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Abstract: We consider an optimal control problem for networked control systems, where the
loop is closed via a lossy, distributed network with an acknowledgment mechanism. The network
is distributed in the sense that there are different sets of sensors and actuators that each
communicate individually with the controller. We assume that all packets, i.e., the measurement
packets, the control packets and the acknowledgment packets are sent over the lossy network
and thus are subject to loss. We derive suboptimal controllers with respect to a quadratic cost
criterion for the general case and optimal controllers for the case that all states are perfectly
measured over a single link. Additionally, we present stability criteria for both cases.
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1. INTRODUCTION

During the last decades, packet based networks became
very powerful and inexpensive to deploy and are increas-
ingly used in control and estimation. Their possibly unreli-
able communication, e.g., packet loss or delay, needs to be
considered in the controller design. There is an increasing
trend to analyze and design Networked Control Systems
(NCS) - systems, where the control loop is closed via a
packet based network, see, e.g., Yang (2006); Hespanha
et al. (2007).

In this work, an optimal control approach for NCS with
lossy links using a quadratic cost criterion is presented.
Assuming that acknowledgments are perfect, i.e., never
lost, Sinopoli et al. (2005); Nilsson (1998); Garone et al.
(2007) analyze such an optimal control problem, the lat-
ter one also for distributed networks. A similar approach
for non-distributed networks without acknowledgments is
considered in Imer et al. (2006) and Schenato et al. (2007).
In Garone et al. (2008) optimal control over a distributed
network with imperfect acknowledgments is considered. In
a previous work, Kögel et al. (2010), we analyzed for a
non-distributed network with imperfect acknowledgments
robustness issues of such an optimal controller. All these
works assume that all states are perfectly measurable, i.e.,
without measurement noise or that acknowledgments are
never lost. In contrast, in Sinopoli et al. (2006) subopti-
mal control strategies for non-distributed networks with-
out acknowledgments, but noisy measurements is studied.
This suboptimal controller is called optimal-linear control,
because it yields, under the given limitations, the best
possible performance using a linear controller.

1 The researcher was supported in part by the International Max

Plank Research School, Magdeburg, Germany.

These previous cited works are extended in this paper
in two directions: considering a lossy acknowledgment
mechanism as well as a distributed network. The main
results of this work are 1) the derivation of strictly proper
controllers, which are optimal, if we assume that all states
are perfectly measured over a single link 2) optimal-linear
controllers for the case of partial state measurements with
additive noise and multiple output links.

The remainder of this paper is structured as follows. In
Section 2, we formulate the problem and present the net-
work model and networked plant. Afterwards, we discuss
Kalman filtering in Section 3 and show that there is no
separation principle due to the lossy acknowledgments.
Next, we present the main results of this work: the design
of strictly proper optimal (Section 4) and optimal-linear
controllers (Section 5). In Section 6, some analytical sta-
bility criterions are derived. The results are illustrated by
an example in Section 7 and summarized in Section 8.

Notation: Vectors are stated in bold face, × denotes the
standard matrix product and ⊗ denotes the Hadamard or
entry-wise matrix product. The identity matrix is I and
1a×b is the matrix in R

a×b with 1 in every entry. The
Moore-Penrose pseudo-inverse of M is denoted by M †.

2. PROBLEM DESCRIPTION

2.1 Plant and network model

We consider linear, time-invariant, discrete-time systems

xk+1 = Axk +Bua
k +wk

ys
k = Cxk + vk,

where xk ∈ R
n denotes the state of the plant, ua

k ∈ R
p

the input applied by the actuators, wk ∈ R
n represents

process noise, ys
k ∈ R

q denotes the output measured by the
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Fig. 1. Multi link Networked Control System.

sensors, and vk ∈ R
q is measurement noise. The system

matrices A, B and C have the appropriate dimensions.
It is assumed that wk and vk are mutually independent,
zero mean Gaussian white noise with covariances W and
V . Furthermore, the initial condition x0 is Gaussian dis-
tributed with mean x0 and covariance P0 and is indepen-
dent of the noise.

