
Improved Second-Order Balanced
Truncation for Symmetric Systems

Peter Benner ∗,∗∗ Patrick Kürschner ∗ Jens Saak ∗,∗∗
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Abstract: We investigate second order balanced truncation model order reduction for sym-
metric linear time invariant second order control systems. This special structure decreases the
required computational effort significantly. Moreover, we show how stability of the original model
can be preserved for such systems. We briefly discuss the numerical solution of the occurring
large-scale Lyapunov equations with a modified low-rank ADI method. The approach is tested
on finite element models of mechanical structures.
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1. INTRODUCTION

In this work we consider model reduction for linear, time-
invariant control systems of second order:

Mẍ(t) +Dẋ(t) +Kx(t) = Bu(t), (1)

y(t) = Cvẋ(t) + Cpx(t), (2)

where M, D, K ∈ Rn×n are usually referred to as the
mass, damping and stiffness matrix, B ∈ Rn×m is the
input matrix and Cp, Cv ∈ Rp×n are position and velocity
output matrices. Such systems arise, for instance, in the
vibration analysis of elastic mechanical bodies. A common
way to model the elastic deformations of such a structure
is using the Finite Element method which will introduce
a high number of elastic degrees of freedom and thus
drastically increase the state space dimension of the model
compared to a rigid body model of the structure. In order
to carry out time-domain simulations efficiently, this large
number of degrees of freedom is reduced by model order
reduction approaches.
To obtain accurate reduced order models we use balanced
truncation (Moore, 1981) here as model order reduction
method which has a system theoretic background. We
focus on symmetric second order systems whose properties
turn out to be beneficial for our purposes from both a
theoretical and computational point of view. Following
the second order balanced truncation approach (Reis and
Stykel., 2008), the original second order structure can be
preserved. For solving the inherent Lyapunov equation,
the low-rank ADI method (Penzl, 2000; Saak, 2009) is
used which has proven to be an efficient algorithm for
this goal and was recently subject to extensive research. It
can be modified to deal with the special structure of the
considered systems.
This paper is organized as follows: in the next section we
briefly recall the main ideas behind balanced truncation for
first order system. In Section 3 the second order systems of
interest are transformed to equivalent first order systems
and second order balanced truncation is introduced to
regain the second order structure. The numerical solution

of the occurring large-scale Lyapunov equation with the
LR-ADI method is briefly discussed in Section 4. The
performance of this model reduction approach for two test
examples is shown in Section 5, and Section 6 concludes.

2. BALANCED TRUNCATION FOR FIRST ORDER
SYSTEMS

Here we review the main workflow of balanced truncation
for generalized state space systems

Eż(t) = Az(t) +Gu(t),

y(t) = Lz(t),
(3)

where E, A ∈ Rn×n, G ∈ Rn×m and L ∈ Rp×n. It is
assumed that E is nonsingular and that the spectrum
Λ(A, E) lies in the open left half plane C− := {z ∈
C : Re (z) < 0} such that (3) is asymptotically stable.
Note that balanced truncation originated for standard
state space systems (E = In) (Moore, 1981), but since sys-
tems of the form (3) are more important for our purpose,
we follow the straightforward modification to generalized
state space systems which was worked out in detail, e.g., in
(Saak, 2009). The most important ingredients to carry out
balanced truncation are the solutions of the generalized
Lyapunov equations

APET + EPAT = −GGT , (4a)

ATQE + ETQA = −LTL. (4b)

There, the symmetric matrices P and Q are the reacha-
bility and observability Gramian, respectively. The mag-
nitude of the square roots of the eigenvalues of PETQE
provides a joint measurement of how good certain states
can be reached and observed. The values are system in-
variants and referred to as Hankel singular values. The
main idea of balanced truncation is to identify and to
truncate states which correspond to very small Hankel
singular values, that is they are difficult to reach and to
observe. Since both Gramians are positive semidefinite,
we have Cholesky factorizations P = RRT and Q = SST .



Using the singular value decomposition with decreasingly
ordered singular values

STER = XΣY T = [X1, X2] diag (Σ1, Σ2) [Y1, Y2]T ,

where Σ1 ∈ Rr×r contains the dominant singular values,
the truncation matrices are constructed via

Tl = Σ
− 1

2
1 XT

1 S
T and Tr = RY1Σ

− 1
2

1 .

