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Abstract: The use of mathematical models is widely established in various fields of application.
To name but a few of their major applications, mathematical models can improve the controller
design of complex technical systems or are able to facilitate the understanding of highly complex
biochemical systems. No matter what mathematical models are used for, however, they fail to
perform the intended task if they are badly parameterized.
In general, during the process of parameterization one tries to make differences between
simulation results and measurement data as small as possible. Under the assumption of a
suitable model candidate this is done by choosing optimal model parameters. Unfortunately, the
majority of used models cannot be solved analytically. For example, many dynamical processes
are described by systems of ordinary differential equations (ODEs). Usually, analytical solutions
do not exist. Although quite efficient numerical routines are available they usually slow down
the parameterization process dramatically.
The situation is even more demanding if one has to deal with processes that are described by
delay differential equations (DDEs). Commonly, standard DDE solvers show a lack of efficiency
as well as of robustness, i.e., they are likely to fail to solve the underlying DDE system.
Consequently, it would be of great benefit to eliminate any need of numerical ODE/DDE solvers.
Here, the concept of flat inputs comes into play. The key aspect is to transform the DDE system
into an algebraic input/output representation, i.e., the inputs of the system are expressed
analytically by the outputs and derivatives thereof. Now, the objective of parameterization
is to minimize differences between these flat inputs and the physical inputs of the related
process. As no numerical DDE solver is involved there is a significant speedup of the parameter
identification step. In addition, the presented approach is closely linked to optimal experimental
design for parameter identification. In particular, the reformulation of the cost function also
affects parameter sensitivities. Using the same measurement data it is possible that previously
insensitive model parameters become sensitive. To check this, global parameter sensitivities are
determined by Sobol’ Indices of first order.
All results are demonstrated for the example of a mathematical model of the influenza A virus
production.
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1. INTRODUCTION

Essentials in systems biology can be described and an-
alyzed using deterministic models. For this purpose ex-
pert knowledge has to be converted in a suitable model
structure determining in which manner model components
interact. Frequently, such an attempt ends in ordinary
differential equations (ODEs). Often, the underlaying prin-
ciples of biochemical processes are only vaguely known
and not directly accessible to measurement data. There-
fore, unknown or unaccessible subprocesses are approxi-
mated by time-delay processes. Instead of ODEs these sys-
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tems are described by delay differential equations (DDEs).
Here, additional time delay parameters τ influence the
input/output behavior of the mathematical model. Espe-
cially, in the field of biology one has to accomplish the feat
to determine a vast number of unknowns from sparse data,
i.e., only a subset of quantities can be measured directly
at a limited number of time points tk. Under these adverse
conditions, the identification of the model parameters θ as
well as time delay parameters τ is a challenge.
In the following, a novel framework of the identification
of θ and τ is discussed for the example of a mathematical
model of the influenza A virus production.



2. BACKGROUND

2.1 Flat Inputs for Parameter Identification

Dynamical processes can be described by deterministic dif-
ferential equation models. After deriving a suitable model
structure, unknown model parameters θ ∈ Rp have to be
identified by measurement data ydata(t) ∈ Rm to obtain
a predictive model. Here, the class of delay differential
equations is the focus of the presented work.

Considering a DDE system (Eq. 1-3) one tries to minimize
the differences between simulation results ysim(t) and
measurement data ydata(t) during the step of parameter
identification.

ẋ(t) = f(x(t), x(t− τ), θ, u(t)) ;x ∈ Rn , u ∈ Rl (1)
ysim(t) = h(x(t), x(t− τ), θ, u(t)) ; ysim ∈ Rm (2)

x(t) = Ξ(t), t ∈ [−τ, 0] (3)

For this purpose, a suitable cost function (Eq. 4) taking
these differences into account has to be evaluated by a
numerical optimization routine.

arg min
θ,τ

Jy(θ, τ) =

K∑
k=1

(ydata(tk)− ysim(tk))2 (4)