As illustrated in Fig. 1, the plant and controller are con-
nected by an unreliable, distributed communication net-
work. We assume that the sensors send the measurements
ys
k over the network to the controller. With respect to

the actuators we assume that there is a two-way com-
munication between the controller and the actuators: the
controller sends the input uk to the actuators and the
actuators can inform the controller whether they received
this input data or not.

It is assumed that the controller can individually com-
municate with different groups of actuators or sensors,
respectively. Note that if there is only one link to all
actuators or sensors, then the information sent over this
link is either successfully transmitted or lost. In contrast,
if there are multiple links related to specific sensors and
actuators, then also partial information loss is possible.

In particular, there are ni so called input-data links
and also ni input-acknowledgment links connecting the
controller with the actuators. Furthermore, no output links
connect the sensors to the controller.

We model the loss behavior of each link using Bernoulli
random processes, which are i.i.d. in time. In detail,
the jth input-data link is characterized by the process
{jαk}. Moreover, {mβk} is the process modeling the mth
output link. Also the acknowledgment links {jγk} are
modeled using Bernoulli processes. Their definition will
be given below in combination with the acknowledgment
mechanism.

We define the probabilities of a successful transmission as
P (jαk = 1) = jα and P (mβk = 1) = mβ. In addition,
we assume that Bernoulli processes associated to different
links types are mutually independent. Links of the same
type can depend on each other, which is called non-

independent links. In contrast, if {jαk} is independent of
{lαk} and {jγk} of {lγk} for any j, l ∈ {1, . . . , ni}, j 6= l,
then we call these independent input links. Similarly, if
the output links are mutually independent, then these are
called independent output links. In contrast to Garone
et al. (2007, 2008) in our approach, the input links as well
as output links can depend on themselves.

With respect to the links and system matrices we make
the following assumptions. jC ∈ R

qj×n denotes the output
matrix and jvk ∈ R

qj the measurement noise of the
sensor or sensors connected to output link j with q =
∑no

j=1 qj . Additionally, C and vk are given by C =
(

1CT 2CT . . . noCT
)T

, vk =
(

1vT
k

2vT
k . . . novT

k

)T
and

jyt
k = jCxk + jvk. The covariance V of the measurement

noise is given by

V =







1,1V . . . 1,noV
...

. . .
...

no,1V . . . no,noV






,

with i,jV ∈ R
qi×qj and with V = V T ≥ 0. Using the

output link j the controller has access to the measurements
via:

jyk =

{

jCxk + jvk, if jβk = 1

no measurement, if jβk = 0.
(1)

The actuators connected to the input link j feature the
inputs jua

k ∈ R
pj and the input matrix jB ∈ R

n×pj . We
assume that p =

∑ni

j=1 pj , B =
(

1B 2B . . . niB
)

and

ua
k =

(

(1ua
k)

T (2ua
k)

T . . . (niua
k)

T
)T

. Note that these
assumptions are without loss of generality.

Moreover, we assume that all actuators apply the so-called
zero-input strategy

jua
k =

{

juk, if jαk = 1

0, if jαk = 0.

So, if the actuators do not receive the control packets,
then they apply zero input. Note that this scheme is quite
common and used in Garone et al. (2007, 2008); Imer
et al. (2006); Schenato et al. (2007); Sinopoli et al. (2005,
2006); Kögel et al. (2010), but is in general conservative,
see Schenato (2009). Another, possibility is to hold inputs
as considered in Nilsson (1998) or to allow more general
schemes as in Kögel and Findeisen (2011).