The reduced system of order r is given by
˙̂z(t) = Âẑ(t) + Ĝu(t),

ŷ(t) = L̂ẑ(t),

where Â := TlATr ∈ Rr×r, Ĝ := TlG ∈ Rr×m and
L̂ := LTr ∈ Rp×r. Note that it can be shown that TlETr =
Ir holds (Saak, 2009). The stability of the original large
system is preserved in the reduced ordel model. Moreover,
one of the main advantages of balanced truncation is the
available error bound

‖y − ŷ‖ ≤ 2

n∑
j=r+1

σj‖u‖, (5)

where the σj are the singular values from the neglected
block Σ2. This error bound can be used to adaptively
determine the order of the reduced system with respect
to a prescribed error tolerance.

3. BALANCED TRUNCATION FOR SYMMETRIC
SECOND ORDER SYSTEMS

The main focus of the article are second order systems (1),
where M, D, K are symmetric positive definite matrices
and for B, Cp, Cv we have one of the cases: either
B = CTp , Cv = 0 (case 1) or B = CTv , Cp = 0 (case 2).
The positive definiteness ensures that (1) is asymptotically
stable.

3.1 Reduction of Equivalent First Order Systems

In order to follow the balanced truncation framework we
have to transform the second order system into a first order
system. The above assumptions on the matrices ensure
that in both cases (1) can be transformed into a gen-
eralized state space system (3) with symmetric matrices
E, A ∈ R2n×2n, with G = LT ∈ R2n×m and the aug-
mented generalized state vector z(t) := [x(t)T , ẋ(t)T ]T .
The matrices of the above generalized system are given by

E :=

[
D M
M 0

]
, A :=

[
−K 0

0 M

]
, G :=

[
B
0

]
(6)

for case 1 and

E :=

[
−K 0

0 M

]
, A :=

[
0 −K
−K −D

]
, G :=

[
0
B

]
(7)

for case 2. This transformation is closely related to the
rewriting of a quadratic eigenvalue problem into a gen-
eralized one, hence we may refer to it as linearization.
In this context (6) relates to the first and (7) to the
second companion linearization of a quadratic eigenvalue
problem. It follows that these generalized systems are also
asymptotically stable and that both generalized Lyapunov
equations (4a) and (4b) are identical, such that P = Q and
consequently R = S. Hence, only the solution P , respec-
tively its Cholesky factor R, of one generalized Lyapunov
equation

APE + EPA = −GGT (8)

is required. Since the solution of the Lyapunov equations
(4) is the computationally most expensive task in balanced
truncation, the symmetry of the chosen first order system
leads to a reduction of the computational effort by half.
We postpone the discussion about the actual numerical
computation of R until Section 4. Another consequence is
that since RTER is a symmetric matrix, its eigendecom-
position can be used for building the truncation matrices
Tl and TTr . The matrices of the reduced order model will
in general not have a block structure like the original
matrices, such that the second order structure is lost. This
can be cured by modifying balanced truncation as it is
shown in the next section.

3.2 Regaining the Second Order Structure

Balanced truncation can be modified in order to generate
a reduced order model which is also in second order form,
see e.g., (Reis and Stykel., 2008). The main idea there is to
partition the Gramians P and Q according to the structure
present in in the equivalent generalized first order system:

P =

[
Pp P1,2

PT1,2 Pv

]
, Q =

[
Qp Q1,2

QT1,2 Qv

]
,

where Pp, Qp ∈ Rn×n are called position, and Pv, Qv ∈
Rn×n velocity reachability and observability Gramians,
respectively. For our symmetric systems we only have to
consider Pp and Pv. Let Pp = RpR

T
p , Pv = RvR

T
v be

their Cholesky decompositions with nonsingular factors
Rp, Rv ∈ Rn×n. Then one has four possible singular value
decompositions

ZTαMZβ=XαβΣαβY
T
αβ

=[Xαβ,1, Xαβ,2]diag (Σαβ,1,Σαβ,2) [Yαβ,1, Yαβ,2]T

with α, β ∈ {p, v}. The Σαβ,1 ∈ Rr×r contain the
dominant singular values, and all other blocks have appro-
priate dimensions. Taking all possible choices for α, β into
account leads to four different pairs of reduction matrices

Tr,αβ := RαYαβ,1Σ
− 1

2
αβ,1,

Tl,αβ := RβXαβ,1Σ
− 1

2
αβ,1.