One limiting factor in applying this approach is the re-
peated need of numerical integration of the underlying
DDEs (Eq. 1). Efficient and robust DDE-solver are hard
to find and if at all possible, the overall parameter identi-
fication ends in a very cpu-intensive process. In addition,
to solve DDEs, related initial functions Ξ(t), t ∈ [−τ, 0]
have to be known explicitly. Consequently, it would be
of great benefit to eliminate the numerical integration
step. Here, the concept of flat inputs [Waldherr and Zeitz
(2008)] comes into play. The main idea is to transform
the DDE system (Eq. 1-3) into an algebraic input/output
representation, i.e., the flat inputs uflat(t) (Eq. 5) of the
system can be expressed explicitly by the outputs (Eq. 2)
and their derivatives.

uflat(t) = Ω
(
y(t), ẏ(t), . . . , y(β)(t), τ, θ

)
(5)

In detail, one attempts to determine input configurations
in such a way that the measured outputs ysim(t) are flat
outputs, i.e., steering the related process via flat inputs
a differentially flat system is obtained. Basics about the
concept of differential flatness can be found in control the-
ory literature [Sira-Ramirez and Agrawal (2004); Graichen
et al. (2005); Lévine (2009)]. Here, one should stress that
flat inputs uflat(t) do not have to correspond to real
physical inputs ureal(t) of the considered process. In this
case, flat inputs may be accepted as fictitious inputs.
Furthermore, systems can exist that lack any kind of
flat inputs, i.e., absolutely no possible input configuration
ensures the property of differential flatness. The problem
of determining flat inputs is addressed in subsection 2.2
separately.

For the purpose of parameter identification flat inputs can
be used to define novel cost functions. If flat inputs have
real physical counterparts ureal(t), such a cost function
measures differences between ureal(t) and uflat(t). One
possible cost function is given below (Eq. 6).

arg min
θ,τ

Ju(θ, τ) =

T∫
0

(ureal(t)− uflat(t))2dt (6)

In the case that flat inputs are only fictitious, i.e., real
physical counterparts do not exist, the following cost
function (Eq. 7) has to be implemented.

arg min
θ,τ

Ju(θ, τ) =

T∫
0

(uflat(t))2dt (7)

If needed time derivatives of output functions in (Eq. 5)
do not exist at certain time points, these time intervals
have to be excluded in (Eq. 6) and (Eq. 7), respectively.

A much more serious problem in the framework of flat
inputs for parameter identification are measurement im-
perfections. In practice, real measurement data ydata(tk)
are only available at discrete time points and corrupted
by measurement noise. Here, the concept of functional
data analysis [Ramsay and Silverman (2005); Poyton et al.
(2006); Varziri et al. (2008)] provides sophisticated meth-
ods to determine surrogate output functions (Eq. 8) that
can be incorporated in (Eq. 5).

ysurr(t) = cT Φ(t) (8)

In what follows, B-splines [Ramsay and Silverman (2005)]
are chosen as basis functions Φ(t) that have to be fitted
to measurement data ydata(tk) by optimally chosen coeffi-
cients c (Eq. 8). Both optimization problems can be solved
simultaneously leading to the final cost function (Eq. 9).

arg min
c,θ,τ

Ju(c, θ, τ) =

K∑
k=1

(ydata(tk)− ysurr(tk))2+

T∫
0

(ureal(t)− uflat(t))2dt

(9)

Again, if real physical input counterparts ureal(t) are
missing but fictitious flat inputs uflat(t) exist, the cost
function (Eq. 9) is simplified to (Eq. 10).

arg min
c,θ,τ

Ju(c, θ, τ) =

K∑
k=1

(ydata(tk)− ysurr(tk))2+

T∫
0

(uflat(t))2dt

(10)



