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Abstract: This work considers the fast solution of model predictive control problems for linear
systems with input constraints and a quadratic cost criterion. If the resulting optimization
problem arising from the model predictive control is solved online using the Fast Gradient
method one needs to determine the gradient of the cost function. We propose a method, tailored
for embedded control purposes, that efficiently calculates the gradient taking the underlying
structure of the system into account. Moreover, we discuss how the stability of the plant
influences the required number of iterations to obtain a solution within a prescribed accuracy.

Keywords: Model predictive control, Fast Gradient method, Computational methods, Online
optimization, Embedded Systems.

1. INTRODUCTION

Predictive control, also denoted model predictive control
(MPC), is a modern technique frequently used to control
systems subject to constraints, see Maciejowski (2002);
Qin and Badgwell (2003); Garcia et al. (1989). In predic-
tive control each time a new measurement becomes avail-
able the input is determined by solving a finite horizon op-
timal control problem. Predictive control allows to control
systems with a high performance and such that constraints
are satisfied. However solving the required optimization
problem is computational challenging. Therefore, in this
paper we derive a method to reduce the computational
effort for linear, discrete time, time-invariant systems sub-
ject to input constraints and a quadratic cost criterion.

There are two main approaches to solve the quadratic pro-
grams appearing in predictive control: online and offline.
In the so-called online-optimization the problem is solved
online in each step. The computational demand depends
on the problem is challenging, so online-optimization is
usually limited by the available computation speed. In
the latter approach called explicit MPC the solution for
all possible states is calculated offline and stored in for
example a table, see Bemporad et al. (2002). Since, this
table might grow exponentially in the number of states,
explicit solution is often limited by its memory demand
and restricted to small-scale systems.

Therefore we present in this paper an online-optimization
method tailored for MPC. With respect to the efficient
online solution of such predictive control problems many
tailored approaches exist by now. Rao et al. (1998) and
Wang and Boyd (2008) consider interior-points method
taking the special structure of the problem into account.
Moreover, Shahzad et al. (2010) discusses inexact interior
points methods. Milman and Davison (2008); Ferreau
et al. (2008) consider tailored fast active set methods for

1 The researcher was supported in part by the International Max
Plank Research School, Magdeburg, Germany.

predictive control. In theory the worst case computational
effort of the algorithm increases exponential in the number
of constraints. In practice they are quite efficient and can
be used e.g. to control diesel engines using sampling times
down to milliseconds, see Ferreau et al. (2007).

Richter et al. (2009, 2010) report an online-optimization
for systems with input constraints using Nesterov’s method
or so-called Fast Gradient method , see Nesterov (1983),
and in addition pre-conditioning or warm-starting. The
ideas utilized in this paper are along similar lines.

Since the effort of the considered Fast Gradient method is
governed by the effort to determine the gradient, we show
how to determine the gradient efficiently exploiting the
underlying structure of the MPC problem. The memory
demand and the computation time of the gradient of
the proposed method increases linearly in the number of
inputs, states and the horizon length. In contrast, the
memory demand and the computation time of the gradient
the standard method is quadratically increasing in the
number of inputs and the horizon length. Moreover we
discuss the influence the plant stability onto the required
number of iterations.

The remainder of the paper is structured as follows. First
we will discuss the problem setup and review Nesterov’s
method in Section 2. Section 3 presents the main result
of this paper: an efficient way to determine the gradient.
In Section 4, we analyze the computational effort of this
method. Section 5 illustrates the results by an example.
Finally, we discuss the results.

2. PROBLEM STATEMENT

In this work, we consider linear, time-invariant, discrete-
time plants given by

xk+1 =Axk +Buk, x0 =x0, (1)

with the state xk ∈ R
n, input uk ∈ R

p and the system ma-
trices A ∈ R

n×n, B ∈ R
n×p, where (A,B) is stabilizable.
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In addition, the input uk is constrained in each step to a
closed, convex set U containing the origin. In this paper,
we focus on so-called box-constraints

U = {l[i] ≤ uk[i] ≤ r[i], ∀i = 1, . . . , p},

where uk[i] denotes the ith entry of uk. Note that the
results can easily be extended to more general constraints
such as a simple polytopes, spheres, see Nesterov (2004).
Let us define the set U as

