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Abstract 

Influenza A viruses are important pathogens with worldwide prevalence with high morbidity 

and mortality rates. They are enveloped viruses within the family Orthomyxoviridae with a 

negative stranded segmented RNA genome that encodes for up to 11 viral proteins. Even 

this small set of viral proteins interacts with an array of host cell proteins and pathways, and 

ensures that the virus uses the host cellular machinery for many aspects of its life cycle. 

Throughout the past years these virus-host cell interactions were investigated in numerous 

studies. Viral strategies for the evasion of innate immune response, inhibition of cellular 

protein synthesis and permission of viral RNA and protein production were elucidated and 

the development of an antiviral response of host cells was uncovered. Both interaction types, 

host cell induced antiviral response and virus induced changes for enhanced replication, 

have an impact on host cell gene and protein expression patterns.  

Interestingly, virus-host cell interactions have not been analyzed with respect to cell culture 

based influenza vaccine manufacturing processes so far. Hence, the aim of the presented 

work was to establish and to subsequently apply two molecular biological approaches for this 

objective: (I) a proteomic approach to study the global changes in cellular machinery and 

corresponding protein profiles and to elucidate the host cellular and virus induced events that 

occur upon influenza virus infection, (II) a genomic approach to study time courses and 

dynamics, as well as regulation of the influenza virus genome replication and transcription. 

In the first part of this work, a proteomic approach was used to investigate the dynamic 

cellular host cell response induced by influenza virus infection in two different vaccine 

production cell lines, the Madin-Darby canine kidney (MDCK) and the African green monkey 

kidney (Vero) cell line and in a human cell reference model. The reference model was 

selected from three different human cell lines, which were compared for their cellular 

metabolism and virus yields. Finally, the lung carcinoma A549 cell line was chosen. For 

identification of proteins possibly involved in global host cell response mechanisms and 

virus-host cell interactions, quantitative two-dimensional difference gel electrophoresis (2-D 

DIGE) and mass spectrometry (MS) analysis were performed. In particular, host cell 

proteome alterations caused by infection with influenza A/Puerto Rico/34/8 (H1N1) (referred 

to as PR/8) virus variants showing differences in replication characteristics in the MDCK cell 

line were compared. Moreover, the host cell response to virus infection in Vero cells with 

respect to their deficiency in interferon (IFN) production and the need for virus adaptation to 

optimize productivity of cell lines were analyzed. Several proteins with differential abundance 

profiles were identified and Western blot analysis was performed for further confirmation of 
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selected proteins. These proteome studies revealed that proteins with changes in relative 

abundance are known to be involved in distinct functional classes. These included proteins 

participating in signal transduction, cytoskeleton remodeling, protein degradation, 

maintenance of metabolism, viral defense mechanisms, and especially for Vero cells, distinct 

forms of cellular stress responses and cell-cell interactions. It can be concluded that virus 

strains seem to have various abilities to control the cellular machinery of their host cells and 

to suppress an antiviral response, suggesting a lower induction of cellular antiviral and stress 

mechanisms by ‘high yield strains’. Additionally, it was shown that the Vero cell line still has 

the ability to build-up a host cell defense state in an IFN independent manner and induced 

much higher stress responses compared to the MDCK cell line. The findings provide insights 

at the global protein level into the complexity and dynamics of virus-host cell interactions. 

They will improve understanding of host cell response mechanisms during influenza vaccine 

production and viral strategies to evade these responses and to replicate efficiently in 

different cell lines. Additionally, some of these proteins might also represent potential targets 

for improvement of cell line performance in vaccine production processes. 

Another important aspect considered in the second part of this work was that the general 

time course of influenza virus replication in their host cells is well understood. However, 

much about regulation and dynamics of viral genome replication and viral transcription, 

especially for each of the 8 RNA segments still remains unknown. Moreover, published 

results were often contradictory with the consequence that different hypotheses were 

suggested for regulation and dynamics of viral replication. For validation and parameter 

estimation of an existing structured mathematical model of influenza viral replication these 

experimental data were not usable. Hence, due to contradictory literature data this work 

focused on the development of a novel reverse transcription quantitative real-time 

polymerase chain reaction (RT-qPCR) assay for the analysis of influenza virus transcription 

and replication dynamics in mammalian cell culture. The assay was based on a sequence- 

and polarity-specific priming reverse transcription (pspRT) used to distinguish specifically 

between viral genome vRNA(-), replicative intermediates cRNA(+) and viral messenger RNA 

(vmRNA(+)) of segments 4 (HA), 6 (NA), 7 (M) and 8 (NS) during the life cycle of influenza A 

PR/8 virus. Synthetic viral RNAs used as reference standards for validation and 

quantification were prepared for each viral RNA type and segment. Assay validation 

demonstrated linearity over five orders of magnitude, with a sensitivity of 1.0 – 8.9 × 103 of 

viral RNA molecules, with specificity, and repeatability and reproducibility of less than 0.8 – 

3.1% coefficient of variation (CV). Dynamics of influenza PR/8 virus infection in a MDCK cell 

line were analyzed. In general, mainly vmRNA(+)s were synthesized during early phases of 

infection at an average of 0.4 hpi, followed immediately by cRNA(+) synthesis and after a 

short delay viral genome replication could be detected at an average of 2.5 hpi. The viral 
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genome vRNA(-)s were synthesized in equimolar amounts and similar dynamics whereas 

preferential synthesis of NS1 vmRNA(+) in early transcription phases and a delay for M1 

vmRNA(+) was found. The obtained experimental results will support validation of the 

structured mathematical model of influenza virus replication, which provide quantitative 

insights in the complex intracellular events and hence also in virus-host cell interactions that 

take place during virus infection. 

In conclusion, both approaches, proteomics and RT-qPCR, have started a new 

understanding of cellular processes during cell culture derived influenza vaccine production 

and can be used for studies on bioprocess engineering and systems biology of these 

bioprocesses. 
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Zusammenfassung 

Influenza A Viren sind als Krankheitserreger aufgrund weltweiter Verbreitung und 

beträchtlicher Morbiditäts- und Mortalitäts-Raten von großer Bedeutung. Es handelt sich um 

Viren der Familie der Orthomyxoviridae. Sie besitzen ein negativ-strängiges, segmentiertes 

RNA-Genom, das bis zu 11 virale Proteine kodiert. Selbst diese geringe Anzahl an viralen 

Proteinen ermöglicht es dem Virus, durch Interaktionen mit einer Vielfalt von Proteinen der 

Wirtszell, die zellulären Mechanismen der Wirtzelle zu Gunsten dessen Vermehrung 

auszunutzen. Diese Virus-Wirtszell-Interaktionen wurden in den letzten Jahren in einer 

Vielzahl von Studien untersucht. Die viralen Strategien zur Überwindung der zelleigenen 

Immunabwehr, Unterdrückung der zellulären Proteinsynthese sowie der selektiven 

Durchführung der viralen RNA- und Proteinsynthese konnten so aufgeklärt werden. Ebenso 

ergaben diese Studien Einblicke in den Aufbau einer antiviralen Abwehr der Wirtzelle.  

Interessanterweise wurden die Virus-Wirtzell-Interaktionen in Bezug auf einen Säugetier-

Zellkultur-basierten Influenza-Impstoff-Produktionsprozesses bislang nicht analysiert. Daher 

war Ziel dieser Arbeit die Etablierung zweier molekularbiologischen Analysen und die 

Anwendung dieser auf den Impfstoff-Produktionsprozess: (I) einen proteomischen Ansatz zur 

Analyse der globalen Veränderungen der zellulären Mechanismen und Proteinprofile 

ausgelöst durch die Influenza-Virusinfektion und zur Aufklärung der wirtszell- und virus-

induzierten Vorgänge. (II) einen genomischen Ansatz zur Analyse der zeitlichen Verläufe, 

Dynamiken und Regulationsmechanismen der Influenza Virus-Replikation und -Translation. 

Im ersten Teil dieser Arbeit wurde eine quantitative Proteomanalyse verwendet, um die 

viralen Einflüsse auf die zellulären Mechanismen der Wirtszellen auf globaler Ebene in den 

Impfstoff-Produktionszelllinien (MDCK und Vero Zelllinie) sowie in einer humanen Referenz-

Model-Zelllinie zu untersuchen. Die Auswahl eines geeigneten Referenz-Models sollte 

ausgehend von einem Vergleich des zellulären Stoffwechsel und der Virusproduktivität dreier 

humaner Zelllinien getroffen werden. Letztendlich wurde die humane Lungen-Krebszelllinie 

A549 als Modelsystem ausgewählt. Zur Identifikation von Proteinen, die an der generellen 

Wirtszellabwehr und an Virus-Wirtszell-Interaktionen beteiligt sind, wurden quantitative 2-D 

DIGE-Analysen zur Visualisierung regulierter Proteine und qualitative nanoHPLC-nanoESI-

MS/MS-Analysen zur Identifizierung dieser Proteine durchgeführt. Insbesondere die 

Wirtszell-Proteomveränderungen der MDCK-Zelllinie induziert durch zwei Varianten des 

Influenza A/PR/8/34 (H1N1) Stamms (abgekürzt PR/8) mit unterschiedlichen 

Replikationsverhalten wurden verglichen. Des Weiteren wurde die Wirtszellantwort der Vero-

Zelllinie in Bezug auf deren gestörtes Interferon-Produktionsystem untersucht und der 
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Adaptionsprozess des Virus an die Wirtzelllinie zur Virus-Produktivitäts-Steigerung 

analysiert. Diverse Proteine mit unterschiedlichen Regulationsprofilen wurden so in              

2-D Gelen identifiziert und per Western-Blot-Analysen für einige ausgewählte Proteine deren 

Regulation zusätzlich verifiziert. Diese identifizierten Proteine, konnten sehr 

unterschiedlichen funktionellen Proteinklassen und Signalwegen zugeordnet werden, u.a. 

Signal-Transduktion, Proteindegradation, Cytoskelett-Komponenten, Zellstoffwechsel, viraler 

Abwehrmechanismus und speziell für die Vero-Zelllinie verschiedene Formen zellulärer 

Stressantworten und Zell-Zell-Kommunikationen. Aus den Ergebnissen lässt sich 

schlussfolgern, dass unterschiedliche Virus-Stämme bzw. Virus-Varianten unterschiedliche 

Fähigkeiten zur Kontrolle der zellulären Mechanismen der Wirtszellen bzw. zur 

Unterdrückung der antiviralen Abwehr besitzen. Dabei sind insbesondere Viren mit hohem 

Titer sog., ‚high-yield strains’, am erfolgreichsten beim Unterdrücken dieser 

Abwehrmechanismen. Zusätzlich konnte der Aufbau einer IFN-unabhängigen 

Wirtszellabwehr und einer im Vergleich zu der MDCK-Zelllinie stärkeren Stressantwort in der 

Vero-Zelllinie gezeigt werden. Die vorliegenden Resultate geben einen Einblick in die 

Komplexität und Dynamik der Virus-Wirtszell-Interaktionen. Sie liefern ebenfalls ein 

verbessertes Verständnis der Wirtszellantwort der Influenza-Impfstoff-Produktionzelllinien, 

sowie der viralen Strategien die Wirtzellabwehr zu umgehen und sich effizient in 

verschiedenen Wirtzellen zu vermehren. Zusätzlich könnten einige dieser identifizierten 

Proteine potentielle Ansatzpunkte für die Verbesserung der Zelllinienproduktivität während 

des Impfstoff-Prozesses darstellen. Weitere experimentelle Untersuchungen zur Bestätigung 

und Quantifizierung dieser Annahmen sind jedoch notwendig. 

Ein zweiter wichtiger Aspekt dieser Arbeit beinhaltete die Aufklärung der Dynamik und 

Regulation der viralen Genom-Replikation und -Transkription einzelner viraler Gen-

Segmente. Im Gegensatz zum generellen Replikationszyklus sind die Dynamik und die 

Regulationsmechanism in der Wirtszelle weiterhin unklar. Darüber hinaus sind die meisten 

publizierten Studien widersprüchlich und aufgrund dessen werden sehr unterschiedliche 

Hypothesen zur Regulation und Dynamik der viralen Vermehrung vorgeschlagen. Zur 

Validierung und Parameter-Abschätzung eines strukturierten mathematischen Modells der 

Virusreplikation waren diese experimentellen Ergebnisse jedoch nur qualitativ von Nutzen. 

Daher wurde in dieser Arbeit ein neuartiger RT-qPCR Assay zur Untersuchung der 

Replikationsvorgänge in der Säugetier-Zellkultur entwickelt. Basierend auf einer polaritäts- 

und sequenz-spezifischen Umschreibung der viralen RNAs während der Reversen 

Transkription kann der Assay zur spezifischen Unterscheidung zwischen viraler genomischer 

vRNA(-), Replikations-Zwischenprodukten cRNA(+), sowie viraler Messenger-RNA 

vmRNA(+) der Segmente 4 (HA), 6 (NA), 7 (M) and 8 (NS) während des Influenza A PR/8 

Virus-Replikationszyklus verwendet werden. Synthetische virale RNAs wurden für jedes 
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virale Segment und den drei jeweiligen viralen RNA-Typen hergestellt und als RNA-

Referenzstandard zur Validierung und zur absoluten Quantifizierung verwendet. Die Assay-

Validierung erbrachte eine Linearität von 5 Größen-Ordnungen, eine Sensitivität von 

mindestens 1,0 × 103 – 8,9 × 103 viralen RNA-Molekülen, eine hohe Spezifität und eine 

Wiederhol- und Vergleichspräzision mit einem Variationskoeffizient kleiner als 0,8 – 3,1%. Im 

Anschluss wurde die Dynamik der Influenza-Virusvermehrung in der MDCK-

Produktionszellline untersucht. Grundsätzlich wurden in frühen Infektionsphasen (ca. 0,4 h 

nach Infektion) hauptsächlich vmRNA(+)s synthetisiert. Unverzüglich darauf folgte die 

Synthese von cRNA(+) und mit kurzer Verzögerung (ca. 2,5 h nach Infektion) die Replikation 

der viralen genomischen RNAs (vRNA(-)). Genom-Äquivalente (vRNA(-)) wurden in gleichen 

Mengen und ähnlichen Dynamiken repliziert, während unter den vmRNA(+)s eine frühe 

Synthese von NS1 und eine Verzögerung in der Synthese von M1 detektiert wurden. In einer 

Folgearbeit sollen diese experimentellen Ergebnisse zur Validierung des strukturierten 

mathematischen Modells der intrazellulären Influenza-Replikation eingesetzt werden. Dieses 

Modell soll u.a. einen quantitativen Einblick in die komplexen intrazellularen Vorgänge und 

daher auch in die Virus-Wirtzell-Interaktionen ermöglichen. 

