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Abstract: This paper is concerned with stabilizing open loop unstable fluidized bed spray
granulation with internal product classification by means of nonlinear feedback control. The
process dynamics are described by a population balance model, i.e. a nonlinear partial integro-
differential equation. Therefore a direct stabilization in a classical Ly-norm is at least very
difficult. To overcome this problem a stability concept using two generalized distance measures,
called discrepancies, is used. In order to show that the discrepancy based control approach
presented in this contribution also guarantees stability in the sense of a L,-norm or L.,-norm

additional conditions are stated and verified.

1. INTRODUCTION

Fluidized bed spray granulation is a particulate process,
where a bed of particles is fluidized, while simultaneously
injecting a solid matter suspension or solution. As process
air temperatures are typically high, the fluid evaporates
and the remaining solid material either forms new nuclei
or contributes to growth of already existing particles. In
order to guarantee a minimum product particle size a
product classification is required. This can be either done
by external classification using sieves with corresponding
recycle of the over- and undersized fraction [2] or by in-
ternal classification using an air sifter with countercurrent
flow [4]. The focus in this work is on continuous fluidized
bed spray granulation with internal product classification
as depicted in Fig. 1. A corresponding process model has
been proposed recently by Vreman et. al. [4]. In partic-
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Fig. 1. Process scheme

ular, it has been shown that for certain ranges of the
operating parameters regions of instability, resulting in
nonlinear oscillations of the particle size distribution, exist.
These oscillations give undesired time behavior of product
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quality. Similar patterns of behavior have been observed
for other particulate processes as continuous fluidized bed
spray granulation with external product classification and
material recycles [2, 3] and crystallization processes [14].
So far, main emphasis was on crystallization processes.
Here, several approaches for stabilizing control design have
been proposed, using linear (e.g. [11]) and nonlinear (e.g.
[12]) lumped models or linear (e.g. [13]) and nonlinear
infinite dimensional models, i.e. applying the discrepancy
based control approach presented in this contribution [9].
For fluidized bed spray granulation with external product
classification a linear and nonlinear control design have
been proposed recently in [6, 7].

In this contribution control design based on the nonlin-
ear infinite dimensional model of the fluidized bed spray
granulation with internal product classification is investi-
gated using the concept of stability in the sense of two
generalized distances, called discrepancies.

2. CONTINUOUS FLUIDIZED BED SPRAY
GRANULATION WITH CLASSIFYING PRODUCT
WITHDRAWAL

Continuous fluidized bed spray granulator with internal
product classification as depicted in Fig. 1 consists of
a granulation chamber, where the particle population is
fluidized through an air stream and coated by injecting
a suspension V.. The particle growth associated to the
layering process has been described in [1]. In the present
configuration only a certain part of the injected suspension
(1 —0)V, contributes to the particle growth, while the rest
bV, completely dries before hitting existing particles in the
bed.
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In the following, the moments p; of the particle size
distribution n are defined as follows

i = / LindL. 2)
0

For the generation of new particles it is assumed that
nuclei with a characteristic diameter Ly are formed due
to spray drying.

A%
B=-—S6(L—-L 3
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The nucleation parameter b determining how much of the
injected suspension results in new particles is assumed to
depend only on the bed height h, which can be obtained

from
14

h A—oa (4)
where ¢ is the bed porosity. In the following the bed
porosity € is assumed to be constant. The free distance for
the spray droplets decreases with increasing bed height
h resulting in a decreasing nuclei formation. For a bed
higher or equal to the nozzle height a constant minimal
nucleation parameter b = b, is assumed. The maximum of
the nucleation parameter b = 1 is reached for a minimum
bed height of 0 resulting in a pure spray drying process,
i.e. 100% of the injected suspension forms new particles.
For bed heights between the two extremal situations h = 0
and h = hy,., the nucleation parameter b is interpolated
linearly.

b= beo + maz (0, (1— boo)h"]f_h> (5)

In order to guarantee a continuous process operation
particles are continuously removed through an air sifter
with countercurrent flow. Due to the particle size specific
sinking velocity large particles pass the air sifter while
small particles are reblown into the granulation chamber.
The minimum particle size, which can pass through the
air sifter is characterized by the sifting diameter L;. The
classifying product removal therefore reads

hprod = KO’(L — Ll)n (6)

where K is the drain. As has been shown in [4] the process
can be described by a population balance model for the
particle size distribution consisting of the following particle
fluxes:

e B particle flux due to nuclei formation,
® 7ipr0q Particle flux due to product removal,

and size independent particle growth associated with the
particle growth rate G

on on .

or = Cop ~Twrert D ™)
For simulation the model equations are discretized ap-
plying the finite volume method (1st order upwind flux
discretization) with 150 grid points. The model parameters
used are given in Tab. 1.
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A 5-10mm?
hnoz 440mm