(9)

For α = β = p the approach is called position-position
(PP), for α = β = v velocity-velocity (VV), for α = v,
β = p velocity-position (VP), and for α = p, β = v
position-velocity (PV) second order balanced truncation,
respectively. All four pairs of these transformation matri-
ces are summarized in Table 1. Hence, there are in total
four different reduced order models in second order form

M̂αβ
¨̂x(t) + D̂αβ

˙̂x(t) + K̂αβ x̂(t) = B̂αβu(t),

ŷ(t) = Ĉp
αβ x̂(t) + Ĉv

αβ
˙̂x(t)

Table 1. Left and right transformations ma-
trices of balanced truncation for second order

systems.

Type right transformation left transformation

PP Tr,pp := RpYpp,1Σ
− 1

2
pp,1 Tl,pp := RpXpp,1Σ

− 1
2

pp,1

PV Tr,pv := RpYpv,1Σ
− 1

2
pv,1 Tl,pv := RvXpv,1Σ

− 1
2

p v ,1

VP Tr,vp := RvYvp,1Σ
− 1

2
vp,1 Tl,vp := RpXvp,1Σ

− 1
2

v p ,1

PV Tr,vv := RvYvv,1Σ
− 1

2
vv,1 Tl,vv := RvXvv,1Σ

− 1
2

v v ,1



with

M̂αβ := TTl,αβMTr,αβ ∈ Rr×r,
D̂αβ := TTl,αβDTr,αβ ∈ Rr×r,
K̂αβ := TTl,αβKTr,αβ ∈ Rr×r,
B̂αβ := TTl,αβB ∈ Rr×m,
Ĉp
αβ := CpTr,αβRm×r,

Ĉv
αβ := CvTr,αβ ∈ Rm×r.

(10)

For this type of balanced truncation, there is in general no
error bound similar to (5). For an adaptive determination
of the reduced order model, one can, e.g., monitor the ratio
of the entries in Σαβ

σj,αβ
σ1,αβ

≤ ε. (11)

Moreover, stability is not preserved for general systems
using the approach in (Reis and Stykel., 2008). We now
show that for the symmetric systems it can be preserved
for two particular choices from (10). Since M is symmetric
positive definite, so are RTpMRp and RTvMRv and hence,
because now their singular value decomposition coincides
with their eigendecomposition, Xpp = Ypp and Xvv = Yvv.
Consequently, Tr,pp = Tl,pp and Tr,vv = Tl,vv holds such
that position-position and velocity-velocity second order
balanced truncation use one-sided transformations. There-
fore, the reduced mass, damping and stiffness matrices
remain symmetric positive definite such that the reduced
order models are asymptotically stable. Note that the
reduced output is still the reduced transposed input matrix
in these two approaches.

Beyond that, since RTvMRp =
(
RTpMRv

)T
we have Xpv =

Yvp, Xvp = Ypv which leads to Tr,pv = Tl,vp and Tr,vp =
Tl,pv. One easily sees then that the mass, damping and
stiffness matrices of the position-velocity reduced order
model are the transposes of the matrices of the velocity-
position reduced order model. Additionally, it holds for
case 1 that B̂pv = (Ĉp

vp)T and B̂vp = (Ĉp
pv)T . For case 2

similar relations involving Ĉv exist. The position-velocity
is the adjoint of the velocity-position reduced order model
such that the spectral- and Frobenius norm of the transfer
functions of both systems are identical as it can be seen in
the frequency response plots for the examples in Section
5.

