
Model reduction of a batch drum
granulator by proper orthogonal

decomposition

Michael Mangold ∗

∗Max Planck Institute for Dynamics of Complex Technical Systems,
Sandtorstr. 1, 39106 Magdeburg, Germany (Tel: +49-391-6110361;

e-mail: mangold@mpi-magdeburg.mpg.de).

Abstract: Particle processes with agglomeration or breakage are often described by population
balances. This leads to mathematical models containing partial integro differential equations.
It is quite challenging to solve such equations numerically and to apply them to process
control tasks. Reduced models for agglomeration and breakage processes are desirable. In this
contribution, the use of proper orthogonal decomposition is suggested as a method to derive
such reduced models. The reduction method is applied to a batch granulator. A low order model
is formulated and found to be in good agreement with the reference model. The usefulness of
the low order model is demonstrated by applying it to an optimal control problem.
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1. INTRODUCTION

Particle processes play an important role in chemical
and pharmaceutical industry. Crystallization, granulation
or polymerization and prominent examples for this class
of processes. Population balance equations have been
widely accepted as an appropriate tool to describe particle
processes mathematically [Ramkrishna, 2000]. Population
balances typically are partial differential equations, whose
independent variables are the time and one or several char-
acteristic particle properties like the characteristic particle
size or the particle composition.

An important difference between population balance sys-
tems and spatially distributed systems is that the in-
teraction between two points in space usually decreases
with their distance, whereas in population balances strong
interactions may occur between remote points on the
property coordinate. Examples are breakage phenomena,
where a larger particle breaks into several smaller ones,
or agglomeration phenomena, where two small particles
merge to a larger one. Agglomeration and breakage cause
integral terms in the population balances and turn the
population balances into partial integro differential equa-
tions. The numerical treatment of this type of equations
is quite challenging. Further, the complicated structure
of the equations makes it to hard to apply them to the
solution of process control problems as it limits the number
of applicable controller design techniques. In literature,
nonlinear model predictive control has been suggested by
several authors to overcome this problem, e.g. [Glaser
et al., 2009]. It would be desirable to simplify the process
model of agglomeration processes in such a way that a
broader class of control algorithms becomes applicable.

The method of moments and its extensions are frequently
used to reduce population balance equations to low order
model systems [Marchisio et al., 2003]. Although well
developed, it may be seen as a certain drawback of the
method that the resulting reduced model only describes
the moments of a particle distribution, but not the distri-
bution itself.

An alternative model reduction approach consists in the
use of proper orthogonal decomposition (POD) methods.
The key idea is to approximate the property distributions
by a linear combination of problem specific basis functions,
which are computed from solutions of the detailed refer-
ence model. The method requires test simulations with the
detailed model to generate the basis functions and further
coefficients of the reduced model. This preparation step
may be computationally quite expensive, but as a reward
one obtains a nonlinear reduced model of low order that
can be solved quite easily.

In previous publications, proper orthogonal decomposition
could be applied successfully to the model reduction of a
crystallization process with particle growth and complex
fluid dynamics [Krasnyk et al., 2012]. The objective of
this work is to show that the method is also well suited
to treat agglomeration processes, because it generates
reduced models with a nice and simple structure.

A drum granulator model from literature is used to illus-
trate the model reduction method. The reference model
is briefly introduced in Section 2. Section 3 contains the
main part of the work. It discusses the model reduction
procedure and compares the reduced model with the ref-
erence model. Section 4 finally presents a strategy to solve
an optimal control problem based on the reduced model.
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2. REFERENCE MODEL

Granulation is a technique used to enlarge particles by
mixing them with a liquid, the binder, that agglomerates
smaller particles to larger units. Granulation is often done
in rotating drums containing the solid. In batch operation,
a powder of fine particles is filled into the drum at the
beginning of the process. During the process, liquid binder
is added at a certain defined spray rate. How to change the
binder spray rate over time in order to get particles with
desired properties is a major design problem for this type
of process.

