from our new LDLT slicing algorithm are
the errors in the tables and figures. The time dsyev needs is given in the table, too. Note:
there are faster algorithms for tridiagonal matrices but not for H`- and HSS matrices in
LAPACK.

Figure 5.3 shows the absolute errors of the computed eigenvalues of the matrix H5 r1
∈ H5(1) of size 1 024. All the errors are below the expected bound.

Table 5.1 shows the computation times and the errors for the H` example series, if we
compute only the 10 eigenvalues λn/4+5, . . . , λn/4+14. (Similar results will be obtained
when choosing other subsets of the spectrum.) The growth in the expected costs

Ni

Ni−1
=

ni(log2 ni)
4

ni−1(log2 ni−1)4
for constant k and

Ni

Ni−1
=

k2
i

k2
i−1

for constant n
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Name n tdysev in s abs. error rel. error t in s ti
ti−1

Ni
Ni−1

H1 r1 64 <0.01 2.6176 e−09 4.2210 e−09 0.01
H2 r1 128 <0.01 2.6782 e−09 4.7816 e−09 0.03 3.00 3.71
H3 r1 256 0.01 3.0051 e−09 5.6233 e−09 0.07 2.33 3.41
H4 r1 512 0.09 3.0835 e−09 6.0051 e−09 0.19 2.71 3.20
H5 r1 1 024 0.65 3.0225 e−09 5.9838 e−09 0.50 2.63 3.05
H6 r1 2 048 4.96 3.2310 e−09 6.4253 e−09 1.20 2.40 2.93
H7 r1 4 096 40.04 2.4008 e−09 4.7873 e−09 2.58 2.15 2.83
H8 r1 8 192 318.41 2.2674 e−09 4.5241 e−09 6.39 2.48 2.75
H9 r1 16 384 2 578.40 2.8512 e−09 5.6983 e−09 13.76 2.15 2.69
H10 r1 32 768 21 544.30 2.2013 e−09 4.4015 e−09 26.06 1.89 2.64
H11 r1 65 536 — — — 47.18 1.81 2.59
H12 r1 131 072 — — — 104.80 2.22 2.55
H13 r1 262 144 — — — 237.39 2.27 2.51
H14 r1 524 288 — — — 485.45 2.04 2.48
H15 r1 1 048 576 — — — 1 167.69 2.41 2.46

H9 r1 16 384 2 578.40 2.8512 e−09 5.6983 e−09 13.58
H9 r2 16 384 2 623.36 2.9862 e−09 5.9585 e−09 36.26 2.67 4.00
H9 r3 16 384 2 813.56 3.2523 e−09 6.5293 e−09 68.73 1.90 2.25
H9 r4 16 384 2 569.13 2.9416 e−09 5.8803 e−09 108.63 1.58 1.78
H9 r8 16 384 2 622.41 2.9974 e−09 5.9699 e−09 345.52 3.18 4.00
H9 r16 16 384 2 574.00 2.5739 e−09 5.2128 e−09 998.93 2.89 4.00

Table 5.1: Comparison of errors and computation times for the H` example series com-
puting only 10 eigenvalues (n/4 + 5, . . . , n/4 + 14).
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Name n tdsyev in s abs. error rel. error t in s ti
ti−1

Ni
Ni−1

H1 r1 64 <0.01 2.9831 e−09 7.5664 e−09 0.06
H2 r1 128 <0.01 3.5112 e−09 7.6290 e−09 0.32 5.33 7.41
H3 r1 256 0.01 2.8642 e−09 1.7238 e−08 1.78 5.56 6.82
H4 r1 512 0.09 4.2852 e−09 5.2780 e−08 9.40 5.28 6.41
H5 r1 1 024 0.65 3.2705 e−09 3.6564 e−08 46.44 4.94 6.10
H6 r1 2 048 4.96 3.8801 e−09 2.3364 e−07 219.13 4.72 5.86
H7 r1 4 096 40.04 4.5528 e−09 3.6158 e−07 991.74 4.53 5.67
H8 r1 8 192 318.41 4.5752 e−09 4.8727 e−07 4 001.82 4.04 5.51
H9 r1 16 384 2 578.40 4.5128 e−09 1.0878 e−07 15 727.87 3.93 5.38
H10 r1 32 768 21 544.30 4.5128 e−09 4.1400 e−06 48 878.33 3.11 5.27
H11 r1 65 536 — — — 139 384.10 2.85 5.18

H9 r1 16 384 2 578.40 4.5872 e−09 1.0878 e−07 15 520.59
H9 r2 16 384 2 623.36 4.5125 e−09 2.2098 e−06 43 553.35 2.81 4.00
H9 r3 16 384 2 813.56 4.4878 e−09 5.7552 e−07 90 788.42 2.08 2.25
H9 r4 16 384 2 569.13 4.6128 e−09 7.6893 e−07 141 035.10 1.55 1.78
H9 r8 16 384 2 622.41 4.5900 e−09 2.9278 e−06 459 240.80 3.26 4.00
H9 r16 16 384 2 574.00 4.6000 e−09 1.0670 e−07 1 375 369.00 2.99 4.00

Table 5.2: Comparison of errors and computation times for the H` example series com-
puting all eigenvalues.

is given in the last column, k and ‖M‖2 are constant in the first part of the table. The
computation times grow slower than expected. This confirms the estimated computa-
tional complexity from Equation (5.5) and shows that there is probably a tighter bound.
Figure 5.4 compares the computation times with O(n (log2 n)β), β = 0, 1, 2, 3, 4. There
we see that the β in the example is rather 2 than 4. The second part of the table shows
that for varying k, the costs grow like k2. Tables 5.2 shows the same as Tables 5.1
but for computing all eigenvalues, with Ni = k2

i n
2
i (log2 ni)

4. Table 5.2 shows that the
computation of all eigenvalues with the LDLT slicing algorithm is more expensive than
using LAPACK. But since the transformation into a dense matrix requires n2 storage, we
are able to solve much larger problems by using the LDLT slicing algorithm.

In Table 5.3, Table 5.4 and Table 5.5, similar results are shown for tridiagonal, HSS
matrices and the H`(5)-matrices with the kernel function log ‖x− y‖.

5.4 Possible Extensions

In the last two sections we have described an algorithm to compute the eigenvalues of
H`-matrices. In this section we will discuss what happens if we apply this algorithm to
other, related hierarchically structured matrices. Further, we will describe how one can
improve the LDLT slicing algorithm for H`-matrices.
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Name n tdysev in s 10 Eigenvalues All Eigenvalues
(all ev.) abs. error t in s abs. error t in s

trid1 64 <0.01 3.5232 e−09 <0.01 3.2186 e−09 0.03
trid2 128 <0.01 3.4594 e−09 0.01 1.3409 e−09 0.06
trid3 256 0.01 3.2238 e−09 0.01 2.0692 e−09 0.16
trid4 512 0.05 9.3048 e−10 0.02 4.2384 e−12 0.37
trid5 1 024 0.36 3.0809 e−09 0.04 1.6036 e−11 0.80
trid6 2 048 2.94 1.3323 e−15 0.07 3.8816 e−12 3.31
trid7 4 096 23.48 1.3323 e−15 0.13 5.9723 e−12 13.51
trid8 8 192 187.89 1.3323 e−15 0.29 1.8445 e−11 58.68
trid9 16 384 1 572.58 2.9310 e−14 0.58 1.2835 e−11 241.38
trid10 32 768 13 053.36 1.3323 e−15 1.27 1.6486 e−11 1 050.28
trid11 65 536 — — 2.64 — 4 374.16
trid12 131 072 — — 5.59 — —
trid13 262 144 — — 11.40 — —
trid14 524 288 — — 23.77 — —
trid15 1 048 576 — — 49.15 — —

Table 5.3: Comparison of errors and computation times for tridiagonal matrices
([−1, 2,−1]) computing only 10 eigenvalues (n/4 + 5, . . . , n/4 + 14) and all
eigenvalues (LAPACK-function dsyev is not optimized for tridiagonal matri-
ces).
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Figure 5.5: Absolute error |λi − λ̂i| for FEM32 matrix, εev = 2 e−4.
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Name n tdsyev in s 10 Eigenvalues All Eigenvalues
(all ev.) abs. error t in s abs. error t in s

HSS1 r1 64 <0.01 3.2660 e−09 <0.01 1.7203 e−09 0.06
HSS2 r1 128 <0.01 4.0212 e−09 0.02 2.4553 e−09 0.33
HSS3 r1 256 0.01 3.2320 e−09 0.07 2.7721 e−09 1.72
HSS4 r1 512 0.10 4.5453 e−09 0.17 2.6323 e−09 8.39
HSS5 r1 1 024 0.65 3.5624 e−09 0.39 3.1354 e−09 39.76
HSS6 r1 2 048 5.05 4.5539 e−09 0.90 2.2252 e−09 173.37
HSS7 r1 4 096 40.45 4.5020 e−09 2.11 2.2500 e−09 790.44
HSS8 r1 8 192 326.92 4.5912 e−09 4.46 2.8584 e−09 3 368.12
HSS9 r1 16 384 2 700.80 4.5953 e−09 10.29 2.8121 e−09 14 439.43
HSS10 r1 32 768 22 628.85 4.5770 e−09 20.35 2.7312 e−09 55 781.07
HSS11 r1 65 536 — — 38.87 — 223 925.40
HSS12 r1 131 072 — — 83.60 — —
HSS13 r1 262 144 — — 186.59 — —
HSS14 r1 524 288 — — 333.29 — —
HSS15 r1 1 048 576 — — 684.15 — —

HSS5 r1 1 024 0.65 3.1354 e−09 0.38 3.5624 e−09 39.81
HSS5 r2 1 024 0.74 2.5957 e−09 0.54 4.1746 e−09 53.18
HSS5 r3 1 024 0.69 2.7597 e−09 0.73 4.5259 e−09 69.62
HSS5 r4 1 024 0.67 3.1219 e−09 0.86 4.0331 e−09 84.14
HSS5 r8 1 024 0.71 2.4067 e−09 1.74 4.4214 e−09 163.87
HSS5 r16 1 024 0.76 2.3409 e−09 3.46 4.4460 e−09 411.35

Table 5.4: Comparison of errors and computation times for HSS matrices computing
only 10 eigenvalues (n/4 + 5, . . . , n/4 + 14) and all eigenvalues.

