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Abstract: We discuss the Smith iteration for solving large-scale sparse projected discrete-time
periodic Lyapunov equations which arise in periodic state feedback problems and in model
reduction of periodic descriptor systems. Two algorithms are presented in this paper. The first
one works with the cyclic lifted representation of the corresponding projected discrete-time
periodic Lyapunov equations. In this algorithm, the block diagonal structure of the periodic
solution is preserved in every iteration step by efficient permutations. The second algorithm
works directly with the periodic matrix coefficients. We analyze the cyclic structure of the
matrices arising in the iterative computations of the periodic solutions of the projected discrete-
time periodic Lyapunov equations. A low-rank version of this method is also presented, which
can be used to compute low-rank approximations to the solutions of projected periodic Lyapunov
equations. Numerical results are given to illustrate the efficiency and accuracy of the proposed
methods.
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1. INTRODUCTION

Periodic systems and control theory is of interest in various
scientific and engineering fields, specially in the aerospace
realm, control of industrial processes and communication
systems, modeling of periodic time-varying filters and net-
works, and several man-made and natural phenomena.
Simulations and analysis of such systems can be unac-
ceptably expensive and time-consuming when the systems
are very large. Hence, model reduction is an efficient tool
which helps the scientists and engineers to replace the large
periodic models by smaller models which are amenable to
fast and efficient simulation and which still preserve the
input-output behavior of the original large models as good
as possible.

We consider the linear periodic time-varying (LPTV)
descriptor system

Erxii1r = Apxyp + Brug, 1)
Yk = Crag, k=0,1,...,K -1,

where Ey, A € R"*™ B, € R"*™ ()} € RP*™ x, € R™is
the state or descriptor vector, ux € R™ is the control input,
and yr € RP is the output. The coefficient matrices are
periodic with a period K > 1. The matrices F}, are allowed
to be singular for all k. Such systems have received a lot
of attention in the last 30 years, e.g., in satellite attitude
control, helicopter design, harmonic balance methods in
nonlinear circuit design, and many more, see, e.g., (Bit-
tanti and Colaneri (2000); Fliege (1994); Lovera et al.
(2002); Varga (1999)).

1.1 Preliminaries

Stability analysis and model reduction of LPTV descriptor
systems (1) are strongly related to the generalized pro-
jected periodic discrete-time algebraic Lyapunov equations
(PPDALES)

AL Xp AL — By X B = Qu(k) BB Qu(k)T,

2

X, = Qr(k)Ger(k)Ty ( )
where X, = X, and Q,(k), Q. (k), for k =0,1,..., K —
1, are the spectral projectors onto the k-th left and
right deflating subspaces of the periodic matrix pairs
{(Ex, Ax)} = corresponding to the eigenvalue at infinity
(Benner et al. (2011b); Chu et al. (2007); Stykel (2008)).
This type of equations arises in the context of periodic
state feedback problems and in model reduction of periodic
descriptor systems when the solutions of the noncausal
matrix equations associated with the systems (Kuo et al.
(2004); Benner et al. (2011a); Chu et al. (2007)) are sought.
Note that in that case Q;(k) = I,,—P;(k) and Q- (k) = I,,—
P.(k), where P,(k), P.(k) are the spectral projectors onto
the k-th left and right deflating subspaces of the periodic
matrix pairs {(Ey, Ax)}r_, corresponding to the finite
eigenvalues.

Assume that the periodic matrix pairs {(Ey, Ay)}1_," are
periodic stable (pd-stable), i.e., all finite eigenvalues of the
set of periodic matrix pairs {(Ex, Ax)}, lie inside the
unit circle. In this case the matrix pairs {(Ej, Ay) }1—,’ can
be transformed into a periodic Kronecker canonical form



(Sreedhar and Van Dooren (1994); Van Dooren (1979)),
fork=0,1,..., K — 1,

I 0 f
UnEr Vi1 = (0 Ez) , UgApVi = (%k ?) , (3)

where Uy, Vi are nonsingular, Vi = Vj, A£+K71A£+K72

A£ = Ji is an ny x ny Jordan matrix corresponding

to finite eigenvalues, EfE) - Eb ., = Nj is an
Neo X Moo Nilpotent Jordan matrix corresponding to infinite
eigenvalues, and n = ny + ns. Using (3) the spectral

projectors Pj(k) and P.(k), for k = 0,1,...
be represented as

Pl(k:):Uk_l[ég}Uk, PT(k):Vk[ég}Vk‘l. (4)

,K — 1, can

In this paper we discuss the structure preserving Smith
iterative method to solve large-scale sparse PPDALEs (2)
using their corresponding lifted structure. This contribu-
tion builds upon Section-4 in (Benner et al. (2011a)),
where the concept for preserving the block diagonal struc-
ture of the computed solution at each iteration step is
based on (Kressner (2003)).