Zusammenfassend lässt sich sagen, das beide Anwendungen, Proteom- und RT-qPCR 

Assay, zu einem neuem Verständnis der Virus-Wirtzell-Interaktionen in Bezug auf den 

Influenza-Impstoff-Produktionsprozess geführt haben und zur weiteren Untersuchung von 

Bioprozessen und der Systembiologie genutzt werden können. 
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1. Introduction 

Influenza A virus is an enveloped RNA virus comprising a negative sense genome with eight 

single stranded (ss) segments, each encoding for one or two proteins. Influenza is the 

causative agent of the common flu, which is a worldwide health problem leading to significant 

economic consequences. Studies of influenza virus biology have revealed elaborate 

mechanisms by which the virus interacts with its host cell and uses efficiently host cell 

resources for replication and suppresses concomitantly host cell defense, inducing significant 

cellular changes. As an answer to virus infection host cells have developed an antiviral 

response, which is a complex system for detection and elimination of viruses (Ludwig et al., 

2006). For example, upon infection by influenza virus, host cells detect viral RNA through 

pathogen sensors and induce IFN release and an antiviral program (Haller et al., 2006). 

Simultaneously, the 11 viral proteins of influenza virus realize the viral life cycle and interfere 

with cellular processes. Notably, the viral non-structural protein 1 (NS1) facilitates the 

evasion of host cell defense through several mechanisms, including suppression of 

pathogenic RNA sensing and antiviral activity (Kochs et al., 2007; Krug et al., 2003), as well 

as cellular mRNA processing (Lamb and Krug, 2001) and protein synthesis (Lyles, 2000). 

Cellular immune regulatory functions of the other influenza proteins are still unknown, as 

their well-characterized functions only comprise distinct mechanisms such as viral entry into 

cells, viral RNA trafficking, replication, and transcription, or assembly of viral particles. 

Similarly, the role of most of the host cell factors remains unknown, and is currently being 

investigated (Hao et al., 2008a; Karlas et al., 2010; Koenig et al., 2010). Both interaction 

types, host cell induced antiviral response and virus induced changes have an impact on 

host cell gene expression patterns (Fornek et al., 2007). Therefore, they cause alterations in 

morphology, metabolic state of the cells and induce apoptosis. Whether apoptosis resulted 

from the inhibition of host cell gene expression, or is related to the antiviral response of the 

host cell or whether it is caused by viral components directly is not completely understood 

(Ludwig et al., 2006). 

During the last years great efforts have been undertaken to reveal mechanisms of influenza-

host cell interactions. Most of the previous studies on viral and host cell factors have focused 

on single specific interactions. With only few exceptions they have not produced more global 

insights into virus-host cell interactions (Baas et al., 2006; Chen et al., 2008; Fornek et al., 

2007; Geiss et al., 2002). These studies have focused on basic aspects of virology, e.g. 

either on pathogenesis in humans (Fornek et al., 2007), discovery of novel drug targets, 

antiviral therapies, biomarker research (Baas et al., 2006; Geiss et al., 2001; Geiss et al., 

2002), and on analysis of virulence and adaptation strategies of avian influenza virus (Chen 
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et al., 2008). Proteomic approaches or functional genomic tools, such as microarray based 

gene expression analysis have been used in these studies. 

The most effective way to provide protection against influenza virus infection is through 

vaccination. Limitations and drawbacks of the conventional production process of influenza 

vaccines using embryonated chicken eggs have pushed the development of a cell culture 

based strategy (Genzel and Reichl, 2009). The Bioprocess Engineering (bpt) group at the 

Max Planck Institute Magdeburg works mainly on the establishment and optimization of 

integrated concepts to design and control such mammalian cell culture based influenza 

vaccine production processes. The continuous adherend MDCK and Vero cell lines are two 

promising candidates for such a production process (Genzel and Reichl, 2009). Influenza 

virus vaccines derived from MDCK and Vero cells have been produced and evaluated for 

immunogenicity, and their production has been scaled up to commercial levels (Doroshenko 

and Halperin, 2009; Kistner et al., 1998; Youil et al., 2004). Interestingly, cell culture based 

vaccine manufacturing processes have not been analyzed with respect to virus-host cell 

interactions so far. Although cell culture based systems have been developed successfully, 

limitations remain and need to be overcome, if the potential of those systems is to be fully 

utilized. These limitations include slow virus replication and poor virus yields of some 

influenza virus production strains. Limitation could be a consequence of differences in 

replication characteristics and a limited time-span for virus replication of infected cells due to 

early stress and fast induction of apoptosis (Hornickova, 1997). Therefore, a better 

understanding of virus-host cell interactions and viral replication mechanisms could 

contribute significantly to the development of methods to overcome existing bottlenecks in 

cell culture derived influenza vaccine manufacturing. In particular, by discovering molecular 

processes, which help virus strain variants to overcome host cell response or result in fast 

induction of stress or apoptosis in mammalian cells.  

The aim of the presented work was to established and to subsequently apply two molecular 

biology techniques for investigating virus-host cell interactions with respect to the vaccine 

production process: (I) a proteomic approach to study the global changes in proteome 

profiles and to elucidate the host cell and virus induced events that occur during cellular 

processes upon viral infections, and (II) a genomic approach to study regulation and 

dynamics of viral genome replication and transcription. An important aspect to consider is 

that application of molecular biological techniques (i.e. proteome and genome analysis) to 

the investigation of these cellular systems is limited largely to human and mouse models due 

to restricted availability of constituent assay components such as antibodies, genome 

sequences or protein databases. Thus, first of all an appropriate human reference model cell 

line system for comparative investigations had to be selected. Therefore, three different 

adherend human cell lines were compared for cellular metabolism and virus productivity to 
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examine whether they are reliable and promising candidates for a human reference model, 

studying virus-host cell interactions. Finally, the lung carcinoma A549 cell line was chosen as 

a human reference model. 

In the following part of the work, quantitative proteome technologies, such as 2-D DIGE 

coupled with nanoHPLC-nanoESI-MS/MS for protein identification were used to provide 

additional insights into the complexity of influenza-host cell interactions (Zhang et al., 2005). 

In this manner, global changes in proteome profiles can be analyzed, elucidating the events 

that occur during cellular processes upon viral infections. Throughout the past few years, 

quantitative proteomic analysis has proven in numerous publications to be a useful tool for 

providing important insights into protein alterations in response to influenza virus infection 

(Baas et al., 2006; Liu et al., 2008; Mayer et al., 2007; Shaw et al., 2008). These studies 

have shown, how different influenza virus strains affect host cell proteomes and how 

influenza virus strains may use different strategies to evade host cell response and replicate 

in different host cells. Furthermore, possible adaptation mechanisms of avian influenza virus 

or cellular factors associated with the native viral ribonucleoprotein (vRNP) and viral 

polymerase complexes were discovered.  

A comparative proteome profiling study with the production cell lines MDCK and Vero and 

the human lung carcinoma cell line (A549) as a human reference model for characterization 

of changes in relative protein abundances after human influenza PR/8 virus infection was 

done. The motivation was to create a better understanding of the distinct molecular 

mechanisms by which some variants of influenza viruses overcome cellular immune 

response in mammalian cells. Therefore, early proteome alterations in MDCK cells infected 

with an influenza PR/8 virus strain obtained from two different suppliers were compared. 

Both variants showed significant differences in replication dynamics, e.g. progress of 

infection, induction of apoptosis in their host cells, and total amount of virus particles 

released as reported by Schulze-Horsel et al. (Schulze-Horsel et al., 2009).  

MDCK cells are IFN competent, and the IFN response is commonly thought to be a factor 

strongly inhibiting virus replication. In contrast, Vero cells are deficient in IFN production. 

Therefore, another aspect of the proteomics part of this work was to gain a more 

comprehensive understanding of the complex mechanisms involved in the cellular antiviral 

response of Vero cells lacking an IFN system. Finally, factors relevant for adaptation of virus 

strains to new host cells were taken into consideration. This issue was approached 

experimentally by comparing Vero host cell proteome alterations in response to infection with 

a cell line adapted and a non-adapted influenza PR/8 virus strain. Hence, a detailed view on 

physiological status and cellular changes in virus producing cell lines could be obtained. 

Furthermore, the application of proteome profiling methods provided information about 

markers involved in critical host cell stress response, antiviral defense mechanisms, 
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metabolic changes or apoptosis induction in vaccine production cell lines.  

The third part of the presented work focused on regulation and dynamics of influenza virus 

genome replication and transcription. Both still remain unknown. In general, the influenza A 

virus life cycle comprises the following steps (Lamb and Krug, 2001): The virus enters cells 

through receptor-mediated endocytosis. To release uncoated vRNP complexes into the 

cytoplasm the virus fuses with the endosomal membrane. For viral replication and 

transcription the vRNPs are transported into the nucleus. The synthesis of influenza virus 

RNA is divided into three parts, first, transcription of viral genomic RNA (vRNA(-)) into viral 

messenger RNA (vmRNA(+)), second, synthesis of viral complementary RNA (cRNA(+)) 

from genomic vRNA(-), followed by synthesis of cRNA(+) into vRNA(-) (Neumann et al., 

2004). After assembly of vRNPs by association of newly synthesized vRNA(-) with 

nucleoproteins (NP) and viral polymerase components, these vRNPs are exported from the 

nucleus and incorporated into progeny virus particles followed by budding of these particles 

from the plasma membrane.  

For a better quantitative understanding of these complex intracellular events in the life cycle 

of influenza virus, a mathematical model for its replication in MDCK cells with respect to the 

vaccine production process has been formulated (Sidorenko and Reichl, 2004). This 

structured mathematical model covers all steps of the virus life cycle, from attachment to viral 

protein synthesis, genome replication and budding in a single cell. For model establishment 

general information available in literature was used. Although the general time course of 

influenza virus replication in their host cells is well understood and described in literature, 

much about regulation of viral genome replication and transcription is still unknown (Cheung 

and Poon, 2007). In particular, for model validation and parameter estimation, i.e. dynamics 

and control of viral RNA synthesis, quantitative experimental data was missing. The first step 

in order to overcome this lack of information was the establishment of a quantification 

method for intracellular derived viral nucleic acids.  

Several methods and studies have been described in the past for analyzing the dynamics of 

influenza virus replication and transcription (Kumar et al., 2008b; Ng et al., 2008; Robb et al., 

2009; Uchide et al., 2002; Vreede et al., 2008). These studies have used diverse techniques, 

for example primer extension in combination with a vRNP reconstitution assay, semi-

quantitative southern hybridization, and RT-qPCR assays. Nevertheless, most of these 

methods are only semi-quantitative. Often results were contradictory with the consequence 

that different hypotheses were suggested for regulation and dynamics of viral replication. 

Due to the successful use of the RT-PCR (Chan et al., 2006b) or the RT-qPCR (Di Trani et 

al., 2006; Ong et al., 2007; Youil et al., 2004) for a precise determination of the number of 

viral copies in clinical or environmental detection assays, these techniques were selected as 
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an appropriate quantitative method for the application in a production process. However, 

standard RT-qPCR assays do not determine specifically the number of all three different 

influenza viral RNA types (vRNA(-), cRNA(+), vmRNA(+)) separately, which is necessary for 

differentiation between viral replication and transcription processes. For that purpose a 

method is required that targets individually the different polarities of the three viral RNA 

strands. Several studies have reported polarity-specific RT-PCR assays for detection of 

different RNA viruses such as hepatitis virus (HV) (Komurian-Pradel et al., 2004), dengue 

virus (Peyrefitte et al., 2003) or foot-and-mouth disease virus (Li et al., 2009). Polarity-

specific priming strategies in RT-qPCR have been applied to distinguish between influenza 

viral transcription and vRNA(-) replication, but only for relative quantification (Kumar et al., 

2008b; Ng et al., 2008). Hence, the focus of this part of the present work was on the 

development and validation of a RT-qPCR assay with a polarity- and sequence-specific 

priming strategy in RT for simultaneous determination of influenza vmRNA(+), cRNA(+) and 

vRNA(-). By using corresponding synthetic viral RNA reference standards an absolute 

quantification was achieved. The established assay was used to follow the time course of 

expression of four viral segments (4 (HA), 6 (NA), 7 (M) and 8 (NS)) during influenza PR/8 

virus infection in MDCK cells and to assess the dynamics of viral transcription and replication 

of these segments. 

The ability to determine the amounts of the three different types of influenza A viral RNAs 

(vmRNA(+), cRNA(+), vRNA(-)) during the virus life cycle in mammalian cells should facilitate 

mathematical modeling of the time course and the dynamics of viral transcription and 

replication. Based on such a model it should be possible to obtain more precise insights in 

basic laws of virus infection of vaccine production cells and into the interactions of viruses 

and host cells. Furthermore, it should also be possible to analyze effects of parameter 

changes on the dynamics of virus replication, to identify possible targets for molecular 

engineering, or to develop strategies for improving virus yields in vaccine production 

processes (Sidorenko and Reichl, 2004). 

Overall, results from both parts of the presented work should elucidate the complex 

relationships between influenza viruses and the infected host cells, as well as the viral 

replication dynamics. Moreover, results should provide the basis for a more comprehensive 

understanding of the viral life cycle. 
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2. Background and Theory 

2.1. Influenza virus 

2.1.1. Classification and structure 

Influenza viruses belong to the family of Orthomyxoviridae and are classified into A, B and C 

types, based on the antigenic differences of the internal proteins (NP and matrix protein (M)) 

(Lamb and Krug, 2001; Wilschut and McElhaney, 2005). They are negative sense, single 

stranded, enveloped RNA viruses with a segmented genome. The genomic RNAs (vRNA(-)) 

function as templates for messenger RNAs (vmRNA(+)) and complementary RNAs 

(cRNA(+)) syntheses. Both influenza A and B viruses contain 8 RNA genomic segments, 

whereas influenza C viruses contain only 7 RNA genomic segments. The viruses have a 

wide host range of birds and mammals (Webster, 1998). However, only influenza A has been 

responsible for influenza pandemics. The nomenclature of the different virus strains are 

based on the host of origin, geographic location, year of isolation, strain number and mostly 

the antigenic classification via their membrane glycoproteins: hemagglutinin (HA) and 

neuraminidase (NA) mentioned in the parenthesis, e.g. A/PR/8/34 (H1N1). There are 16 

antigenic subtypes of HA (HA1-HA16) and 9 subtypes of NA (NA1-NA9) reported. 

The epidemiological behavior of influenza in human population is related to the two types of 

antigenic variation namely ‘antigenic drift’ and ‘antigenic shift’ (Wilschut and McElhaney, 

2005). ‘Antigenic drift’ involves point mutations resulting from an immune selective pressure. 

The changes in the antigen structure allow the virus to evade the immune system of the host. 

As a result, new antigenic variants (new subtypes) evolve. However, they are still related to 

those subtypes circulating during preceding epidemics. On the other hand, the ‘antigenic 

shift’ occurs much less frequently but leads to a major antigenic change. This change results 

from a replacement of the genomic RNA segment resulting in emergence of a potentially 

pandemic, influenza A virus. A new subtype virus would be antigenically distinct from earlier 

subtypes and could not have arisen from them by mutation. The wide host range coupled by 

a high mutation rate and cross species interactions generally results in the development of 

new virus strains, which would naturally be the major obstacle in controlling the disease by 

vaccination. Outbreaks of influenza disease are surveyed world-wide by the Global Influenza 

Surveillance Network of the World Health Organization (WHO) (WHO, 2008) and locally by 

each country or an European network. Their tasks are the collection of specimens, primary 

virus isolation and antigenic characterization. 