Name n 10 Eigenvalues All Eigenvalues
abs. error t in s abs. error t in s

log64 64 2.8210 e−07 0.02 1.3543 e−02 0.14
log128 128 1.2903 e−03 0.11 1.2393 e−02 1.40
log256 256 7.0077 e−03 0.37 8.1165 e−03 8.85
log512 512 3.5651 e−03 1.04 4.1448 e−03 43.78
log1024 1 024 1.7723 e−03 1.97 1.9622 e−03 185.68
log2048 2 048 7.4092 e−04 4.03 9.7573 e−04 711.25
log4096 4 096 6.6052 e−05 6.56 4.8654 e−04 2 469.25
log8192 8 192 5.3191 e−05 12.63 4.2350 e−04 8 774.92
log16384 16 384 6.0408 e−06 20.69 8.0925 e−05 22 165.30

Table 5.5: Comparison of errors and computation times for matrices based on logarith-
mic kernel computing only 10 eigenvalues (n/4 + 5, . . . , n/4 + 14) and all
eigenvalues.
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5.4.1 LDLT Slicing Algorithm for HSS Matrices

In [109], Xia and Chandrasekaran et al. present an algorithm to compute the Cholesky
factorization of a symmetric, positive definite hierarchical semi-separable matrix. Their
ideas can be used to construct a similar LDLT factorization for HSS matrices. Such an
algorithm would use the structure of HSS matrices much better, so that the complexity
of the LDLT factorization would be reduced to O(k2n).

In Algorithm 5.3 (p. 108) we take [109, Algorithm 2] and apply some small changes
to allow the algorithm to compute the LDLT factorization. The comments are the
corresponding lines from the original algorithm. This topic may be investigated further
in the future.

5.4.2 LDLT Slicing Algorithm for H-Matrices

Does Algorithm 5.1 work forH-matrices, too? The answer is yes if we have O(n2) storage
and O(n3) time. The answer is no if linear-polylogarithmic complexity per eigenvalue
has to be reached.

We have to use the H-LDLT factorization for H-matrices. Two additional problems
appear: First, in general there is no exact H-LDLT factorization like in the H` case.
So truncation is required to keep the block-wise ranks at a reasonable size. But then
the results are much less accurate and so we encounter wrong decisions, resulting in an
incorrect ν(µ), which leads to intervals that do not contain the searched eigenvalue, see
Figure 5.5. Second, if we use fixed accuracy H-arithmetic we get admissible blocks of
large rank for some shifts. This will increase the computational complexity as well as
the storage complexity.

We have done some example computations to show the rank growth for different shifts.
Therefore, we use the FEM example series from FEM8 to FEM512, see Subsection 2.4.1.
Table 5.6 shows the maximal block-wise rank of the factors after the LDLT factorization
of FEMX matrices for different shifts. If the shifted matrix is positive definite, the ranks
will stay small. For shifts that are near, for example, the eigenvalue 4 we get large ranks
for large matrices. We observe that the maximal block-wise rank is doubled from one
column to the next. This shows that Lemma 5.2.2 does not hold for general H-matrices
since the rank grows faster than `k for large matrices. It follows that the complexity is
not in

O
(
k2n (log2 n)4

)
,

and so for large matrices the computation time grows faster than the expected costs Ni

Ni = |EV |CspCidni(log2 ni)
4,

as we see in Table 5.7. Still, if only a few eigenvalues are required, the computation
time is much better than using LAPACK and we can also solve eigenvalue problems that
would be otherwise insolvable.
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Shift FEM8 FEM16 FEM32 FEM64 FEM128 FEM256 FEM512

0 8 10 11 11 11 11 11
2 8 11 13 21 37 69 101
4.1 8 11 16 32 61 126 173
4.01 8 11 16 32 64 127 180
4.001 8 11 16 32 64 128 190
4.0001 8 11 16 32 64 128 183

` 1 3 5 7 9 11 13
n 64 256 1 024 4 096 16 384 65 536 262 144

Table 5.6: Maximal block-wise rank after LDLT factorization for different shifts and dif-
ferent FEM matrices (ε = 10−5, block-wise rank 8 before LDLT factorization,
normalized with λmax = 8, multiple eigenvalue at 4).

Name n tdysev in s rel. error t in s ti
ti−1

Ni
Ni−1

FEM8 64 <0.01 5.2265 e−07 0.01
FEM16 256 0.01 2.4938 e−07 0.18 18.00 189.63
FEM32 1 024 0.67 5.7118 e−08 2.91 16.17 42.32
FEM64 4 096 41.87 1.0784 e−06 27.82 9.56 11.61
FEM128 16 384 2 819.50 1.5215 e−05 238.53 6.22 7.41
FEM256 65 536 — 6.3208 e−05 2 151.54 9.02 6.82
FEM512 262 144 — 3.2221 e−06 18 699.01 8.69 8.24
FEM1024 1 048 576 — 1.2545 e−05 180 456.78 9.65 13.29

Table 5.7: Example of finding the 10 eigenvalues n/4 + 5, . . . , n/4 + 14 of FEMX,
ε =1 e−5, εev =1 e−3; italic entries are larger than expected.

Name n t1 core in s t2 core in s t1c/t2c t4 core in s t1c/t4c t1c/t8c

H2 r1 128 0.33 0.18 1.83 0.10 3.30 5.50
H4 r1 512 9.44 4.87 1.94 2.57 3.67 6.60
H6 r1 2 048 219.28 114.69 1.91 60.27 3.64 6.47
H8 r1 8 192 4 022.80 2 151.55 1.87 1 170.63 3.44 5.95
H10 r1 32 768 49 012.24 25 375.91 1.93 15 402.22 3.18 4.90

Table 5.8: Parallelization speedup for different matrices, OpenMP parallelization.
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5.4.3 Parallelization

If we search for more than one eigenvalue, we can use some of the computed ν(µ) again.
For example, since ai and bi are the same for all i, at the beginning the first µi will be the
same, too. After the first LDLT factorization and the computation of ν(M − µI) = ν,
we have two intervals. The interval [a, µ] contains ν eigenvalues and the interval [µ, b]
contains n − ν eigenvalues. The computations on the two intervals are independent.
We can use two cores, one for each interval, so that we can continue the computations
independently. If we have more cores we can increase the number of working cores on
the next level to four and so on.

Since there is almost no communication, this will lead to a very good parallelization. All
we need is enough storage for the two H`-matrices, M and L, on each core. Since only
linear-polylogarithmic storage is required, this should often be the case.

In the first attempt we have used OpenMP [84] to parallelize the program code used for
the numerical examples. This leads to a simple parallelization that should be possible
to improve. Table 5.8 shows the timing results on just one node of Otto, now we
use up to eight cores. The speedup from one core to four cores is about 3.3. For
eight cores the increase is around 5. This is already a satisfying value compared with
the parallelization of other algorithms, like the parallelization of the LAPACK-function
dlahqr (QR algorithm for unsymmetric eigenvalue problems) shows a speedup of 2.5 on
four nodes [62].

Further, we have a parallelization using Open MPI [97] and a master-slave structure.
The master distributes the work, by giving each slave an interval. The slave computes
all eigenvalues in this interval if there are not more than 2m eigenvalues in the interval.
If there are more eigenvalues then the slave computes only the inner m eigenvalues.
The slave first computes the smallest and the largest eigenvalue of this set, and tells
the master that he will not compute the other eigenvalues. So the master is quickly
notified that there are two intervals, where no slave is computing eigenvalues. The
master manages a list of all these free intervals and gives each idle slave a new interval
immediately.

This parallelization is more sophisticated and leads to higher speed-ups. In addition,
Open MPI permits the usage of different nodes of a cluster so we are no longer restricted
to one node as in the OpenMP parallelization. Tests of this implementation on our
cluster Otto show a very good scalability of the algorithm up to 288 parallel processes
(24 nodes with each 12 cores). The speed-up was 230.50 for 287 slave processes and one
master, see Table 5.9. The efficiency of the parallelization for 288 is still over 80%.

We have seen that the LDLT slicing algorithm is very well parallelizable, since the
computations for disjoint intervals do not influence each other.
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No. of Processes t in s Speedup Efficiency

1 16 564.58 1.00 1.00
2+1 8 340.22 1.99 0.66
4+1 4 044.13 4.10 0.82
6+1 2 678.95 6.18 0.88

11+1 1 494.33 11.08 0.92
23+1 713.80 23.21 0.96
35+1 476.44 34.77 0.96
47+1 364.30 45.47 0.95
95+1 188.92 87.68 0.91

191+1 100.61 164.64 0.86
287+1 71.86 230.50 0.80
383+1 61.91 267.56 0.70

Table 5.9: Parallelization speedup of the Open MPI parallelization for H9 r1.
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H9 r1.



5.5. Conclusions 107

5.4.4 Eigenvectors

Often, the eigenvectors of some eigenvalues are also of interest. The LDLT slicing algo-
rithm does not compute the eigenvectors. The last LDLT factorization can be used as
a preconditioner for a shifted preconditioned inverse iteration, see Chapter 6. Since we
have a good approximation of the eigenvalue, we expect fast convergence.

If the eigenvectors are clustered we can compute the corresponding invariant subspace
by a subspace version of preconditioned inverse iteration.

As well as computing the eigenvector, this will give us an improved approximation to
the eigenvalue. This may be used to detect and remedy wrong decisions in the case of
approximative arithmetic.

5.5 Conclusions

We have discussed the application of the old and nearly forgotten slicing-the-spectrum
algorithm for computing selected eigenvalues of symmetric matrices to the class of H`-
matrices. The LDLT slicing algorithm uses the special structure of symmetric H`-
matrices, which makes the repeated computation of LDLT factorizations (which is the
obstacle to its use for general dense matrices) a feasible computational task. In par-
ticular, the LDLT slicing algorithm enables us to compute an interior eigenvalue of a
symmetric H`-matrix in linear-polylogarithmic complexity. Numerical results confirm
this. For the computation of a single or a few interior eigenvalues the algorithm is su-
perior to existing ones. It is less efficient for computing all eigenvalues of symmetric
H`-matrices, but due to the efficient use of memory, it allows to solve much larger dense
eigenvalue problems within the considered class of matrices than simply applying the
methods available in LAPACK.

We may also use the LDLT slicing algorithm for computing the eigenvalues of general,
symmetric H-matrices. But then the algorithm is no longer of linear-polylogarithmic
complexity. Nevertheless, again the computation of a few interior eigenvalues is possible
for problem sizes that by far exceed the capabilities of standard Numerical Linear Algebra
algorithms for symmetric matrices.

For special classes within the set of H`-matrices, like hierarchical semi-separable (HSS)
matrices, there might be even more efficient variants if the special structure is exploited
in the LDLT factorization.

Finally we have seen that multi-core architectures can be exploited easily and lead to
fairly good speed-up and parallel efficiency.

Since we are still missing an eigenvalue algorithm for general H-matrices, we will investi-
gate an algorithm based on preconditioned inverse iteration in the next chapter. Further
this is the only algorithm that computes the eigenvectors, too.
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Algorithm 5.3: Generalized LDLT factorization based on a generalized Cholesky
factorization for HSS matrices, see Algorithm 2 [109].