U = {uk ∈ U , k ≥ 0}. (2)

We want to control the system (1) satisfying constraints
(2) subject to minimizing the quadratic cost criterion

J =

N−1
∑

i=0

1

2
xT
i+kQxi+k + uT

i+kSxi+k (3)

+

N−1
∑

i=0

1

2
uT
i+kRui+k +

1

2
xT
N+kPxN+k,

with the prediction and control horizon N ≥ 1 and the
weighting matrices P ∈ R

n×n, Q ∈ R
n×n, S ∈ R

p×n and
R ∈ R

p×p chosen such that

Q = QT ≥ 0, R = RT > 0, P = PT ≥ 0, P 6= 0,
(

Q ST

S cR

)

≥ 0, c < 1,

and (A,Q
1
2 ) is detectable. As usual in predictive control,

the applied input is given as the first part of the optimal
input resulting from the quadratic program

v = argmin
z,v

J(z,v)

s.t. zi+1 = Azi + Bvi

i = 0, . . . , N − 1
z0 = xk

v ∈ U.

(4)

where

z =

(

z1
. . .
zN

)

∈ R
Nn, v =

(

v0

. . .
vN−1

)

∈ R
Np

denotes the predicted state trajectory z and the input
sequence v to be determined using the measured state xk.
So, the first part of the optimal input is here uk = v0.

There are different methods to solve the optimization
problem (4), which has N(n + p) optimization variables,
2Np inequality constraints and Nn linear equality con-
straints. If we eliminate the linear equality constraints we
obtain the condensed problem

v = argmin
v

(

1

2
vTHv + vTFxk

)

s.t. v ∈ U,
(5)

where H = HT ∈ R
pN×pN and F ∈ R

pN×n are matrices
which depend on the system dynamics (1) and the cost cri-
terion (3). The condensed problem has still 2Np inequality
constraints, but only Np optimization variables.

The method utilized here is based on Nesterov’s method
also known as the Fast Gradient method, see Nesterov
(1983, 2004). We recap now this method as well as the
required background, gradient projection.

If we consider the unconstrained optimization problem

v = argmin
v

(

1

2
vTHv + vTFxk

)

, (6)

then this problem can be solved using the well-known
gradient descent method, cf. Boyd and Vandenberghe
(2004). We determine a solution to (6) starting from an
initial guess v0 and using the iteration

vi+1 = vi − hi∇J(v), (7)

where hi is the step size and ∇J(v) the gradient given by

∇J(v) =













∂

∂v0
...
∂

∂vN−1













J(v) = Hv + Fxk. (8)

We choose the step-size hi such that J(vi+1) < J(vi)
and to guarantee convergence. Here using e.g. hi = 1

L
is

possible due the convexity of the problem, where L denotes
the maximum eigenvalue of H .

The constrained problem can be solved in a similar fashion
using gradient projection, see Nesterov (2004). In particu-
lar we use the projected gradient step PU (v, h) instead of
the gradient step (7) i.e.

PU (v, h) = argmin
q∈U

∥

∥q−w
∥

∥

2

2
(9)

w =v − h∇J(v).

Note that, the projected gradient step PU (v, h) is an
Euclidean projection of w resulting from the gradient step
(7) into the feasible set U . This is equal, by definition of
the set U , to projections of vj , j = 0, . . . , N − 1 onto U

PU (v, h) = y

yj = arg min
qj∈U

‖qj −wj‖
2
2 , j = 0, . . . , N − 1

w = v − h∇J(v).

Fortunately, PU (v, h) can easily be computed in the case
of box-constraints by an entry-wise saturation

PU (v, h) = y

yj[i] =







l[i], if wj [i] < l[i]

r[i], if wj [i] > r[i]

wj [i], else

,

i = 1, . . . , p, j = 0, . . . , N − 1
w = v − h∇J(v).

(10)

Note that the gradient projection method

vi+1 = PU (v
i, hi),

always delivers feasible iterates.

Finally, Nesterov’s method (often called the Fast Gradient
method) is given in Algorithm 1, where µ > 9 is the
minimum eigenvalue of H . Note that due to the choice
of the cost criterion, the matrix H is positive definite i.e.
µ > 0. Nesterov’s method uses the projected gradient step
PU (v, h) and an additional ”step” that leads to faster
convergence than the gradient projection method. For
µ > 0 the gradient projection method converges with
a rate of O(1 − µ

L
), whereas the Fast Gradient method

converges with O(1 −
√

µ
L
), see also Section 4.