In summary, the overall dynamics of the networked plant
is given by (1) and

xk+1 = Axk +

ni
∑

j=1

jαk
jBjuk +wk. (2)

2.2 Acknowledgment mechanism

In order to inform the controller about the fate of the
control packet and thus the input to the plant, the actuator
sends an acknowledgment to the controller. There are pos-
itive and negative acknowledgments, cf. Leon-Garcia and
Widjaja (2004), A positive acknowledgment, called ACK,
is used to report a received control packet. A negative
acknowledgment, called NAK, informs the controller of
an unsuccessful transmission. If acknowledgments cannot
get lost, one type is sufficient. Unfortunately, acknowl-
edgments can also get lost and there will be differences,
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Fig. 2. Sampling time and possible network delay.

depending on the acknowledgments used. Note that it is
impossible to communicate in real-time and reliable over
a lossy channel, which is known as the two generals prob-
lems, see Leon-Garcia and Widjaja (2004). For example
TCP is a reliable protocol, but not a real-time protocol.

We model the loss of each acknowledgment link {jγk}
using two Bernoulli processes: {jθAk } for ACKs and {jθNk }
for NAKs, which are i.i.d. in time. So we have jγk =
jαk

jθAk + (1 − jαk)
jθNk . Moreover we assume that these

processes are independent of the processes of the output
and input-data link. As mentioned earlier processes of
different acknowledgment links can depend on each other.

Using these setup we can consider different cases in one
framework. Note that no acknowledgments are used if
jθ

A
= jθ

N
= 0, ∀j, which is studied in Imer et al. (2006);

Schenato et al. (2007); Sinopoli et al. (2006). Whereas
jθ

A
= 1 or jθ

N
= 1, ∀j, i.e., perfect acknowledgments

is assumed in Nilsson (1998); Garone et al. (2007); Imer
et al. (2006); Schenato et al. (2007); Sinopoli et al. (2005).
Garone et al. (2008); Kögel et al. (2010) analyze lossy
acknowledgments, but both types of acknowledgments

need to have the same loss rates, i.e., jθ
A
= jθ

N
, ∀j or, in

the latter one, it is also possible that only one of the two
acknowledgments is available.

The framework covers the case of different, nontrivial loss
rates, which might result from, e.g., different timings.

2.3 Controller specification

We consider strictly proper controllers, i.e., controllers,
which calculate uk using only information available prior
to k. In contrast, not strictly proper controllers use,
in addition, the measurement at step k to determine
uk. Obviously, these controllers have more information
available and thus might yield better performance. But
the input at step k obtained by the controller depends
on the output at step k, which might be problematic, if
the network or computational delay is not negligible. In
Imer et al. (2006); Schenato et al. (2007); Sinopoli et al.
(2005); Garone et al. (2007, 2008); Kögel et al. (2010)
proper controllers have been considered and in Sinopoli
et al. (2006); Kögel et al. (2010) strictly proper controllers.

In contrast, if we consider strictly proper controllers, then
the network delay is not a critical issue as long as the
sampling time is larger as the total network delay (round
trip time) plus the computational delay, as simplified
illustrated in Fig. (2). Moreover, as outlined in Kögel
(2009) it is possible to retransmit packets as long as this
takes place within the above mentioned timing bounds.

In the following, we denote by the sets Sk all information
available prior to step k + 1. These sets are defined by

S−1 = {x0, P0}

Sk = {Sk−1,yk, (
jγk,

jαk
jγk), j = 1, . . . , ni},

where (jγi,
jαi

jγi) is used to include the acknowledgment
and its type (ACK/NAK). In consequence, a strictly
proper controller uses the set Sk to compute uk+1:

uk+1 = f(Sk),

i.e., only old information is used.

We focus on infinite horizon optimal control in this work.
Specifically, we consider as performance the cost

J∞ = lim sup
N→∞

1

N
E{

N−1
∑

i=0

(

xT
i Qxi + (ua

i )
TRua

i

)

}

E{(ua
i )

TRua
i } =E{

ni
∑

j=1

ni
∑

l=1

jαk
lαk

juT
k
j,lRluk}, (3)

where

R =







1,1R . . . 1,niR
...