Input: HSS matrix H with n nodes in the HSS tree, H = HT

Output: HSS matrix containing L and D, with H = LDLT

1 Allocate space for a stack.
2 for each node i = 1, . . . , n− 1 do
3 if i is a non-leaf node then

4 Pop four matrices Ẽc2 , Ũc2 , Ẽc1 , Ũc1 from the stack, where c1, c2 are the
children of i.

5 Obtain Ei and Ui by

Ei =

[
Ẽc1 Ũc1Bc1Ũ

T
c2

Ũc2Bc1Ũ
T
c1 Ẽc2

]
, Ui =

[
Ũc1Rc1
Ũc2Rc2

]
.

6 end

7 Compress Ui by the QL factorization Ûi = QiUi =

[
0

Ũi

]
and push Ũi onto the

stack

8 Update Ei with Ẽi = QTi EiQi. Factorize Ẽi with

Êi =

[
Li 0

Ei;2,1L
−T
i D−1

i I

] [
Di 0

0 Ẽi

] [
LTi D−1

i L−1
i Ei;1,2

0 I

]
,

and obtain the Schur complement Ẽi as

Ẽi = Ei;2,2 − Ei;2,1L−Ti D−1
i L−1

i Ei;1,2.

Push Ẽi onto the stack.
If Di is singular, stop the algorithm and return error message 0 ∈ Λ(H).

/* Update Ei with Ẽi = QTi EiQi. Factorize Ẽi with

Êi =

[
Li 0

Ei;2,1L
−T
i I

] [
LTi L−1

i Ei;1,2
0 Ẽi

]
,

and obtain the Schur complement Ẽi as

Ẽi = Ei;2,2 − Ei;2,1L−Ti L−1
i Ei;1,2.

Push Ẽi onto the stack. */

9 If Di = 0, then stop and note that 0 is an eigenvalue of H.

10 end
11 For root n, compute the Cholesky factorization En = LnDnL

T
n

/* For root n, compute the Cholesky factorization En = LnL
T
n */
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In the last chapters we have seen two eigenvalue algorithms that work efficently only
for a small subset of hierarchical matrices. The extension of these algorithms for the
computation of all eigenvalues to general H-matrices fails due to too large block-wise
ranks. In this chapter we will investigate algorithms for the computation of one or some
few eigenvalues. These algorithms are all based on the power iteration, which will be
investigated first.

6.1 Power Iteration

The power iteration, or sometimes called power method, see [107],

xi+1 = Mxi/ ‖Mxi‖2 ,
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is one of the simplest methods for the computation of the eigenvector corresponding to
the (absolute) largest eigenvalue. An approximation to the spectral norm ‖M‖2 is given
by the divisor ‖Mxi‖2. If M is symmetric positive definite, then

‖M‖2 = λn ≥ λi ∀i = {1, . . . , n− 1} .

The main advantage of the power iteration is that the simple iteration formula only re-
quires matrix-vector products. This makes the power iteration the method of choice for
eigenvalue problems, where the matrix M is only available through matrix-vector prod-
ucts, e.g., in the PageRank problem [86]. Since the previous iterates are not required, it
is sufficient to store one vector x. This is an advantage for large n, since sometimes it is
impossible to store a full Krylov subspace due to memory limitation.

The disadvantage of the power iteration is the slow convergence, especially if the quotient
λn/λn−1 is near 1. Furthermore, in exact arithmetic the power iteration may converge
to the second largest eigenvector if the starting vector x0 is orthogonal to the eigenvector
vn corresponding to the largest eigenvalue. If x0 is orthogonal to more eigenvectors the
power iteration may even converge to another eigenvector. This problem does not occur
in approximate arithmetic, though it slows down the convergence if x0 is orthogonal
to vn.

If the eigenspace to λn is of a dimension larger than one, then the power iteration
computes an arbitrary eigenvector out of this subspace. If the whole subspace is needed,
then one should use a subspace version of the power iteration. The subspace version is
called simultaneous iteration.

There are different possibilities to compute the second largest eigenvalue. One way is
to compute the eigenvector vn and then restart the process, but orthogonalize all xi
against vn. This deflation procedure guarantees to find vn−1 (if the starting vector x0

is not orthogonal to vn−1). The other way is to use a subspace version of the power
iteration:

Xi+1 = MXi

Xi+1 =
Xi+1

‖Xi+1‖2
,

where Xi ∈ Rn×d. This will finally give an invariant subspace corresponding to the d
largest eigenvalues if λn−d+1 > λn−d. The subspace version has the disadvantage that
in later steps it computes some matrix-vector products for already converged vectors.
These products are unnecessary and increase the costs but, on the other hand, the
deflation is not for free, too.

6.1.1 Power Iteration for Hierarchical Matrices

The power iteration requires only one arithmetic operation, the matrix-vector product.
In the H-arithmetic there is a cheap and efficient H-matrix-vector product of almost
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linear complexity, as shown in Lemma 2.3.10.

The power iteration, as well as the simultaneous iteration, was used for the computation
of eigenpairs of hierarchical matrices. In, e.g., [48, 21, 50, 20] the power iteration was
used to compute the spectral norm ‖M‖2 of hierarchical matrices. The spectral norm
of H2-matrices is computed in [16, 18] by the power iteration. Lintner [74] uses a
simultaneous iteration together with a Schur-Rayleigh-Ritz step for the computation of
eigenvalues of the generalized eigenvalue problem

Ax = µMx.

6.1.2 Inverse Iteration

The inverse iteration is related to the power iteration, with the only difference being that
one substitutes the matrix M by M−1. The largest eigenvalue of M−1 is the smallest in
magnitude eigenvalue of M , which is computed by the inverse iteration

xi+1 =
(M − µI)−1 xi∥∥∥(M − µI)−1 xi

∥∥∥ , µ = 0.

By incorporating shifts µ 6= 0, the convergence properties of the inverse iteration can be
improved. One can also use shifts µ 6= 0 to compute other eigenvalues than the smallest
in magnitude. The convergence rate is determined by the quotient

λj − µ
λk − µ

,

with λj being the nearest eigenvalue to µ and λk being the second nearest.

The inverse iteration is often regarded as an invention of Wielandt, see [66] for the
history of inverse iteration.

The H-matrix inverse M−1
H is in general not exact enough for using the largest eigenvalue

of M−1
H as approximation to the smallest eigenvalue of M . In the next section we will

discuss a possibility to overcome this problem by applying M−1
H only to the residual of

the eigenvalue problem.

6.2 Preconditioned Inverse Iteration for Hierarchical Matrices

The preconditioned inverse iteration [80] is an efficient method to compute the smallest
eigenpair of a symmetric positive definite matrix M . Here we use this method to find the
smallest eigenvalues of an H-matrix. For the preconditioning, we use the approximate
inverse of M resp. the approximate Cholesky decomposition of M . Both can be com-
puted in linear-polylogarithmic complexity, so that the computation of one eigenvalue is
cheap.
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We extend the ideas to the computation of inner eigenvalues by computing an invariant
subspaces S of (M − µI)2 by subspace preconditioned inverse iteration. The eigenvalues
of the generalized matrix Rayleigh quotient µM (S) are the desired inner eigenvalues of
M . The idea of using (M − µI)2 instead of M is known as the folded spectrum method
[104].

The preconditioned inverse iteration (PINVIT) is a so called matrix-free method, not
requiring to have M or M−1 available as matrices, but as functions x → Mx and
x→M−1x. PINVIT computes the smallest eigenvalue and the corresponding eigenvec-
tor by minimizing the Rayleigh quotients.

Definition 6.2.1: (Rayleigh quotient)
The function

µ(x,M) : Rn \ {0} × Rn×n → R : (x,M)→ µ(x) = µ(x,M) =
xTMx

xTx
(6.1)

is called the Rayleigh quotient.

Corollary 6.2.2: The Rayleigh quotient of the eigenvector vi is µ(vi) = λi.

Proof.

µ(vi,M) =
vTi Mvi

vTi vi
=
vTi λivi

vTi vi
= λi.

�

The definition of the Rayleigh quotient can be generalized to full rank rectangular ma-
trices X.

Definition 6.2.3: (matrix Rayleigh quotient, generalized scalar Rayleigh quotient) [1]
Let X be an element of the Grassmann manifold

X ∈ Gr(d, n) =
{
X ∈ Rn×d, column rankX = d

}
,

d ≤ n. The matrix Rayleigh quotient is defined by

R(X,M) =
(
XTX

)−1
XTMX. (6.2)

The function

µ(X,M) : Rn×d × Rn×n → R : (X,M)→ µ(X,M) = tr (R(X,M)) (6.3)

is called the generalized scalar Rayleigh quotient.
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Let S span an invariant subspace with MS = SY . The matrix Rayleigh quotient of S is

R(S,M) =
(
STS

)−1
STMS =

(
STS

)−1 (
STS

)
Y = Y.

This section is structured as follows. In the next subsection we give a brief summary
of the preconditioned inverse iteration. The second subsection contains a short review
of hierarchical matrices and their approximate inverses and Cholesky decompositions.
Both concepts are combined in the third subsection to a preconditioned inverse iteration
for hierarchical matrices. Afterwards, we use the ideas of the folded spectrum method
[104] to extend the preconditioned inverse iteration to the computation of interior eigen-
values. Then numerical results are presented substantiating the convergence properties
and showing that, for non-sparse matrices, the computation of the eigenvalues is superior
to existing algorithms. We finally present some concluding remarks.

6.2.1 Preconditioned Inverse Iteration

The first iterative eigensolvers with preconditioner date back to the late 1950s, see [68]
or [82] for references. In [82] Neymeyr classifies the different schemes of preconditioned
inverse iteration and proves some statements on their convergence rates. This can also
be found in [80, 81, 70]. Further, he gives some motivation for using preconditioned
inverse iteration and so we will pick the following one from there:

The preconditioned inverse iteration, PINVIT for short, can be regarded as a gradient-
based minimization method minimizing the Rayleigh quotient. We have

µ(x) =
xTMx

xTx

and

∇µ(x) =
2

xTx
(Mx− xµ(x)) .

This leads to the gradient method

xi := xi−1 − α (Mxi−1 − xi−1µ(xi−1)) .

The convergence of this method is too slow, so one should use the acceleration by pre-
conditioning the residual r = Mx− xµ(x) with the preconditioner T−1:

∇Tµ(x) =
2

xTx
T−1 (Mx− xµ(x)) .

We finally get the update equation:

xi := xi−1 − T−1ri−1 = xi−1 − T−1 (Mxi−1 − xi−1µ(xi−1)) . (6.4)

A second really simple argument for using the PINVIT is that there is a nice sharp
bound on the convergence rate of PINVIT, as proved in [80, 81, 70] and recently in a
shorter form in [71]:
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Theorem 6.2.4: [71, Theorem 1.1]
Let x ∈ Rn and λj ≤ µ(x) < λj+1. If the preconditioner T−1 satisfies∥∥I − T−1M

∥∥
M
≤ c < 1, (6.5)

then it is true that for the Rayleigh quotient of the next iterate µ(x′), either µ(x′) < λj
or λj ≤ µ(x′) < µ(x). In the latter case,

µ(x′)− λj
λj+1 − µ(x′)

≤ γ2 µ(x)− λj
λj+1 − µ(x)

,

where

γ = 1− (1− c)
(

1− λj
λj+1

)
(6.6)

is the convergence factor.