Influenza viruses are described commonly as nearly spherical particles with a mean diameter 
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of 100 nm (Hay, 1998). The influenza A viral particles contain a lipid envelope, which is 

derived from the host cell membrane during the viral budding process. Three viral proteins, 

HA, NA, and matrix protein 2 (M2), are embedded in the lipid envelope (Lamb and Krug, 

2001). HA and NA are spike glycoproteins and they are anchored in the lipid bilayer by short 

sequences of hydrophobic amino acids (AA). HA is a homotrimer, responsible for the 

receptor binding and membrane fusion. NA is a homotetramer whose function is to remove 

sialic acid groups from glycoproteins and to release the viral particle. M2 is an integral 

membrane homotetramer, which functions as an ion channel for the acidification of the 

interior of the viral particle during viral infection (Wang et al., 1994). Underneath the viral lipid 

envelope there is a matrix protein 1 (M1) protein layer. Inside the virus, all 8 viral RNA 

segments are bound to NP and to the influenza virus RNA polymerases to form vRNP 

complexes (Lamb and Choppin, 1983). Apart from M1, NP is the most abundant protein in 

the virus and it is thought to associate sequence independently with the phosphate-sugar 

backbone of the viral RNA. Each NP monomer interacts with approximately 20 nucleotides of 

the vRNA(-) (Lamb and Krug, 2001). The RNA polymerase complex is composed of three 

polymerase subunits (PB2, PB1, and PA). Electron micrographs of isolated vRNPs indicated 

that both ends of the vRNA(-) interact with each other to form a circular or supercoil structure 

(Cheung and Poon, 2007). The non-structural protein 2 (NS2) is present in low amounts and 

appears to act as a nuclear export protein for viral RNA (O'Neill et al., 1998). An illustration of 

influenza A virus structure is given in Figure 2.1-1. 

 

      

Figure 2.1-1: Structure of influenza A virus 

Glycoproteins (HA, NA) are embedded in a host cell derived lipid bilayer membrane. Within the 
membrane the transmembrane ion channel protein M2 is located, while the structural protein M1 is 
underneath the bilayer. Within the core of the virus, the single stranded negative sense RNA is placed, 
associated with the NP and the three polymerase subunits (PB2, PB1, and PA) forming the vRNP 
capsid complex (Lamb and Krug, 1996). 

Infected cell protein 
NS1 / PB1-F2 
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In principle, viruses are pleomorph. Viral morphology is a genetic trait and several viral 

proteins (HA, NA, M1, and M2) are known to have effects on the morphology of influenza 

virus particles (Jin et al., 1997). Roberts et al. further demonstrated that the nature of the 

host cells also determines the morphology of influenza virus particles (Roberts and 

Compans, 1998).  

The genome of the influenza A virus contains eight segments (Palese, 1977). vmRNA(+)s 

from segments 1 and 3 to 6 are monocistronic. vmRNA(+)s from segment 2 of some viral 

isolates contain an alternative open reading frame. In contrast, vmRNA(+)s derived from 

segments 7 or 8 can undergo alternative splicing for protein expressions (Lamb and Krug, 

2001). The sizes of the viral RNA segments and the proteins encoded are summarized in 

Table 2.1-1. Only PB1-F2 protein from segment 2 (PB1) and NS1 protein from segment 8 

(NS) are non-structural proteins. 

 

Table 2.1-1: Viral RNA segments and coded proteins of Influenza A virus (PR/8 strain) adapted from 
Fields et al. (Fields et al., 2001) 

Seg-
ment 

Size 
(nt)* 

Protein Poly-
peptide 
(AA)* 

Molecular 
weight 
(kDa) 

Nr. of 
copies/
virus 

Function 

1 2341 PB2 759 86 30-60 RNA polymerase, cap-binding 

2 2341 PB1 757 87 30-60 RNA polymerase, elongation 

PB1-F2 87 11 - Proapoptic activity 

3 2233 PA 716 84 30-60 RNA polymerase, protease, endonuclease 

4 1778 HA 560 61 500 Hemagglutinin, surface glycoprotein, receptor-
binding, membrane fusion 

5 1565 NP 498 56 1000 Nucleoprotein, RNA binding, RNA polymerase 
complex, nuclear/cytoplasmic transport of viral 
RNA 

6 1413 NA 454 50 100 Neuraminidase, surface glycoprotein, virus 
release 

7 1027 M1 252 28 3000 Matrix protein, nuclear export, interactions with 
vRNPs 

M2 97 11 20-60 Matrix protein, integral membrane protein, ion 
channel 

8 890 NS1 230 27 - Non-structural protein, effects on cellular RNA 
transport, splicing, translation, IFN antagonist 

NS2 121 14 130-200 Non-structural protein, vRNP nuclear export 

* nt – nucleotides; AA - amino acids 
 

Considering the PR/8 virus strain as an example, the influenza viral gene segments range 

from 890 to 2341 nucleotides in length containing approximately 20-45 non-coding 

nucleotides at the 3’ end and 23-61 at the 5’ end, depending on the segment (Steinhauer and 

Skehel, 2002). Usually the 13 5’ terminal and 12 3’ terminal nucleotides of the eight influenza 

A virus segments are highly conserved among all strains.  
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Non-coding regions that lie between the conserved promoter elements and the start or stop 

codons are variable in length and nucleotide composition, and their function is still unknown. 

Deletions, insertions, or mutations in these regions demonstrated that they are not required 

for viral replication or transcription (Garcia-Sastre et al., 1994; Zheng et al., 1996) but may 

affect these processes, possibly by interacting with NP or the polymerase complex. 

Furthermore, a sequence motif in the noncoding region of segment 7 is stimulating the 

expression of the encoded protein, whereas transcription levels remained unaffected (Enami 

et al., 1994). This finding suggests that the noncoding regions contain signals that affect 

vmRNA(+) stability or the initiation of translation (Neumann et al., 2004). 

 

2.1.2. Influenza A virus life cycle 

The influenza virus life cycle can be divided into the following stages: binding, fusion and 

uncoating of the influenza virus, entry of vRNPs into the nucleus, transcription and replication 

of the viral genome, translation of viral proteins, export of the vRNPs from the nucleus, and 

assembly and budding at the host cell membrane. The life cycle of influenza virus was 

investigated thoroughly by many groups and a number of excellent books and reviews (Flint 

et al., 2009; Flint et al., 2000; Hay, 1998; Lamb and Krug, 2001; Nickolson, 1998) describe 

the complex steps of replication in host cells. Each stage of the viral life cycle is summarized 

in the following. An illustration of the different stages is given in Figure 2.1-2. 

Binding, fusion and uncoating of the influenza virus 

Influenza viruses bind via their surface HA to sialic acid in alpha 2,3 or alpha 2,6 linkage with 

galactose on the host cell surface (Mochalova et al., 2003). Virus particles can be 

internalized by four mechanisms. Most internalization appears to be mediated by clathrin-

coated pits, however internalization via caveolae, macropinocytosis, and by non-clathrin, 

non-caveolae pathways has also been described for influenza viruses (Matlin et al., 1981).  

Uncoating of viral particles takes place in the host cell endosome. vRNPs are released from 

the endosome when the endosomal pH is decreased to about 5.0, which activates the viral 

M2 ion channels and allows protons to enter the interior of the virus particle (Chizhmakov et 

al., 1996). As a result, the viral M1 proteins undergo conformational changes, followed by the 

disruption of M1 vRNP interactions and acid-catalyzed conformational rearrangements of HA 

proteins. As a consequence, viral and endosomal membranes fuse and vRNPs are released 

into the cytoplasm (Marsh and Helenius, 1989). 

Transport of vRNPs into the host cell nucleus 

An unusual characteristic of the influenza virus life cycle is its dependence on the nucleus. 

Nucleus trafficking of the viral genome is a tightly regulated process. The eight influenza 
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virus genome segments are associated with four viral proteins to form vRNPs. The major 

viral protein in the vRNP complex is the NP, which coats the RNA. The remaining proteins 

PB1, PB2 and PA bind to the partially complementary ends of the viral RNA, creating a 

distinctive panhandle structure. The vRNPs (10-20 nm wide) rely on active import 

mechanism of the host cell nuclear pore complex due to the presence of nuclear localization 

signals (NLSs) (Cros et al., 2005). NLSs mediate their interaction with the nuclear import 

machinery, including the Ran guanosine triphosphatase (RanGTPase) (Deng et al., 2006a).  

Influenza viral RNA transcription and replication 

In general, for each of the 8 gene segments, a vRNP is assembled in the nucleus (Boulo et 

al., 2007). The vRNP functions in three modes (Mikulasova et al., 2000): (I) transcription, 

which synthesizes viral messenger RNA (vmRNA(+) from the vRNA(-) template using as 

primer 5' ends of cellular mRNAs containing a cap structure; (II) replication, which produces 

positive sense complementary RNA (cRNA(+)) and subsequently vRNA(-), both complexed 

with NP and the trimeric polymerase; and (III), the vRNP is exported from the nucleus into 

the cytoplasm and is incorporated into assembling viruses at the membrane. 

Such as the mRNAs of the host cell, influenza vmRNA(+)s are capped and polyadenylated 

(Neumann et al., 2004). The methylated caps, however, are scavenged from host cell 

mRNAs and serve as primer for viral RNA synthesis, a process termed 'cap-snatching' (Krug 

et al., 1987). The second process allows polyadenylation of vmRNA(+)s when host cell 

polyadenylation has been inhibited (Amorim and Digard, 2006). Notably, early vmRNA(+) 

(including NP and NS1) accumulate in the cytoplasm before late vmRNA(+) (M1, HA and 

NS2). Both appear in varying abundances, suggesting additional control mechanisms 

regulating viral gene expression (Hatada et al., 1989; Shapiro et al., 1987). 

The viral polymerase complex produces positive sense vmRNA(+) with host cell derived 5' 

methyl caps. Alternately spliced vmRNA(+) transcribed from M and NS vRNA(-) segments 7 

and 8, producing the spliced vmRNA(+) for M2 and NEP/NS2, respectively, are thought to be 

coupled to the cellular splicing and export mechanisms (Chen and Krug, 2000). Capped 

vmRNA(+)s are exported selectively from the host cell nucleus through a currently unclear 

mechanism that may rely on components of the host cell mRNA export machinery 

(Engelhardt and Fodor, 2006). Polyadenylation of vmRNA(+) appears to be required for 

influenza vmRNA(+) export (Poon et al., 2000).  

Synthesis of full length cRNA(+) requires that vRNA(-) transcription initiates without the help 

of a host cell methyl RNA cap as a primer (Deng et al., 2006b), and that it proceeds to the 5' 

end of the vRNA(-) template. Free viral NP seems to play a central role in enabling both of 

these features of cRNA(+) synthesis, although the molecular details of its role remain unclear 

(Mullin et al., 2004).  
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The synthesis of full-length negative strand viral RNA from a cRNA(+) template is believed to 

follow the same principles as the synthesis of cRNA(+) from a vRNA(-) template. The 

cRNA(+), complexed with viral NP, is used as template by the trimeric viral polymerase 

(Crow et al., 2004), and newly synthesized vRNA(-) molecules are packaged immediately 

with NP molecules to form vRNP complexes (Vreede et al., 2004).  

Spliced and unspliced vmRNA(+) in the cytoplasm is translated by the host cell ribosomal 

translation machinery (Kash et al., 2006). At least eleven viral proteins are synthesized: HA, 

NA, PB1, PB1-F2, PB2, PA, NP, NS1, NS2, M1, and M2. In most human influenza A strains 

(such as PR/8), the PB1 vmRNA(+) segment is capable of producing a second protein, PB1-

F2, from a short +1 open reading frame (ORF) initiated downstream of the PB1 ORF initiation 

codon (Chen et al., 2001). vmRNA(+) translation is believed to be enhanced by conserved 5' 

untranslated region (UTR) sequences that interact with the ribosomal machinery and at least 

one cellular RNA-binding protein, G-rich sequence factor 1 (GRSF-1), has been found to 

interact specifically with the viral 5' UTRs (Park et al., 1999). The viral NS1 protein and the 

cellular protein kinase inhibitor p58 (P58IPK) enhance viral translation indirectly by 

preventing the activation of the translational inhibitor protein kinase R (PKR) (Goodman et 

al., 2007). The viral NS1 protein has also been proposed to enhance specifically translation 

through interaction with host cell poly(A)-binding protein 1 (PABP1) (Burgui et al., 2003). 

Simultaneously, host cell protein synthesis is downregulated in influenza infection by still 

uncharacterized mechanisms (Kash et al., 2006).  

Export of vRNP from nucleus 

Influenza genomic vRNA(-) is packaged into vRNP complexes containing viral polymerase 

proteins and NP. As influenza vRNP complexes are too large for passive diffusion out of the 

nucleus, utilization of the cellular nuclear export machinery is achieved by viral adaptor 

proteins. M1 is critical for export of the complex from the nucleus, mediating the interaction of 

the vRNP complex with the viral NS2 protein, which in turn interacts with host cell 

CRM1/exportin-1 nuclear export protein (Boulo et al., 2007; Neumann et al., 2000).  

Virus assembly and release 

Influenza viruses assemble and bud from the apical plasma membrane of polarized host 

cells (Schmitt and Lamb, 2005). Following synthesis on membrane-bound ribosomes, the 

three viral integral membrane proteins, HA, NA and M2 enter the host cell endoplasmic 

reticulum (ER) where all three proteins are folded and HA and NA are glycosylated. HA, NA 

and M2 are transported to the Golgi apparatus and are directed to the virus assembly site on 

the apical plasma membrane via apical sorting signals (Doms et al., 1993). For a budding of 

infectious influenza virus particles it is essential that thus contain a full complement of the 

eight vRNA(-) segments. Two different models have been proposed for packaging of the 
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vRNPs into newly assembled virus particles. The random incorporation model proposes that 

there is no selection at all on which vRNPs are packaged. It is assumed that each vRNP has 

equal probability of being packaged, and that if enough vRNPs are packaged, a particular 

percentage of budding viruses will receive at least one copy of each genome segment 

(Enami et al., 1991). The selective incorporation model suggests that each segment contains 

a unique ‘packaging signal’ allowing it to act independently, with each segment being 

packaged selectively. There is increasing evidence for the theory of a packaging signal within 

the coding regions at both the 5' and 3' end of the genomic RNA (Fujii et al., 2009). 

In polarized epithelial cells, assembly and budding of influenza occurs from the apical plasma 

membrane (Schmitt and Lamb, 2005). For efficient assembly, all viral components must 

accumulate at the budding site, and it is believed that the viral glycoprotein accumulation 

determines the site of virus assembly and budding (Nayak et al., 2004). M1 is thought to be 

the bridge between the envelope glycoproteins and the vRNPs for assembly (Schmitt and 

Lamb, 2005). Host cell factors such as polarization and the actin cytoskeleton play a critical 

role in determining the shape of filamentous particles (Simpson-Holley et al., 2002). 