. . .
...

ni,1R . . . ni,niR






,

and j,mR ∈ R
pj×pm , and Q ∈ R

n×n, Q = QT ≥ 0,
R ∈ R

p×p, R = RT > 0. The quadratic cost criterion
weights only the applied inputs ua

k - not the input uk sent
to the controller - and can be infinite.

3. OPTIMAL ESTIMATION

Note that there are two different sets of information
available for estimation, which are represented by

S⋆
−1 = {x0, P0}, U

⋆
k = {S⋆

k−1,yk}

S⋆
k = {U⋆

k ,uk, (
jγk,

jαk
jγk); j = 1, . . . , ni}.

S⋆
k includes all information available prior to step k + 1,

in contrast, U⋆
k is the information available at step k.

Moreover, the set S⋆
k includes the input uk in contrast to

the set Sk. Consequently, there are two optimal estimates:
the predicted estimate x̂k|k−1 = E{xk|S

⋆
k−1} and the

filtered estimate x̂k|k = E{xk|U
⋆
k}. For this setup a

detailed derivation of the Kalman filter can be found in
Kögel (2009). The time update of the Kalman filter is

x̂k+1|k =Ax̂k|k +

ni
∑

j=1

(

jαk
jγk + (1− jγk)

jǫk
)

jBjuk

êk+1|k =Aêk|k +wk +

ni
∑

j=1

(1 − jγk)(
jαk −

jǫk)
jBjuk.

where ek+1|k, ek|k denotes the error related to the esti-

mates x̂k+1|k, x̂k|k and jǫk = E{jαk|
jγk = 0}. In the case

of independent input links jǫk is

jǫk = jǫ =
jαjθ

A

1− jαjθ
A
+

(1 − jα)jθ
N

1− (1− jα)jθ
N
. (4)

We observe that the error ek+1|k depends on the input juk,

if there is no acknowledgment (jγk = 0). So, the separation
principle holds, if and only if, the controller always knows
the behavior of the input links.
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Lemma 1. (Separation principle) The separation principle

holds, if and only if, jα = 0, jα = 1, jθ
A
= 1 or jθ

N
= 1

for all j.

Due to the lack of the separation principle the input has
an influence on the measurement update, which is not
presented here for the general case.

If all states are perfectly measured over a single link,
i.e., no = 1, C is invertible and V = 0, then only the
measurement update of the estimate is independent of the
input. It can easily be obtained as

x̂k|k = βkxk + (1 − βk)x̂k|k−1,

using xk = C−1ys
k. We can combine time and measure-

ment update to get the optimal predictive estimator as

x̂k+1|k =(1− βk)Ax̂k|k−1 + βkAxk (5)

+

ni
∑

j=1

(jαk
jγk +

j(1 − γk)
jǫk)

jBjuk,

with the initial estimate x̂0|−1 = x0.

4. OPTIMAL CONTROL FOR A SPECIAL CASE

First, we consider the case no = 1, C−1 exists and V = 0.

Theorem 2. (Optimal control for special case) Consider
the system (1), (2), cost criterion (3) and assume that
n0 = 1, C invertible and V = 0. If the iteration

Mk+1 =(1− β)(ATMkA) + (ATKkB)

× [α]
(

[αα]⊗ (R+BTKkB)

+ [αφ]⊗ (BTMkB)
)†

[α] (BTKkA)

Kk+1 =ATKkA+Q−Mk+1 + (1− β)⊗ (ATMkA)

M0 =0, K0 = I,

converges, where

[α] = diag(1α · Ip1×p1 , 2α · Ip2×p2 , . . .)

[αα] =







1α · 1p1×p1 . . .
E{1αk ·

2αk} · 1
p2×p1 . . .

...
. . .







[αφ] =



















E{(1− 1γk−1)
2

·(1αk−1 −
1ǫk−1)

2} · 1p1×p1
. . .