There are some variations of this method that slightly improve the convergence. One can
use the optimal vector in the subspace spanned by xi−1 and T−1ri−1 as the next iterate
xi. Neymeyr calls this variation PINVIT(2), although it is also called preconditioned
steepest descent. Further, one can use the subspace spanned by xi−1, xi−2 and T−1ri−1.
This method is called PINVIT(3) in Neymeyr’s classification. In [69] Knyazev changed
the subspace into the more stable one {xi−1, pi−1, T

−1ri−1}, the resulting method is
called linear optimal (block) preconditioned conjugate gradient method (LOBPCG)

p0 = 0,

wi = T−1ri−1 = T−1(Mxi−1 − xi−1µi−1),

xi = wi + τi−1xi−1 + γi−1pi−1,

pi = wi + γi−1pi−1.

The method is called PINVIT(q, s) when one replaces xi by the subspace Xi of dimen-
sion s.

The convergence factor γ in the subspace case depends, among other factors, on the
quotient

λs
λs+1

. (6.7)

If this quotient is one, then the subspace is not unique.

We will compute the eigenvalues of a hierarchical matrix using preconditioned inverse
iteration in the versions PINVIT(q, s), q ≤ 3. To do this we need an approximative
H-inversion resp. H-Cholesky decomposition. In the next subsection we review special
algorithms, ensuring that Condition 6.5 is fulfilled.
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Algorithm 6.1: Adaptive Inversion of an H-Matrix [48].

Input: M ∈ H (TI×I), c̃ ∈ R
Output: M−1

adap.,H, with
∥∥∥I −M−1

adap.,HM
∥∥∥

2
< c̃

1 Compute Csp(M) and ‖M‖H2 ;

2 Compute M−1
H with εlocal = c̃/(Csp(M) ‖M‖H2 );

3 δ0
M :=

∥∥I −M−1
H M

∥∥H
2
/c̃;

4 while δiM > 1 do

5 Compute M−1
adap.,H with εlocal := εlocal/δ

i
M or εlocal := εlocal/maxi δ

i
M ;

6 δiM :=
∥∥I −M−1

H M
∥∥H

2
/c̃;

7 end

6.2.2 The Approximate Inverse of a Hierarchical Matrix

In the next section we use theH-inverse as preconditioner in the PINVIT forH-matrices.
As such, here we review the adaptive H-inverse from [48], see Algorithm 6.1.

The preferred method for the inversion is the recursive block Gaussian elimination.
The block-wise computations of the recursive block Gaussian elimination are done with
the H-accuracy ε. Unfortunately, this does not guarantee accuracy of the H-inverse
M−1
H . Grasedyck designed Algorithm 6.1 [48] to solve the problem by estimating the
H-accuracy ε required to get an approximate inverse M−1

adap.,H satisfying∥∥∥I −M−1
adap.,HM

∥∥∥H
2
< c̃

for a prescribed tolerance c̃. If LLT = M is the Cholesky decomposition of M , then
Equation (6.4) becomes∥∥I − T−1M

∥∥
M

=
∥∥L (I − T−1M

)∥∥
2
≤ ‖L‖2

∥∥I − T−1M
∥∥

2
=
√
‖M‖2

∥∥I − T−1M
∥∥

2
.

Thus, we have to choose

c̃ =
c√
‖M‖2

and c < 1,

to get an inverseM−1
adap.,H that fulfills Condition (6.5), so that we can use T−1 := M−1

adap.,H
as preconditioner.

The complexity of this process and the rank of the result is in general unknown. There
are only some results for special matrices. In [57] it was shown that the inverse of FEM
matrices of uniformly elliptic operators with L∞-coefficients can be approximated by
an H-matrix if the triangularization is regular. In [17] Börm investigated the prob-
lem with a new approach using Clément interpolations instead of Green’s functions
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and L2-orthogonal projectors. Essentially it is shown in [17] that there are good H-
approximations to the inverses of elliptic partial differential operators on meshes of
sufficient regularity. Further, in [17, Theorem 3] it is shown that the accuracy improves
exponentially while the ranks grow like a polynomial p of order d + 1, with d as the
dimension of the partial differential operator. For quasi-uniform meshes p can be chosen
like p ∼ c+ log2 n and one gets block-wise ranks k ∼ Cdim(c+ log2 n)d+1, where Cdim is
a constant depending on the discretization [17].

The evaluation costs of the preconditioner M−1
adap.,H, computed by Algorithm 6.1, depend

on the ranks of the admissible blocks. These ranks depend on the one hand on the used
H-accuracy ε and, as such, on c also. On the other hand, the ranks depend on the
properties of M , especially on the maximal block rank k and the norms ‖M‖2 and∥∥M−1

∥∥
2
. To have both is quite natural as a better preconditioner is more expensive and

a preconditioner for a matrix of better condition is cheaper.

The method of how to find the optimal spectral equivalent preconditioner in theH-format
with the minimal block-wise rank to a given (symmetric positive definite) H-matrix M
is still an open problem [56].

Experiments show that the H-inversion is expensive, though it is of linear-polyloga-
rithmic complexity. One alternative is the H-Cholesky decomposition, which we inves-
tigate in the next subsection. In Section 6.2.6 we will see that the adaptive Cholesky
decomposition is much cheaper than the adaptive H-inversion.

6.2.3 The Approximate Cholesky Decomposition of a Hierarchical Matrix

For the preconditioned inverse iteration we need a preconditioner for the symmetric
matrix M . The Cholesky decomposition, together with a solver for upper and lower
triangular systems of equations gives such a preconditioner, too.

The Cholesky decomposition of hierarchical matrices is computed by a block recursive
algorithm, see Algorithm 2.2 or [73, 56].

The H-Cholesky decomposition computes a preconditioner of a certain accuracy c̃ mea-
sured by ∥∥I − L−1L−TM

∥∥
2
≤ c̃,

where L−1 and L−T are the operators for the forward resp. backward solution process
of the matrix equation LX = M . As for the H-inversion, the accuracy c̃ depends on
Csp, ‖M‖, cond (M) and the H-arithmetic accuracy ε. So a priori we do not know how
small ε has to be to get a preconditioner of the necessary accuracy for the preconditioned
inverse iteration.

An adaptive Cholesky decomposition of an H-matrix can be computed in a similar
fashion to adaptive H-inversion in Algorithm 6.1. We use the same estimate εlocal =
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Algorithm 6.2: Adaptive Cholesky Decomposition of an H-Matrix [48].

Input: M ∈ H (TI×I), c̃ ∈ R
Output: Ladap.,H, with

∥∥∥I − L−Tadap.,HL
−1
adap.,HM

∥∥∥
2
< c̃

1 Compute Csp(M) and ‖M‖H2 ;
2 Compute LH =H-Cholesky-decomposition(M, I) with

εlocal = c̃/(Csp(M) ‖M‖H2 );

3 δ0 :=
∥∥∥I − L−TH L−1

H M
∥∥∥H

2
/c̃;

4 while δi > 1 do
5 εlocal := εlocal/δi or εlocal := εlocal/maxi δi;
6 Compute LH =H-Cholesky-decomposition(M, I) with εlocal;

7 δi :=
∥∥∥I − L−TH L−1

H M
∥∥∥H

2
/c̃;

8 end

c̃/(Csp(M) ‖M‖H2 ) for the H-arithmetic accuracy. We compute the H-Cholesky decom-
position with εlocal and compute

η(εlocal) =
∥∥I − L−TL−1M

∥∥
2
.

Further, we assume that the accuracy of the preconditioner η depends linearly on the
H-arithmetic accuracy ε:

η(εlocal) = γεlocal.

With the pair εlocal and η(εlocal) we make a guess for γ. The quotient c̃/γ yields a new
estimate for the H-arithmetic accuracy. Unfortunately, the dependency between ε and
η is not linear, so there is no guarantee that the second H-Cholesky decomposition is
exact enough. Maybe we have to repeat the process until the preconditioner fulfills
Equation (6.5). All these steps are summarized in Algorithm 6.2.

In the next subsection we apply PINVIT from the previous section to H-matrices using
the H-inversion or the H-Cholesky decomposition.

6.2.4 PINVIT for H-Matrices

In this section we will investigate what happens if we use PINVIT to compute the
eigenvalues of an H-matrix. For generality we use the subspace version of PINVIT, see
[83] for details. We assume that the dimension d of the subspace is small in comparison
to n and especially small enough to store rectangular matrices of dimension n × d in
the dense format. We will use Algorithm 6.3, which is slightly different from the one
in [80]. In [80] Neymeyr uses the Ritz vectors and Ritz values instead of X and µ(X).
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Algorithm 6.3: Hierarchical Subspace Preconditioned Inverse Iteration.

Input: M ∈ Rn×n, X0 ∈ Rn×d e. g. randomly chosen
Output: Xp ∈ Rn×d, µ ∈ Rd×d, with ‖MXp −Xpµ‖ ≤ ε

1 Orthogonalize X0;
2 µ := XT

0 MX0;
3 R := MX0 −X0µ;

4 T−1 = (M)−1
H ; or /* Choose one of the preconditioners. */

5 L = adaptive H-Cholesky decomposition(M)⇒ T−1v := Solve LLTx = v;
6 i := 1;
7 while

∥∥T−1R
∥∥
F
> ε do

8 i := i+ 1;
9 Xi := Xi−1 − T−1R;

10 Orthogonalize Xi;
11 µ := XT

i MXi;
12 R := MXi −Xiµ;

13 end

The latter would lead to the following steps replacing the computation of the residual
in the last line of the for-loop in Algorithm 6.3:

QDQT := eigendecomposition(µ);

Xi := XiQ;

R := MXi −XiD.

These changes lead to the following update equation

Xi = Xi−1Q− (M)−1
PC (MXi−1Q−Xi−1QD) ,

= Xi−1Q− (M)−1
PC

(
MXi−1 −Xi−1QQ

Tµ
)
Q, (6.8)

where (M)−1
PC has to be substituted by L−TL−1 if the Cholesky decomposition is used

as preconditioner. Since Q is orthogonal and square, it holds that QQT = I. The
subspace versions of Equation (6.4) and Equation (6.8) only differ in the factor Q, which
is multiplied from the right hand side. This means that the subspaces spanned by Xi are
identical. The orthogonal Q causes only an orthogonal transformation of the spanning
vectors within the spanned subspaces. Numerical tests do not show an advantage of the
diagonalized version. The additional solutions of the small eigenvalue problems produce
additional costs, so that Algorithm 6.3 is cheaper.