Clearly, the optimization problem (5) is always feasible
and we can use e.g. as a feasible initial guess the zero-
vector i.e. v = 0, which is called cold-starting. However
using an initial guess based on the solution of the previous
optimal control problem, called warm-starting usually
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Algorithm 1 Fast Gradient method

Require: State xk, Initial guess y ∈ U , Number of
iterations imax, maximum and minimum eigenvalues
of H : L, µ

1: Set vold = y, w = y
2: for i = 1, . . . , imax do
3: Compute v = PU (w, 1

L
)

4: Compute w = v +
√
L−

√
µ

√
L+

√
µ
(v − vold)

5: Set vold = v
6: end for
7: return v

decreases the computational effort. If the solution to the
optimal control problem at step k isw, then an often useful
choice of an initial guess v0 is

v0
j = wj+1, ∀j = 0, . . . , N − 2;v0

N−1 = 0.

3. GRADIENT DETERMINATION

As mentioned in the previous section the Fast Gradient
method requires the gradient of

1

2
vTHv + vTFxk, (11)

which is given by

∇J(v) = Hv + Fxk (12)

where H ∈ R
Np×Np, F ∈ R

Np×n. Obviously, we can
compute the gradient by first determining H and F offline
and afterwards evaluating (12). In particular, at each time
step k we need to calculate Fxk once. Moreover, in each
iteration step of the optimization problem we need to
evaluate Hv and Hv + Fxk, which requires O((Np)2)
calculations, because H is not sparse. We will denote this
method as standard method.

However this is not the only possibility. We derive in this
section a method to determine ∇J(v), which requires only
O(Nnp) calculations.

By definition of the gradient (8) we need to determine
∂J(v)
∂vi

for all i = 0, . . . , N − 1. For the MPC problem
considered here

∂J(v)

∂vi

=
∂

∂vi

(

1

2
zTNPzN +

b=N−1
∑

b=0

1

2
zTb Qzb

+
N−1
∑

a=0

zTa Sva +
1

2
vT
a Rva)

)

where

zb+1 =Azb +Bvb, b = 0, . . . , N − 1, z0 =xk.

Note that vi influences only future states and does not
influence vj , i 6= j. This yields

∂J(v)

∂vi

=
∂

∂vi

(

1

2
zTNPzN +

1

2
vT
i Rvi (13)

+

N−1
∑

a=i

zTa Sva +
1

2
zTaQza

)

where

zb+1 =Azb +Bvb, b = 0, . . . , N − 1, z0 =xk

We will show in the next theorem that the above condition
can be evaluated for i = 0, . . . , N − 1 in a very efficiently.

Theorem 1. (Structure of gradient ) Assume that the sys-
tem (1) and a cost criterion (3) are given. Then for every
xk, i ∈ {0, . . . , N − 1} and every v there exist Vi, Ti and
Wi such that

∂J(v)

∂vi

=Vivi + Tizi +Wi(vi+1, . . . ,vN−1) (14)

where

zb+1 =Azb +Bvb, b = 0, . . . , i− 1, z0 =xk.

Moreover Vi, Ti are independent of xk and v. Furthermore
if p ≤ n, then the computational effort to determine
{Vj}, {Tj} is O(Nn2p) and for given {Tj} and v the
computational effort to determine {Wj} is O(Nnp).

The proof of Theorem 1 is in the Appendix A. Note that
we can compute {Vi}, {Ti} offline.

Now we present a corollary, which describes the compu-
tational effort to determine the gradient ∇J(v) and the
projected gradient step PU (v, h) employing {Vj , Tj}.

Corollary 2. (Effort to determine gradient ) The compu-
tational effort for determining the gradient ∇J(v) for
given {Vj , Tj}, v is O(Nnp), if p ≤ n. Furthermore, if we
have box-constraints, then also the computational effort to
compute the projected gradient step PU (v, h) is O(Npn).