2.2 Determination of Flat Inputs

Here, some helpful hints about the determination of flat
inputs uflat(t) are given. In fact, a necessary and sufficient
condition for the existence of a flat input is only available
for ODE systems with single input and single output
[Waldherr and Zeitz (2008)]. For the more complex case
of multiple inputs and multiple outputs no conditions at
all are on hand currently [Waldherr and Zeitz (2010)]. The
same is true for DDE systems, i.e., there is no rigorous
proof of the existence of flat inputs in this case.
Nevertheless, a heuristic approach is shortly presented in
the following. In flat system theory it is well known that
the dimensions of the input u ∈ Rl have to be equivalent
to the dimensions of the output y ∈ Rm, l !=m. For a given
number of measurable outputs the number of needed flat
inputs uflati (t) is defined automatically.
Now, the question at which states xi(t) these flat inputs
have to act on has to be addressed. In principle, this can
be achieved heuristically by the framework of structural
analysis. First considerations in this direction can be found
in the context of flat outputs [Wey (2002)]. The structural
analysis is based on directed graphs (digraphs) D(v, e)
with n different nodes vi representing the states of the
DDE system (Eq. 1). The existence of an edge ei,j from
node vi to vj is determined by non-zero elements aj,i of
the adjacency matrix A∗. The ai,j element of A∗ is set to 1
if derivatives ∂fi(x(t),x(t−τ),θ)

∂xj(t)
or ∂fi(x(t),x(t−τ),θ)

∂xj(t−τ) exist and
to 0 if this is not the case. In a similar way, an adjacency
matrix C∗ of the output functions ysim(t) (Eq. 2) can be
derived.
Flat inputs uflat(t) should act on those nodes vi that are
the most distant nodes related to the outputs ysim(t), i.e.,
there is a maximum number of edges to get from uflat(t)
to yflat(t) traveling along the shortest paths.

In order to illustrate the presented flat input selection
strategy, a parameter-free DDE system (Eq. 11) is con-
sidered.

ẋ1(t) = x3(t− τ1)

ẋ2(t) = x1(t)

ẋ3(t) = x2(t)

ysim(t) = x2(t)

(11)

Due to the related adjacency matrices (Eq. 12) a digraph
(Fig. 1) can be generated. Obviously, a suitable flat input
uflat(t) should enter at node x3 to provide the most
distantly shortest path.

A∗ =

[
0 0 1
1 0 0
0 1 0

]
; C∗ = [ 0 1 0 ] (12)

According to the above outcome, a potential input-affine
DDE system (Eq. 13) can be derived.

ẋ1(t) = x3(t− τ1)

ẋ2(t) = x1(t)

ẋ3(t) = x2(t) + uflat(t)

ysim(t) = x2(t)

(13)

x1 x2 x3

ysim uflat

Figure 1. Digraph of the illustrative example. For a given
output ysim, the flat input uflat has to act on state
x3 to provide a maximum distance to get from uflat

to ysim using a minimum number of edges.

In this case, the DDE system (Eq. 13) is indeed a flat
system, i.e., all states xi(t), as well as the flat input uflat(t)
can be recalculated by the output ysim(t) and derivatives
thereof (Eq. 14-17).

x2(t) = ysim(t) (14)

x1(t) = ẏsim(t) (15)

x3(t− τ1) = ÿsim(t) (16)

uflat(t) =
...
y sim(t+ τ1)− ysim(t) (17)

Generally, more complex systems can be checked in this
way by highly efficient methods of graph analysis, e.g.,
the algorithm of Shortest Path [Dijkstra (1959)] can be
applied.

2.3 Global Sensitivity Analysis

Especially for models in systems biology, the influence of
model parameters θ on the model output varies strongly.
On the one hand there are parameters θl ⊂ θ that can be
changed by orders of magnitude without notable influence
on the dynamic behavior and on the other hand a slight
change of certain parameters θh ⊂ θ leads to a strong
output variation. Evidently, in the framework of parameter
identification it is much more easier to identify the latter
subset θh.

To determine the influence of model parameters θ on
ysim(t) related parameter sensitivities have to be calcu-
lated. If identified parameters θ provide tight confidence
regions, i.e., their values are almost certainly known, then
the sensitivities can be determined by a local method using
the sensitivity matrix (SM) (Eq. 18).