Algorithm 6.3 is equivalent to the algorithm SPINVIT in [83] or [82], so the convergence
analysis in the literature can be used.

Remark 6.2.5: PINVIT can be applied to generalized eigenvalue problems

Mx = λNx,
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too. Then we have to orthogonalize in lines 1 and 10 with respect to N , so that
XTNX = I. Furthermore, the computation of the residual in lines 3 and 12 has to
be changed to

R := MXi −NXiµ.

The main advantage of H-matrices is the almost linear complexity. The PINVIT for
H-matrices benefits from the cheap arithmetic.

The computation of the preconditioner has to be done once and is of linear-polyloga-
rithmic complexity. The non-adaptive H-inversion, as well as the H-Cholesky decompo-
sition, have a complexity of O(k2n (log2 n)2).

Further, we need one matrix-vector product with M and one evaluation of the precondi-
tioner, one matrix-vector product with M−1

H or two solutions with the triangular L, LT ,
per iteration step. Both products have a complexity equal to the storage complexity of
M resp. M−1

H . The handling of X, R and µ requires some dense arithmetic on n×d ma-
trices with O(d2n) flops. So one iteration has a lower complexity than the H-inversion.
Since the number of iterations is independent of the matrix dimension, the dominant
computation in the whole process is the inversion of M .

Theorem 6.2.6: (Convergence Theorem)
Let x ∈ Rn and λj < µ(x) < λj+1. If M−1

H is computed by Algorithm 6.1 or
LH is computed by Algorithm 6.2 and c̃ = c√

‖M‖2
with c < 1, then the Rayleigh

quotient of the next iterate x′ computed by Algorithm 6.3 either satisfies µ(x′) < λj
or λj ≤ µ(x′) < µ(x) with

µ(x′)− λj
λj+1 − µ(x′)

≤ γ2 µ(x)− λj
λj+1 − µ(x)

,

where

γ = 1− (1− c)
(

1− λj
λj+1

)
is the convergence factor.

Proof. In the description of Algorithm 6.1 we show that M−1
H for c̃ = c√

‖M‖2
fulfills

∥∥I −M−1
H M

∥∥
M
< c.

So we can apply Theorem 6.2.4.
�
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Stopping Criterion

If the subspace spanned by X converges to an invariant subspace, then the residual ‖R‖
converges to zero. Since we already compute R for the next iterate,

‖R‖F < ε (6.9)

is a cheap stopping criterion. In [107, p. 173–174] the following fact is shown for vectors
x.

Lemma 6.2.7: [107, p. 173–174]
Let x be a normalized approximation to the eigenvector vj corresponding to the
eigenvalue λj and let µ = xTMx be the Rayleigh quotient of x. Further, we need a
constant δ, with

δ < |λi − µ| , ∀i ∈ {1, . . . , n} \ {j}.

If ‖Mx− µx‖2 = ε < δ, then

|µ− λj | <
ε2

δ(
1− ε2

δ2

) . (6.10)

Relation (6.10) shows that the Rayleigh quotient has an error of order ε2, if δ � ε.

In this section we have described the application of PINVIT to hierarchical matrices.
This leads to an algorithm of almost linear complexity for the computation of the small-
est eigenvalue. In the next section we will extend this procedure to compute interior
eigenvalues.

6.2.5 The Interior of the Spectrum

We are often interested not only in the smallest eigenvalues, but in eigenvalues in the
interior of the spectrum. The (n − j)th eigenvalue for j small can be computed by
the subspace preconditioned inverse iteration. But if j is large, say j � log2 n, this is
prohibitive.

Instead, we will use the folded spectrum method [104] also mentioned in [79]. First
we have to choose a shift σ. Then we compute the smallest eigenpair (λσ, v) of Mσ =
(M−σI)2, through PINVIT. The eigenvector v is the eigenvector of M to the eigenvalue
next to σ. The Rayleigh quotient µ(v,M) = vTMv/(vT v) is the sought eigenvalue λ.

The condition number of the eigenvalue problem for Mσ = (M − σI)2 is 1, since Mσ is
symmetric, see Lemma 2.1.12.
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Lemma 6.2.8: Let M ∈ Rn×n be symmetric positive definite and let v be an eigen-
vector of M , with Mv = vλ. Then v is also an eigenvector of Mσ. Further, the
corresponding eigenvalue of Mσ is

λσ := (λ− σ)2 .

If λσ is a simple eigenvalue of Mσ, then σ +
√
λσ or σ −

√
λσ is an eigenvalue of M .

Proof.

Mσv = (M − σI)2v = (M − σI)(Mv − σv) = (M − σI)v(λ− σ) = v(λ− σ)2

Since M is symmetric positive definite, there are n linearly independent eigenvectors vi,
for i = 1, . . . , n. Each eigenvector vi is an eigenvector of the matrix Mσ. Let vj be the
eigenvector corresponding to λσ, then (λ, vj) is an eigenpair of M and λ and λσ fulfill
the relation:

(λ− σ)2 = λσ.
�

Now we use again H-arithmetic, since the shifted and squared matrix

M̃σ = (M −H σI) ∗H (M −H σI) ≈Mσ

is an H-matrix like M . The H-inversion of M̃σ is an approximate inverse of Mσ, so
that we can use (M̃σ)−1

H as preconditioner. Also, the H-Cholesky decomposition of M̃σ

is an approximation to the Cholesky decomposition of Mσ and can also be used as
preconditioner. The additional truncation in the computation of M̃σ does not disturb
the computed eigenvalues, since the preconditioner does not need to be an exact inverse.
The product (M − σI)2xi in the computation of the residual needs a more accurate
evaluation by the formula (M − σI) ((M − σI)xi) instead of M̃σx.

Here H-arithmetic is particularly advantageous, since H-arithmetic enables us to com-
pute an approximation to M−1

σ or an approximate Cholesky decomposition with reason-
able costs.

The smallest eigenvalue of Mσ is the square of the smallest by magnitude eigenvalue of
M−σI. So the smallest eigenvalue of Mσ is often smaller than the smallest eigenvalue of
M − σI. The squaring also increases the largest eigenvalue, meaning that the condition
number of the linear system of equations with coefficients Mσ is increased by the shifting
and squaring. A higher condition number leads to higher ranks in the admissible sub-
matrices of the H-inverse of Mσ, increasing the costs of the inversion and the application
of the preconditioner. This is the main disadvantage of the folded spectrum method.

Further, if σ + x and σ − x are eigenvalues of M , then Mσ has a double eigenvalue and
the folded spectrum method may fail to converge [79]. Therefore, we should avoid shifts
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Algorithm 6.4: Inner Eigenvalues by Folded Spectrum Method and Hierarchical
Subspace Preconditioned Inverse Iteration.

Input: M ∈ Rn×n, shift σ
Output: Xp ∈ Rn×d, µ ∈ Rd×d, with ‖MXp −Xpµ‖ ≤ ε, Λ(µ) are

approximations to the nearest eigenvalues to σ

1 Orthogonalize X0;
2 Mσ := (M −H σI) ∗H (M −H σI);
3 µσ := XT

0 (M − σI)(M − σI)X0;
4 R := (M − σI)(M − σI)X0 −X0µσ;

5 T−1 = (Mσ)−1
H ;

6 i := 1;
7 while ‖R‖F > ε do
8 i := i+ 1;
9 Xi := Xi−1 − T−1R;

10 Orthogonalize Xi;
11 µσ := XT

i (M − σI)(M − σI)Xi;
12 R := (M − σI)(M − σI)Xi −Xiµσ;

13 end
14 µ := XT

p MXp;

near the middle of two eigenvalues and ensure that we compute the whole subspace
corresponding to the smallest eigenvalue.

The combination of the folded spectrum method and the preconditioned inverse iteration
yields Algorithm 6.4.

Theorem 6.2.9: The for-loop of Algorithm 6.4 is the preconditioned inverse iteration
applied to Mσ. If M = MT and σ /∈ Λ(M), then Theorem 6.2.4 holds for this
algorithm.

Proof. We have M symmetric, meaning that λi ∈ R. The eigenvalues λiσ of Mσ =
(M − σI)2 are λiσ = (λi − σ)2. Since σ 6= λi, we have λiσ > 0 for all i. It follows that
Mσ is symmetric positive definite.

The for-loop in Algorithm 6.4 is identical to the for-loop in Algorithm 6.3, except that
M is replaced by Mσ. This means, that Algorithm 6.4 does a preconditioned inverse
iteration. So Theorem 6.2.4 can be used here, too.

�

The numerical examples in the next section confirm that this algorithm works well.

Remark 6.2.10: The above described approach for computing the (inner) eigen-
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values of an H-matrix can also be applied to other data-sparse matrix formats. At
the ENUMATH11 conference the author recently presented some first results on the
computation of the eigenvalues of matrices in tensor train matrix format by using
preconditioned inverse iteration together with the folded spectrum method [76].

6.2.6 Numerical Results

In this section we will show some numerical results confirming that Algorithm 6.3 com-
putes the smallest eigenvalues in almost linear complexity. The numerical computations
are done on Otto, see Section 2.7. We measure the required CPU time for the com-
putation of the eigenvalues of matrices of different sizes. The convergence rate of the
algorithm is determined by the gap between the largest eigenvalue in the computed
invariant subspace and the smallest that is not in the subspace, see Theorem 6.2.4,
Equation (6.6). We choose the size of the subspace and the shift for the last test so that
the gap, see Equation (6.7), converges for n to infinity to a fixed number smaller than
one. Another factor of big influence is the complexity of the inversion. We will measure
and investigate the time for the inversion separately.

We choose the start vectors/matrices randomly. The computation of the precondi-
tioner is the only operation with truncation and, since we use the adaptive inver-
sion/adaptive Cholesky decomposition algorithm, we do not need to fix an accuracy for
the H-arithmetic. We stop the iteration if the residual is smaller than 10−4. The eigen-
values then have (under special conditions) an accuracy of about 10−8, see Lemma 6.2.7.

The influence of the sparsity and the idempotency constant, that are both slightly in-
creasing in our example series, will be accounted for. We expect that the required CPU
time grows asymptotically like

N(ni) = CspCidk
2ni (log2 ni)

2 . (6.11)

FEM matrices

First we test the algorithm with the FEM example series, from 8 inner discretization
points to 512. These matrices have constant block-wise rank k. The results are shown
in Table 6.1. The absolute resp. relative error is the maximum of the absolute resp.
relative error for each eigenvalue. Figure 6.1 compares the CPU time for PINVIT(q, 3),
q = 1 or 3 with N(ni), see Equation (6.11). PINVIT(1, 3) resp. PINVIT(3, 3) means we
compute the three smallest eigenvalues with preconditioned inverse iteration resp. linear
optimal block preconditioned conjugate gradient method.

