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Abstract Circuit simulation for power grid models leads to the challenge of model
order reduction for linear descriptor systems with many ports. Based on the ES-
VDMOR idea of Feldmann and Liu [4], we have proposed several numerical im-
provements for ESVDMOR to enable the application to sparse and very large-scale
systems. In further investigations we have proven that ESVDMOR is, under a few
assumptions, stability, passivity, and reciprocity preserving. This paper provides a
survey of these developments and outlines error estimation for ESVDMOR.

1 Introduction

Research in circuit simulation deals among others with linear parasitic systems
which are, if they are in usual form, very suitable for model order reduction (MOR).
Consequently, MOR became a standard tool over the last decades. Unfortunately,
many known approaches are not able to handle a very special structure of today’s
systems, namely a large number of I/O-terminals. In recent years, this problem be-
came a focus of numerous investigations. Especially from the industrial point of
view, this problem needs to be solved as fast as possible to avoid a deadlock in pro-
cess development due to a lack of simulation know-how. There is a basic idea of
Feldmann and Liu [4], on which our work is based on. We modify the algorithm in
a way such that it does not need expensive computational steps anymore, e.g. we
replace a full SVD by a truncated one. Consequently, it becomes applicable for very
large-scale linear continuous time-invariant systems up to order n = 106, or even
larger. Beyond that, we discuss questions about passivity, stability and reciprocity
preservation, which are again very important for real world applications. Especially
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reciprocity, i.e. the possibility of synthesizing the reduced model as a circuit in ap-
plications of circuit simulation, is a very important question. Often reduced order
models are dense and not physically interpretable. Error analysis and industrial im-
plementation are the last stages on the way to provide a useful and powerful tool
to handle these special structures mentioned above. This paper gives an overview
about the theoretical results. Due to space limitations, extensive numerical studies
will be presented in a succeeding publication.

2 Theoretical Properties of ESVDMOR

Modeling of dynamical processes from various application areas, e.g. circuit simula-
tion, mechanical constructs, and biological or biochemical reactions, leads to linear
time-invariant continuous-time descriptor systems

Cẋ(t) =−Gx(t)+Bu(t), y(t) = Lx(t), x(0) = x0, (1)

with C,G ∈Rn×n, B ∈Rn×min , L ∈Rmout×n, x(t) ∈Rn containing internal state vari-
ables, u(t) ∈Rmin the vector of inputs, y(t) ∈Rmout being the output vector, x0 ∈Rn

the initial value, n the number of state variables, and the number of inputs min, which
is not necessarily equal to the number of outputs mout . We assume the transfer func-
tion of (1) in the frequency domain to be

H(s) = L(sC+G)−1B. (2)

In this section we briefly discuss the basics of (E)SVDMOR for systems with
O(n) ≈ O(min/out). In [4, 6] it is shown that it is possible to make use of inner
system correlations regarding input and output terminals. Consider the i-th block
moment of (2) as mi = L(−G−1C)iG−1B, i = 0,1, . . ., where mi is an mout ×min
matrix. These moments are equal to the coefficients of the Taylor series expansion
of (2) about s0 = 0, H(s) = ∑

∞
i=0 mi(s)i. The expansion in s = s0 leads to frequency-

shifted moments

mi(s0) = L(−(s0C+G)−1C)i(s0C+G)−1B, i = 0,1, . . . (3)

Thus, the Taylor series expansion including these moments is H(s) = ∑
∞
i=0 mi(s−

s0)
i. We use r different (frequency shifted) block moments to create the input re-

sponse matrix MI and the output response matrix MO, which are defined as:

MI =
[
m0

T ,m1
T , . . . ,mr−1

T ]T , MO = [m0,m1, . . . ,mr−1]
T . (4)

Note that if the number of rows in each matrix of (4) is not larger than the number of
columns, then r has to be increased. SVDMOR can be seen as a special case of ES-
VDMOR with r = 1, i.e., only m0 is used. Next, we apply the SVD to (4) in order to
obtain a low rank approximation MI =UIΣIV T

I ≈UIri
ΣIri

V T
Iri
, and MO =UOΣOV T

O ≈
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UOro ΣOroV T
Oro

, where ΣIri
and ΣOro are ri× ri and ro× ro diagonal matrices, VIri

and
VOro are min× ri and mout × ro isometric matrices that contain the dominant column
subspaces of MI and MO, and UIri

and UOro are rmout × ri and rmin× ro isometric
matrices. They are not used any further. The values ri ≤ min and ro ≤ mout denote
the number of the virtual input and output terminals of the terminal reduced order
model that are equal to the number of significant, i.e., not neglected singular values.
The approximations of B and L using the matrices V T

Iri
and V T

Oro
lead to B ≈ BrV T

Iri

and L≈VOro Lr, where Br ∈Rn×ri and Lr ∈Rro×n are consequences of applying the
Moore-Penrose pseudoinverse (denoted by (·)+) of V T

Iri
and VOro (which are isomet-

ric) to B and L, respectively. In detail, we have Br =BVIri
(V T

Iri
VIri

)−1 =BV T+
Iri

=BVIri

and Lr = (V T
Oro

VOro )
−1V T

Oro
L = V+

Oro
L = V T

Oro
L, where Br ∈ Rn×ri and Lr ∈ Rro×n.