The rest of the paper is organized as follows. In Section
2, we briefly review the direct methods that have been
considered in (Chu et al. (2007); Benner et al. (2011b)) to
solve the PPDALEs (2). The computational complexities
and the drawbacks of these methods for large-scale sparse
problems are also discussed. We then discuss the Smith
iterative method to solve the PPDALEs (2) using their
corresponding lifted structure and describe briefly the
structure preserving technique at each Smith iteration by
a choice of an efficient permutation matrix in Section 3.
Two algorithms are presented. Low-rank versions of these
methods are also presented that can be used to compute
low-rank approximations to the solutions of PPDALESs in
lifted form with low-rank right-hand side. In Section 4, we
report some results of numerical experiments to illustrate
the efficiency and accuracy of the proposed methods. A
short conclusion is given in Section 5.

2. ANALYSIS OF NUMERICAL ALGORITHMS FOR
PPDALES

The numerical solution of (2) has been considered in (Chu
et al. (2007)) for time-varying matrix coefficients. The
method proposed there extends the periodic Schur method
(Bojanczyk et al. (1992); Varga (2004)) and the general-
ized Schur-Hammarling method (Stykel (2002)) developed
for periodic standard and projected generalized Lyapunov
equations, respectively. This method is based on an ini-
tial reduction of the periodic matrix pairs {(Ej, A)}r'
to the generalized periodic Schur form (Kressner (2001);
Varga (2004)) and on solving the resulting generalized
periodic Sylvester and Lyapunov equations of (quasi)-
triangular structure using the recursive blocked algorithms
(Granat et al. (2007)). Computing the Kronecker-like
canonical forms of the periodic matrix pairs and solving
the resulting periodic Sylvester equations are the most
computationally expensive tasks in this algorithm (Algo-
rithm 5.1 of Chu et al. (2007)).

An efficient approach which works with the lifted form
of (2) has been considered in (Benner et al. (2011b)).
The method proposed there works with the cyclic lifted
representation of (1) and the corresponding lifted form of
(2). Following the work of (Benner et al. (2011b)), the
PPDALE (2) is equivalent to the following projected lifted
discrete-time algebraic Lyapunov equation (PLDALE)

AXAT —exeT = 9BBTQY, & =9,XQF, (5)

where
& = diag(Eo, B, ..., Ex-1), B=diag(Bo, Bi, ..., Br-1),
0 0 A
Aq 0
A: - : ) (6)
0 Ag_1 0
and
X =diag(Xq,..., Xg_1,Xp)s
Q :diag(Ql(O)an(l)a"'an<K_ 1)) (7)

Q, = diag(Qr(1),...,Qr(K —1),Q.(0)).

All these methods are suitable for problems of small and
medium size. In practice, one should avoid these direct
methods for large-scale problems because the computa-
tional complexity for solving a Lyapunov equation of the
form (2) or (5) using direct methods is at least of order
O(Kn?), and they require extensive storage. Therefore,
we develop iterative methods for such equations, which
can exploit the sparse structures of system matrices to
generate well approximating solutions (with prescribed
tolerance), and have low memory requirements and low
computational cost.

3. STRUCTURE PRESERVING SOLUTION OF
PLDALES

In the last few years, increasing attention has been devoted
to the numerical solution of large-scale sparse Lyapunov
equations using iterative approaches, such as the alter-
nating directions implicit (ADI) method (Li and White
(2002); Penzl (2000)), the Smith method (Gugercin et al.
(2003); Penzl (2000); Smith (1968)), and Krylov subspace
methods (Jbilou and Riquet (2006); Simoncini (2007)).
For an overview and further references, see Benner et al.
(2008). All these methods have also been generalized to
projected Lyapunov equations (Stykel (2008); Stykel and
Simoncini (2012)). On the other hand, an extension of
the Smith method and the Krylov subspace method based
on a block Arnoldi algorithm to standard periodic Lya-
punov equations has been presented in (Kressner (2003)).
Unfortunately, these methods cannot be directly applied
to the projected periodic Lyapunov equations. The Smith
method for the projected periodic Lyapunov equation has
been considered in (Benner et al. (2011a); Hossain (2011)),
where the Smith iteration does not preserve the block
diagonal structure at every iteration, but the approximate
Gramians are block diagonal at each iteration step (see
Algorithm 3 of Benner et al. (2011a)). In this paper we
show that block diagonal structure at each Smith iteration
can be preserved by efficient permutations.