SM(tk) =
∂ysim(tk)

∂θ

∣∣∣∣
θ

(18)

Usually, this is not the case and global methods taking
parameter uncertainties explicitly into account have to
be applied. These requirements are automatically fulfilled
by variance-based approaches. Treating parameters θ and
the output ysim(t) as random variables, the amount of
variance that each parameter θi contributes to the variance
of the output σ2(ysim(t)) is determined.
The ranking of a parameter θi is done by the amount
of output variance that would vanish, if this parameter
θi is assumed to be known. Formally, for every assumed
known parameter θi a conditional variance σ

−i
2(ysim|θi)

can be determined. The subscript −i indicates that the
variance is taken over all parameters other than θi. As
θi itself is a random variable in reality, the expected



value of the conditional variance E
i

[
σ
−i

2(ysim|θi)
]
has to

be determined, where the subscript E
i
indicates that the

expected value is only taken over the parameter θi. Now,
the output variance σ2(ysim) can be separated [Saltelli
et al. (2005)] into the following two additive terms.

σ2(ysim) = σ
i

2(E
−i

[ysim|θi]) + E
i
[σ
−i

2(ysim|θi)] (19)

The variance of the conditional expectation σ
i

2(E
−i

[ysim|θi])
represents the contribution of parameter θi to the variance
σ2(ysim) indicating the importance of this parameter. The
normalized expression (Eq. 20) is known as the first order
sensitivity index [Sobol’ (1993)] and shall be used in the
following for parameter sensitivity analysis.

Syi =
σ
i

2(E
−i

[ysim|θi])

σ2(ysim)
(20)

Analogous considerations can be made for flat inputs
uflat(t). Equivalent counterparts of first order indices are
given in (Eq. 21). As shown in section 3, insensitive pa-
rameters related to outputs ysim(t) do not have to be
insensitive to uflat(t). This interesting feature enables a
novel perspective on optimal experimental design (OED)
for parameter identification. In general, OED attempts to
obtain sensitive parameters by optimally designed opera-
tion conditions [Kreutz and Timmer (2009); Heine et al.
(2008); Schenkendorf et al. (2009)], i.e., new costly exper-
iments have to be conducted in this case. By evaluating
cost functions (Eq. 6-10) that are based on flat inputs
a new spectrum of parameter sensitivities is provided.
Naturally, there is no guarantee that these new parameter
sensitivities are more suitable for parameter identification
but they are worth to be checked a-priori before running
any additional experiment.

Sui =
σ
i

2(E
−i

[uflat|θi])

σ2(uflat)
(21)

Usually, the integrals (σ2(ysim) or σ2(ysim|θi)) are eval-
uated by Monte Carlo methods. This is correlated with
a high computational effort. To reduce computation costs
and to avoid a random exploration of the parameter space
Rp by using Monte Carlo methods [Sobol’ (2001)] the
unscented transformation is used instead [Schenkendorf
and Mangold (2011) and references therein].

3. APPLICATION

The following DDE system (Eq. 22) describes the influenza
A virus production in large-scale microcarrier culture by a
model similar to [Möhler et al. (2005)]. Uninfected Madin-
Darby canine kidney (MDCK) cells Uc(t) are infected
by active viruses Vi(t). After a certain delay time of τ1
infected MDCK cells Ic(t) release active and inactive virus
particles Vi(t) and Vd(t), respectively. The active virus
particles either infect the remaining uninfected cells or are
degraded to inactive virions.

dUc(t)

dt
= θ6

Cmax − (Uc(t) + Ic(t))

Cmax
Uc(t)−

θ1Uc(t)Vi(t)

dIc(t)

dt
= θ1Uc(t)Vi(t)− θ2Ic(t)

dVi(t)

dt
= θ3Ic(t− τ1)− θ4Vi(t)− θ1Uc(t)Vi(t)

dVd(t)

dt
= θ5Ic(t− τ1) + θ4Vi(t)

(22)

y1(t) = Vi(t) (23)
y2(t) = Vd(t) (24)

In practice, the concentrations of active and inactive
virus particles are measurable (Eq. 23-24). With these
measurement quantities and Eq. 22 the related digraph
(Fig. 2) can be derived. As two quantities are measured two
flat inputs, uflat1 (t) and uflat2 (t), have to be determined.
Due to the distance criteria (Sec. 2.2), as rule of thumb,
these inputs should act on Uc(t) and Ic(t) (Eq. 25),
respectively.