The following work is based on a dynamic model of a
drum granulator published by Wang et al. [2006]. In the
variant used here, the model assumes perfect mixing inside
the drum, i.e. it is space independent. The particle mass
density distributions are described as a function of the
time and a characteristic particle size. The main physical
phenomena accounted for are particle growth and particle
agglomeration. The model consists of a population balance
for the solid particle, a balance for the powder mass, and
a balance for the liquid content of the drum. The balance
equations are listed in the following.

• The population balance for the particle mass density
distribution m(L, t), where L is the characteristic
particle size, reads:
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The first term on the right hand side of (1) describes
particle growth with a growth rate G, which is size
independent and a function of the powder mass and
the liquid content. The second and the third term
describe changes in the particle mass distribution due
to agglomeration; β is the coalescence kernel given by

β = β0(xw)
(L+ λ)2

L λ
(2)

For the precise definition of G and β0 see [Wang et al.,
2006].
• The particle growth causes a mass transfer from the

fine powder to the particle phase. The balance for the
fine powder mass Mpowder reads
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• A differential equation for the liquid content xw
follows from the liquid mass balance:

Mtotal
dxw
dt

= Rw (4)

In (4) Mtotal =
∫ Lmax

Lmin
m(L, t)dL + Mpowder is the

total solid mass, and Rw is the binder spray rate.

To solve the reference equations numerically, the mass con-
serving discretization scheme by Litster et al. [1995] with
imax = 20 size intervals and q = 4 internal discretizations
per size interval is used.

3. MODEL REDUCTION

The technique of proper orthogonal decomposition (POD)
[Sirovich, 1987, Park and Cho, 1996, Kunisch and Volk-
wein, 2003] is applied to obtain a reduced model. As a
first step, the particle mass density function is expressed
by the series approach

m(L, t) ≈
N∑
i=1

µi(t)ψi(L) (5)

The space dependent basis functions ψi(L) are computed
from test simulations with the reference model. Differen-
tial equations for the time dependent functions µi(t) are
obtained from Galerkin’s method of weighted residuals.
Both steps are explained in the following.

3.1 Generation of basis functions

Proper orthogonal decomposition uses problem specific
basis functions. A set of orthonormal basis functions is
generated from test simulations with the reference model,
so-called snapshots. In the drum granulator example, the
snapshots are dynamic solutions of the particle mass
density distribution m(L, t) at Ns time points t1, . . . , tNs

.
The basis functions are chosen in such a way that they
approximate the average of the snapshots in a best possible
way. This can be formulated as the optimization problem
for a basis function ψj(L):

Ns∑
s=1

(
m(L, ts)− (m(L, ts), ψj(L))Ω ψj(L),

m(L, ts)− (m(L, ts), ψj(L))Ω ψj(L)
)

Ω

!= min (6)

The brackets (., .)Ω denote the scalar product:

(f(L), g(L))Ω =

Lmax∫
Lmin

f(L) g(L) dL (7)

The term (m(L, ts), ψj(L))Ω = µj(ts) is the projection of
the snapshot m(L, ts) on ψj(L). The optimization problem
(6) is constrained by the scaling condition

(ψj(L), ψj(L))Ω = 1 (8)

When expressing the basis functions by

ψj(L) =
Ns∑
s=1

m(L, ts) vsj (9)

with still unknown coefficients vsj , it can be shown that
the optimization problem (6, 8) may be transformed into
the eigenvalue problem
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where Mij is the abbreviation for the scalar product of two
snapshots:

Mij = (m(L, ti),m(L, tj))Ω (11)

As M is symmetric, the eigenvectors vj are orthogonal.
It is easy to show that therefore the basis functions are
orthogonal, as well, i.e.

(ψj(L), ψk(L))Ω = 0 for j 6= k (12)

The eigenvalues λj may be interpreted as a measure for
how relevant the basis function ψj is for the reproduction
of the snapshots [Holmes et al., 1998]. A small value of λj
means that the corresponding basis function does not con-
tribute significantly to the approximation of the snapshots
and may be neglected. In this sense the eigenvalues of M
help to choose an appropriate number N of basis functions
in the series approximation (5) for m(L, t).

In summary, the computation of basis functions requires
(i) the generation of Ns snapshots, (ii) the generation
of the Ns × Ns matrix M and (iii) the solution of
the eigenvalue problem (10). Especially the first step
may computationally expensive if the reference model is
complex. However, one should note that the computation
time needed to generate the basis functions does not
increase the computation time for the solution of the
reduced model, as the basis functions are generated before
solving the reduced model.