Proof. We assume without loss of generality (cf. proof
of Theorem 1 in the Appendix), that A contains less
than 2.5n non-zero entries. To determine the gradient we
need to evaluate (14) for all i = 0, . . . , N − 1. We first
need to determine {zj} and {Wj}. We have shown above
that calculating {Wj} is of the order O(Nnp). We can
easily determine {zj} by using the system dynamics (1),
which requires O(Nnp) calculation, because we need to
determine matrix-vector products of the sparse A matrix
and the B matrix and add two vectors.

Computing Vivi and Tizi have a computational effort of
O(p2) or O(np), respectively. Calculating Vivi + Tizi +Zi

is only of order O(p). So determining Vivi + Tizi +Wi for
all i = 0, . . . N − 1 requires O(Nnp) operations.

For box-constraints the projected gradient step PU (v, h)
can be determined from the gradient and (10), which has
a computational effort of O(Np). 2

The proposed method is illustrated in Algorithm 2. Since
the tlines (1), (2) and (3) are independent, they can be
computed simultaneously, which might allow a speedups.

Algorithm 2 Gradient determination

Require: xk, v, {Tj}, {Vj}
1: Compute zj+1, Tjzj , j = 1, . . . , N
2: Compute Vjvj , j = 1, . . . , N − 1
3: Compute Wj , Zjvj , j = N − 1, . . . , 0

4: return ∇J(v) =
(

(T1z1 + V1v1 +W1)
T . . .

)T

Remark 3. (Pre-conditioning) If we want to use pre-
conditioning as mentioned in e.g. Richter et al. (2010)
in order to improve the convergence behavior, then we
solve the optimization problem using a different coordinate
system i.e. ṽ = Dv, detD 6= 0. So, we have Bj, Rj , Sj ,
which depend on the index j. It the proposed method can
be extended to this case by keeping track of the required
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indexes.Still we can determine {Tj} and {Vj} and L, µ
offline.

4. MEMORY AND COMPUTATIONAL DEMAND

In this section we consider the computational effort and
memory demand of the overall Fast Gradient method.

4.1 Memory demand

Let us compare the memory required for the standard
method, i.e. direct evaluation of (12), and the proposed
method (Algorithm 2). We distinguish between dynamic
data, which is updated during the algorithm, and static
data, which remains unchanged during the run of the
algorithm.

Fist let us consider the static data. Using the standard
method, we need to store H and F , which have using
symmetry pN(0.5(pN +1)+n) elements. In contrast, our
proposed method needs A, B, {Vi} and {Ti}, which have
together about pN(0.5(p+ 1) + n) + 2.5np+ np elements
using symmetry and assuming without loss of generality a
sparse A.

Second, let us investigate the size of the dynamic data. If
we use the standard method to determine the gradient,
we need to store Fxk, w and the gradient ∇J(v) i.e.
in summary 3Np elements. In contrast, the proposed
method requires memory for w, the gradient ∇J(v) and
additionally Wj , zj , but only for a single value of j and
either Wj or zj . So, we need only memory for 2Np + n
elements.

4.2 Computational effort

Let us assume we want to obtain a solution v such that
for a given ǫ > 0 we have J(v) − J⋆ ≤ ǫ, where J⋆

denotes the optimal solution. As shown in Nesterov (2004);
Richter et al. (2009) for the case of box constraints and

using r[i]+l[i]
2 as initial guess this requires at most Imax

iterations, where

IMax ≥ min

(

ln 2ǫ− lnLd2

ln(1−
√

µ
L
)
,

√

2Ld2

ǫ
− 2

)

(15)

d2 = N

p
∑

i=1

(r[i]− l[i])2

2
.

As defined earlier the constants L, µ are the minimum
and maximum eigenvalues of H . Note that the matrix
H ∈ R

Np×Np is given by

H =









V0 M0,1 . . . M0,N−1

M1,0 V1 . . . M1,N−1

...
...

. . .
...

MN−1,0 MN−1,1 . . . VN−1









, (16)

where we already have determined Vj (A.2) and we know
that Mj,m = MT

m,j, because H is symmetric. Moreover, if

we consider (A.1), then the only term, which depends on
vi and zj is vT

i Tizj . Therefore for j > i we get

Mi,j = TjA
j−1B.

Clearly, we can always determine L, µ from H . However,
let us now analyze the influence of the horizon N and

the stability of A, onto L, µ and therefore the number of
iterations. Let us denote the spectral radius of A by ρ(A).