The results confirm our expectations. We should mention that the FEM matrices are
sparse and sparse solvers like eigs in MATLAB are faster. In Table 6.1 and Figure 6.1
the time for the computation of the preconditioner is excluded. The inverse of a sparse
matrix is, in general, not sparse. Here we know that the inverses of the FEM matrices
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Preconditioner: H-inversion

Name n abs. error rel. error t in s ti/ti−1
N(ni)
N(ni−1)

FEM8 64 5.3725 e−10 7.0875 e−12 0.002
FEM16 256 4.9434 e−10 6.3327 e−12 0.16 8.00 106.67
FEM32 1 024 4.6074 e−10 5.8530 e−12 0.11 6.75 27.08
FEM64 4 096 3.9327 e−10 4.9847 e−12 0.87 8.07 8.06
FEM128 16 384 4.4361 e−10 5.6194 e−12 5.39 6.18 5.44
FEM256 65 536 3.6599 e−10 4.6355 e−12 29.60 5.49 5.22
FEM512 262 144 4.0872 e−10 5.1765 e−12 203.00 6.86 6.51

Preconditioner: H-Cholesky decomposition

Name n abs. error rel. error t in s ti/ti−1
N(ni)
N(ni−1)

FEM8 64 5.5950 e−10 7.3811 e−12 0.001
FEM16 256 4.5209 e−10 5.7914 e−12 0.16 16.00 106.67
FEM32 1 024 4.3180 e−10 5.4853 e−12 0.08 4.88 27.08
FEM64 4 096 4.1940 e−10 5.3159 e−12 0.43 5.51 8.06
FEM128 16 384 4.2118 e−10 5.3354 e−12 2.35 5.46 5.44
FEM256 65 536 4.1746 e−10 5.2874 e−12 12.50 5.33 5.22
FEM512 262 144 4.1886 e−10 5.3051 e−12 59.50 4.76 6.51
FEM1024 1 048 576 3.7377 e−10 4.7339 e−12 263.00 4.42 10.76

Table 6.1: Numerical results FEM-series, PINVIT(1, 3), c = 0.2, ε = 10−4; italic entries
are larger than expected.

are still data-sparse in the H-matrix sense.

Using the adaptive Cholesky decomposition as preconditioner reduces the costs of the
algorithm, see Table 6.1. But even though the computation of the preconditioner is
much cheaper, see Table 6.5, the whole algorithm is still about 20 times slower than the
MATLAB function eigs. If we were to use the adaptive inverse as preconditioner, then
the whole algorithm is about 2 000 times slower.

BEM matrices

The results for the BEM matrix series, see Table 6.2 and Figure 6.2, confirm again
our expectation. Since the BEM matrices are dense, sparse solvers cannot be used
here. The usage of dense solvers is no alternative, since the matrix BEM128 would need
about 32 GB storage. We compare the computed eigenvalues with the ones computed by
LAPACK [2]. Since BEM128 is too large, there is no comparison. The MATLAB function
eigs is the fastest MATLAB built-in function for this problem, so we compare with eigs
here, too. We are not able to read in the matrix BEM64 into MATLAB due to the
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Figure 6.1: CPU time FEM-series, c = 0.2.

limitation of the size of m-files to 2 GB.

Inner eigenvalues

In this subsection we use the same matrices again. We shift them to demonstrate
Algorithm 6.4. We choose the shift and the subspace dimension so that we have a
large gap between the computed and the other eigenvalues. The gap is almost constant
for both example series. The results are shown in Tables 6.3 and 6.4. There was not
enough memory for the H-inversion of the shifted FEM512 matrix and not enough fast
memory for the H-Cholesky decomposition of the shifted FEM512 matrix.

Adaptive H-Inversion vs. Adaptive H-Cholesky Decomposition

We finally investigate the computation of the preconditioner, which we excluded from
the previous investigations. In Table 6.5 one can see that for the FEM-matrices, the
storage and the computational complexity does not meat the expectation. Since the
costs are still much lower than for dense arithmetic, we will not further investigate this
small deviation that we found in the BEM-series, but only sporadically, see Table 6.6.

The computation of the preconditioner is responsible for at least half the cost of the whole
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Preconditioner: H-inversion

Name n abs. error rel. error t in s ti/ti−1
N(ni)
N(ni−1)

BEM8 258 7.6641 e−08 1.3992 e−06 0.02
BEM16 1 026 1.6227 e−07 6.1102 e−06 0.15 7.50 24.18
BEM32 4 098 8.9221 e−07 1.0276 e−04 6.69 44.60 39.56
BEM64 16 386 2.0029 e−06 2.9636 e−04 21.61 3.23 14.69
BEM128 65 538 — — 140.66 6.51 14.66

Preconditioner: H-Cholesky decomposition

Name n abs. error rel. error t in s ti/ti−1
N(ni)
N(ni−1)

BEM8 258 5.8821 e−08 1.0740 e−06 0.01
BEM16 1 026 1.4639 e−07 5.5112 e−06 0.11 24.18
BEM32 4 098 7.0811 e−07 5.1844 e−05 0.96 8.47 24.22
BEM64 16 386 1.8818 e−06 2.7845 e−04 7.36 7.67 23.99
BEM128 65 538 — — 37.63 5.11 14.66

Table 6.2: Numerical results from BEM-series, PINVIT(1, 6), c = 0.2; italic entries are
larger than expected.
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Figure 6.2: CPU time BEM-series, c = 0.2.
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Preconditioner: H-inversion

Name n abs. error rel. error t in s ti/ti−1
N(ni)
N(ni−1)

FEM8 64 2.2737 e−13 1.0582 e−15 <0.01
FEM16 256 9.6634 e−12 5.5810 e−14 0.03 106.67
FEM32 1 024 3.2458 e−11 1.6613 e−13 0.08 2.67 27.08
FEM64 4 096 1.0232 e−12 5.7695 e−15 0.67 8.38 8.06
FEM128 16 384 1.1085 e−12 5.6192 e−15 4.61 6.88 5.44
FEM256 65 536 5.4570 e−12 3.0080 e−14 36.64 7.94 5.22

Preconditioner: H-Cholesky decomposition

Name n abs. error rel. error t in s ti/ti−1
N(ni)
N(ni−1)

FEM8 64 1.7053 e−13 7.9365 e−16 <0.01
FEM16 256 7.4465 e−12 4.3006 e−14 0.02 106.67
FEM32 1 024 3.2571 e−11 1.6671 e−13 0.04 2.00 27.09
FEM64 4 096 8.5265 e−13 4.8080 e−15 0.21 5.25 8.06
FEM128 16 384 9.6634 e−13 5.4419 e−15 1.52 7.24 5.44
FEM256 65 536 6.9065 e−12 3.4995 e−14 10.48 6.90 5.22
FEM512 262 144 9.3138 e−11 4.8173 e−13 54.81 5.23 6.51

Table 6.3: Numerical results from shifted FEM-series, PINVIT(1, 3), c = 0.2, ε = 10−4;
italic entries are larger than expected.

Preconditioner: H-inversion

Name n abs. error rel. error t in s ti/ti−1
N(ni)
N(ni−1)

BEM8 258 3.2609 e−06 1.1631 e−06 0.05
BEM16 1 026 3.3596 e−07 9.2508 e−08 0.27 5.40 24.18
BEM32 4 098 3.0287 e−04 9.1472 e−05 0.72 2.67 24.22
BEM64 16 386 3.4399 e−05 1.0458 e−05 17.46 24.25 23.99
BEM128 65 538 — — 25.59 1.47 14.66

Preconditioner: H-Cholesky decomposition

Name n abs. error rel. error t in s ti/ti−1
N(ni)
N(ni−1)

BEM8 258 1.9307 e−06 6.8865 e−07 0.08
BEM16 1 026 5.5875 e−07 1.5386 e−07 0.26 3.25 24.18
BEM32 4 098 3.4877 e−04 1.0533 e−04 0.72 2.77 24.22
BEM64 16 386 2.2995 e−05 6.9910 e−06 8.40 11.67 23.99
BEM128 65 538 — — 48.77 5.81 14.66

Table 6.4: Numerical results from shifted BEM-series, PINVIT(1, 6), c = 0.2, ε = 10−4;
italic entries are larger than expected.
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H-inversion

Name n s(M−1) in kB si/si−1 t in s ti/ti−1
N(ni)
N(ni−1)

FEM8 64 25 0.01
FEM16 256 246 10.02 0.04 4.00 106.67
FEM32 1 024 2 089 8.48 0.38 9.50 27.08
FEM64 4 096 16 558 7.93 7.21 18.97 8.,06
FEM128 16 384 116 629 7.04 57.77 8.01 5.44
FEM256 65 536 755 768 6.48 420.42 7.28 5.22
FEM512 262 144 4 542 690 6.01 2 891.06 6.88 6.51

H-Cholesky decomposition

Name n s(L) in kB si/si−1 t in s ti/ti−1
N(ni)
N(ni−1)

FEM8 64 25 <0.01
FEM16 256 161 6.58 <0.01 106.67
FEM32 1 024 962 5.96 0.04 27.08
FEM64 4 096 5 401 5.61 0.25 6.25 8.06
FEM128 16 384 29 077 5.38 1.70 6.80 5.44
FEM256 65 536 152 120 5.23 10.03 5.90 5.22
FEM512 262 144 785 751 5.17 56.34 5.62 6.51
FEM1024 1 048 576 3 974 881 5.06 332.05 5.89 10.76

Table 6.5: Required storage and CPU-time for adaptive H-inversion and adaptive H-
Cholesky decomposition of different FEM-matrices, c = 0.2; italic entries are
larger than expected.
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H-inversion

Name n s(M−1) in kB si/si−1 t in s ti/ti−1
N(ni)
N(ni−1)

BEM8 258 542 0.31
BEM16 1 026 5 443 10.04 3.12 10.06 24.18
BEM32 4 098 47 825 8.79 28.62 9.17 24.22
BEM64 16 386 470 293 9.83 637.62 22.28 23.99
BEM128 65 538 4 597 070 9.77 8 625.12 13.53 14.66

H-Cholesky decomposition

Name n s(L) in kB si/si−1 t in s ti/ti−1
N(ni)
N(ni−1)

BEM8 258 453 0.11
BEM16 1 026 3 114 6.87 0.39 3.55 24.18
BEM32 4 098 21 117 6.78 3.42 8.77 24.22
BEM64 16 386 127 142 6.02 25.97 7.59 23.99
BEM128 65 538 735 563 5.79 189.84 7.31 14.66

Table 6.6: Required storage and CPU-time for adaptive H-inversion and adaptive H-
Cholesky decomposition of different BEM-matrices, c = 0.2; italic entries are
larger than expected.

algorithm. The only parameter directly effecting these costs is the c in Equation (6.5),
that we choose relatively large with c = 0.2.