For illustration, Figure 1 shows the first three basis func-
tions of the drum granulator problem.
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Fig. 1. First three basis functions of the reduced drum
granulator model

3.2 Derivation of reduced model equations

In order to obtain differential equations for the time
dependent functions µj(t) in the series expression (5), the

method of weighted residuals is applied. It is requested
that, when inserting the approximation (5) for m(L, t) into
the population balance (1), the projection of the residual
on the basis functions should vanish, i.e.
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Inserting the approximation (5) for m(L, t) into the pow-
der mass balance (3) gives

dMpowder
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= G
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The coefficients Aji, B′jki, B
′′
jki and Ci have to be com-

puted by numerical quadrature, which may be quite ex-
pensive. However, as the integrals depend only on the basis
functions, the quadratures can be done offline, before the
runtime of the reduced model. Therefore, their computa-
tion does not slow down the solution of the reduced model.
For the reduced model, Aji, B′jki, B

′′
jki and Ci are just

constant parameters.

3.3 Solution of the reduced model

During runtime of the reduced model, the following set
of ordinary differential equations has to be solved (j =
1, . . . , N):

dµj
dt

=−G
N∑
i=1

Aji µi

+
6
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(20)
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=G
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Ci µi (21)

Mtotal
dxw
dt

=Rw (22)

One can see that the reduced model system has a nice
and simple structure with a sum of quadratic terms that
replaces the integrals appearing in the original population
balance (1). It is found that N = 6 basis functions approx-
imate the particle mass density distribution sufficiently
well, so the reduced model consists of eight differential
equations.

A test simulation compares the reduced model and the
reference. In the test, binder is added for the first 33 s (see
Figure 2). Figure 3 shows the resulting size distributions.
There is a good agreement between the reduced model and
the reference solution. The objective of Section 4 will be
to produce particles of a defined characteristic size. The
range of desired particle sizes is indicated by the shaded
area in Figure 3. Figure 4 shows the time evolution of the
total mass of particles in the desired size range. Slightly
negative values in the solution of the reduced model are
caused by the partly negative basis functions. Obviously,
the reduced model can only be an approximation of the
original model, but is sufficiently close to the reference for
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Fig. 2. Test scenario: Binder is added for the first 33 s with
a constant rate, then the binder spray rate is set to
zero.
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Fig. 3. Mass density distributions resulting from the binder
spray rate in Figure 2

many applications. Figure 4 also shows the result, when
the simpler discretization scheme by Hounslow et al. [1988]
with 20 size intervals is used, as was done in the original
paper by Wang et al. [2006], instead of the scheme by
Litster et al. [1995] with 80 size intervals. Although the
reduced POD model presented here is of lower order than
the discretized model with 20 size intervals, its result is
closer to the reference solution.

In literature, it has been seen as a drawback of spectral
methods like the POD method applied here that these
methods are not mass conservative [Bück et al., 2011].
In principle, this is true. However, in contrast to non-
mass-conservative discretisation schemes, the variation of
the total mass in this case is not a numerical inaccuracy,
but lies in the nature of the projection method. This is
illustrated by Figure 5, which shows the total mass of
the particles when projected on the subspace defined by
the basis functions. Although the total mass is constant
in the reference simulation due to the mass conservative
discretization scheme, the projected total mass in the ref-
erence simulation varies with time. This variation is re-
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Fig. 4. Time evolution of the product mass; the dotted line
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solve the reference model.

produced by the reduced model with quite good accuracy.
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projected

In conclusion, the reduced model seems to describe the
drum granulation process with sufficient accuracy to be
applicable to control problems. This is studied in the next
section.