E{(1αk−1 −
1ǫk−1)

·(1− 1γk−1) · (1−
2γk−1)

·(2αk−1 −
2ǫk−1)} · 1

p2×p1

. . .

...
. . .



















,

then the optimal controller is given by

uk =−G∞x̂k|k−1

G∞ = [α]
(

[αα]⊗ (R +BTK∞B) (6)

+ [αφ]⊗ (BTM∞B)
)†

[α] (BTK∞A),

and the estimator (5). Moreover, the optimal cost is

J∞ = Tr((K∞ +M∞)W )

M∞ = lim
k→∞

Mk, K∞ = lim
k→∞

Kk.

A detailed proof is avoided here, it can be found in detail
in Kögel (2009).

Remark 3. (Implementation) Note that the optimal con-
troller is a combination of a (stationary) Kalman filter and

a linear state feedback, which can easily be implemented.
In order to obtain the controller gain G∞ we need to nu-
merically evaluate the iteration and check its convergence.

Next, we relate the finite, expected cost with upper bounds
on the covariance in the next lemma.

Lemma 4. (Bounded covariance) If the cost per step (3)

is finite and (A,Q
1

2 ) observable, then there is an upper
bound on E{xT

k xk} and E{x̂T
k|k−1x̂k|k−1}.

In contrast, if the cost per step is infinite, then there is no
upper bound on E{xT

k xk}.

This lemma is verified in Kögel (2009).

In contrast to Garone et al. (2008) we derived a strictly
proper controller, while using a more general framework.

5. OPTIMAL-LINEAR CONTROL

In this section, we derive linear control laws for the general
case. We aim to obtain a linear, strictly proper controller
such that it has the best possible performance of all linear,
strictly proper controllers, i.e., a so-called optimal-linear
controller. Our networked control system fits into the
framework of De Koning (1992).

Let us consider the system (2) and choose as plant input

uk = −Kx̂k, (7)

with the unknown controller gain K and the estimate x̂k.
This estimate x̂k is obtained by the estimator

x̂k+1 =Ax̂k +

ni
∑

j=1

E{jαk|Sk}
jBjuk

+

no
∑

j=1

jβk
jL(jyk − jCx̂k), (8)

with the yet unknown filter gains jL, j = 1, . . . , no. We
want to choose jL and K such that the expected cost per
step (3) is minimized. Note that considering a different
estimator order, dynamic or input matrix does not increase
the performance as mentioned in De Koning (1992).

Theorem 5. (Optimal-linear controller) Consider the sys-
tem (1), (2) and the cost criterion (3). Let Q > 0,W > 0

or (A,W
1

2 ) controllable, (A,Q
1

2 ) observable and V > 0,
R > 0. If the iteration

Pm+1 =F1(Pm, Pm,Km, Lm), P 0 = I

Pm+1 =F2(Pm, Pm,Km, Lm), P 0 = 0

Λm+1 =F3(Λm,Λm,Km),Λ0 = I

Λm+1 =F4(Λm,Λm,Km, Lm),Λ0 = 0

Lm =FL(Pm), Km = FK(Λm,Λm),

where

F1 =APmA
T − Lm [β]CPmA

T −APmC
T [β]LT

m

+ Lm([ββ] ⊗ (CPmC
T + V ))LT

m

+B([αφ]⊗ (KmPmK
T
m))BT +W

F2 =APmA
T −B [α]KmPmA

T −APmK
T
m [α]BT

+ Lm([ββ] ⊗ (CPmC
T + V ))LT

m

+B([αǫ]⊗ (KmPmK
T
m))BT
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F3 =ATΛmA−ATΛmB [α]Km −KT
m [α]BTΛmA

+KT
m([αα]⊗ (BTΛmB +R))Km

+KT
m([αφ]⊗ (BTΛmB))Km +Q

F4 =ATΛmA− CT [β]LT
mΛmA−ATΛmLm [β]C

+KT
m([αα]⊗ (BTΛmB +R))Km

+KT
m([αφ]⊗ (BTΛmB))Km

+ CT ([ββ]⊗ (LT
mΛmLm))C

FK =([αα]⊗ (BTΛmB +R)

+ [αφ]⊗ (BTΛmB))† [α] (BTΛmA)

FL =APmC
T [β] ([ββ]⊗ (CPmC

T + V ))†,

with [α], [αα], [αφ] as given in Theorem 2 and

[αǫ] =















E{(1αk · 1γk + (1− 1γk) ·
1ǫk)

2}
·1p1×p1

. . .