€ 0.5

Ve,o 1.67 - 105 mm®
boo 0.028

Lo 0.3mm

L1 0.7mm

K 1.92-10741

Table 1. Plant parameters

For this model interesting dynamical behavior can be
observed, when starting with an initial particle size distri-
bution equal to the steady state particle size distribution

for Voo = 16700’”77,”3. For sufficiently high suspension in-
jection rates and an associated bed height higher than the
nozzle height, transition processes decay and the particle
size distribution reaches a stable steady state as shown
in Fig. 2. Decreasing the suspension injection rate below
a critical value the steady state becomes unstable giving
rise to nonlinear oscillations as depicted in Fig. 3. Here,
the associated mechanism is as follows:

e For a bed height smaller than the nozzle height spray
drying causes an increased nuclei production.

e This results in an increasing number of smaller par-
ticles and a reduced growth rate.

e When the bed height reaches the nozzle height the nu-
clei production becomes small and remains constant,
resulting in a higher growth rate.

e However, when the peak of the particle size distri-
bution reaches the critical air sifter radius L; the
associated particles are removed from the granulator
resulting in a decrease of the bed height below the
nozzle height and hence the process repeats.

In contrast, a high suspension rate gives a constantly high
nuclei production and a high growth rate. Therefore, the
bed height remains bigger than the nozzle height and after
a transition time the steady state particle size distribution
is reached and no oscillations occur.
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Fig. 2. Open loop Simulation in the stable region V. =
0.96 - V. o - 3 (left) and n (right)

A detailed one-parameter bifurcation analysis (Fig. 4)
confirms the previously described process time behavior
and its dependence on the chosen suspension injection
rate V.. For sufficiently high values of V. the particle size
distribution reaches a stable steady state. Decreasing the
suspension injection rate V, to a critical value and below
leads to a loss of stability for the steady state solution
and a stable limit cycle occurs. The stable limit cycle is
associated to undesired self-sustained oscillations.
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Fig. 3. Open loop Simulation in the unstable region V., =
0.9 Voo - pus (left) and n (right)
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Fig. 4. One-parameter bifurcation diagrams depending on
Ve

Therefore in the following a stabilizing control will be de-
signed. As we showed by a local controllability analysis [10]
the suspension injection rate V., can be used as a control
input. This is in accordance to our earlier results on control
of fluidized bed spray granulation with external product
classification and mill cycle [6, 7, 8], where we choose
the mill grade, i.e. the principal bifurcation parameter, as
control input.

3. STABILITY WITH RESPECT TO TWO
DISCREPANCIES

Over the last decades different methods for the stabiliza-
tion of systems with distributed parameters have been
developed. Most of them are based on the solution of
the system itself or at least the desired error system, i.e.
the system in closed loop operation. In the backstepping
approach [15] for example the control input is designed
such that it maps the original system onto a desired stable
error system. Whereas in the works of Bastin et. al. [16]
stability is proven using the solution derived with the
method of characteristics.
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Here, the population balance is a nonlinear partial integro-
differential equation with limited control input and a lack
of solution theory. Hence, in this case a transformation to
a desired error system with known classical stability be-
havior is hardly possible. This problem is however solvable
by introducing a generalized stability notion in the sense
of two generalized distance measures, called discrepancies.
In the following, the most important properties and facts
on stability with respect to two discrepancies are stated
in accordance to [17, 18, 19]. Here, the process ¢(.,t) is a
solution of the distributed parameter system and ¢y = 0
an equilibrium of the system.

Definition 1. Discrepancy

A discrepancy is a real valued functional p = p[p (.,1),1]
with the following properties

(1) p(e,t) =0

(2) p(0,t) =0

(3) for an arbitrary process ¢ = ¢(.,t) the real valued
functional p(p(.,t),t) is continuous with respect to ¢.

The discrepancy p(¢(.,t),t) is a measure of the distance
between the process ¢(.,t) and the equilibrium ¢g. Any
measure of distance with the above described properties
can be used. Of great importance is the fact that a dis-
crepancy has not all properties of a metric, e.g. symme-
try d(z,y) = d(y,x) or triangular inequality d(z,y) <
d(z, z)+d(z,y). In addition, it has not to satisfy the impor-
tant property of definiteness, i.e a vanishing discrepancy
p(p,t) = 0 does not automatically imply ¢ = 0. Therefore,
the discrepancy is an extension of the distance measures
normally used in stability theory for distributed parameter
systems like L, and L..-norms.