4. OPTIMAL CONTROL

An optimal control problem for the batch drum granulator
is considered that was stated by Wang et al. [2006]. The
task is to produce as many particles as possible of the
desired size range indicated in Figure 3, to do this as fast
as possible, while minimizing the amount of binder fed
during the batch process. Further, one has to obey the
constraints that there is a maximum binder spray rate,
that the binder spray rate must not become negative and
that the spray rate can only change with a finite velocity.
This task can be formulated as the following dynamic
optimization problem:

minimize
Rw(t), tf

−w1Mproduct(tf ) + w2

tf∫
0

Rw(θ) dθ + w3 tf


(23)

subject to

0 < Rw < Rw,max, −Ṙw,max < Ṙw < Ṙmax

model equations (1)-(4)
(24)

In (23), tf is the final time of the batch process, Mproduct

is the total mass of the particles with the desired size, and
w1−3 are constant weighting coefficients. From the liquid
mass balance, it is obvious that the integral

∫ tf
0
Rw(θ) dθ

in the objective function (23) may also be written as
Mtotal (xw(tf )− xw(0)).

To solve the optimization problem, it is first observed
that the particle growth rate G is rather small for the
studied process and can be set to zero without a significant
loss of accuracy. Therefore, when solving the optimization
problem the particle growth is neglected. This has the big
advantage that the equations for µj can be decoupled from
xw by the time scaling

dτ

dt
= 108 β0(xw) (25)

(The factor 108 is introduced only to obtain “nicer” values
for τ). The differential equations for µj read in the scaled
time:

dµj
dτ

=
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πρ
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and the product mass follows from

Mproduct(τ) =
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i=1

µi(τ)
Lp,max∑
Lp,min

ψi(L) dL, (27)

where Lp,min and Lp,max are the minimum and maximum
size, respectively, of particles in the product range. The
nice thing about Equation (26) and (27) is that they do not
have to be solved simultaneously with the solution of the
optimization problem. As the equations are independent
of Rw, Mproduct(τ) can be computed offline, and its value
can be read from a look-up table during optimization.

To solve the remaining model equations, the scaled time
τ serves as an parameterizing output of the system. It is
expressed as a polynomial in t:

τ =
np∑
i=1

ai

(
t

tf

)i
(28)

with free coefficients a1, . . . , anp , which will become the
optimization variables in the final formulation of the
optimization problem (a0 is set to zero in order to have
τ = 0 for t = 0 ). By differentiating (28) with respect to
t and substituting dτ/dt with the right-hand side of (25)
one obtains an implicit equation for xw as a function of
a1, . . . , anp , tf , t:

β0(xw) = 10−8

np∑
i=1

ai

tif
i t(i−1) (29)
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Due to the nonlinearity of the agglomeration kernel
β0(xw), an exact analytical solution of (29) is impossible,
but a numerical solution is straight-forward.
Differentiating (29) with respect to t and inserting the
liquid mass balance (4) gives an explicit expression for Rw
as a function of a1, . . . , anp , tf , t:

Rw = 10−8 Mtotal

β′0(xw)

np∑
i=2

ai

tif
i (i− 1) t(i−2) (30)

Another differentiation of (29) finally yields an expression
for Ṙw as a function of a1, . . . , anp

, tf , t:

Ṙw = 10−8 Mtotal

β′0(xw)

np∑
i=3

ai

tif
i (i− 1) (i− 2) t(i−3)

−β
′′
0 (xw)
β′0(xw)

R2
w

Mtotal
(31)

Using the described parametrization converts the dynamic
optimization problem (23), (24) into the following static
optimization problem whose solution does not involve any
underlying solution of differential equations:

argmin
a1, . . . , anp

, tf

{−w1Mproduct(τ(tf )) + w2 xw(tf ) + w3 tf}

(32)

subject to

0 < Rw < Rw,max, −Ṙw,max < Ṙw < Ṙmax

equations (27), (28), (29), (30), (31)
(33)

The optimization problem is solved numerically by fmin-
con in Matlab (see Figure 6). It is assumed that the
binder spray rate is initially equal to zero. The numerical
result can be interpreted as follows: The optimizer aims at
reaching the value of τ that is connected to the maximum
value of Mproduct. This can either be achieved in a slow but
binder saving manner, or in a fast way while consuming a
higher amount of binder. The ratio between the weighting
coefficients w2 and w3 determines, if the fast or the slow
strategy is used. A large value of w3 puts emphasis on
the production time and results in the fast solution and a
higher binder consumption.
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