The adaptive H-Cholesky decomposition is much cheaper than the adaptive H-inversion
as in some cases the Cholesky decomposition needs only 2% of the time of the inversion.
The Cholesky factors require less storage than the H-inverse. This is beneficial in two
ways. On the one hand, less storage means that we can handle larger problems, e. g.
shifted FEM512. On the other hand, the effort required for the application of the
preconditioner is reduced. This seems to be the main explanation for the lower CPU
times we see in Tables 6.1, 6.2, and 6.3, since the numbers of iterations are similar.

To summarize, one should use the adaptive H-Cholesky decomposition instead of the
adaptive H-inversion.

Higher dimensional problems

Elliptic eigenvalue problems for dense matrices occur, e.g., in the Hartree-Fock equations
in electronic structure calculations, see [23]. A first step towards this problems from
computational chemistry is the investigation of 3D problems.

The sparsity constant of H-matrices originating from 3D problems is much larger and, as
such, more computational effort is necessary. In Table 6.7 we use the FEM discretization
of the 3D Laplacian to test our algorithm for 3D problems. Since the PINVIT(1, 4) does
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Preconditioner: H-Cholesky decomposition

Name n abs. error rel. error t in s ti
ti−1

N(ni)
N(ni−1) teigs

FEM3D4 64 1.194 e−12 4.450 e−15 <0.01 0.02
FEM3D8 512 1.933 e−12 3.738 e−15 0.03 3 060.00 0.03
FEM3D16 4 096 6.651 e−12 1.305 e−14 0.45 15.00 164.95 0.18
FEM3D32 32 768 1.433 e−11 7.347 e−15 7.40 16.44 235.22 4.93
FEM3D64 262 144 1.039 e−10 5.400 e−14 194.89 26.34 484.91 140.56
FEM3D128 2 079 152 9.756 e−12 1.648 e−13 1 929.81 9.90 14.29 —

Table 6.7: Numerical results from 3D FEM-series, PINVIT(3, 4), c = 0.2, ε = 10−4.

not converge, we use PINVIT(3, 4)/LOBPCG instead. The estimate N(ni)/N(ni−1)
contains strong growth in the constants Csp and Cid. The last column shows the time
the MATLAB function eigs requires. We see that for large matrices eigs is more
expensive.

If we go on to higher dimensional problems with d � 3, then the so called “curse
of dimensionality” forces the usage of data-sparse tensor structures, as is done in [59]
and [67]. The structure of H-matrices is not sufficient for these problems, so problem
tailored special eigensolvers are more efficient. Use of tensor trains, see [85], is one way
to overcome this curse. As mentioned in Remark 6.2.10 this will be investigated in [76].

6.2.7 Conclusions

We have seen that the preconditioned inverse iteration can be used to compute the
smallest eigenvalues of hierarchical matrices. Further, one can use the ideas of the folded
spectrum method together with the efficient H-arithmetic to compute inner eigenvalues
of an H-matrix using PINVIT.

This can be used to compute inner eigenvalues of sparse matrices as well as of data-sparse
matrices like boundary element matrices.

For sparse matrices the handling as H-matrix and the computation of the eigenvalues by
preconditioned inverse iteration for H-matrices is not competitive, since the H-inversion
is particularly too expensive. If we have the H-inverse or H-Cholesky decomposition
already available, when we have, for instance, to solve some systems Mx = b as well,
then the approach presented here is competitive to sparse eigensolvers.

In the case of data-sparse matrices that are not sparse, the limitation of storage limits the
use of dense eigensolvers. The data-sparse H-arithmetic together with preconditioned
inverse iteration enables us to solve larger eigenvalue problems that do not fit in the
storage otherwise.

In the next chapter we will compare the different algorithms presented in the previous
chapters.
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The aim of this last but one chapter is the comparison of the algorithms. First, we
compare them by their theoretical properties. Afterwards, numerical computations will
be presented comparing the algorithms by application.

7.1 Theoretical Comparison

The algorithms differ in the computed eigenvalues (the smallest, some inner, or all
eigenvalues), in complexity, and in their input matrices (H-matrices or onlyH`-matrices).

QR Algorithm for Dense Matrices The QR algorithm for dense matrices is a well
known and highly optimized algorithm for the computation of eigenvalues. This algo-
rithm is used as a reference example. The algorithm computes all eigenvalues in an
unknown order and is also able to compute the eigenvectors. The main drawback is that
we have to transform the H-matrix into a dense matrix, which costs O(kn2) flops and re-
quires n2 storage entries. The algorithm itself is of cubic complexity. In [46] the number
of flops is given with 25n3 (including eigenvectors) resp. 10n3 (only eigenvalues).

H-LR Cholesky Algorithm The algorithm from Chapter 4 is efficient only for H`(k)-
matrices (O(k2n2 (log2 n)4) flops and O(k2n (log2 n)2) storage), where the algorithm
stays within the set of H`(k`)-matrices. Besides the current iterate, there is no other
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symmetric H-matrix
eigenvalue(s) smallest inner all

memory O(Cspkn log2 n)

dense LAPACK X X X
dsyev flops O(n3) O(n3) O(n3)

memory n2 n2 n2

HLR Cholesky X X X
algorithm flops O(n4) O(n4) O(n4)

memory O(n2) O(n2) O(n2)

Slicing o o o
algorithm flops — — —

memory — — —

H-PINVIT X X o

flops O(k2n (log2 n)2) O(k2n (log2 n)2) —
memory O(kn log2 n) O(kn log2 n) —

symmetric H`-matrix
eigenvalue(s) smallest inner all

memory 2kn log2 n+ nnmin

dense LAPACK X X X
dsyev flops O(n3) O(n3) O(n3)

memory n2 n2 n2

HLR Cholesky X X X
algorithm flops O(k2n2 (log2 n)4) O(k2n2 (log2 n)4) O(k2n2 (log2 n)4)

memory O(kn (log2 n)2) O(kn (log2 n)2) O(kn (log2 n)2)

Slicing X X X
algorithm flops O(k2n (log2 n)4) O(k2n (log2 n)4) O(k2n2 (log2 n)4)

memory O(kn (log2 n)2) O(kn (log2 n)2) O(kn (log2 n)2)

H-PINVIT X X o

flops O(k2n (log2 n)2) O(k2n (log2 n)2) —
memory O(kn log2 n) O(kn log2 n) —

Table 7.1: Theoretical properties of the algorithms.
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matrix that has to be stored. Due to the shift strategy, we expect to find the smallest
eigenvalues first. The algorithm does not compute eigenvectors. For H-matrices the
algorithm is not structure preserving, meaning that O(n2) storage entries and up to
O(n4) flops are necessary.

Slicing the Spectrum Algorithm In Chapter 5 we have seen how to use the H-LDLT

factorization for the computation of eigenvalues by bisectioning. The algorithm com-
putes some or all eigenvalues of an H`-matrix in O(k2n (log2 n)4) flops per eigenvalue.
Therefore, the algorithm requires an additional storage of only O(k2n (log2 n)2) to the
H`-matrix M for storing the shifted matrix resp. the H-LDLT factorization. The algo-
rithm has a simple parallelization, since the computations for different eigenvalues are
independent after the first steps. The algorithm does not compute eigenvectors.

If the algorithm is applied to H-matrices, then the truncated H-LDLT factorization
sometimes leads to a wrong inertia. This means that some of the computed approxima-
tions are far away from the eigenvalues.

H-PINVIT The preconditioned inverse iteration, see Chapter 6, computes the smallest
eigenvalue/s and the corresponding eigenvector resp. an invariant subspace containing
the corresponding eigenvectors. The complexity of the method is determined by the
H-inversion procedure, which is in O(k2n2 (log2 n)2). If PINVIT is combined with the
folded spectrum method, then inner eigenvalues can also be computed. The storage
requirements are as low as for the slicing algorithm, since one has to store M and the
approximate H-inverse resp. H-Cholesky decomposition.

Using a subspace of dimension n in order to compute all eigenvalues is too expensive.
This means that the algorithm should only be used for the computation of some eigen-
values.

The facts listed in the last paragraphs are summarized in Table 7.1. In the next section
the algorithms are compared by numerical experiments.

7.2 Numerical Comparison

In the last section we have compared the algorithms by their theoretical properties. The
constant hidden in the complexity estimation is, however, also of importance. In this
section we will compare the algorithms by measuring the required CPU time and the
achieved accuracy in the computed eigenvalues. As a reference, we use the exact eigenval-
ues for the FEM example series and the eigenvalues computed by the LAPACK function
dsyev for the other matrices. For PINVIT we use the variant LOBPCG and sum the
time for the computation of the preconditioner and the iteration process. We use in this
section the Cholesky decomposition as preconditioner.
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H-PINVIT LDLT slicing algorithm
Name n teigs in s t in s rel. error t in s rel. error

bcsstk08 1 074 0.09 1.25 8.6150 e−05 50.79 6.2526 e−06
bcsstk38 8 032 0.29 10.42 8.3160 e−04 270.35 1.7327 e+001

msc10848 10 848 0.80 250.78 1.3138 e−04 4 054.75 1.7732 e−012

msc23052 23 052 2.00 70.95 9.8048 e−07 21 109.30 7.1287 e−013

BEM32 4 098 7.35 3.88 3.1573 e−05 215.46 5.4523 e−03
BEM64 16 386 too large 33.07 4.0337 e−05 1770.97 4.7368 e−02

Table 7.2: Comparison between Slicing the spectrum, H-PINVIT, and MATLAB func-
tion eigs for the computation of three smallest eigenvalues of different ma-
trices.

Smallest Eigenvalues First we have a look at the smallest eigenvalues. Since the
LR Cholesky algorithm computes the eigenvalues in an unknown ordering, we have to
compute all eigenvalues. This takes O(n2) flops and is more expensive than the other
algorithms of almost linear complexity. Figure 7.1 shows that the preconditioned inverse
iteration is superior to the LDLT slicing algorithm if we compute the eigenvalues for the
FEM example matrices. For the H`-matrices, both algorithms require almost the same
time, see Figure 7.2. If the approximate inverse is already computed, then H-PINVIT
is the method of choice.

The MATLAB built-in function eigs is very good for sparse matrices, but too expensive
for the dense H`-matrices, since n2 storage and O(n2) flops are required. Further results
for different matrices are shown in Table 7.2. We observe that the computation of small
eigenvalues to a high relative accuracy takes a lot of bisectioning steps and makes the
LDLT slicing algorithm expensive. Otherwise we get only rough approximations with
large relative errors and small absolute errors.

Inner Eigenvalues The inversion of the badly conditioned matrix Mσ is more expensive
than the inversion of M . This makes the slicing algorithm more competitive. Further,
the Cholesky decomposition of Mσ failed for H10–H15, since Mσ has a large condition
number. The Cholesky decomposition does not preserve positive definiteness as sug-
gested in [7]. As such, some of the M22 −H L21L

T
21 blocks in the recursion are not

positive definite due to the truncation. The LDLT slicing algorithm is a little cheaper
by comparable accuracy than the H-PINVIT, see Figure 7.3.