Theorem 4. (Condition of the MPC problem) The follow-
ing statements are true for the system (1), the cost crite-
rion (3) and the matrix H as in (16).
1) If ρ(A) < 1, then L is bounded above by a function
linear increasing in Np.
2) If ρ(A) = 1, then L is not exponentially increasing in
N .
3) If ρ(A) > 1, (A,B) is stabilizable and (A,Q

1
2 ) is

detectable, then L is exponentially increasing in N for
large N .
4) µ ≥ (1− c)λMin(R).
5) µ is not increasing in N .

The proof of this theorem is given in the Appendix A.

So, if A is asymptotically stable, then L is O(Np) and

therefore IMax is O((Np)
1
2 ln 1

ǫ
). So the Fast Gradient

method has a time complexity of O(N
3
2 p

3
2n ln 1

ǫ
) using the

proposed gradient determination (Algorithm 2), if box-
constraints are used. In contrast, if ρ(A) > 1 i.e. the
system is (exponentially) unstable, then the computational
effort to solve the optimization problem (4) using the Fast
Gradient method increases exponentially in N . Note that,
we only consider the worst case complexity and did ot
consider warm-starting or pre-conditioning as in Richter
et al. (2009, 2010).

4.3 Comparission with backward-propagation

Bertsekas (1995) reports also a way to determine the
gradient using the underlying structure consisting of two
coupled iterations, called backward-propagation. It has in
general a time complexity of O(Nn2) and a larger dynamic
memory demand. The static memory demand is constant
(unless pre-conditioning is used).

5. EXAMPLE

Let us illustrate the results by an example. The algorithms
are implemented in the Embedded Matlab subset of Mat-
lab (comes with Simulink), so it possible to generate native
code using the emlmex command. We use a 2.4 GHz Intel
CPU to evaluate the algorithms.

c ccccc mmmmm

Ff Fl

Fig. 1. Chain of five masses.

As example we use a chain of 5 masses connected to each
other and to two walls by springs as illustrated in Figure
1. We assume that each mass has a value of m = 1 and the
spring constants are also c = 1. The system has n = 10
states and there are p = 2 inputs: forces Ff , |Ff | ≤ 1 and
Fl, |Fl| ≤ 1 acting on the first and the last mass. We use a
sampling time of 0.2 seconds and a zero-order hold. Since
there is no damping all eigenvalues are on the unit disc,
complex and single. Hence, the real-block Jordan form of
A has 20 non-zero entries.

We regulate the chain using MPC with different horizon
length and Q = R = P = I, S = 0. We choose the number
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Table 1. Example 2: Time [µs] of one Fast
Gradient method call.

Horizon N 5 10 20 40 60 80
Iterations 5 9 19 34 53 72

Standard Alg.
with BLAS

0.98 6.19 28.2 168 505 1137

Standard Alg.
without BLAS

0.97 6.76 50.7 370 1255 4255

Proposed Alg. 2.73 10.4 41.3 146 341 650

Speed up factor
(worst case)

0.36 0.59 0.68 1.15 1.48 1.75

of iterations such that (15) holds for ǫ = 10−3, i.e. the
obtained solution differs less than ǫ from the optimum

Table 2 shows the time of one call of the Fast Gradient
method - i.e. one evaluation of the MPC - obtained by
averaging over one million calls. Note that Embedded
Matlab uses by default a BLAS library, optimized imple-
mentations of numerical linear algebra and the standard
method (12) to obtain the gradient is a matrix-vector
product. In contrast, we do not tune the implementation
of the proposed algorithm much. Therefore, for the sake
of comparison we also evaluated the performance of the
standard method without BLAS. The standard algorithm
performs better for lower N .

Note that only the worst case was considered and did not
consider warm starting or pre-conditioning, see Richter
et al. (2009, 2010).

6. CONCLUSIONS

In this work we consider fast model predictive control
of linear, time-invariant systems with input-constraints
using the Fast Gradient method. In particular, we present
a method to efficiently determine the gradient required
for the Fast Gradient method exploiting the problem
structure, which requires less memory and is faster as
the standard method for large horizons. Additionally,
we investigate the influence of the stability of the plant
onto the number of iterations. An example illustrates the
results.
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Appendix A. PROOF OF THEOREM 1 AND 7

A.1 Proof of Theorem 1

Let us define the cost J i(v) as

J i(v) =
1

2
zTNPzN +

N−1
∑

b=i

1

2
vT
b Rvb + zTb Svb +

1

2
zTb Qzb.