Once the viral envelope has separated from the cell membrane influenza virus particles are 

released actively to complete the budding process (Schmitt and Lamb, 2005). HA anchors 

the virus to the cell by binding to sialic acid-containing receptors on the cell surface. The 

enzymatic activity of the NA protein removes the sialic acid and releases the virus from the 

host cell. NA activity is also required to prevent the viral particles from aggregating. 
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Figure 2.1-2: Influenza A virus life cycle  

The virus life cycle is divided into attachment and fusion (1), followed by uncoating (2), synthesis of 
cRNA(+) from vRNA(-), replication of vRNA(-), transcription, translation of vmRNA(+)s to produce viral 
proteins (3-5), post-translational modification of viral proteins (6), assembly of viral structural 
components (7) and release of progeny virus (8) (Sidorenko and Reichl, 2004). 
 

2.1.3. Influenza virus-host cell interactions 

Infection of host cell with influenza virus triggers an array of host cell processes that interfere 

with viral replication. In the following important interactions of viral proteins with cellular 

factors, which either support viral replication or counteract host cell defense are described. 

Replication of the virus in host cells 

For replication and transcription of the influenza virus genome, not only viral factors but also 

host cell derived cellular factors are required (Zhang et al., 2009). Key among the functional 

interactions during influenza virus infection is the dependence of the virus on cellular RNA 

synthesis by DNA-dependent RNA polymerase II (Pol II) (Engelhardt and Fodor, 2006). The 

virus can alter the distribution of Pol II on cellular genes, leading to a reduction in Pol II 

elongation, thereby contributing to the well-known phenomenon of host cell protein synthesis 

shutoff, in which there is a dramatic decrease in the translation of cellular mRNAs while viral 

transcripts remain efficiently and selectively translated during influenza virus infection (Chan 

et al., 2006a). Recent functional assays and proteomics have suggested a panel of host 

cellular proteins, which may interact with viral polymerase and vRNP complexes (Mayer et 

al., 2007). NS1 protein plays a central role in these virus-host cell interactions (Kochs et al., 
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2007; Krug et al., 2003). Viral NS1 protein is a nuclear, dimeric protein that is highly 

expressed in infected cells and has dsRNA-binding activity. Viral NS1 is also a major player 

in shutting down host cell protein synthesis. Therefore, it interferes with the host cell 

machinery, such as CPSF4 (cleavage and polyadenylation specific factor 4, 30kDa) and 

PABN1 (poly(A) binding protein, nuclear 1) in polyadenylation (Nemeroff et al., 1995; Qian et 

al., 1995). NS1 also recruits the cellular initiation factor, eIF4G1 (eukaryotic translation 

initiation factor 4 gamma 1), allowing for the preferential viral messengers translation (Aragon 

et al., 2000). A variety of intracellular signaling pathways activated by influenza, such as the 

Raf/MEK/ERK mitogenic kinase cascade, are in part exploited by the virus to ensure efficient 

replication (Ludwig et al., 2006). A number of host cell proteins, including microfilaments, G 

proteins, and some protein kinases, have been shown to be involved in the budding of 

influenza virus (Nayak et al., 2004). 

Host cell innate antiviral response 

The IFN induced cellular antiviral response has a primary protective function in the early 

stages of influenza virus infection (Garcia-Sastre, 2006). Both double strand (ds) and ssRNA, 

viral RNA products generated during infection, act as triggers for the production of IFN, which 

are recognized by two types of sensors, the transmembrane Toll-like receptors (TLR) and 

cytoplasmic RIG-I (retinoic acid inducible gene I)-like receptors (Garcia-Sastre, 2006). Virus-

infected cells synthesize IFN and secrete it into extracellular fluid, where it binds to IFN 

receptors on uninfected neighboring cells. This binding, results in the induction of a cellular 

antiviral responses involving the upregulation of more than 100 IFN stimulated genes (ISG) 

(e.g. myxovirus-resistance proteins (Mx), PKR) (Ludwig et al., 2006). To establish a 

productive infection, influenza viruses must first overcome the IFN induced block imposed on 

viral replication. PKR can restrict viral replication through phosphorylation of the protein 

synthesis initiation factor EIF2A, resulting in a reduced translation initiation. This prevents 

viral replication and inhibits normal cell ribosome function, killing both the virus and the host 

cell if the response is active for a sufficient time. To evade the antiviral effects of PKR, 

influenza has evolved two strategies: (I) the virus activates a host cellular inhibitor of PKR, 

p58IPK, and (II) its NS1 protein blocks PKR activation (Wolff and Ludwig, 2009). The viral 

NS1 protein has been identified as a potent agonist of the innate antiviral signaling, both by 

interference with the RIG-I induction of IFN and at a later stage, by modulating processing of 

cellular pre-mRNA (Kash et al., 2006; Krug et al., 2003). 

Influenza virus induced apoptosis 

Efficient virus replication, maintenance of viral protein synthesis, shutoff of host cell protein 

synthesis, and production of viral particles usually leads to cytolytic death of cells at 20–40 h 

of infection (Julkunen et al., 2001). Influenza virus is known to induce apoptosis, in a variety 
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of ways, however the specific regulation mechanism still remains unclear (Ludwig et al., 

2006). Currently, it is unclear whether apoptosis is a host cell defense mechanism to limit the 

replication and spread of virus, or a virus induced function to support viral replication. Typical 

host cell changes are characterized by chromatin condensation, DNA fragmentation, cell 

shrinking, and compartmentalization to apoptotic bodies followed by clearance of apoptotic 

cells by phagocytic cells (Earnshaw et al., 1999). Increased intracellular Ca2+ levels, elevated 

Fas antigen, a cell surface receptor that triggers apoptosis, and transforming growth factor 

(TGF)-beta levels, and activation of PKR have been associated with influenza virus induced 

apoptosis (Takizawa et al., 1996). In addition, IFN and enhanced PKR expression were 

found to potentiate influenza A virus induced apoptosis (Wolff and Ludwig, 2009). Two 

influenza virus proteins, NA and M1/M2 have also been suggested to regulate apoptosis. NA 

activates latent TGF-beta, which may then indirectly be involved in influenza virus induced 

apoptosis (Morris et al., 2005). In virus infected cells, the virus encodes a nonstructural 

protein, PB1-F2, which induces apoptosis through a mitochondrial carrier protein (adenine 

nucleotide translocator 1) (Chen et al., 2001).  

The importance of host cell factors, which are absolutely required for influenza virus 

replication, have been shown in three recent studies using a novel genome wide RNA 

interference (RNAi) screen in mammalian cells (Hao et al., 2008a; Karlas et al., 2010; Koenig 

et al., 2010). These studies identified proteins, which comprise functional categories and 

interactions already associated with viral replication, and which were mentioned before. 

However, additionally host cell factors that have not previously been implicated in mediating 

influenza virus replication were found. Signaling molecules, including those involved in the 

PI3K/AKT pathway, molecules that function to regulate cytoskeletal dynamics, endosomal 

trafficking complex, Ca2+ regulation, and proteins involved in ubiquitination, phosphatase and 

protease activities were overrepresented, underscoring the importance of these cellular 

functions during influenza infection. Thus, results of these screens highlighted the 

importance for the analysis of virus–host cell interactions and provided new and 

comprehensive information on host cell determinants of replication. 

Overall, knowledge of influenza virus interactions with host cells not only helps to gain 

important insights into viral survival and cellular defense strategies, it also uncovers novel 

targets for host cell factor directed antiviral therapy and provides perspectives in the 

mechanism of host range and virulence. 
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2.1.4. Regulation of the influenza virus life cycle 

Influenza viral genomic RNA (vRNA(-)) is complexed, with the polymerase subunits and NP 

into active vRNP, which serves as a template for both viral transcription and replication 

(Lamb and Krug, 2001). Both, cellular and viral factors have been suggested to play crucial 

roles in the regulation of viral transcription and replication during infection. The mechanism 

for switching from viral transcription to replication however is still understood poorly. One 

hypothesis is a control or switching mechanism to regulate the polymerase transcription and 

viral genome replication activity (Biswas et al., 1998). This hypothesis suggests that a 

sufficient amount of soluble NP in the nucleus, which is not associated with vRNPs, is 

required to switch from viral transcription to replication. Recently, Vreede et al. demonstrated 

that there may be no switch, regulating the initiation of RNA synthesis and proposed a 

model, suggesting that nascent cRNA(+) is degraded by host cell nucleases unless it is 

stabilized by newly synthesized viral RNA polymerase and NP (Vreede et al., 2004). 

Additional hypotheses are, that different concentrations of initiating nucleoside triphosphate 

(NTP) are required for viral replication and transcription (Vreede et al., 2008) as well as a 

regulatory function for the NS2 protein (Robb et al., 2009). Another study proposed a 

regulatory role of segment-specific non-coding sequences of influenza virus on viral RNA 

synthesis, whereas heterologous viral RNA segments with identical non-coding sequences 

stimulated viral RNA replication (Ng et al., 2008). Furthermore, host cell signaling pathways 

(e.g. nuclear factor kappa B (NF-κB)) might be involved in influenza virus replication and 

could regulate differentially influenza virus RNA synthesis (Kumar et al., 2008b). In the 

following the first two hypotheses are explained in more detail: 

Switching mechanism hypothesis 

The switching mechanism hypothesis supposes that in later infection phases viral RNA 

synthesis is switched from viral transcription mode to replication mode (Biswas et al., 1998). 

NP was identified as a prime candidate for a switching molecule based on several 

temperature-sensitive NP mutants defective in replication and RNA binding (Medcalf et al., 

1999). Biochemical studies suggested that free NP is required for the synthesis of full-length 

transcripts (Shapiro and Krug, 1988). It was proposed that mechanistically interaction of NP 

with the polymerase (polymerase modification) (Mena et al., 1999) or with the promoter 

element of the template RNA (template modification) (Fodor et al., 1994) alters the mode of 

transcriptional initiation. 

Stabilization hypothesis 

The stabilization model suggests that there is no switch regulating the initiation of RNA 

synthesis (Vreede et al., 2004). It was shown that in the presence of preexisting viral RNA 

polymerase and NP, influenza A virus synthesizes both vmRNA(+) (transcription) and 
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cRNA(+) (replication) early in infection. vmRNA(+) is protected from normal cellular 

degradative processes by the presence of a 5′ cap and a 3′ poly(A) tail, whereas nascent 

cRNA(+) is presumably rapidly degraded by host cell nucleases. The transition to a 

replicative phase occurs when cRNA(+) is protected by the specific binding of RNA 

polymerase (assembled from newly synthesized PB1, PB2, and PA) to the cRNA(+) 

promoter (Gonzalez and Ortin, 1999). The cRNA(+)-polymerase promoter complex then 

serves as a nucleation point for binding of free newly synthesized NP, leading to the 

formation of active and stable vRNPs suitable for replicative vRNA(-) synthesis. 

Time course and dynamics of influenza virus replication 

Besides regulation, time course and dynamics of replication of the different viral RNA 

segments are not understood entirely. General estimations are as follows. It is suggested 

that the relative abundance of specific vmRNA(+) and vRNA(-) are controlled throughout 

infection (Lamb and Krug, 2001). In general, synthesis of vmRNA(+)s starts early after 

infection and reaches a maximum rate at about 2.5 hours post infection (hpi) (Shapiro and 

Krug, 1988). Synthesis of viral cRNA(+)s begins not until vmRNA transcription, but maximum 

synthesis rates of NS1 cRNA(+) is reached at about 1.5 hpi before maximum vmRNA(+) 

synthesis rate (Shapiro et al., 1987). 

Immediately after infection, primary viral transcription occurs (Hay, 1998). At this stage, all 

eight vmRNA(+)s are synthesized in equimolar amounts. This is followed by the second viral 

transcription stage. The second viral transcription stage can be further subdivided into early 

and late phases. In the early phase of the second viral transcription, NS1 and NP vRNA(-) 

are synthesized preferentially. As a consequence, NS1 and NP are the predominant viral 

proteins in infected cells at this stage (Hay et al., 1977). It is possible that NP is required for 

viral replication and transcription of viral RNA. NS1 might be required for the regulation of 

cellular gene expression. During the late phase, vRNA(-)s are synthesized in equivalent 

amounts, as required for progeny virus genome. At this stage, the NS1 protein is synthesized 

in a reduced level. In contrast, HA, NA, and M1 vmRNA(+)s are synthesized preferentially 

(Smith and Hay, 1982). In contrast to other viral proteins polymerases occurred 

proportionally low. They are required in only catalytic amounts.  

Viral protein synthesis seems to be primarily regulated on the transcription and not on the 

translation level. Since, the synthesized amount of viral protein is proportional to the amount 

of vmRNA(+) (Hatada et al., 1989). Additionally, viral gene expression could be regulated 

through sequence differences of the segments, which is also supposed for the non-coding 

regions of the highly conserved areas (Zheng et al., 1996). 
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2.1.5. Influenza virus vaccine production 

The most effective way to provide protection against influenza infections is through 

vaccination. Human vaccines against influenza have been available for almost 60 years 

(Audsley and Tannock, 2008). Viral vaccines are typically categorized into live (attenuated) 

and dead vaccines. Live (attenuated) vaccines comprises all vaccines containing infectious, 

replicating virus while dead vaccines only contain virus particles, which have been chemically 

inactivated or viral components (e.g. whole virus, split virus and subvirus vaccines). Live 

human influenza vaccines containing cold-adapted influenza viruses were developed more 

than three decades ago (Wareing and Tannock, 2001). Influenza viruses can be attenuated 

by adapting them to replicate at lower temperatures (25–33°C). Then these cold-adapted 

virus strains are re-assorted with selected epidemic strains, which donate the gene segments 

encoding HA and NA. Live vaccines are given usually orally or nasally mimicking the natural 

route of infection and much lower doses of virus are required for vaccination (e.g. FluMist, 

MedImmune Vaccines, Inc., USA). Alternatively, recent advancements in reverse genetics 

now make it possible to generate influenza viruses entirely from cloned plasmid DNA by 

cotransfection of appropriate cells with 8 or 12 plasmids encoding the influenza virus sense 

RNA and/or vmRNA(+). This technology could enable the routine and rapid generation of 

strains for either inactivated or live attenuated influenza vaccines (Subbarao and Katz, 2004). 

Current human vaccines are usually trivalent and contain inactivated representative influenza 

A H1N1, H3N2 and influenza B surface antigens. Vaccine strains are re-evaluated each year 

by the WHO. Traditionally, the majority of viruses used for inactivated vaccines are still 

prepared by growth in the allantoic cavity of embryonated chicken eggs. Allantoic virus is 

purified, concentrated and inactivated. Since the 1970s, most influenza A seed strains used 

for vaccine production have been prepared by genetic reassortment using the surface 

glycoproteins of wild type strains chosen by the WHO experts and an PR/8 or PR/8-like 

master strain as a backbone. The use of this high-growth phenotype of the laboratory strain 

is believed to reduce the possibility of extraneous infectious agent contamination (Kilbourne 

et al., 1971). 

Throughout the past decade, efforts towards mammalian cell culture derived vaccines were 

started (Kistner et al., 1998). The first inactivated human influenza vaccine derived from cell 

culture grown virus have been granted for seasonal vaccination (Optaflu by Novartis-

Behring, Germany) (Doroshenko and Halperin, 2009). Other vaccine candidates are under 

development or in clinical trials. The main reason for the establishment of cell culture derived 

vaccines is the improved flexibility and scalability compared to production in eggs in case of 

pandemics. Some other drawbacks associated with the use of eggs are poor growth of some 

reassortant vaccine strains in eggs (Audsley and Tannock, 2008), and that vaccines can 
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contain traces of potentially reactogenic endotoxins, formaldehyde or egg proteins (Wright 

and Webster, 2001). Additionally, egg growth often selects variants that differ in their 

glycosylation patterns from the original clinical isolates. 