In the context of stability with respect to two discrepancies
beside the discrepancy p(¢(.,t,t)) measuring the distance
between ¢(.,t) and the equilibrium ¢ a second time in-
dependent discrepancy pg is used describing the distance
between the initial state ¢(.,0) and the equilibrium .
The two discrepancies p and pg have to satisfy, that the
discrepancy p(¢(.,t),t) is continuous at time ¢ = ¢y with
respect to pg at pg = 0, i.e. for every € > 0 and t; > 0
there exists a d(e,tp) > 0, such that from pg < d(g, o)
follows p < e.

Definition 2. Stability with respect to two discrepancies p
and pg

The equilibrium ¢y = 0 is stable in the sense of Lyapunov
with respect to the two discrepancies p and pg for all ¢ > ¢
if for every € > 0 and ¢( > 0 there exists a § = d(e,t9) > 0,
such that for every process ¢(.,t) with pg < d(e,to) follows
p < € for all t > ty. If in addition lim;_, o, p = 0, than the
equilibrium ¢ is called asymptotically stable in the sense
of Lyapunov with respect to the two discrepancies p and

Po-

The basis of many nonlinear control methods is the sta-
bility theory of Lyapunov (e.g. [21]). The knowledge of a
control Lyapunov function for example immediately allows
the design of a stabilizing control (e.g. [22]). In order
to achieve a comparable situation for the stability with
respect to two discrepancies a relationship between the
existence of a Lyapunov functional V' and stability with
respect of two discrepancies has to be established. For this
purpose the notions of positivity and positive definiteness
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of a functional with respect to a discrepancy are intro-
duced.

Definition 3. Positivity with respect to a discrepancy p

The functional V' =V [p, ] is called positive with respect
to the discrepancy p, if V> 0 and V'[0,¢] = 0 for all ¢
with p(p,t) < 0.

Definition 4. Positive definiteness with respect to a dis-
crepancy p

The functional V' = V [, t] is positive definite with respect
to a discrepancy p, if V> 0 and V' [0,t] = 0 for all ¢ with
p(p,t) < oo und for every ¢ > 0 there existsa § = d(g) > 0,
such that V' > §(e) for all ¢ with p[p,t] > e.

The following two theorems state the conditions for a func-
tional V' guaranteeing (asymptotic) stability with respect
to two discrepancies.

Theorem 1. [18] The process ¢ with the equilibrium ¢y =
0 is stable with respect to the two discrepancies p and pg
if and only if there exists a functional V' = V[, t] positive
definite with respect to the discrepancy p, continuous at
time t = tg with respect to po at pg =0 and not increasing
along the process @, i.e. V < 0.

Theorem 2. [18] The process ¢ with the equilibrium g =
0 is asymptotically stable with respect to the two discrep-
ancies p and pg if and only if there exists a functional
V = Vg, t] positive definite with respect to the discrep-
ancy p, continuous at time ¢ = ¢y with respect to py at
po = 0 and not increasing along the process ¢, i.e. V <0,
with tli}m V =0.
(o)

4. DISCREPANCY BASED CONTROL DESIGN

In the following a stabilizing control is derived for the
fluidized bed spray granulation with internal classification
(7). As has been shown earlier [10] the third moment of
the particle size distribution p3 as the controlled variable
and the suspension injection rate V, as the control variable
are appropriate handles in order to stabilize the process.
The error therefore is

e—/OOOL3 (ng —n)dL. (8)

In order to derive a stabilizing controller the above pre-
sented stability concept is applied. Here, we choose the
discrepancy p as follows

p:;(/OOOLg(nd—n)dL)2. ©)

Obviously, the above requirements on a discrepancy are
met. In order to guarantee continuity at time ¢t = t; at
po = 0 the second discrepancy pg is chosen as follows

po = p(t =0). (10)

According to Theorem 2 existence of an appropriate func-
tional V is sufficient to guarantee asymptotic stability with
respect to the two discrepancies p and pg. For this purpose
the following candidate Lyapunov functional is introduced
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2

v;(/oooﬁ(ndn)dL)

In order to achieve stability in the sense described above
the control variable has to be chosen such that the time
derivative of V along the system trajectories (7) is negative
definite for all times and vanishs only for V' = 0.

S (<O0for V#0
V{
=0 for V=0.

(11)

(12)

Calculating the time derivative 1% yields

V = —¢ |:/ L3 (—ng - 'r._lfp’r'od + B) dL:|
0

0 2(1-10b)0n b :
- _ 3 _ Z° _
_ e/o L ( T+ Lgé(L L0)> V.dL

T2 gﬂ'

(o)
—e / L3hproadL.
0

(13)

(14)

Using (14) the negative definiteness of the time derivative
of the candidate Lyapunov functional V' can be guaranteed
choosing the following control law

ce+ [ L¥uproqdL

Vo=— Ty — , (15)
Sy 1p (<2 on o b s(L — Lo) ) dL
where ¢ is a positive constant (¢ = 3 - 1074). The

control law as depicted in Fig. 5 consists of nonlinear
compensation part, which needs a measurement of the
particle size distribution n, and of a proportional error
feedback.