Comparing the cost J i(v) with (3) yields

J(v) = J(v)i +
i−1
∑

b=0

1

2
vT
b Rvb + zTb Svb +

1

2
zTb Qzb.

Since the system (1) is causal, vi influences only J(v)i.

Now, we will show, that for any i = 0, . . . , N − 1

J i(v) =
1

2
vT
i Vivi + vT

i Tizi + vT
i Wi (A.1)

+
1

2
zTi Yizi +Xi + zTi Zi

holds, where for j = 1, . . . , N

Vj−1 = BTYjB +R, Tj−1 = BTYjA+ S
Wj−1 = BT (Zj + T T

j vj), Yj−1 = ATYjA+Q,
(A.2)

and for j = 1, . . . , N − 1

Xj−1 = Xj +
1

2
vT
j Vjvj + vT

j Wj

Zj−1 = AT (Zj + T T
j vj),

(A.3)

where

XN−1 = 0, YN = P, ZN−1 = 0 (A.4)
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and

zb+1 = Azb +Bvb, z0 = xk, b = 0, . . . , i− 1,

where Vi ∈ R
p×p, Ti ∈ R

p×n, Wi ∈ R
p, Yi ∈ R

n×n,
Zi ∈ R

n. Now (A.1) can be easily verified by induction.
First for i = N − 1, we have

JN−1(v) =
1

2
zTNPzN +

1

2
zTN−1QzN−1

+
1

2
vT
N−1RvN−1 + vT

N−1SzN−1

Using zN = AzN−1 +BvN−1 we obtain

JN−1 =
1

2
zTN−1(A

TPA+Q)zN−1

+ vT
N−1(S +BTPA)zN−1

+
1

2
vT
N−1(R +BTPB)vN−1

comparing this with (A.2), (A.3) and (A.4) shows that
(A.1) is true for i = N − 1. Now, we assume that (A.1)
holds for j, and show that it holds also for j − 1. We have

Jj−1(v) =
1

2
vT
j Vjvj + vT

j Tjzj + vT
j Wj +

1

2
zTj Yjzj

+
1

2
zj−1Qzj−1 + vT

j−1Szj−1

+
1

2
vT
j−1Rvj−1 +Xj + zTj Zj

holds. Using zj = Azj−1 +Bvj−1 yields

Jj−1(v) =
1

2
vT
j−1(R +BTYjB)vj−1

+ (vT
j−1B + zTj−1A)(Zj + T T

j ) +
1

2
vT
j Vjvj

+
1

2
zTj−1(Q+ATYjA)zj−1 + vT

j Wj

+ vT
j−1(S +BTYjA)zj−1 +Xj .

Again comparing this with (A.2), (A.3) and (A.4) shows
that (A.1) is true for i = j − 1. Thus, (A.1) is true for
any i = 0, . . . , N − 1. Note that, (14) follows directly from
(A.1) and the fact, that vi influences only future states,
but not vj , i 6= j.

Finally, we need to analyze the number of required calcu-
lations. First, note that determining Yj−1, Vj−1, Tj−1 from
Yj requires matrix-matrix multiplication and additions of
n × n, n × p, p × n or p × p matrices and p ≤ n. So, we
need O(Nn3) calculations to determine {Tj}, {Vj}. Note
that all n × n matrix multiplications include the matrix
A or AT . In addition, calculating Zj−1 from Zj , Tj , vj

requires basically matrix-vector multiplication featuring
the n × n AT matrix and a p × n matrix. In contrast to
obtain Wj−1 we need to do matrix-vector multiplications
with an p×nmatrix and an n×pmatrix. If we assume that
the matrix A is sufficiently sparse, then it is possible to
reduce the computational cost to O(Npn2) and O(Npn),
respectively, because every matrix-vector or matrix-matrix
multiplication features either A or n × p, p × n, p × p
matrices. Choosing the state xk such that A is in the real
block Jordan form makes A sufficiently sparse, it contains
less than 2.5n non-zero elements. 2

A.2 Proof of Theorem 4

Note that the minimum and maximum eigenvalue of H are
λMax(H) = L or λMin(H) = µ.