The suitability of a number of cell lines for the growth of influenza viruses has been 

investigated and some are currently used in manufacturing processes. Cell lines under 

investigations are conventional, continuous cell lines growing adherently, e.g. MDCK, Vero or 

a proprietary MDCK 33016 suspension cell line (Novartis Vaccines, Basel, Switzerland) 

(Genzel and Reichl, 2009). Additionally, there are so-called designer cell lines, e.g. PER.C6 

(Crucell, The Netherlands) (Pau et al., 2001), AGE1.CR (ProBiogen, Berlin, Germany) (Lohr 

et al., 2009) and EBx™ (Vivalis, Nantes, France) (Pearson, 2007) established. These cell 

lines were derived from human or animal cells and transformed by viral or cellular 

immortalizing genes or oncogenes (Genzel and Reichl, 2009). In the following, two promising 

cell line candidates will be described in more detail. 

The MDCK cell line was derived from the kidney of a healthy female cocker spaniel in 1958 

(Gaush et al., 1966; Madin and Darby, 1958). This cell line has been studied extensively as it 

provides an excellent model for the study of kidney and epithelial development (Simmons, 

1982). It has been used for influenza  virus titer determination via plaque and TCID50 assay 

and is used commonly for the clinical isolation of influenza (Gaush and Smith, 1968). 

Different MDCK cell lines can be obtained from cell culture collections such as the American-

Type Culture Collection (ATCC; e.g. CCL34) or European Collection of Cell Culture 

(ECACCs; e.g. 841211903). Additionally, other MDCK cell lines with unknown origin are 

used. Therefore, care must be taken when comparing experimental results from the 

literature. The MDCK cell line is a well studied vaccine production candidate, which is known 

to support successfully influenza growth since many years (Genzel et al., 2004; Tree et al., 

2001) and many companies are currently considering MDCK cells for vaccine manufacturing. 

Besides vaccine production this cell line is also of interest for seed virus isolation (high 

growth reassortant) as well as for reverse genetic approaches (Murakami et al., 2008; Wang 

and Duke, 2007). 

The Vero cell line was derived from kidney fibroblasts from an African green monkey and has 

been used for the production of polio and rabies vaccine for more than twenty years 

(Montagnon et al., 1981). It has been recommended by the WHO for influenza vaccine 

production and is such as the MDCK cell line discussed for isolation of seed virus and 

reverse genetic approaches (Nicolson et al., 2005).  Different Vero cell lines are available at 

the cell culture collections and described in the literature (mostly used: ECACC, e.g. 

88020401; ATCC, e.g. CCL-81).The Vero cell line contains a genetic lesion in the IFN locus 

and therefore is deficient in IFN production (Diaz et al., 1988). IFN is implicated in apoptosis 
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induction and in the cellular immune response after viral infection. As a result of IFN 

deficiency the cells seem to be extremely permissive to viral infection. Therefore, the Vero 

cell line is used widely to produce virus and vaccine stocks (Montagnon and Vincent-Falquet, 

1998), to perform IFN bioassays and to study virus-host cell interactions (Chew et al., 2009; 

Kistner et al., 1998; Rourou et al., 2009). Surprisingly, initial studies indicated that influenza 

viruses grew poorly in Vero cells (Lau and Scholtissek, 1995). Improvements in yields were 

later obtained by the addition of trypsin to the cultures and a traditional cell line adaptation 

process by passaging the virus strain several times in the cells (Govorkova et al., 1995).  

Influenza virus vaccines derived from MDCK and Vero cell lines have been produced and 

evaluated for immunogenicity, and their production has been scaled up to commercial levels 

(Doroshenko and Halperin, 2009; Kistner et al., 1998; Youil et al., 2004). 

Although cell culture based systems have been developed successfully, limitations remain 

that need to be overcome, if the potential of those systems is to be utilized fully. These 

limitations include slow virus replication and poor virus yields of some influenza virus seed 

strains, e.g. as a consequence of a limited time-span for virus replication of infected cells due 

to early stress and fast induction of apoptosis (Hornickova, 1997). A better understanding of 

molecular mechanisms involved could contribute significantly to the development of methods 

to overcome existing bottlenecks in cell culture derived influenza vaccine manufacturing. In 

particular in molecular mechanisms, which help virus variants to overcome host cell defence 

or result in fast induction of stress or apoptosis in mammalian cells. 
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2.2. Proteomic approach 

2.2.1. General overview 

Two-dimensional gel electrophoresis (2-DE) is a powerful, high-resolution method to 

separate a complex mixture of peptides and proteins (O'Farrell, 1975). Each dimension of the 

procedure assesses successively two distinct fundamental characteristics of proteins: their 

isoelectric point (pI) value during isoelectric focusing (IEF) and their molecular weight (MW) 

during sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). As a result, 

the protein content of any sample is resolved throughout the gel in the form of an average of 

1000–2500 spots corresponding to about 300–1000 proteins.  

2-DE was described by Klose and O’Farrell in 1975 and has since been developed further 

(Klose, 1975; O'Farrell, 1975). The introduction of an immobilized pH gradient (IPG) for the 

IEF separation has resulted in improved reproducibility and has become the reference 

method for 2-DE (Bjellqvist et al., 1982). At all stages, 2-DE has undergone several 

modifications, including polypeptide solubilization, the use of wider or narrower IPG strips, 

strip equilibration between both dimensions and gel quality for the second-dimension 

separation, that have improved the quality of the results obtained (Goerg et al., 2004). 

Additionally, advances in staining techniques have challenged the traditional Coomassie 

brilliant blue or silver staining methods, which can be replaced by fluorescent staining using 

dyes such as SyproRuby. These allow reliable quantitative assessment of separated proteins 

with high sensitivity and high dynamic range (Yan et al., 2000). Finally, the development of 

bioinformatic tools (Appel et al., 1997) and various MS techniques have complemented the 

gel-based proteomics approach to offer reliable gel-to-gel comparison and protein 

identification capabilities. Despite advances of non-gel based proteomic technologies, 

including liquid chromatography coupled with tandem MS (LC-MS/MS) and tagging 

strategies such as ICAT (isotope-coded affinity tagging) or iTRAQ (isobaric tags for 

relative/absolute quantification), 2-DE remains the most important and widespread method of 

the current proteomic techniques (Patton et al., 2002; Wu et al., 2006). 

Over the past several years tremendous progress in developing proteomics technologies for 

global protein post-translational modifications (PTMs) analysis has been made (Farley and 

Link, 2009). PTMs are enzymatic, covalent chemical modifications of proteins that occur 

typically after the translation of mRNAs. These modifications are relevant because they can 

potentially change a proteins physical or chemical properties, activity, localization, or stability. 

Some PTMs can be added and removed as a mechanism for reversibly controlling protein 

function and cell signaling. More than 300 different types of PTMs have been described, 

many of which are known to have pivotal roles in cellular physiology and disease. 
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Fluorescent stain and immuno-based methods, modification-specific enrichment techniques 

combined with advanced MS/MS methods have revealed a surprisingly large extent of PTMs 

in proteins (Hoffman et al., 2008; Zhao and Jensen, 2009). Recent developments have 

resulted in techniques used for the analysis of PTM using chemical proteomics (Tate, 2008). 

The key unifying step is the generation of a protein labeled with a small chemical tag at the 

site of PTM. A highly selective chemical reaction, termed a biorthogonal ligation, is then 

performed between the chemical tag and a capture reagent to introduce one or more 

secondary label(s). Secondary labels enable detection, manipulation and enrichment of 

proteins bearing a specific PTM (Tate, 2008). The methodology for the initial introduction of 

the chemical tag is tailored to the PTM of interest, exploiting either in vivo metabolic labeling 

with a tagged analogue of the PTM or selective (post-lysis) modification of a PTM by 

chemical or enzymatic means. Secondary labels enable detection, manipulation and 

enrichment of proteins bearing a specific PTM (Tate, 2008). 

Advantages of 2-DE 

2-DE can be applied to almost any type of protein-containing sample, including eukaryotic 

tissue and derived extracts, cells and organelles, biological fluids, prokaryotic organisms and 

plants. However, adequate sample preparation according to the specific aim of the proposed 

study is of great importance (Shaw and Riederer, 2003).  

Because of its high resolving power and its large sample loading capacity, 2-DE allows 

several hundred proteins to be displayed simultaneously on a single gel, yielding a direct and 

global view of a sample proteome at a given time point. Additionally, 2-DE can demonstrate 

changes in relative abundance of visualized proteins and can separate protein isoforms, 

variants and PTMs. Quantitative proteomics can be achieved by assessing differences in 

protein abundance across gels using related software. Once detected, proteins in individual 

spots can be identified by MS (Carrette et al., 2006). 

Limitations of 2-DE 

However, 2-DE still has several limitations. First, the number of samples that can be run 

simultaneously is limited by the duration of the procedure (about 5 days) and the equipment 

available. Second, despite maximum precautions, there will be some degree of gel-to-gel 

and run-to-run variability in the expression of the same protein set. Finally, some proteins 

may escape the capabilities of conventional 2-DE for several reasons, including poor 

solubility (membrane proteins, aggregates), an extreme pI or exceeding the upper or lower 

MW size limits (Van den Bergh et al., 2003). One of the main disadvantages is the inability to 

visualize low-copy-number proteins when highly abundant gene products are present 

(Corthals et al., 2000). Although approximately 10000–30000 proteins are present in the 

proteome of a cell (even more in tissue), only between 1000 and 2000 of the most abundant 
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proteins can be visualized on a single gel (Carrette et al., 2006). Enrichment of such low 

abundant proteins is a preanalytical step that should be considered seriously. Various 

prefractionation methods have been developed, including specific cell or microorganism 

cultures, laser capture microdissection, fluorescence-activated cell sorting of antibody-bound 

cells, differential centrifugation or detergent extraction of organelles, and reversed-phase 

high-performance liquid or affinity chromatography (Ahmed and Rice, 2005; Michelsen and 

von Hagen, 2009). 

 

2.2.2. Two-dimensional difference gel electrophoresis (2-D DIGE)  

The limitations of 2-DE i.e. lack of sensitivity and reproducibility, or quantitative capacities of 

existing labeling reagents, has limited the use of this technique as a quantitative tool. 2-D 

DIGE builds on this technique by adding a highly accurate quantitative dimension (Unlu et 

al., 1997). 2-D DIGE enables multiple protein extracts to be separated on the same 2-DE gel. 

This is made possible by individual labeling of each extract using spectrally resolvable, size 

and charge-matched fluorescent cyanine dyes known as CyDye DIGE fluors (Cy2, Cy3 and 

Cy5) (Unlu et al., 1997; Zhou et al., 2002). The linearity, sensitivity, and wide dynamic range 

(3.6 orders of magnitude) of these fluorescent cyanine dyes have made 2-D DIGE into a 

quantitative technique. The detection limit of proteins using Cy2 is 0.075 ng, using Cy3 is 

0.025 ng, and using Cy5 is 0.025 ng (Marouga et al., 2005). Compared with silver staining 

(sensitivity: 1 ng) these dyes are clearly more sensitive.  

2-D DIGE involves the use of a internal reference standard, which comprises equal amounts 

of protein from each biological sample in the experiment (Alban et al., 2003). Including the 

internal standard on each gel in the experiment with the individual biological samples means 

that the abundance of each protein spot on a gel can be measured relative (i.e. as a ratio) to 

its corresponding spot in the internal standard present on the same gel.  

Quantitative gel and proteome alteration analysis can be done with commercial available 

software tools, i.e. DeCyder 2D Differential Analysis software (GE-Healthcare). Image 

analysis consists of the following processes: spot detection, background subtraction, in-gel 

normalization, gel artifact removal, gel-to-gel matching, statistical analysis. The software 

automatically detects, matches, and analyzes protein spots in multiplexed fluorescent 

images. It contains two analysis modules, one for difference in-gel analysis (DIA), and one 

for biological variation analysis (BVA). The DIA module uses proprietary algorithms to detect 

overlapping, differently colored images within the same gel. It automatically and objectively 

performs background subtraction, quantification, normalization, and preliminary spot 

matching. The BVA module then matches images between the different gels of an 

experimental series, looking for consistent differences between samples across all gels being 
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compared. It then applies statistics to associate a level of confidence and generates a list of 

statistically significant differences, based on user-specified threshold parameters. 

The co-separation of different samples in combination with an image analysis implementing 

an internal standard by the 2-D DIGE technique has the ability to reduce substantially the 

effects of gel-to-gel variation on the quantification of a protein spot (Gade et al., 2003). 

Therefore, the confidence that a difference in fluorescence intensity between two samples is 

due to biological rather than experimental variation has increased (Van den Bergh et al., 

2003). The high variability of standard 2-DE also means there is a need to run several 

replicate gels for the generation of statistically confident results. The high precision and 

reproducibility of 2-D DIGE means that biological replicates can replace gel replicates 

requiring fewer gels for more accurate results (Shaw et al., 2003). 
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Figure 2.2-1: Overview of the 2-D DIGE technique 

2-D DIGE technique enables quantification with statistical confidence for 2-DE gel experiments, where 
thousands of fluorescence-labeled proteins are resolved by charge/pI (using IEF) and apparent MW 
(using SDS-PAGE). 
 

Many of the limitations of 2-DE have been overcome by 2-D DIGE, making it an ideal 

technique for comparison of different protein samples. However, 2-D DIGE still has several 

limitations. One of the main disadvantages is as before the inability to visualize low-copy-

number proteins, limitations in the number and the types of protein that can be visualized. 

2.2.3. Viral proteomics: virus-host cell interactions 

Virus-host cell interactions reflect the balance of host cell defenses and virus virulence 

mechanisms. Advances in proteomic technologies now allow to compare protein content 

between complex biologic systems ranging from cells to animals and clinical samples 

(Viswanathan and Fruh, 2007). Thus, it is now possible to characterize virus-host cell 
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interactions from a global proteomic view. Most reports to date focus on cataloging protein 

content of viruses and identifying virulence associated proteins or proteomic alterations in 

host cells using mostly clinical samples or mouse models. A more in-depth understanding of 

virus-host cell interactions has the potential to improve the mechanistic understanding of 

pathogenicity and virulence, thereby defining novel therapeutic and vaccine targets. 

Additionally, proteomic characterization of the host cell response can provide virus specific 

host cell biomarkers for rapid pathogen detection and infectious diseases and 

characterization in biomedical research (Zhang et al., 2005). 