Uc

Ic

Vi

Vd

y1

y2

uflat1

uflat2

Figure 2. Digraph of the influenza A virus production
model (Eq. 22). Here, the two potential flat inputs
uflat1 and uflat2 should act on the states Uc and Ic to
fulfill the distance criteria, a rule of thumb.

dUc(t)

dt
= θ6

Cmax − (Uc(t) + Ic(t))

Cmax
Uc(t)−

θ1Uc(t)Vi(t) + uflat1 (t)

dIc(t)

dt
= θ1Uc(t)Vi(t)− θ2Ic(t) + uflat2 (t)

dVi(t)

dt
= θ3Ic(t− τ1)− θ4Vi(t)− θ1Uc(t)Vi(t)

dVd(t)

dt
= θ5Ic(t− τ1) + θ4Vi(t)

(25)

As states and inputs (Eq. 26-30) can be expressed explic-
itly by the outputs (Eq. 23-24) and derivatives thereof, the
DDE system (Eq. 25) is differentially flat.

Ic(t− τ1) =
1

θ5
(ẏ2(t)− θ4y1(t)) (26)

Uc(t) =
θ3Ic(t− τ)− θ4y1(t)− ẏ1(t)

θ1y1(t)
(27)

uflat2 (t) =
1

θ5
(ÿ2(t+ τ1)− θ4ẏ1(t+ τ1))−

θ1Uc(t)y1(t) + θ2Ic(t) (28)



uflat1 (t) = µ(t+ τ1)Uc(t+ τ1) + θ1Uc(t+ τ1)y1(t+ τ1)−
θ4ẏ1(t+ τ1)− ÿ1(t+ τ1)

θ1y1(t+ τ1)
−

θ3 (θ1Uc(t)y1(t)− θ2Ic(t) + uf2(t))

θ1y1(t+ τ1)
−

Uc(t+ τ1)ẏ1(t+ τ1)

y1(t+ τ1)
(29)

with

µ(t+ τ1) = θ6
Cmax − (Uc(t+ τ1) + Ic(t+ τ1))

Cmax
(30)

After the successful transformation to a flat system, the
proposed method of parameter identification can be ap-
plied. The cultivation of MDCK cells is done in a batch
mode, i.e., the generated two flat inputs (Eq. 25) are just
fictitious. Consequently, the cost function (Eq. 10) has to
be evaluated for the identification of model parameters θ
and the delay parameter τ1, respectively.

Assuming almost perfect measurement data, i.e., high
sample rate without measurement noise, the model pa-
rameters θ are estimated for 100 different delay parameter
values equally spaced in the the range of 5 to 15 hours,
τ1 ∈ [5, 15] h. In figure (Fig. 3), the cost function (Eq. 10)
has a global minimum at τ1 = 7.5 h which is the correct
result. The estimated model parameters θ at this optimally
determined delay parameter are given in Tab. 1. Although
the initial parameter values θIni are far away from the true
parameter values θTrue, the proposed optimization frame-
work is able to provide reliable estimates θOpt in a feasible
computational time. The overall cpu-time is less than 10
seconds in this case. In comparison to the evaluation of the
standard cost function (Eq. 4) it is significant speedup.

6 8 10 12 14
0

20

40

τ1 [h]

J
u
(c
,θ
,τ

1
)

Figure 3. The novel cost function Ju(c, θ, τ1) (Eq. 10)
evaluated at different time-delay parameter values τ1.
In detail, an optimizer is initialized iteratively at 100
different τ1 values, τ1 ∈ [5, 15] h. The overall cpu-time
is less than 10 seconds in this case.