1) First note that λMax(H) ≤ tr(H) ≤ N tr(V0), due to
the structure of H , H = HT ≥ 0 and V0 ≥ V1 ≥ . . . ≥
VN−1 ≥ 0. Moreover tr(V0) ≤ p ‖V0‖2, because ‖V0‖2 is the
maximum eigenvalue of V0. Let ǫ > 0 be such that r+ǫ < 1,
where r = ρ(A). There exists an K such that

∥

∥V K
0

∥

∥

2
≤

(r+ǫ)K and
∥

∥Aj
∥

∥

2
≤ 1, ∀j ≥ K due to the spectral radius

property of the 2-norm. If N − 2 > K, then there exists a

c1 > 0 such that ‖V0‖2 ≤ c1 + ‖B‖22 (‖Q‖2

N−2
∑

i=K

∥

∥Ai
∥

∥

2

2
+

‖P‖2
∥

∥AN−1
∥

∥

2

2
). So ‖V0‖2 ≤ c1 + ‖B‖

2
2 (‖Q‖2

N−2
∑

i=C

(r +

ǫ)2i + ‖P‖2) ≤ c1 + ‖B‖
2
2 (‖Q‖2 (

1
1−r−ǫ

)2 + ‖P‖2). Hence,

‖V0‖2 is bounded above by a constant c3 for any N and
λMax(H) ≤ pNc3.
2) Assume for the sake of contradiction λMax(H) is expo-
nentially increasing in N . There need to exist a ca > 1
and cb such that λMax(H) > cNa + cb. Let δ be such

that ca > δ > 1. Let K be such that
∥

∥AK
∥

∥

2

2
≤ δK .

Again such a K always exists due to the spectral radius
formula. If N − 2 > K, then as in part 1 of the proof

we have ‖V0‖2 ≤ c1+ ‖B‖
2
2 (‖Q‖2

N−2
∑

i=K

δi+ ‖P‖2 δ
N−1). So

‖V0‖2 ≤ c1+c2(N−K)δN , i.e. λMax(H) ≤ Np(c1+c2(N−
K)δN ), which contradicts the assumption λMax(H) > cNa ,
because ca > δ.
3) We have NpλMax(H) ≥ tr(H) ≥ tr(V0) and tr(V0) ≥
tr(BT (AN−2)TQAN−2B) ≥ λMax(B

T (AN−2)TQAN−2B).
Moreover for any v ∈ R

p, |v| = 1 we have
λMax(B

T (AN−2)TQAN−2B) ≥ vTBT (AN−2)TQAN−2Bv.
Let vMax be an eigen vector of A to the eigen value ρ(A).
So, vT

Max(A
N−2)TQAN−2vMax = ρ(A)2(N−2)vT

MaxQvMax

Since A is unstable, (A,Q
1
2 ) is detectable and (A,B)

stabilizable, there is a c1 > 0 and ṽ ∈ R
n such that

vT
MaxQvMax > c1 and vMax = Bṽ = c 6= 0. Let

us choose ṽ such that ‖ṽ‖2 = 1. There is a c2 > 0

such that ṽT (BT (AN−2)TQAN−2B)ṽ ≥ c1c2ρ(A)
2(N−2).

Finally, λMax(H) ≥ c1c2ρ(A)2(N−2)

Np
.

4) Note that, H is given by H̃ + (1 − c)HR, where H̃
depends on Q, R, S and HR only on R. In particular
HQ ≥ 0 and (1 − c)HR is a block diagonal matrix with
N blocks consisting of the matrix (1 − c)R. Therefore,
λMin(H) ≥ (1 − c)λMin(HR) = (1 − c)λMin(R).
5) First let us consider N = 1, so H = BTPB + R.
Let λ⋆ = λmin(H) and v ∈ R

p, |v| = 1 such that
vT (BTPB + R)v = λ⋆. Now consider any N ≥ 1 and

w ∈ R
Np =

(

0T vT
)T

. Clearly, |w| = 1. Moreover

wTHw = vT (BTPB + R)v = λ⋆. So, λMin(H) is for an
arbitrary N not larger as for N = 1, because for a positive
definite, symmetric matrix Z and a normalized vector z,
we have zTZz ≥ λMin(Z). 2
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