There have been many studies using microarrays to profile cellular changes at the 

transcription level in response to viral infection or individual viral protein synthesis (Kellam, 

2001). For example, Geiss et al. monitored the expression level of thousands of host cell 

mRNAs by microarray studies of human cell lines (HeLa, A549) in response to NS1 mutant 

influenza viruses or active and inactive influenza virus infection (Geiss et al., 2001; Geiss et 

al., 2002). They reported differential expression of up to 300 host cell mRNAs. Several genes 

involved in protein synthesis, transcriptional regulation, and cytokine signaling were induced 

by influenza virus replication. Deletion of the viral NS1 gene increased the number and 

magnitude of expression of cellular genes implicated in the IFN, NF-κB, and other antiviral 

pathways. However, there is also a need to determine changes at the protein level, in part 

because changes observed in mRNA abundance do not always correspond to changes at 

the protein level (Tian et al., 2004). Additionally, many viral proteins affect protein turnover 

without affecting the transcription rate of the protein, e.g. by promoting or interfering with 

polyubiquitination (Shackelford and Pagano, 2005). Virus induced changes in the cellular 

proteome have been assessed by comparing protein profiles before and after viral infection 

by proteomics techniques. 2-DE has been used to study host cell interactions by determining 

changes in the cellular proteome upon infection by several different viruses, where protein 

spots that differed before and after infection were excised and identified by MS (Maxwell and 

Frappier, 2007). Alfonso et al. used 2-DE to examine changes in Vero cells after infection 

with african swine fever virus. They identified 12 induced cellular proteins, which included 

redox related proteins, nucleoside diphosphate kinases, heat shock proteins and 

apolipoproteins (Alfonso et al., 2004). Brasier et al. reported changes in 24 nuclear proteins 

upon infection with respiratory syncytial virus. Such as the above-described viruses, these 

proteins included heat shock proteins and redox stress related proteins (Brasier et al., 2004). 

2-DE analysis was also used to determine the effects of HBV replication on host cell-protein 

synthesis (Tong et al., 2008). 66 spots were identified as differentially abundant proteins 

involved in the retinol metabolism pathway, calcium ion-binding proteins, and proteins 

associated with protein degradation pathways. Liu et al. analyzed human cell lines infected 

with avian H9N2 influenza virus and possible adaptation mechanisms of avian influenza virus 
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(Liu et al., 2008). They described abundance changes of proteins involved in particular 

cellular functions, including cytoskeleton components, components of RNA-processing 

pathways, and regulators of cellular metabolism. Baas et al. used a macaque animal model 

infected with influenza A virus, combining functional non-gel based proteomic approaches 

and mRNA microarrays (Baas et al., 2006). In addition, the authors described the 

establishment of an animal model for influenza infection and biomarker profiling as an early 

prognostics tool for infection.  

In summary, all these approaches focused on the pathogenesis in humans, discovery of 

novel drug targets, antiviral therapies and biomarker research in the biomedical investigation 

field. However, cell culture based influenza vaccine manufacturing processes have so far not 

been analyzed with respect to virus-host cell interactions on the proteome level. 

 

2.2.4. Cell culture engineering using proteomic approaches 

Mammalian cell culture is important for the production of biopharmaceuticals, i.e. therapeutic 

proteins, monoclonal antibodies or vaccines (Genzel and Reichl, 2009; Walsh, 2006). Great 

efforts have been made in the last ten years to identify genes and pathways to increase 

productivity of cell culture, to identify metabolic bottlenecks, to understand mechanism of 

protein synthesis, to develop better nutrients and media formulation, to reduce apoptosis and 

to increase growth rate. With the proteomics technology thorough high throughput studies of 

changes at protein levels related to product yields in different cultivation conditions and 

studies to establish functional relationships between cellular machinery and productivity are 

possible (Kuystermans et al., 2007). Proteomics in combination with cell engineering 

strategies provides a better understanding of cellular behavior of mammalian cells used for 

bioprocesses.  

Some early studies using proteomic techniques to understand cellular mechanisms of 

product synthesis, apoptosis, cell proliferation and the influence of the physicochemical 

environment have been reported (Griffin et al., 2007; Gupta and Lee, 2007). A proteomic 

comparison of CHO cells was made between a productive recombinant clone selected at 

high methotrexate (MTX) concentration and clones of intermediate and low productivities 

(Hayduk and Lee, 2005). The authors noted a fourfold increase in actin-capping protein 

(CapZ). Due to similarities between CapZ and cytochalasin D, they hypothesized that the 

addition of cytochalasin D might result in enhanced productivity and product secretion. In 

combination with MTX gene amplification, the addition of cytochalasin D resulted in a 52- to 

150-fold increase in recombinant protein productivity. Transcriptional profiling of apoptotic 

pathways in batch and fed-batch CHO cultures (Wong et al., 2006a) revealed that during 

periods of high viability, most pro-apoptotic signaling genes were down-regulated. However, 
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upon loss in viability, several early pro-apoptotic signaling genes were up-regulated. At later 

stages of viability loss, late proapoptotic effector genes such as caspases and DNases were 

up-regulated. These findings resulted in the development of cell lines, which are apoptosis 

resistant (Wong et al., 2006b). A transcriptomic and proteomic analysis of NS0 cells grown at 

different densities in perfusion culture has identified a total of 47 genes and 53 proteins that 

were regulated at high cell density (Krampe et al., 2008). Specifically, it was found that up-

regulation of gene expressions and protein syntheses involved in energy metabolism, 

antiapoptosis, and cell cycle checkpoints ensured cell survival in high cell density (HCD) 

populations. Overall, they suggested that the balance among several factors involved in 

energy metabolism might be essential for fine tuning the cells choice between survival and 

apoptosis, leaning towards the side of apoptosis at HCD. Kumar et al. used 2-D DIGE to 

show that suspension adapted CHO-K1 cells respond to low culture temperature (31°C) by 

differential regulation of 201 proteins following the temperature shift (Kumar et al., 2008a). 

Their results indicate a number of key regulatory proteins and pathways (e.g. growth 

regulation, translation (eukaryotic initiation factor 4A), apoptosis (importin-α), cytoskeleton 

(vimentin) and glycoprotein quality control (alpha glucosidase 2)) that are involved in 

modulating the response to hypothermia. 

Hence, proteomics data connected with the tremendous amounts of bioprocess data provide 

insights into the regulatory networks within the cell under bioprocess conditions and how to 

manipulate them to increase overall productivity. 
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2.3. Quantitative real-time PCR (qPCR) approach 

2.3.1. General overview 

The introduction of qPCR has changed dramatically the field of quantitative nucleic acid and 

gene expression analysis. This new technique is a refinement of the original PCR developed 

by Mullis et al. in 1985 (Saiki et al., 1985). By PCR essentially any DNA sequence present in 

a complex sample can be amplified in a cyclic process to generate a large number of 

identical copies. This made it possible, e.g. to manipulate DNA for cloning purposes, genetic 

engineering, and sequencing. However, the conventional PCR method had some limitations. 

By first amplifying the DNA sequence and then analyzing the end product, quantification was 

difficult since the PCR amplificates the same product amount independent of the initial 

template amount. This limitation was resolved in 1992 by the development of qPCR (Higuchi 

et al., 1992). 

qPCR quantitates the initial amount of the template specifically, sensitively and reproducibly, 

and is the preferred alternative to other forms of quantitative PCR that detect the amount of 

final amplified product at the endpoint (Arya et al., 2005; Bustin and Nolan, 2004). Endpoint 

quantification can be affected by inhibitors, poorly optimized reaction conditions or saturation 

effects by inhibitory PCR by-products and ds amplicons. qPCR monitors the fluorescence 

emitted during the reaction as an indicator of amplicon production during each PCR cycle 

(i.e. in real-time). qPCR quantification eliminates post-PCR processing of PCR products 

(necessary in conventional PCR). This helps to increase throughput and reduces carryover 

contamination. In comparison to conventional PCR, qPCR also offers a much wider dynamic 

range of up to 1000-fold (compared to 107-fold in conventional PCR) with a wide range of 

ratios that can be assayed with equal sensitivity and specificity. The qPCR system is based 

on the detection and quantification of a fluorescent reporter (Wilhelm and Pingoud, 2003). 

This signal increases in direct proportion to the amount of PCR product in a reaction. By 

recording the amount of fluorescence emission at each cycle, it is possible to monitor the 

PCR reaction during exponential phase, where the first significant increase in the amount of 

PCR product correlates to the initial amount of target template. The higher the starting copy 

number of the nucleic acid target, the sooner a significant increase in fluorescence is 

observed. A significant increase in fluorescence above the baseline measured during 3-15 

cycles indicates detection of accumulated PCR product. A fixed fluorescence threshold is set 

significantly above the baseline. The parameter Cq (threshold cycle) is defined as the cycle 

number at which the fluorescence emission exceeds the fixed threshold (Figure 2.3-1).  
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Figure 2.3-1: PCR amplification curve 

The PCR amplification curve displays the accumulation of fluorescent emission at each reaction cycle. 
The curve can be divided into three different phases: linear, exponential and plateau phase. Data from 
these phases are important for calculating background signal, cycle threshold (Cq), and amplification 
efficiency. Picture adapted from Kubista et al. (Kubista et al., 2006). 
 

There are three main fluorescence-monitoring systems for DNA amplification (Wittwer et al., 

1997): (I) hydrolysis probes, (II) hybridizing probes and (III) DNA-binding agents. Hydrolysis 

probes include TaqMan probes, molecular beacons and scorpions. They use the fluorogenic 

5' exonuclease activity of Taq polymerase to measure the amount of target sequences in 

cDNA samples. DNA binding dye chemistry quantitates the amplicon production (including 

non-specific amplification and primer-dimer complex) by the use of a non-sequence specific 

fluorescent intercalating agent (SYBR-green I). SYBR green I is a fluorogenic minor groove 

binding dye that exhibits little fluorescence when in solution but emits a strong fluorescent 

signal upon binding to dsDNA (Morrison et al., 1998). 

The threshold cycle or the Cq value is the cycle at which the first significant increase in ∆Rn 

(normalized reporter) is detected. ∆Rn is the difference between Rn+ (Rn value of a reaction 

containing all components - sample of interest) and Rn- (Rn value detected in no-template-

control (NTC)-baseline value). It is the ∆Rn plotted against cycle numbers that produces the 

amplification curves and gives the Cq value. The exponential growth phase provides the most 

useful information about the reaction. The slope of the log-linear phase reflects the 

amplification efficiency (E). E can be calculated by the formula: 
 
 

E = 10(-1/slope) – 1       (Equation 1) 
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The efficiency of the PCR should be 90 - 100% (-3.6 > slope > -3.1). A number of variables 

can affect PCR efficiency (Bustin and Nolan, 2004; Wong and Medrano, 2005). These 

factors include length of the amplicon, secondary structure and primer quality. For the slope 

to be an indicator of real amplification (rather than signal drift), there has to be an inflection 

point. This is the point on the growth curve when the log-linear phase begins. A Cq value of 

40 or higher means no amplification and this value cannot be included in the calculations. 

There are different approaches to quantitate the amount of template (Livak and Schmittgen, 

2001). (I) The absolute standard curve method determines the input copy number of the 

transcript of interest, usually by relating the PCR signal to a standard curve. In this method, a 

standard curve is first constructed from RNA of known concentration. This curve is then used 

as a reference standard for extrapolating quantitative information for RNA targets of unknown 

concentrations. (II) Relative gene expression comparisons (relative standard method) use an 

endogenous/internal control, which is more abundant and remains constant, in proportion to 

total RNA. This method is also named comparative threshold method (2-ΔΔCt). By using an 

invariant endogenous control as an active reference, quantification of an RNA target can be 

normalized for differences in the amount of total RNA. The most commonly used controls are 

18S RNA, GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and β-actin. The issue of 

the choice of a normalizer has been reviewed by Suzuki et al. (Suzuki et al., 2000). For the 

use of GAPDH as a normalizer it has been shown that its expression may be upregulated in 

proliferating cells too (Bustin, 2000). Therefore, GAPDH has to be used with caution. 

Melting curve analysis 

Melting curves represent the temperature dependence of the fluorescence. They are 

recorded subsequent to the amplification of the target sequence by PCR (Wilhelm and 

Pingoud, 2003). The detection can be performed either with dsDNA-specific dyes, e.g. SYBR 

Green I or with sequence-specific probes. Melting curves are used for genotyping of 

insertion/deletion polymorphisms and of single nucleotide polymorphisms (SNPs) (Maas et 

al., 2003), DNA methylation detection, for product characterization and specificity verification 

(Ririe et al., 1997). In melting curves, the signal decreases gradually as a result of a 

temperature-dependent quench and more abruptly at a certain temperature because of the 

melting of the products. The melting temperature (Tm) is defined as the temperature at which 

the deepest decrease of signal occurs. This can be identified conveniently as the peak value 

in the negative derivative of the melting curve. Additionally, the area under the curve (AUC) 

of the peaks is proportional to the amount of product. Therefore, melting curves may be used 

for quantifications with internal standardization when Tm values of sample and competitor 

products are significantly different. With SYBR Green I, the amplification of the correct target 

sequence can be confirmed. In most cases, nonspecific products have different lengths and 

therefore deviating melting temperatures (Ririe et al., 1997). 
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2.3.2. qPCR for RNA quantification 

RNA gene quantification has been constrained by the lack of fast, reliable and accurate 

methods. Northern blotting has been used for quantification, however it can require a large 

amount of total RNA and is time-consuming. The advent of PCR and the combination of RT 

and qPCR led quickly to the use of RT-qPCR for RNA/mRNA quantification (Bustin, 2000). 

Reverse transcription 

Sample acquisition and purification of the RNA mark the initial step of every RT-qPCR. 

Isolation of total cellular RNA can be accomplished using a number of methods, such as 

solution-based (e.g. guanidinium thiocyanate-phenol-chloroform or alkaline extraction) and 

solid-phase/column-based protocols (e.g. silica matrices, anion-exchange material, magnetic 

bead based nucleic acid purification) (Tan and Yiap, 2009). Generally, successful RNA 

extraction requires four important steps: effective disruption of cells or tissue; denaturation of 

nucleoprotein complexes; inactivation of nucleases, e.g. RNase removal. The target RNA 

should be free of contaminants including protein, carbohydrate, lipids, or other nucleic acid. 

Quality and also integrity of the isolated RNA will directly affect the results of all succeeding 

scientific research (Tan and Yiap, 2009). 

The initial step in RT-qPCR is the production of a single strand complementary DNA copy 

(cDNA) of the RNA through the action of the retroviral enzyme, reverse transcriptase (RT). 

Two main types of enzyme are commercially available: Moloney murine leukemia virus 

(MMLV-RT) and avian myeoblastosis virus (AMV-RT) (Gerard et al., 1997). Additionally, a 

thermostable RT isoform of the MMLV-RT exists (rTth). An oligonucleotide primer is required 

to initiate cDNA synthesis. This oligonucleotide primer anneals to the RNA, and the cDNA is 

extended towards the 5’ end of the RNA through the RNA-dependent DNA polymerase 

activity of the RT. Primer can be either gene specific or nonspecific, both have advantages 

and disadvantages (Resuehr and Spiess, 2003). Random hexamer primer contains all 

possible nucleotide combinations of a 6-base oligonucleotide and bind to all RNAs present. 