This leads to the desired decomposition of the transfer function

H(s)≈ Ĥ(s) =VOro Lr(G+ sC)−1Br︸ ︷︷ ︸
:=Hr(s)

V T
Iri
,

which is equivalent to a terminal reduction step. VOro and V T
Iri

can be understood as
operators mapping the information from the original terminals to the virtual ones
and back. The new inner transfer function Hr(s), which has just a few virtual inputs
and outputs, can be further reduced by means of any established MOR method, such
that

H̃r(s) = L̃r(G̃+ sC̃)−1B̃r ≈ Hr(s). (5)

Equation (5) is of essential matter for property preservation of the whole method,
see Sec. 3. We end up with a very compact terminal reduced and reduced-order
model H̃r(s) that approximates the original transfer function, i. e.

H(s)≈ Ĥ(s) =VOro Hr(s)V T
Iri
≈ Ĥr(s) =VOro H̃r(s)V T

Iri
. (6)

3 Numerical Algorithm, Properties, and Error Estimation

In this section, we briefly describe the numerical improvements we have imple-
mented. Then we show preservation properties of the method and at the end we
discuss error estimation for ESVDMOR.

The SVD is one of the crucial ingredients of the original idea. We forbear to
perform a full SVD and neglect some of the singular triples simply because it is
too expensive. Instead, we perform an efficient truncated SVD to calculate just the
needed singular values (SV), i.e., SVs that are kept as well as SVs needed for er-
ror estimation. Additionally, we do not compute the moments in (3) explicitly but
use an iterative application of matrix vector multiplication to factors of the mo-
ments. For illustration, we choose MI consisting of r different moments. All pre-
sented approaches apply similarly to MO. The singular triples of MI are computed
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Algorithm 1 Computation of the components yi

a = Bxr+1; a = G−1a;
for i = 1 to r do

yi = La; a =Ca; a =−G−1a;
end for

by solving an eigenvalue computation of the augmented matrix A =

(
0 MI

MT
I 0

)
using Krylov subspaces and matrix vector multiplication. The output of this multi-
plication is a vector y ∈ Rr·mout+min of the same structure as the input vector x, such
that Ax =: y = ((y1)T ,(y2)T , . . . ,(yr+1)T )T , where yi =

(
y(i−1)·mout+1, . . . ,yi·mout

)T

and yr+1 = (yr·mout+1, . . . ,yr·mout+min)
T , for i = 1, . . . ,r. After matrix multiplication

we get the components yi and yr+1 of vector y as

yi = mi−1xr+1 and yr+1 = m0
T x1 + · · ·+mr−1

T xr. (7)

For efficiency reasons, we replace the block moments with their factors. We com-
pute the r+ 1 parts of y by repeatedly applying the same factors to parts of x, de-
pending on whether it is a part of (7a) or (7b). The computation for (7a) follows
Algorithm 1. The computation of (7b) is more involved, but follows the same recur-
sive principle. For large r, there is a chance that numerical stability problems accrue,
but in practice, r is often small.

In the following, we summarize several facts on preservation of stability, pas-
sivity, and reciprocity in ESVDMOR reduced-order models. For detailed proofs,
see [2]. Defining the descriptor system (1) as asymptotically stable if lim

t→∞
x(t) = 0

for all solutions x(t) of Cẋ(t) =−Gx(t), we have the following theorem:

Theorem 1. Consider an asymptotically stable system (1) with its transfer func-
tion (2). The ESVDMOR reduced-order system corresponding to (6) is asymptoti-
cally stable iff the inner reduction (5) is stability preserving.