Consider now the PLDALE (5). For nonsingular A, this
equation is equivalent to the PLDALE

X — (Ao x AT = QA ' BBTATTOT, 8
X =Q,x07. ®)

In this case the relation Q, A7 = A71£Q, holds (Stykel
(2008)) and such an equation can be solved by the Smith
method (Smith (1968)) given by

X, = QA 'BBT AT QT
X, = QA !'BBTATTQN + (ATte)x,_(A1E)T.

Note that Q,. is the spectral projector onto the invariant
subspace of the matrix A€ corresponding to the zero
eigenvalues. Then Q, A" '€ = A71£Q, is nilpotent with
the nilpotency index v, where v is the index of the periodic
descriptor system (1). In this case, after v iterations we
obtain
v—1
X, =Y (AT'E)'Q AT BBTATTQL (AT'E)T) = x.(9)

=0

Therefore, the Cholesky factor R of the solution X =
RRT of (8) and also of the PLDALE (5) takes the form

R=[QA'BA1'EQ.A'B,..., (10)

(A7'6)"71Q, A7 8.
Note that the generalized Smith iteration discussed above
does not preserve the block diagonal structure at every
iteration step in the computation of the Cholesky fac-
tor R (see Algorithm 3 of Benner et al. (2011a), and
Algorithm 9.3 of Hossain (2011)), but the approximate
Gramian X; = R, R} computed there has block diagonal
structure at each iteration step, ¢ = 0,1,...,v — 1. By
introducing a cyclic permutation matrix in each iteration
step, one can easily preserve the block diagonal structure
at every iteration step in the computation of the Cholesky
factor R using relation (10).

Let P be the cyclic permutation matrix of the form

0 0 I,
I, 0 _

P = Ly Pi=Ph i=1,2,...,0 (11)
0 I, 0

We introduce a permutation matrix P; for each iteration
step 4 into the computation of (9) where the permutation
matrix P; changes at each iteration step in a cyclic manner
by a forward block-row shift. For an example, suppose that
K =3, and kK =0,1,2. Then for k =1, P, = P is given
by (11). For k = 2, we get
Po=P>=|0 0 I,
I, 0 0
which is just a forward shift of the last block-row of P in
(11). Clearly Py is the identity matrix of order n x K. One
can also prove this using the proposed relation as

I, 0 O]

OIHO]

Po=Ps=P°=|0 I, 0

0 0 I,
which is nothing but a forward shift of the last block-row
of P5. One nice property of this permutation matrix is that

it satisfies the periodicity property, i.e., Pxix = Pk, k =
0,1,...,K —1.
Hence (9) has the new form
v—1 ]
X, = Z(A_lg)lQ,,A_lBPZ-HPZrlBTA_T
i=0

(12)
QT (AT = A

Therefore, the Cholesky factor R has the form

R=[QA'BP,ATIEQABP?, ..., (13)
(ATt 19, A7 BPY].

It can be verified that each factor inside (13) preserves the

block diagonal structure analogous to the solution of (8).

The computation of this factor is presented in Algorithm 1.

Algorithm 1. Generalized Smith method for PLDALE.

Input: A, E, B, spectral projector Q,., cyclic permutation
matrix P.

Output: Low-rank factor R, such that X = R, RZ.

W1 = QTA_lB
Zy =W,P
Ri =2,

FOR i=2,3,...,v
W; = A*15Wi_1
Ri=[Ri-1, Zi]

END

If the index v is unknown, then Algorithm 1 can be
stopped as soon as the residual norm given by

n(Rs) = ||[AR,RF AT — ER,RFET

(14)

+Q,BBOf ||
satisfies the condition n(R;) < tol with a user-defined
tolerance tol or a stagnation of residual norms is observed.

Fact 1. In order to guarantee that the second equation in
(5) and also in (8) is satisfied in finite precision arithmetic,
we have to project W; onto the image of Q, by pre-
multiplication with Q,..