4. SOLUTION OF THE LYAPUNOV EQUATION

Since for our purposes, M, D, K and thus E and A will
be large and sparse matrices, classical solution strategies
for (8) involving the eigendecomposition of (A, E) cannot
be applied due to their cubic complexity. We therefore
approximate the Cholesky factor R by a low-rank solution
factor R̂ ∈ Rn×d, d� n such that R̂R̂T ≈ P . For this we
use the generalized low-rank alternating direction implicit
method (G-LR-ADI) (Penzl, 2000; Saak, 2009; Benner and
Saak, 2011) which follows for j = 1, . . . , jmax the iteration

V1 =
√
−2 Re (µ1)(A+µ1E)

−1
G,

Vj=
√

Re (µj)
Re (µj−1)

(
I−(µj+ µj−1)(A+µjE)

−1
)
EVj ,

(12)

with R̂ = [V1, . . . , Vjmax ]. There the µj ∈ C− are shift pa-
rameters steering the convergence. In a large-scale setting

they are usually obtained from a small number of Ritz
values of E−1A solving approximately a rational min-max
problem (Penzl, 2000). Since systems of the form (1) come
often from a spacial finite element discretization of elastic
mechanical bodies, the matrix pair (A, E) of (6),(7), and
equivalently the quadratic matrix polynomial associated
to (1), will most likely have complex eigenvalues. Hence
the Ritz values as well as the shift parameters might be
complex numbers. In the presence of such complex shift
parameters, the iteration (12) will consequently produce a

complex low-rank factor R̂. This is undesirable from a nu-
merical point of view since complex arithmetic operations
are more expensive than real ones. Moreover, a complex
low-rank factor R̂ will also make the transformation matri-
ces (9) and hence the matrices defining the reduced order
model (10) complex. However, if the both µj , µj+1 := µj
are consecutive shift parameters this can be circumvented
by following the approach in (Benner et al., 2011) which
allows the computation of real low-rank factors even if
complex shift parameters are used. The main result there
is that the iterate with respect to µj+1 can be constructed
by

Vj+1 = Re (Vj)−  Im (Vj) + 2
Re (µj)
Im (µj)

Im (Vj)

such that the solution of the complex linear system with
µj is not required. Thus the amount of complex arithmetic
operations and storage is greatly decreased.

For reasons of efficiency, instead of working with the
augmented matrices E, A, G and the associated linear
systems

(A+ µE)V̂ = EV

of dimension 2n × 2n the iteration (12) can be rewritten
such that linear systems of the form

(µ2M − µD +K)V̂ (1) = Ŵ

of dimension n × n have to be solved (Benner and Saak,
2011) which involve the original matrices M, D, K, B .
This modification is usually referred to as second order LR-
ADI (SO-LR-ADI). Altogether this leads for case 1 to the
second order LR-ADI (SO-LR-ADI) given in Algorithm 1.
The iteration for case 2 is similar and can be obtained
from using the augmented matrices (7) and rewriting the
associated iteration (12).

5. NUMERICAL EXAMPLES

We investigate the quality of the model reduction approach
using two test systems which both represent finite ele-
ment models of elastic structures and belong to case 1.
The first model represents a Bernoulli beam, where the
discretization leads to a second order system of dimension
n = 3000 with m = 1. The second system was obtained
from a discretization of a secondary deformable mirror
which is part of a telescope. There, n = 83508 and we
take the first m = 5 of the original 672 columns in B. The
generalized Lyapunov equations of dimension 6000 and
167016 were solved with SO-LR-ADI (Algorithm 1) until
the norm of the normalized Lyapunov residuals dropped
below 10−8 which required 76 and 88 iterations of SO-
LR-ADI, respectively. Second order balanced truncation
was applied to obtain the reduced order models, where in
both examples the dimensions of the reduced systems was



Algorithm 1 Second-Order Low-rank ADI iteration (SO-
LR-ADI)

Input: M , D, K, B defining (1) and shift parameters
{µ1, . . . , µjmax

}.
Output: Real low-rank solution factor R̂ ∈ R2n×djmax ,

such that R̂R̂T ≈ P in (8).
1: for j = 1, 2, . . . , jmax do
2: if j = 1 then
3: Solve (µ2

1M − µ1D +K)V̂ (1) = −B for V̂ (1).

4: Set V̂ (2) = −µ1V̂
(1).

5: V1 =

[
V

(1)
1

V
(2)
1

]
=
√
−2 Re (µ1)

[
V̂ (1)

V̂ (2)

]
.

6: else
7: Solve

(µ2
jM − µjD +K)V̂ (1) =(µjM −D)V

(1)
j−1

−MV
(2)
j−1

for V̂ (1).
8: Set V̂ (2) = V

(1)
j−1 − µj V̂ (1).