Ya=Hsa u="v, y
Discrepancy based »
Control

A

v

Granulator

n(L,t)

Fig. 5. Control scheme

In addition to stability, the control law (15) guarantees
exponential convergence of V.

V= —ce? = —2cV (16)
However, it has to be mentioned that stability with re-
spect to two discrepancies is necessary but in general
not sufficient for stability with respect to a L,-norm or
pointwise convergence. In order to state conditions, when
convergence in two discrepancies yields convergence of the
deviation n. of the particle size distribution n to a desired
particle size distribution ng, the following well known
results from finite dimensional system theory (e.g. [20]) can
be generalized to the infinite dimensional case. Consider
for example the following first-order partial differential
equation.
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ow ow
e :A(m)% + B(z)u (17)
y=C(z)w (18)

Taking successively time derivatives of the output y yields:

y=C(z)w, (19)
U= C(I)A(x)% + C(x)B(x) u, (20)
=0
V9 =clo) (A, ) w
+C(x) (A(:z:)ai) ) B(z)u. (21)

In analogy with the definition of the relative degree for
finite dimensional systems (e.g. [20]) the relative degree is

defined as the first index j for which C(z) (A(x) 8%)]_1 B(x)

does not vanish, ie. C(x) (A(x)a%)rl B(z) # 0. As a
separation of the state variables is inconvenient for a dis-
tributed parameter system, the zero dynamics are defined
by constraining the output to zero in closed loop operation.
It is well known, that a system with a relative degree
smaller than the system order is stabilized applying a
linearizing control law based on the output y and input
u if and only if the associated zero dynamics are stable.
Therefore, applying the discrepancy based control law
guarantees stability of the whole system if and only if
the zero dynamics associated with the discrepancy p are
stable. Unfortunately, this condition is very hard to check.
Thus, for the fluidized bed spray granulation with internal
product classification only the conditions related to the
finite dimensional linear case, i.e. the presence of right-
half plane zeros, will be checked. This gives at least a
local result, guaranteeing stability in a neighborhood of
a steady state. As can be seen from the pole/zero map in
Fig. 6 the linear approximations around the steady states
for varying V, have no zeros in the right half plane. Hence,
the zero dynamics are stable and stability with respect
to the discrepancy p yields pointwise convergence of the
deviation n. of the particle size distribution n to a desired
particle size distribution ng.

-4
5)(10

Fig. 6. Pole/zero map for varying V,

4.1 Simulation scenario I

In order to test the control law the desired third moment
13,4 is shifted by a ramp from its steady state value

760

for V, = 16700"‘77”3 in the stable region to its steady

state value for V, = 133600%ms in the unstable region.

For comparison a shift of suspension rate from V, =
3 . 3

167007 to V. = 133600~ in open loop operation

has been calculated. As can be seen in Fig. 7 in closed

loop operation the particle size distribution n and all

its moments pg, i1, 2, 3 are stabilized with reasonable
control effort.
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Fig. 7. Set point shift with (gray) and without control
(black ——)

4.2 Simulation scenario II

In simulation scenario I the discrepancy based control law
has been tested for its local behavior, i.e. the slow shift
of the desired particle size distribution guaranteed that
the process stays close to its steady state. Assuming that
the aforementioned zero dynamics are stable not only in a
neighborhood of the steady state the proposed discrepancy
based control law is applied in order to stabilize the
particle size distribution directly from the limit cycle.
Therefore, the control loop is closed after 30h. As can be
seen in Fig. 8 the proposed discrepancy based control law
is able to stabilize the particle size distribution n and all
its moments pg, p1, t2, 43 with reasonable control effort
starting directly from the limit cycle.
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Fig. 8. Stabilization starting from the limit cycle
5. CONCLUSION

A new nonlinear control approach for continuous fluidized
bed spray granulation with internal product classification
has been developed and successfully tested. It uses a gen-
eralized distance measure, the discrepancy, and the asso-
ciated stability theory, stability in the sense of Lyapunov
with respect to two discrepancies, to design a nonlinear
control law for the nonlinear distributed parameter sys-
tem. As the proposed design guarantees only stability
in the sense of Lyapunov with respect to the two cho-
sen discrepancies, i.e. norms of the third moment of the
particle size error distribution, conditions for pointwise
convergences, i.e. convergence in a L.,-norm, have to be
studied. It has been shown, that pointwise convergence can
be achieved if and only if the zero dynamics associated
with the chosen discrepancies are stable.
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