Similarly, oligonucleotides consisting solely of deoxythymidine residues (Oligo-dT) anneal to 

the polyadenylated 3’ tail found on most mRNAs. RT reactions primed by random hexamers 

and Oligo-dT primer maximize the number of genes that can be assayed from a small RNA 

sample. Alternatively, a gene specific primer can be used for the RT reaction. For some rare 

genes the use of sequence-specific primer increases specificity and decreases background. 

Notably, with gene specific primer, a separate RT reaction must be carried out for each gene 

of interest. The RT step is the source of most of the variability in a RT-qPCR experiment. The 

RT enzyme is sensitive to salts, alcohols or phenol remaining from the RNA isolation. Inter- 

and intraassay variabilities are therefore common for RT reactions. Additionally, it cannot be 

assumed that different reactions have the same RT efficiency. If one can minimize the 
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nonspecificity and variability in this step, then the reliability of the subsequent quantification 

will be increased. 

Use of standard RNA molecules for absolute quantification 

To obtain high precision in RT and qPCR a highly defined standard curve for absolute 

quantification is needed (Kubista et al., 2006). The common approach is to co-amplify a 

standard, either in the same or separate tube. A wide range of DNA and RNA standards 

have been reported (Bustin, 2000; Livak and Schmittgen, 2001). It is accepted generally that 

DNA standards are not an optimal choice because they do not compensate for the inherent 

variability in the RT step. Endogenous RNA standards or internal standards (β-actin or 

GAPDH) and synthetic RNAs have both been used as amplification standards. Internal 

standards show problems of widely differing abundance, different amplification primer, and 

the fact that their expression is sensitive to some experimental treatments. External standard 

RNAs are an improvement over endogenous standard RNAs because their levels can be 

controlled, however they are not homologous to the sequence of interest and are likely to 

have differing amplification efficiencies. A homologous synthetic RNA standard can be 

defined as an in vitro transcribed synthetic RNA that shares the same primer binding sites as 

the native RNA. These RNA standards are the most suitable for two reasons: (I) useable to 

control the variability during the RT step and (II) RNA standards have the same or very 

similar RT and PCR efficiencies. For in vitro transcription DNA dependent RNA polymerases 

of bacteriophage origin with different promoters (SP6, T7, T3) are used to transcribe RNA 

from a DNA template (Milligan et al., 1987). Synthetic RNA standards are created generally 

from the entire native gene, cloned into a plasmid containing an RNA polymerase promoter 

(SP6, T7) suitable for in vitro transcription (Pokrovskaya and Gurevich, 1994). An optimized 

protocol, which avoids labor-intensive cloning procedure was reported by Fronhoffs et al. 

(Fronhoffs et al., 2002) to create PCR templates containing a T7 promoter gene sequence 

for in vitro transcription. 
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Figure 2.3-2: qPCR standard curve 

qPCR amplification curves in logarithmic scale for five standard samples. Crossing points with 
threshold line are the Cq values. The Cq values are plotted vs. the logarithm of the initial number of 
template copies in the standard samples. Picture adapted from Kubista et al. (Kubista et al., 2006). 
 

2.3.3. The MIQE guidelines for qPCR 

Currently, a lack of census exists on how best to perform and interpret qPCR assays. The 

‘Minimum Information for Publication of Quantitative Real-Time PCR Experiments’ (MIQE) 

guidelines were published by Bustin et al. in 2009 to help ensure the integrity, consistency 

and transparency and reliability of results (Bustin et al., 2009). MIQE described the minimum 

information necessary for evaluating and validating qPCR assays. Following these guidelines 

encourages better experimental practice, allowing more reliable and unequivocal 

interpretation of qPCR results. Therefore, these guidelines were carefully attended for the 

present qPCR assay. 

MIQE guidelines reviewed a number of key issues of qPCR assay validation:  

Analytical sensitivity refers to the minimum number of copies in a sample that can be 

measured accurately with an assay. Here, sensitivity is expressed as the limit of detection 

(LOD), which is the concentration that can be detected with reasonable certainty (95% 

probability is used commonly) with a given analytical procedure. 

Accuracy refers to the difference between experimentally measured and actual 

concentrations, presented as fold changes or copy number estimates. 

Repeatability (short-term precision or intraassay variance) refers to the precision and 

robustness of the assay with the same samples repeatedly analyzed in the same assay. It 

may be expressed as the standard deviation (SD) for the Cq variance. Alternatively, the SD 

or the CV for copy number or concentration variance may be used. 
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Reproducibility (long-term precision or interassay variance) refers to the variation in results 

between runs or between different laboratories and is typically expressed as the SD or CV of 

copy numbers or concentrations. 

Precision. There are many explanations for variation in qPCR results, including temperature 

differences affecting the completion of annealing and/or denaturation, concentration 

differences introduced by pipetting errors, and stochastic variation. Precision in qPCR 

typically varies with concentration, decreasing with the copy number. Ideally, intraassay 

variation (repeatability) should be displayed in figures as SD error bars or as confidence 

interval (99%, CI) on standard curves with replicate samples. CVs should not be used with Cq 

but can be used to express the variance in copy numbers or concentrations.  

Linear dynamic range. The dynamic range over which a reaction is linear (the highest to the 

lowest quantifiable copy number established by means of a standard curve) must be 

described. The dynamic range should cover at least 3 orders of magnitude and ideally should 

extend to 5 or 6 log10 concentrations. Correlation coefficients (R2) must be reported and CIs 

should be provided through the entire linear dynamic range. 
 

2.3.4. qPCR in virology 

Especially in the field of molecular diagnostics and pathogen detection, qPCR-based assays 

have become a widely accepted tool in the recent past (Espy et al., 2006). It has provided 

major contributions, e.g. an increase in sensitivity over conventional PCR, the ability to 

confirm the amplification product and to quantitate the target concentration. Furthermore, 

nucleotide sequence analysis of the amplification products has facilitated epidemiological 

studies of infectious disease outbreaks, and the monitoring of therapeutic response, in 

particular with viruses, which mutate at high frequency (Ratcliff et al., 2007). Viral load and 

antiviral resistance or subtyping assays are now part of monitoring infections by human 

immunodeficiency virus (HIV), HV, cytomegalovirus (CMV) or influenza virus (Ellis and 

Zambon, 2002). Fluorogenic PCR-based methods using TaqMan PCR technology, have 

been described for the detection and identification of influenza A and B viruses. In these 

assays, primer/probe sets targeting the M gene of influenza A and B viruses (Schweiger et 

al., 2000), or the M gene of influenza A and the HA gene of influenza B (van Elden et al., 

2001), were designed to differentiate influenza A and B viruses. In the first of these studies, 

specific primer/probe sets were also selected to identify HA (H1 and H3) and NA (N1 and 

N2) subtypes. Moreover, besides diagnosis general virology studies have been reported 

monitoring the levels of specific gene activity as a result of growth under manipulated 

conditions. Altered viral entry or replication, caused by the modification of target tissues, can 

also be monitored using qPCR and can be used to link between virus replication and the 

expression of cellular genes (Mackay et al., 2002). 
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2.3.5. Analysis of influenza replication dynamics through differential 
quantification of influenza viral RNA types 

The general mechanism of influenza virus replication in their host cells is well understood, 

however much about regulation of viral genome replication and transcription especially for 

each of the 8 RNA segments still remains unknown. For a better quantitative understanding 

of these complex intracellular events taking place during influenza virus life cycle, i.e. time 

course and control of viral RNA synthesis, quantitative experimental data are indispensable. 

In many studies molecular methods such as RT-PCR (Chan et al., 2006b) or RT-qPCR 

techniques (Di Trani et al., 2006; Ong et al., 2007; Youil et al., 2004) have been used 

successfully for precise quantitative determination of the number of influenza viral copies in 

clinical or environmental detection assays as stated above. For example, Youil et al. 

compared MDCK and Vero cell lines for their ability to propagate type A and type B cold-

adapted and wild type influenza viruses (Youil et al., 2004). The growth of these viruses has 

been measured as plaque forming units (via plaque assay) as well as viral particle formation 

(RT-qPCR assay) to assess the suitability of these cell lines to support the development of 

live attenuated influenza vaccines. 

However, the standard detection RT-PCR assays do not distinguish between cRNA(+) and 

vRNA(-) emerging during viral genome replication or vmRNA(+) emerging during viral 

transcription. Hence, there are not suitable to study the time course and dynamics of viral 

RNA synthesis. Moreover, these detection assays used only one or two segments, e.g. M, 

HA or NA for detection of influenza virus. For specific determination of the number of all three 

different influenza viral RNA types (vRNA(-), cRNA(+), vmRNA(+)) separately a method is 

required that targets individually the different polarities of the viral RNA strands. Several 

studies have reported polarity-specific RT-PCR assays for detection of different RNA viruses 

such as HV (Komurian-Pradel et al., 2004), dengue virus (Peyrefitte et al., 2003) or foot-and-

mouth disease virus (Li et al., 2009). Polarity-specific priming strategies to distinguish 

between influenza virus transcription and replication were also described before (Kumar et 

al., 2008b; Ng et al., 2008; Uchide et al., 2002). In one study (Kumar et al., 2008b) the 

authors reported the identification of a specific step of the viral life cycle that is influenced by 

NF-κB signaling, by using two known NF-κB inhibitors and a variety of influenza virus-specific 

assays (qPCR). For differential quantification they used sense specific primer during RT and 

gene specific primer for each of the 8 RNA segments during qPCR. The viral RNA levels, 

expressed as Cq values, were normalized by the RNA levels of reference genes (GAPDH). 

They have shown that NF-κB inhibitors decreased specifically (I) the level of vRNA(-) in 

virus-infected cells and (II) the level of RNA transcription from the cRNA(+) promoter. 

Additionally, they have provided evidence that the NF-κB molecule p65 is responsible for the 
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differential regulation of vRNA(-) synthesis. Ng et al. studied the role of segment-specific 

non-coding sequences of influenza A virus on viral RNA synthesis (Ng et al., 2008). RT-

qPCR assays specific for the vRNA(-) and vmRNA(+) of NA, NS and PB2 segments were 

developed. For differential quantification they used oligo-dT20 or viral RNA specific primer 

during RT and gene specific primer during qPCR. They used serially diluted plasmids 

containing the corresponding sequences as standard controls. Recombinant viruses, with the 

NS segment-specific non-coding sequences replaced by the corresponding sequences of the 

NA segment, were characterized. The NS and NA vRNA(-) levels in cells infected with these 

mutants were much higher than those of the wild type, whereas the NS and NA vmRNA(+) 

levels of the mutants were comparable to the wild-type levels. In conclusion, their results 

showed that the segment specific regions have roles in controlling viral transcription and 

replication. Southern hybridization reported by Uchide et al. (Uchide et al., 2002) showed the 

quantification of specific PCR products for HA vRNA(-) and c/mRNA(+) (amplified by using 

polarity-specific primer) in cell culture and proved the lack of HA RNAs in mock infected cells 

in the absence of virus. A RT-PCR/Southern blot assay was used for monitoring influenza 

virus production and to evaluate the effect of antiviral agent on influenza virus genome 

replication and transcription steps. However, the mentioned studies used either a semi-

quantitative southern hybridization technique only for HA (Uchide et al., 2002) or RT-qPCR 

assays, where viral copy numbers were determined by normalization to reference genes 

(Kumar et al., 2008b) or by viral DNA standards (Ng et al., 2008), representing only relative 

quantification techniques. Beside these PCR approaches primer extension assays were used 

widely to compare viral RNA type levels in cells infected with influenza virus (Robb et al., 

2009; Vreede et al., 2008). In brief, autoradiographic analysis of extended cDNAs resulted in 

three radiolabeled bands of the expected sizes for vRNA(-), cRNA(+) and vmRNA(+). With 

this technique Vreede et al. studied the mechanisms regulating the synthesis of mRNA(+), 

cRNA(+), and vRNA(-) by the influenza A virus RNA-dependent RNA polymerase (Vreede et 

al., 2008). They showed that de novo synthesis of cRNA(+) in vitro was more sensitive to the 

concentrations of ATP, CTP, and GTP than capped-primer-dependent synthesis of 

mRNA(+). A model was presented, which shows de novo initiation of influenza virus cRNA(+) 

synthesis occurred at a vRNA(-) template residue by binding of the related NTP. Moreover, 

Robb et al. proposed a role for the NS2 protein in the regulation of viral transcription and 

replication that is independent of its vRNP export function by using vRNP reconstitution and 

primer extension assays (Robb et al., 2009). 

In summary, these studies used diverse techniques and most of the results are contradictory. 

Therefore, different hypothesis are suggested to describe dynamics of viral replication. 

Hence, it is still not clear whether at all the relative viral RNA amounts are regulated during 

the viral life cycle 
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3. Materials and Methods 

3.1. Equipment, materials and chemicals 
A complete list of chemicals, equipment and materials is given in the Appendix in Table A-D. 

3.2. Cell culture and virological methods 
Liquid handling was done under a laminar flow box using autoclaved or sterile filtered 

solutions, sterile plastic material or autoclaved glass ware and sterile media. Cell lines were 

cultured at 37°C, 5% CO2 and with saturated humidity. 

3.2.1. Cultivation/passaging methods 

Cells were grown in corresponding media (Table B-1-4, Appendix) in static cultures 

(passaged every 4–7 days, when confluent). Static cultures were inoculated with 

corresponding cell numbers and cell growth media volume for about 4-7 days. When fully 

confluent, the cells were washed three times with phosphate-buffered saline (PBS - NaCl 

(8.00 g/L), KCl (0.20 g/L), KH2PO4 (0.20 g/L), Na2HPO4 (1.15 g/L) in H2OMP), and were 

detached by exposure to trypsin solution (0.05% trypsin / 0.02% EDTA in PBS) for 20 min at 

37°C. The trypsin activity was stopped by addition of an equal volume of cell growth media to 

the trypsin/cell solution. Cell solution was transferred into new static culture vessel with fresh 

cell growth media. Simultaneously, a sterility test was prepared by addition of about 2.5 mL 

cell solution per casein peptone soy peptone medium (CASO: 30 g/L CASO in H2OMP) flask 

and incubation at 37°C. Sterility is confirmed after a minimum of 14 days of incubation with 

negative result. Inoculation cell densities, used culture vessels and corresponding media and 

trypsin volume are summarized in Table 3.2-1. 

 

Table 3.2-1: Summary of conditions for cell lines used  

Cell line Inoculation cell density 
(cells/mL) 

Vessel/media volume (mL) Trypsin/EDTA volume (mL) 

A549 4.0 x 104  T175/100, T75/50, T25/20 5, 3, 1 
HepG2 3.2 x 105  T175/100, T75/50, T25/20 5, 3, 1 
NCI-N87 3.0 – 4.0 x 105  T175/100, T75/50, T25/20 5, 3, 1 
MDCK 1.0 – 2.0 x 105  RB*/250, T25/20, 6 cm dish/10 10, 1  
Vero 2.0 x 105  T25/20 1  

* RB – roller bottle 

3.2.2. Freezing/storage of cells 

Cells were stored as master cell bank over long periods in cryo tubes in liquid nitrogen         

(-135°C). For that purpose, confluent grown cells were processed as described in the 
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passaging method part before. After centrifugation (500 × g, 5 min) the pellet was dissolved 

in special cryo medium (corresponding cell growth medium and 10% dimethyl sulfoxide 

(DMSO)) to cell densities of 2-4 × 106 cells/mL. Cryo cell solution was subdivided in 1.5 mL 

cryo tubes and frozen for  2 h at -20°C and subsequently at -80°C overnight. For final long-

term storage aliquots were transferred into liquid nitrogen. For re-cultivation cells were 

quickly unfrozen in a 37°C water bath and suspended in pre-warmed cell growth medium. 