E{(1αk ·
1γk + (1− 1γk) ·

1ǫk)
·(2αk · 2γk + (1− 2γk) ·

2ǫk)}1
p2×p1

. . .

...
. . .















[ββ] =







1β · 1q1×q1 . . .
E{1β · 2β} · 1q2×q1 . . .

...
. . .






,

converges as m→ ∞, then the optimal-linear controller of
the form (7), (8) is uniquely given by the gains

L = lim
m→∞

Lm =
(

1L 2L . . .
)

, K = lim
m→∞

Km.

Moreover, the expected cost per step can be obtained by

J∞ =Tr

(

Q(P + P ) 0
0 KT ([αα]⊗R)KP

)

P = lim
m→∞

Pm, P = lim
m→∞

Pm.

In addition, E{

(

xk

x̂k

)(

xk

x̂k

)T

} is bounded.

Finally the iteration diverges, if and only if, there is no
stabilizing linear controller.

We refer to Kögel (2009) for the proof.

Remark 6. (Convergence of iteration) Checking the con-
vergence of the iteration and thus stability in the mean
square sense can be done similarly as in Sinopoli et al.
(2006); De Koning (1992): numerically.

6. STABILITY CRITERIONS

In this section, we analyze the convergence of the iterations
of Theorem 2 and 5, and thus the existence of mean square
stabilizing controllers. First we consider the general case.

Corollary 7. (Influence of covariance and weightings on
existence of controllers)
If for one set (Q,W,R, V ) satisfying the conditions of The-
orem 5, there exists a stabilizing, optimal-linear controller
(Theorem 5), then it exists for every such set.
If for no = 1, V = 0, C invertible and a set (Q,W,R)
satisfying the conditions of Theorem 2 there exists a sta-
bilizing, optimal controller (Theorem 2), then it exists for
every such set (Q,W,R).

Proof. This corollary follows directly from (De Koning,
1992, Theorem 3) and the fact that the controller obtained
in Theorem 2 is linear. 2

Now let us consider the case of single links.

Theorem 8. (Existence of optimal and optimal-linear con-
troller for single link systems) Assume ni = no = 1, V = 0,
C invertible and let λmax be the spectral radius of A. If
Q,R,W, V satisfy the assumptions of Theorem 5, then a
necessary condition for the convergence of the existence of
a stabilizing optimal-linear controller is

(A,B) stabilizable

1− (1 − β)λ2max > 0

λ2max






1−

α

1− φ+
φβλ2

max

1−(1−β)λ2
max






< 1

where φ = (1− θ
A
) · (1− ǫ)2 + (1−α)·(1−θ

N
)·ǫ2

α
.

If B is invertible, then the conditions are also sufficient.

For no = 1, V = 0, C invertible, (A,Q
1

2 ) observable,
R > 0, V = 0, and W arbitrary, the above conditions
hold also for the optimal controller presented in Theorem
2.

The proof is based on the results of Garone et al. (2008);
Schenato et al. (2007) and can be found in Kögel (2009).