1The absolute error is 1.1650 e−16.
2The absolute error is 2.5703 e−11.
3The absolute error is 3.3547 e−12.
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Figure 7.1: Comparison between Slicing the spectrum, H-PINVIT, and MATLAB func-
tion eigs for the computation of the three smallest eigenvalues of FEM
matrices.

102 103 104 105 106

≤ 10−2
10−1

1

10

102

103

104

T
im

e
in

s

Slicing the spectrum
HPINVIT
MATLAB eigs

HPINVIT iteration
HPINVIT preconditioner

102 103 104 105 106
10−10

10−6

10−2

102

Dimension

A
cc
u
ra
cy

Figure 7.2: Comparison between Slicing the spectrum, H-PINVIT, and MATLAB func-
tion eigs for the computation of the three smallest eigenvalues of H`(1)-
matrices.



136 Chapter 7. Comparison of the Algorithms and Numerical Results

LDLT slicing algorithm projection method
Name n t in s rel. error t in s rel. error a b

FEM8 64 0.03 4.6472 e−09 0.02 8.1609 e−16 535 592
FEM64 4 096 6.60 1.0337 e−09 46.97 2.6031 e−11 2120 2140
FEM128 16 384 45.89 3.7249 e−10 300.18 3.8128 e−10 2120 2140

H10 r1 32 768 7.42 1.8088 e−06 23.57 4.8686 e−15 0.675 0.8
H12 r1 131 072 77.08 — 251.67 — 0.53 0.57

BEM8 258 0.69 4.1661 e−03 1.52 7.1203 e−07 0.55 0.57

Table 7.3: Comparison between slicing the spectrum and projection method for the com-
putation of some inner eigenvalues of different matrices.

LR Cholesky algorithm LDLT slicing algorithm
Name n tdsyev in s t in s rel. error t in s rel. error

FEM32 1 024 0.7 393.99 5.2716 e−06 217.31 5.7118 e−08
FEM128 16 384 2 819.50 out of memory 35 613.28 4.3089 e−03

bcsstk08 1 074 0.95 1 384.64 1.1053 e+011 41.72 1.9853 e+012

8 086.55 5.7065 e−04

Table 7.4: Comparison between slicing the spectrum, LR Cholesky algorithm, and LA-
PACK function dsyev for the computation of all eigenvalues of different ma-
trices.

Projection Method vs. LDLT Slicing Algorithm In Table 7.3 we compare the pro-
jection method [60], see Subsection 2.6.1, and the LDLT slicing algorithm. We compute
all eigenvalues in the interval (a, b). The LDLT slicing algorithm is 3 to 7 times faster,
but the projection method give more accurate results. For H12 r1 we do not have the
exact eigenvalues or results given by the LAPACK function dsyev.

All Eigenvalues In this paragraph we only compare the LR Cholesky algorithm and
the LDLT slicing algorithm. For the H`(1)-matrices, both algorithms have almost the
same run time, but the LDLT slicing algorithm is more accurate, see Figure 7.4. We also
see in the figure that the green dotted line and the orange line will intersect. For large
H`(1)-matrices the LDLT slicing algorithm is faster than the LAPACK function dsyev.

That is not the case for more general structured matrices, see Table 7.4. The matrix
bcsstk08 has small eigenvalues, which are only approximated with large relative errors.
Both algorithms become expensive if small eigenvalues are required with high relative

1The absolute error is 4.0803 e−06.
2The absolute error is 3.9288 e−04.
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Figure 7.3: Comparison between Slicing the spectrum, H-PINVIT, and MATLAB func-
tion eigs for the computation of of λn/4+5, . . . , λn/4+14 of H`(1)-matrices.
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accuracy. We run the LDLT slicing algorithm twice for bcsstk08 with different target
accuracies. The second run achieves a smaller relative error, but takes extremely long
time to run.

In this chapter we have compared the algorithms presented in the previous chapters.
We have seen that, depending on the task, smallest, inner, or all eigenvalues and H`-
or general H-matrix, the algorithms perform different. For dense matrices the LAPACK
solvers are the fastest for computing all eigenvalues. The LDLT slicing algorithm is
competitive only for H`-matrices. If the dense matrix does not fit into the RAM, then
the usage of H-matrices, which require fewer storage, should be considered. For the
computation of some eigenvalues the MATLAB function eigs is superior only for sparse
matrices. The preconditioned inverse iteration and LDLT slicing algorithm are the best
algorithms for the computation of some eigenvalues of dense, but data-sparse, matrices.



CHAPTER

EIGHT

CONCLUSIONS

We have seen different algorithms for computing the eigenvalues of symmetric hierar-
chical matrices. The structure of H-matrices is data-sparse, which enables us to store
them in a linear-polylogarithmic amount of storage. We further exploit the structure
to reduce the complexity of the eigenvalue algorithms.

We investigated the subset of H`-matrices. The weak admissible condition used for the
H`-matrices produce a simple hierarchical structure. This simple structure yields cheaper
arithmetic operations. Besides this, there are exact inversions and LDLT factorizations
for H`-matrices with almost the same block-wise ranks.

In Chapter 3 we investigated a new algorithm for the computation of the QR decomposi-
tion for hierarchical matrices. This algorithm was compared with two existing algorithms
for the H-QR decomposition. In the next chapter we try to use this QR decomposition
to build a QR algorithm forH-matrices resp. a LR Cholesky algorithm. We realized that
this leads to growing block-wise ranks destroying the data-sparse structure. With the
new proof for Theorem 4.3.1, we get the tool to explain this behavior. We further used
this to show that the structure of H`-matrices is almost preserved under LR Cholesky
transformation.

In Chapter 5 we presented a different approach to the eigenvalue problem using a bi-
sectioning method based on the LDLT factorization. The structure of H`-matrices is
simple enough to compute the LDLT factorization for any shift without truncation in
O(k2n (log2 n)4) flops. The presented algorithm for the eigenvalue problem computes
one eigenvalue in

O(k2n (log2 n)4 log(‖M‖2/εev)) flops.

The computation of all n eigenvalues is n times more expensive. We showed that this
LDLT slicing algorithm is very well parallelizable. Generalization to H-matrices is dif-
ficult. The LDLT factorization for H-matrices requires truncation to be in linear-poly-
logarithmic complexity for positive definite matrices. For arbitrary shifts there is no
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known bound on the block-wise ranks in fixed accuracy arithmetic. We also run the
LDLT slicing algorithm for H-matrices. The algorithm gives us approximations of the
eigenvalues, but we did not have bounds on the errors or on the run time.

Afterwards, we had a look at vector iterations. The preconditioned inverse iteration
has nice convergence properties. PINVIT should be used for the computation of the
smallest eigenvalues. This, in combination with folded spectrum method, also yields a
method for computing some inner eigenvalues. However, the LDLT slicing algorithm is
competitive for the computation of inner eigenvalues.

Finally, we compared the different algorithms. For small problems, the LAPACK eigen-
solvers are the most efficient. For larger matrices, the storage limits the usage of dense
matrices, which require n2 storage. TheH-matrices require only a linear-polylogarithmic
amount of storage, so that larger problems can be handled. We also compared the new
LDLT slicing algorithm with the already existing projection method. We saw that the
projection method is more expensive.

Exploiting the structure accelerates the computation of the eigenvalues of H- and H`-
matrices.



THESES

1. This thesis is on the numerical computation of eigenvalues of symmetric hierarchi-
cal matrices. The numerical algorithms used for this computation are derivations
of the LR Cholesky algorithm, the preconditioned inverse iteration, and a bisection
method based on LDLT factorizations.

2. The investigation of QR decompositions for H-matrices leads to a new QR decom-
position. It has some properties that are superior to the existing ones, which is
shown by experiments using the HQR decompositions to build a QR (eigenvalue)
algorithm for H-matrices does not progress to a more efficient algorithm than the
LR Cholesky algorithm.

3. The implementation of the LR Cholesky algorithm for hierarchical matrices to-
gether with deflation and shift strategies yields an algorithm that require O(n)
iterations to find all eigenvalues. Unfortunately, the local ranks of the iterates
show a strong growth in the first steps. These H-fill-ins makes the computation
expensive, so that O(n3) flops and O(n2) storage are required.

4. Theorem 4.3.1 explains this behavior and shows that the LR Cholesky algorithm
is efficient for the simple structured H`-matrices.

5. There is an exact LDLT factorization for H`-matrices and an approximate LDLT

factorization for H-matrices in linear-polylogarithmic complexity. This factoriza-
tions can be used to compute the inertia of an H-matrix. With the knowledge
of the inertia for arbitrary shifts, one can compute an eigenvalue by bisection-
ing. The slicing the spectrum algorithm can compute all eigenvalues of an H`-
matrix in linear-polylogarithmic complexity. A single eigenvalue can be computed
in O(k2n (log2 n)4).

6. Since the LDLT factorization for general H-matrices is only approximative, the
accuracy of the LDLT slicing algorithm is limited. The local ranks of the LDLT

factorization for indefinite matrices are generally unknown, so that there is no
statement on the complexity of the algorithm besides the numerical results in
Table 5.7.
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7. The preconditioned inverse iteration computes the smallest eigenvalue and the
corresponding eigenvector. This method is efficient, since the number of iterations
is independent of the matrix dimension.

8. If other eigenvalues than the smallest are searched, then preconditioned inverse
iteration can not be simply applied to the shifted matrix, since positive definiteness
is necessary. The squared and shifted matrix (M − µI)2 is positive definite. Inner
eigenvalues can be computed by the combination of folded spectrum method and
PINVIT. Numerical experiments show that the approximate inversion of (M−µI)2

is more expensive than the approximate inversion of M , so that the computation
of the inner eigenvalues is more expensive.

9. We compare the different eigenvalue algorithms. The preconditioned inverse iter-
ation for hierarchical matrices is better than the LDLT slicing algorithm for the
computation of the smallest eigenvalues, especially if the inverse is already avail-
able. The computation of inner eigenvalues with the folded spectrum method and
preconditioned inverse iteration is more expensive. The LDLT slicing algorithm is
competitive to H-PINVIT for the computation of inner eigenvalues.

10. In the case of large, sparse matrices, specially tailored algorithms for sparse ma-
trices, like the MATLAB function eigs, are more efficient.

11. If one wants to compute all eigenvalues, then the LDLT slicing algorithm seems
to be better than the LR Cholesky algorithm. If the matrix is small enough to be
handled in dense arithmetic (and is not an H`(1)-matrix), then dense eigensolvers,
like the LAPACK function dsyev, are superior.

12. The H-PINVIT and the LDLT slicing algorithm require only an almost linear
amount of storage. They can handle larger matrices than eigenvalue algorithms
for dense matrices.

13. For H`-matrices of local rank 1, the LDLT slicing algorithm and the LR Cholesky
algorithm need almost the same time for the computation of all eigenvalues. For
large matrices, both algorithms are faster than the dense LAPACK function dsyev.
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