The generalized Smith iteration preserves the block di-
agonal structure at every iteration step in Algorithm 1.
Clearly, at the ith iteration step R; has the block diag-
onal structure R; = diag(R,,,...,Rg_,,, Ro;), where
R, ; stand for the periodic Cholesky factors of Xy ; =
Rk)iRgi for different values of k (k = 0,1,..., K — 1) at
the ith iteration step. Since X = R,RL, where R, =
diag(Ry,..., Ry _1, Ry), one can easily read off the peri-
odic solutions Xy = R, R} of (2) from the block diagonal
structure of R; for different values of k.

4. STRUCTURE PRESERVING SMITH METHOD
FOR PPDALES

In fact, the iteration (13) implemented in Algorithm 1
not only proves that the computed Cholesky factors R;
stay block diagonal at each iteration step %, it also enables



us to rewrite (10) in such a way that one can directly
compute the periodic Cholesky factors for different k,
k=0,1,..., K — 1. From simple algebraic manipulation
of (13), we observe that the periodic matrices E}, A, and
By, appear in a cyclic manner in the computation of the
periodic Cholesky factors R, ; in every iteration step ¢
for different values of k, £k = 0,1,..., K — 1. Observing
these cyclic relations and handing them technically, we
can compute the periodic Cholesky factors R, ;, k =
0,1,...,K — 1,4 = 1,2,..., directly. We represent some
of those computations in the following.

Fori=1and k=0,1,..., K — 1, we get

Ro1=Q.(0)A;" By
Ry = Q-()AT'B,

Rr 11=Q. (K —-1)Ax" | Bx_1.

Fori=2and k=0,1,..., K — 1, we get
Ro2= Ay EoQ,(1)A] ' By
Rio=AT'F1Q.(2)A;' By

Rix_12=A" |Ex_1Q,(K)AL' Bk.

Fori=3and k=0,1,..., K — 1, we get

Ros= Ay EoAT E1Q,(2) Ay ' By
Ri3=A7'E1A;'F2Q,(3)A; ' Bs

Ri_13=Ax" |\Ex 1A ExQ, (K + 1)A}1JrlBK+1,
and so on.

The whole computation is summarized in Algorithm 2.
Note that in the above computations and also in Algo-
rithm 2, we use the periodicity of the coefficient matri-
ces and that of the projectors. Here @Q,.(K) = Q.(0),
Ex = Ey, etc. Clearly then k£ = 1,2,..., K, and Xig =
Xo = RpRY = RyRl. Tt should be also noted that in
Algorithm 2, Ry ; means the computed Ry at the jth
iteration steps. Finally, Rzﬁ ; collocates all these iterative
counterparts for an individual k, where £k = 1,2,..., K.
That means for £ = 1, we compute

Rllj,j - [Rl,lv R1,27 RN} RI,JL
and similarly the others.

For an unknown v, Algorithm 2 is to be stopped as soon
as the residual norm given by
Pr = HAkRkaAg - EkRk+1R£+1Elz

(15)

~Qu(k) B By, Qu(k) " ||
satisfies the condition n(px) < tol for k =0,1,..., K — 1.
We assume that after the Jth iteration we have the exact
computation of the periodic Cholesky factors R, satisfying

Algorithm 2. Generalized Smith method for PPDALES.

Input: (Fg, Ak, By), spectral projectors Q,(k) for k =
1,....K.

Output: Low-rank periodic Cholesky factor Ry such that
Xi =R, RY.

FOR k=1 K

Ry = Qr(k)A; "By % note that Ry = Ro.
END
FOR k=1 K

P,1 =1, % initialization of a cyclic matrix
END
FOR j=2:v

FOR k=1:K

m=mod(j + 1, K)
Prj = P 1 Ans Btk

Rij=Pe;Qr(k+m+1) Al 1 Brimst
END

END
FOR k=1:K
FOR j=1:v
IF j=1
RZ,J- = Ry,;
ELSE
RZ,J‘ = [Ri,j_l Ry 4]
END
END
R, = RRQR(R} ;,7)
END

relation (15) and hence, X, = R, R} are the periodic
solutions of (2) for k =0,1,..., K — 1.