7. EXAMPLE

We consider a linearized model of the seesaw inverted
pendulum system given in Ramos et al. (1998), see Fig.
3. This unstable system uses two carts on a seesaw, to
stabilize an inverted pendulum mounted onto one of this
cart. The states are x = (d1, ψ, d2, δ, ḋ1, ψ̇, ḋ2, δ̇). Each cart
is connected to a motor with a belt drive. The inputs are
the voltages of the motors u = (U1, U2). Consequently, the
continuous-time system is given by

ẋ =Ax +Bu

A =

(

04×4 I4×4

A21 A22

)

, B =

(

04×2

B2

)

,

A21 =

(

−0.976 8.99 −1.43 0
6.99 5.88 10.2 0

−0.976 8.99 −1.43 −4.53
−6.99 −5.88 −10.2 47.0

)

,

A22 =

(

16.4 0 −0.224 0
1.60 0 1.60 0

−0.224 0 −7.44 0
−1.60 0 51.3 0

)

, B2 =

(

3.74 0.051
−0.37 −0.37
0.051 1.70
0.367 −11.7

)

We use a sampling time of 20ms to discretize the system
resulting in a spectral radius of 1.4 of A.

δ

ψ
d1

d2

U1 U2

Fig. 3. Seesaw inverted pendulum system.

We use different setups. First, we consider that all states
are measured, i.e., C = I8×8 and assume that there are a
single input and single output links (case 1). Next, in case
2, we use two input links and a single output link. Moreover
we consider, that only positions and angles are measured,
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Table 1. Optimal/Optimal-linear control. Ex-
pected cost per step.

Meas. noise V = 0 V = 0.1I

Acknow. Both ACK NAK Both ACK NAK

I 3.81 4.55 3.85 4.35 5.19 4.38

II 3.81 4.54 3.84 4.34 5.18 4.38

III 186 366 192 275 647 287

IV 185 366 191 274 646 286

0.5 0.75 1

0.5

0.75

1

α

β

θ
A

= θ
N

= 0, 0.25, . . . , 1

increasing

θ
A

= θ
N

0.5 0.75 1

0.5

0.75

1

α

β

θ
A

= 0/0.75; θ
N

= 0/0.75

Fig. 4. Boundaries of Stability Areas.

i.e., C = (I4×4 04×4) and two input links and a single
output link are used (case 3) or two input links and four
output links are used: for every measurement a separate
link (case 4). All links are assumed to be independent.
For each of these cases we considered zero measurement
noise V = 0 and noisy measurement V = 0.1I as well as
availability of only ACKs, only NAKs or both of them. We
use W = 0.1I and Q = R = 10−3I and a probability of a
successful transmission of 0.85 for every link.

Note that in the first two cases we can obtain optimal
controllers for the noise free case (Theorem 2). For all
other cases the obtained controller are only guaranteed
to be optimal-linear (Theorem 5).

Table 1 shows the performance for the different setups,
which were verified using Monte Carlo simulations. We
observe that measurement of only the partial state leads
to a significant performance drop. In addition, noisy mea-
surements decrease the performance. Moreover, we observe
that if we use only one acknowledgment type, then using
only NAKs yields in this case a better control performance.

Let us again consider the single link setup, case 1. In this
case we can use the results obtained in Theorem 8 to
determine necessary stability criteria (B is not invertible).
In Fig. 4 we illustrated the boundary of the necessary
stability areas in the α− β plane. The areas described by
the condition are above the boundaries and do not include
them: for any point below the boundary there exists no

stabilizing controller. In the left plot we assume θ
A
= θ

N
=

0, 0.25, 0.5, 0.75, 0.9, 1. The right plot compares the three

acknowledgment possibilities using θ
A

= 0/0.75; θ
N

=
0/0.75, where the dashed line is used for only ACKs, the
solid line for only NAKs and the dash dotted line for ACKs
and NAKs.

8. CONCLUSIONS

Optimal and optimal-linear control of a plant connected to
the controller by a distributed, lossy network is the topic of
this work. Due to the network loss, there is no separation
principle. We obtain optimal-linear controllers for the case
of partial, noisy state measurement and optimal controllers

for the case of perfect measurement of all states over
a single link. In addition, we present analytical stability
criterions for the case of single links.
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