9: Construct iterate

Vj =

[
V

(1)
j

V
(2)
j

]

=
√

Re (µj)
Re (µj−1)

(
Vj−1 − (µj + µj−1)

[
V̂ (1)

V̂ (2)

])
.

10: end if
11: if Im (µj) = 0 then

12: R̂ = [R̂, Re (Vj)].
13: else
14: β = 2

Re (µj)
Im (µj)

.

15: Vj+1 = Vj + β Im (Vj).

16: W := [Re (Vj), Im (Vj)]

√2 0

β√
2

√
β2

2 + 2

 .
17: Update low-rank solution factor R̂ =

[
R̂, W

]
.

18: Set j = j + 1.
19: end if
20: end for

determined using the ratio (11) and a truncation toler-
ance ε = 10−10. Additionally, the reduction to first order
systems with standard balanced truncation (in the sequel
denoted by BT1) was carried out using both (11) and the
error bound (5) (BT2) to set the reduced dimension. We
measure the accuracy of the different reduction approaches
using the transfer functions

H(s) := C(s2M + sD +K)−1B,

Ĥ(s) := Ĉ(s2M̂ + sD̂ + K̂)−1B̂,

F̂ (s) := L̂(sÊ − Â)−1Ĝ

with s = iω, ω ∈ R of original and reduced order systems,
as well as the associated relative errors

εrel = ‖H(s)− Ĥ(s)‖2�‖H(s)‖2,
or εrel = ‖H(s)− F̂ (s)‖2�‖H(s)‖2,

where the quantities involving F̂ are used for the reduc-
tion to a generalized first order system (BT1 and BT2).
The frequency parameter ω varies through logarithmically

spaced points from the interval [1, 104] Hz for the beam
example and [10−3, 5 · 103] Hz for the mirror system.
Table 2 shows the dimensions of the obtained reduced
order models and the maximal relative error in the con-
sidered frequency range for both examples. Fig. 1 and
3 show the frequency response in terms of the spectral
norm of exact and reduced transfer functions for both
examples. Apparently, there is no distinguishable differ-
ence between the frequency response plots of original and
reduced models. In Fig. 2 and 4 the associated relative
errors along the considered frequency interval is plotted
showing that the accuracy of the models obtained with
second order and standard balanced truncation using the
singular value ratio (11) is very high. The relative error of
standard balanced truncation using the error bound (5) is
much higher as it is also visible from the values in Table 2.
This leads to the conclusion that monitoring the relative
singular value decays yields more accurate results for these
systems. Similar experiments (not reported here) using
a fixed dimension of the reduced order model instead of
using (5) or (11) also showed a higher accuracy obtained
with second order balanced truncation. The equivalence
of the frequency response in the spectral norm of position-
velocity and velocity-position reduced order models is also
clearly visible by the relative error plots.

Table 2. Dimensions of the reduced systems
and maximal relative error for both examples.

beam mirror

Type r max (εrel) r max (εrel)

PP 12 2.8 · 10−8 60 1.1 · 10−5

VV 27 4.7 · 10−10 105 4.3 · 10−8

PV 19 3.2 · 10−9 98 4.2 · 10−8

VP 19 3.2 · 10−9 98 5.4 · 10−8

BT1 24 3.9 · 10−9 132 5.0 · 10−8

BT2 9 1.5 · 10−3 68 3.7 · 10−4

6. CONCLUSIONS

We have investigated second order balanced truncation
for the special class of symmetric second order systems.
This structure is beneficial, since it enables the preserving
stability of the dynamical system in the reduction process
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Fig. 1. Bode plots of exact and reduced systems for the
beam model.
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Fig. 2. Relative error of the reduced systems for the beam
model.
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Fig. 3. Bode plots of exact and reduced systems for the
mirror model.
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Fig. 4. Relative error of the reduced systems for the mirror
model.

and it also greatly reduces the amount of required compu-
tational work. The occurring generalized large-scale Lya-
punov equations were efficiently solved with an adequately
adapted version of the low-rank ADI method. Numerical
experiments using finite element discretizations of real
elastic bodies confirmed a high accuracy of the obtained
reduced order models, which also lead to more accurate
results than following the standard balanced truncation
approach by reducing the second order system to a reduced
first order state space system.
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