When the column ranks of the By, matrices, i.e., m, are big,
the situation can arise that Rz_ ; may face rank deficiency,
because each iteration step of Algorithm 2 will add m more
columns to the previous computation of Rz, ;- Therefore,
we propose the rank-revealing QR decomposition (RRQR)
(Golub and Van Loan (1996)) of R%j with tolerance 7
to truncate those columns that do not carry any addi-
tional information in the subsequent iteration steps. This
truncation approach saves memory space and lowers the
computational cost for further applications of the approx-
imate solutions, e.g., in model order reduction. In (Benner
and Quintana-Orti (2005)), it is shown that a tolerance
T = /€, where ¢ is the machine precision, is sufficient to
achieve an error of the machine precision magnitude for
the solutions X of (2) for k=0,1,..., K — 1.

Fact 2. In order to guarantee that the second equation in
(2) is satisfied in finite precision arithmetic, we need to
project Ry ; onto the image of (), by pre-multiplication
with Q..

5. NUMERICAL RESULTS

We consider a periodic discrete-time descriptor system
with n =10, m = 2, p = 3, and period K =3 (k=0,1,2)
(Chu et al. (2007), Example 1). The system is of index 1
and it is pd-stable with ny = 8 and no. =2 for k£ =0, 1, 2.
The finite eigenvalues of {(E}, A;)}_, are shown in Fig. 1.



Finite eigenvalues (index 1 problem)
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Fig. 1. Finite eigenvalues of {(Ej, Ax)}7_,

For an index 1 problem, Algorithm 1 needs only one
iteration. We compute the residuals norm using relation
(14) which is zero in that case. Using Algorithm 2 we
compute the periodic solutions of (2) directly. Norms of the
computed solutions of the periodic Lyapunov equations
and the corresponding residuals are shown in Table 1.

Table 1. Norms and relative residuals of peri-
odic Gramians (index-1 problem)

Finite eigenvalues (index 2 problem)
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Fig. 2. Finite eigenvalues of {(Ey, Ax)}i_,

is shown in Fig. 2.

Using Algorithm 2 we have computed the solutions of
the periodic Lyapunov equations and the corresponding
residuals. The computed numerical results in Table 2 show
the accuracy of the proposed algorithm. Similar accuracy
also holds in the computational results using Algorithm 1.

Table 2. Norms and relative residuals of peri-
odic Gramians (index-2 problem)

k | X, lIF P
0] 1.675x101 | 0
1]1672x101 | 0
2 [ 1.675x 10T | 0

We next consider an artificial problem of index 2. With
n =10, m = 2, p = 3, and period K = 3, we have, for

k | X, lIF P

0 | 6.5587 x 100 | 8.881 x 10— 14
1 | 4.6125 x 109 | 1.057 x 10~ 13
2 | 6.3544 x 100 | 1.475 x 10~ 13

k=0,1,2,

_ |18 0], _ Auk Alk
m= ) a0
(16)
B, — 4 -1s3+1 1 0-20 00
=110 s;+1-21-10-1300
where 0y, := 27k /K,
rT 0 ¢ s1 O 0 0O
0 1 —81 C1 0 0 00
Cc1 —$81 1 0 Co S92 00
A o S1 C1 0 1 —S92 C2 00
Uk T 0 0 Coy —S89o 1 0 C3 S3
0 0 S92 Co 0 1 S3 C3
000 0 0 ¢ —s310 (17)
L0 O 0 0 s3 cg 01
4 — 002 15 01
lk—_0133—10—101
and

c1 = cos(0y), ca =0.2¢1, 3 =0.6¢y,
s1 =sin(fg), s2 =0.2s1, $s3 = 0.6s;.

The computed eigenspectrum of the periodic matrix pairs
{(Ey, Ax)}3_, consists of three pairs of finite eigenvalues
lying inside the unit circle and two pairs of infinite eigen-
values, i.e., ny = 6 and no = 4 for £ = 0,1,2. The
eigenspectrum of the finite eigenvalues of {(Ej, Ag)}i_,

6. CONCLUSION

In this paper, we have suggested iterative low-rank algo-
rithms based on the Smith iteration for computing low-
rank factors of the solutions of generalized projected pe-
riodic discrete-time algebraic Lyapunov equations. These
factors can be used in a balanced truncation model re-
duction approach to find a reduced-order model for the
periodic discrete-time descriptor system. The proposed
algorithms are easily implementable for dimension-varying
system matrices in (1).

It remains a task for further work to test the algorithms for
real-world problems, and also for higher index problems.
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