A possible stability preserving model reduction method that can be applied along the
lines of Theorem 1 is balanced truncation for regular descriptor systems, see [7]. Re-
garding passivity we note that a system is passive iff its transfer function is positive
real [1]. The definition of positive realness can be found, e.g., in [5]. This definition
requires min = mout = m. If we assume L = BT , such that H(s) = BT (sC+G)−1B
and [

C1 0
0 C2

]
ẋ+
[

G1 G2
−GT

2 0

]
x =

[
B1
0

]
u, y =

[
B1 0

]
x, (8)

where G1, C1, C2 are symmetric, G1,C1 ≥ 0 (i.e., both matrices are positive semi-
definite), and C2 > 0 (i.e., C2 is positive definite), then H(s) is positive real and
thus the system is passive. This is a common structure among linear circuit models,
see [5].

Theorem 2. Consider a passive system of the form (8). The ESVDMOR reduced
system (6) is passive iff the inner reduction (5) is passivity preserving.
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Definition 1. A transfer function (2) is reciprocal if there exists m1,m2 ∈ N with
m1 +m2 = m, such that for Σe = diag(Im1 ,−Im2) and all s ∈ C, where H(s) has no
pole, it holds H(s)Σe = ΣeHT (s). The matrix Σe is called external signature of the
system. A descriptor system is called reciprocal if its transfer function is reciprocal.

As a consequence, a transfer function of a reciprocal system has the form H(s) =[
H11(s) H12(s)
−HT

12(s) H22(s)

]
, where H11(s)=HT

11(s)∈Rm1,m1 and H22(s)=HT
22(s)∈Rm2,m2 .

Theorem 3. Consider a reciprocal system of the form (8). The ESVDMOR reduced
system (6) is reciprocal iff the inner reduction (5) is reciprocity preserving.

Next, we discuss some ideas on how to get a global error bound for ESVDMOR.
For details see [3]. The error caused by a SVD of MI is eMI =

∥∥∥MI(r)−UIri
Σ I

ri
V T

Iri

∥∥∥
2
=

σ I
ri+1, where Σ I

ri
= diag(σ I

1 ≥ . . .≥ σ I
ri
≥ σ I

ri+1
≥ . . .≥ σ I

min
≥ 0)≈ Σ I

ri
= diag(σ I

1 ≥
. . . ≥ σ I

ri
). The error for the square root variant of balanced truncation is bounded

by
∥∥Hr− H̃r

∥∥
H∞
≤ 2∑

n
k=`+1 σ̂k = δ , in case we keep the ` largest σ̂i. Due to (6) and

the triangle inequality, the total ESVDMOR error in spectral norm on the imaginary
axis can be expressed locally as

etot =
∥∥H(iω)− Ĥr(iω)

∥∥
2 ≤

∥∥H(iω)− Ĥ(iω)
∥∥

2︸ ︷︷ ︸
=eout

+
∥∥Ĥ(iω)− Ĥr(iω)

∥∥
2︸ ︷︷ ︸

ein

. (9)

The error caused by the inner reduction follows from (6) and (9) as

ein =
∥∥∥VOro Hr(s)V T

Iri
−VOro H̃r(s)V T

Iri

∥∥∥
2
=
∥∥Hr(s)− H̃r(s)

∥∥
2 ≤ δ ,

due to the fact that the spectral norm is invariant under orthogonal transformations.
The outer reduction error eout in the SVDMOR case is based on MI = MT

O = m0 =
BT (s0C+G)−1B =UΣV T =UΣUT ≈UrΣrUT

r . The local terminal reduction error
eout then is

eout =
∥∥H(s0)− Ĥ(s0)

∥∥
2

(U=V)
=
∥∥BT (s0C+G)−1B−UrUT

r BT (s0C+G)−1BUrUT
r
∥∥

2
(SVD)
= σ

I/O
k+1,

if we keep k singular values or terminals. Then the total error in the SVDMOR case
in spectral norm is

etot ≤ σ
I/O
k+1 +2

n

∑
j=l+1

σ̂ j. (10)

For the ESVDMOR case with r ≥ 1 (r times mi within the ansatz matrices), see [3].
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4 Conclusions

This work gives an overview of the ESVDMOR approach with which, in combina-
tion with the right choice of the method in (5), it is possible to preserve stability,
passivity, and reciprocity. Additionally, the possibility of a global error bound is
given in(10). Despite the industrial need for such algorithms, very large-scale real
world examples are hard to come by due to confidentiality. We have successfully
reduced an academic state space example of order 105 with originally circa half as
much I/O-terminals and we have investigated an industrial circuit model of order
103 with a few hundred pins. In any case, just as in standard MOR methods, the
approaches are very dependent on the decay of the SVs. Furthermore, the reduced
order model should be evaluated iteratively and in factorized form. Otherwise, ES-
VDMOR would be inefficient and we might end up with a very large-scale dense
model due to the mapping back to the original terminals. With respect to the given
hints, ESVDMOR is a powerful tool to reduce linear descriptor systems with many
terminals.
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