In the framework of parameter identification also robust-
ness against initial parameter values, θIni and τ Ini1 , is
a crucial factor. Here, the standard approach (Eq. 4) is
much more sensitive to initial parameter values than the
flat input approach. For instance, only under the ideal
condition of τ1 = 7.5 h the model parameters θ are
identified properly. A slight deviation from τ1 leads to a

divergence of the optimization routine (Fig. 4). Finally,

6 8 10 12 14
10−10

10−2

106

1014

τ1 [h]

J
y
(θ
,τ

1
)

Figure 4. The standard cost function Jy(θ, τ1) (Eq. 4)
evaluated at different time-delay parameter values τ1.
In detail, an optimizer is initialized iteratively at 100
different τ1 values, τ1 ∈ [5, 15] h. A slight deviation of
the true τ1 value, τ1 = 7.5 h, leads to a divergence of
the optimization routine.

the change in parameter sensitivities is demonstrated for
the differentially flat DDE system (Eq. 25). In the fol-
lowing, a relative parameter perturbation of 25% and
fixed operation conditions are assumed. The corresponding
parameter sensitivity spectrum of the standard approach
(Eq. 20) indicates that model parameter θ4 is the least
sensitive one (Fig. 5(a)). Here, as previously suggested,
the parameter sensitivities are investigated by the novel
approach described above(Eq. 21). As shown (Fig. 5(b)),
the spectrum of parameter sensitivities is changed signifi-
cantly. The previously insensitive model parameter θ4 is
now the most sensitive one, i.e., parameter θ4 is likely
to be identified properly. This result agrees well with the
previous outcome of the actual parameter identification
(Tab. 1), i.e., the model parameter θ4 is reconstructed best.
In particular, the existing measurement data set is used
just in a different way (Eq. 10). There is no need of OED
and any additional experiment to improve the sensitivity
of θ4.

4. CONCLUSION

We have introduced and analyzed the concept of flat inputs
in field of parameter identification of DDE models. Here,
a differentially flat DDE system is transformed to an alge-
braic input/output representation that obviates the need
for numerical integration of the DDEs. This strategy leads
to a significant speedup in the parameter identification
part.

In a first step, potential flat inputs uflat(t) of a math-
ematical model of the influenza A virus production are
determined by a rule of thumb and verified subsequently.
All states x(t) and flat inputs uflat(t) are expressed by
given outputs ysim(t) and derivatives thereof. Now, these
flat inputs are used to define a novel cost function for
parameter identification.
Beyond that, the presented approach has a number of
merits. In addition to the significant reduction in com-
putational time, the cost function based on uflat(t) are
robust against initial values of model parameters θ and



θ1 θ2 θ3 θ4 θ5 θ6
θIni/θTrue 750 750 750 750 750 750
θOpt/θTrue 1.0032 1.0014 0.9974 1.000 0.9974 0.9976

Table 1. Result of parameter identification by minimizing a cost function based on flat inputs
uflat(t) (Eq. 10). Despite the initial parameter deviation θIni, the identified model parameters

θOpt are close to the true values θTrue.
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(a) Standard approach (Eq. 20)
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(b) Flat input approach (Eq. 21)

Figure 5. Integral measures of Sobol’s indices
∫ T
0
Sidt

normalized to the most sensitive parameter are pre-
sented for two different strategies of parameter iden-
tification. In the upper case, the spectrum of param-
eter sensitivities is shown for the standard approach,
i.e., parameter sensitivities related to outputs ysim(t).
Below, parameter sensitivities related to flat inputs
uflat(t) are given. Using the same measurement data
ydata(tk), there is a significant change in the range of
sensitivities.

τ1, respectively. Also a change in parameter sensitivities
is addressed that opens a new perspective in optimal
experimental design for parameter identification.

The sensitivity of the presented approach to measurement
noise is the subject of ongoing research.
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