After centrifugation (500 × g, 5 min) cells were dissolved additionally in fresh pre-warmed cell 

growth medium to remove DMSO, transferred into cell culture vessels and cultured under 

standard procedures. After 1 day cells were washed with PBS and fresh medium was added. 

3.2.3. Cell concentration  

Determination of cell concentration was done according to standard operation procedures 

(SOP Nr. Z/01; Nr. G/21; Appendix F). Therefore, medium was aspirated and cells were 

washed three-times with PBS. Next, cells were incubated with trypsin solution for 

detachment such as described in section 3.2.1. The trypsin activity was stopped by addition 

of an equal volume of cell growth media to the trypsin/cell solution. The density of this cell 

suspension prior to seeding/infection was determined either manually by counting under the 

microscope using a hemacytometer or automatically using a ViCell XR counting device 

(Beckman-Coulter, Krefeld/Germany). 

3.2.4. Basic extracellular metabolites 

Off-line measurement of basic extracellular metabolites i.e. glucose, lactate, glutamine, 

ammonia and glutamate was done using the Bioprofile 100 Plus (Nova Biomedical, 

Rödermark, Germany) (SOP Nr. A/02; Appendix F). Dilution series of standards of each 

metabolite used for quantification were measured minimum in triplicate. Standard 

measurements were performed before and after each series of measurement. Measuring 

ranges and relative standard deviations of the method (RSD in %) are shown in Table 3.2-2 

(Genzel and Reichl, 2007). 

 

Table 3.2-2: Validation results for a Bioprofile 100 Plus 

 Glucose Lactate Glutamine Glutamate Ammonia 
Concentration (mM) 1.1 – 41.1 2.3 – 27.0 0.2 – 2.6 0.2 – 2.6 0.2 – 5.2 
RSD (%) 1.3 1.5 1.2 1.6 1.5 

 

Molar yield-coefficients YLac/Gluc and YAmm/Gln were calculated with the concentrations of the 

respective metabolites at different time points with the following equation: 

n

n
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tt
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−

−
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0
/         (Equation 2)  
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SPY / = molar yield-coefficient 

nt
P = product concentration [mmol∙L-1] at time point n h 

0t
P = product concentration [mmol∙L-1] at time point 0 h 

0t
S = substrate concentration [mmol∙L-1] at time point 0 h 

nt
S = substrate concentration [mmol∙L-1] at time point n h 

3.2.5. Virus infection 

Cells were grown in static cultures with corresponding media (Table B-1-4, Appendix) to 

confluence level. Growth medium was withdrawn and cells were washed three-times with 

PBS before adding a serum-free virus maintenance medium (VMM) (Table B-1-4, Appendix). 

For multi-cycle infection of cells, trypsin (Invitrogen, 500 U/mL) was added to supernatants at 

a final activity of 500 U/T175, 250 U/T75 and 50 U/6 cm dish. A summary of characteristic 

parameters is shown in Table 3.2-3. Infection for proteome analysis was done without trypsin 

addition to the medium to prevent proteolytic degradation during protein extraction. Virus 

seed was added at the corresponding multiplicity of infection (MOI) based on infectious virus 

particle concentration determined as tissue-culture infectious dose (TCID50/mL) (Mahy and 

Kangro, 1996) on cell concentrations summarized in Table 3.2-3 for the respective 

experiments. For viral RNA quantification experiments an additional 1h incubation step at 

4°C was performed for synchronization of infection. Subsequently, cells were washed again 

with PBS to remove unbound virus particles and fresh VMM was added. Infections were 

carried out for desired periods under identical conditions as during cell growth. As untreated 

control mock infections were performed, simulating the procedure for virus infection without 

virus addition. Therefore, control and virus infection were processed identically.  

 
Table 3.2-3: Summary of infection conditions used  

Approach Vessel/ media 
volume (mL) 

VMM Cell concentration at time 
of infection (cells/mL) 

Virus strain 

C
el

l c
ul

tu
re

  
   

A549 T75/50  F12K/MEM 2.1 x 105  A/PR/8/34-RKI * 

T175/100  F12K/MEM 4.3 x 105  A/PR/8/34-RKI * 
HepG2 
 

T75/50  MEM/RPMI 5.2 x 105  A/PR/8/34-RKI * 
T175/100  MEM/RPMI 4.4 x 105  A/PR/8/34-RKI * 

NCI-N87 
 

T75/50  RPMI/MEM 3.5 x 105 - 2.4 x 105  A/PR/8/34-RKI * 
T175/100  RPMI/MEM 2.8 x 105 - 3.5 x 105  A/PR/8/34-RKI * 

Pr
ot

eo
m

ic
s A549 T25/20 F12K 2.0 x 105  A/PR/8/34-RKI * 

MDCK T25/20 GMEM 5.0 x 105  A/PR/8/34-RKI * 
T25/20 GMEM 7.0 x 105  A/PR/8/34-NIBSC # 

Vero T25/20  GMEM 3.2 x 105  A/PR/8/34-RKI * 
T25/20  GMEM 3.2 x 105  A/PR/8/34-RKI-Vero ad. x 

qP
C

R
 

MDCK 6 cm dish/10 
RB/250 

GMEM 
GMEM 

1.2 x 106 
5.6 x 105 

A/PR/8/34-RKI * 
A/PR/8/34-RKI * 

* RKI - Robert Koch Institute (Berlin, Germany), # NIBSC - National Institute for Biological Standards 
and Control (Hertfordshire, UK), x Vero ad. – virus adaptation to Vero cells over 5 passages 
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3.2.6. Virus quantification 

Hemagglutination assay 

Hemagglutination assay was done according to SOP (Nr. V/05; Appendix F). Titration of 

influenza virus by hemagglutination is based on the method described by Mahy and Kangro 

(Mahy and Kangro, 1996). For each sample (100 μL), two serial 1:2 dilutions were made in 

round-bottomed 96-well microtiter plates containing 100 μL PBS. To each well 100 μL of a 

red blood cell (RBC) solution (2 × 107 RBC/mL; RBC diluted 1:2 with alsevers solution (20.5 

g/L glucose, 8.0 g/L sodium citrate, 0.55 g/L citric acid, 4.2 g/L NaCl in H2OMP)) was added 

and incubated for 60–90 min at room temperature. The last dilution showing complete 

hemagglutination was taken as the end point and was expressed as log HA units per test 

volume (100 μL). An internal standard was used to compensate fluctuations caused by the 

varying quality of RBC. The assay was validated with a dilution error for standard HA test: ± 

0.3 log HA units/ 100 µL. From HA units, total virus particle concentrations or virus yields 

were calculated based on the assumption that at the last dilution of virus showing complete 

agglutination, the ratio of RBC and virus particles is equivalent: 

Total virus particle concentration  [virions/mL]  = cRBC x 10(log HA/100µL) (Equation 3) 
 

The detection limit was 0.3 log HA units/100 µL corresponding to about 2.0 x 107 virions/mL. 

 

Active virus titration- TCID50 assay 

Active virus titration (TCID50) (Mahy and Kangro, 1996) was done according to SOP (Nr. 

V/08; Appendix F). Confluent grown MDCK cells in a 96-well plate and a 10-fold serial 

dilutions of the culture supernatants were prepared in VMM with addition of gentamycin (1% 

v/v). Prior to inoculation, the MDCK cells were washed three-times with 100 μL PBS per well. 

To each well, 100 μL of the diluted culture supernatants was added for inoculation (eight 

replicates per dilution). After 1 day cultivation, 100 μL of VMM with gentamycin was added to 

each well, and the plate was incubated subsequently for another day. The plate was washed 

once with PBS and 100 μL of ice-cold acetone solution (80%) was added to each well for 

fixation (30 min, 0°C). Then the plate was washed three-times with PBS before addition of 

the primary antibody (40 μL per well of a 1:5 dilution (PBS): equine influenza A anti-goat 

produced in goat (nanoTools, Teningen, Germany)). After 60-min incubation (37°C) the plate 

was washed three-times with PBS and the secondary antibody (40 μL per well of a 1:500 

dilution with PBS; Molecular Probes) was added. The plate was washed three-times with 

PBS after 60 min incubation (37°C) and a final volume of 100 μL PBS was added before 

fluorescence microscopy. The titers of infectivity were calculated from eight replicates 

according to the method of Spearman-Kärber (Mahy and Kangro, 1996). The quantification 

limit was 3.2×102 infectious virus particles/mL with an error of ±0.3 log. 
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3.2.7. Propidium iodide staining of cell nucleus 

For propidium iodide staining of the cell nucleus the cells were cultured until confluence in 

96-well plates (flat bottom) and washed twice with PBS. Digitonin (1 mg/mL in DMSO; 

Sigma-Aldrich) was used for permeabilisation of the cells. For fixation 1% paraformaldehyde 

(PFA) was used. After 2 h incubation at 4°C cells were washed three-times with PBS. RNAs 

were digested by addition of RNAse A (final concentration 1 mg/mL) for 30 min at 37°C. Cells 

were covered with propidium iodide (1 mg/mL in H2OMP; 1.5 mM; Sigma-Aldrich) for 1-5 min. 

Fluorescence-stained cells were examined with a laser scanning microscope 510 (Carl Zeiss 

AG, Jena, Germany) using an absorption maximum of 535 nm and an fluorescence emission 

maximum of 617 nm (Schulze-Horsel et al., 2009). 
 

3.3. Methods for protein analysis  

3.3.1. Protein extraction 

Whole cell proteins were extracted at selected hpi according to Vester et al. (Vester et al., 

2009). At each time point the medium was aspirated, cells were washed twice with 250 mM 

sucrose buffer and 1 mL of 2-D DIGE-compatible lysis buffer (7 M urea, 2 M thiourea, 4% 3-

[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), 30 mM Tris, pH 8.5 – 

9.0) was added for chemical lysis. After complete lysis protein samples were sonicated for 

additional mechanical extraction on ice with 2 × 10 s bursts with the Sonotrode SonoPuls 

(Bandelin Electronic, Berlin, Germany) and incubated for 30 min at room temperature. 

Removal of cell debris, DNA and membranes by centrifugation (36 000 × g, 30 min, 20°C) 

yielded a soluble protein fraction. The protein content was determined using the Bradford 

assay (Bradford, 1976). After extraction, proteins were used for a multiplexed proteome 

analysis by the 2-D DIGE method (Gade et al., 2003). 

3.3.2. Protein labeling 

Minimal CyDye labeling (GE Healthcare, München, Germany) was performed at a ratio of 

50 µg of protein to 200 pmol of Cy3 (mock infection, control state), Cy5 (infection, test state) 

or Cy2 (internal standard, pool of the two samples). Non-specific labeling was excluded by 

additional dye swap experiments to allow labeling of each sample with Cy3 and Cy5. 

Labeling was performed according to the manufacturer’s protocol. Briefly, labeled samples 

were vortexed and incubated on ice for 30 min in the dark. The reaction was quenched by 

addition of 1 µL of 10 mM lysine, vortexed, and incubated on ice for further 10 min in the 

dark. Labeled samples were pooled and an equal volume of ‘2 × lysis’ buffer (7 M urea, 2 M 

thiourea, 1% CHAPS, 1% carrier ampholytes pH 3-10 (GE Healthcare) and 1% dithiothreitol 

(DTT)) was added as well as a rehydration buffer (6 M urea, 2 M thiourea, 1% CHAPS, 0.5% 
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carrier ampholytes pH 3-10 (GE Healthcare) and 0.4% DTT) to a final volume of 450 µL. The 

total protein amount on each gel was about 150 µg. Individually, up to 250 µg unlabeled 

protein mix was loaded additionally to the labeled protein mix for protein identification. 

3.3.3. Protein separation by 2-DE 

IEF was carried out using the IPGphor system (GE Healthcare) and commercial 24-cm long 

IPG strips (pH 4-7, linear, GE Healthcare). The following settings and conditions for active 

rehydration of the IPG strips, sample entry and IEF were modified compared to Goerg et al. 

(Goerg et al., 2000): constant temperature at 20°C, (1) 30 V for 7 h, (2) 60 V for 6 h, (3) 200 

V for 1 h, (4) 1000 V for 1 h, (5) a gradient to 8000 V for 0.5 h and (6) 8000 V for 8h, resulting 

in a total of about 65000 Vh. Moist filter papers were put between the electrodes and the IPG 

gel after completion of step (3). After IEF the IPG strips were equilibrated for 15 min in 

equilibration buffer (6 M urea, 30% glycerol, 2% SDS, 0.05 M Tris-HCl, pH 8.8, 0.01% 

bromphenol blue) supplemented with 1% DTT. A second equilibration step of 15 min with the 

same equilibration buffer, supplemented with 2.5% iodacetamide, was carried out 

subsequently. SDS-PAGE was done according to the method of Laemmli (Laemmli, 1970) 

using the Ettan Dalt II system (GE Healthcare). Gels (375 mM Tris-HCl, 0.1% SDS and 10% 

acrylamide) were poured between low-fluorescent glass plates, of which one plate was 

treated with bind-silane (Sigma-Aldrich, Taufkirchen, Germany). Twelve parallel gels were 

run at 25°C (running buffer: 25 mM Tris, 192 mM glycine and 0.1% SDS). The IPG strips 

were sealed with 0.5% agarose in SDS running buffer on top of the gels. Electrophoresis was 

conducted overnight at 2 W/gel and was stopped when the bromophenol blue marker 

reached the end of the gels. 

3.3.4. Image acquisition and analysis 

Cy2-, Cy3- and Cy5-labeled protein images were produced by excitation of gels at 488, 532 

and 633 nm, and emission at 520, 590 and 680 nm, respectively, using the Typhoon Variable 

Mode Imager 9400 (GE Healthcare). Gels were scanned directly between the low-fluorescent 

glass plates with a resolution of 100 µm and a standard pixel volume of 60 000-80 000 for all 

scans. Determination of protein abundance and statistics based on 2-D DIGE were carried 

out with the DeCyder 2D software package (version 6.04.11, GE Healthcare) as described 

before (Gade et al., 2003). Briefly, spot detection was used to merge Cy3 with Cy2, and Cy5 

with Cy2, and the volume ratio data for each pair was obtained by normalizing the merged 

gel. This was identical to the volume ratio (Cy3:Cy2 and Cy5:Cy2) of each gel, which was 

labeled with Cy2 as the internal standard. The average ratio of abundance was calculated for 

each spot after all Cy2, Cy3, and Cy5 images were correlated. To assess biological variation 

three individual infection experiments were carried out and a minimum of four gel replicates 

were used for inter-gel matching performed with the BVA mode. Analysis for significance 
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using a Student’s t-test was done for those proteins found to be different in mock infection 

and infection samples. Only protein spots showing a high-significance (p < 0.001) and at 

least a 1.7-fold difference in abundance (ratio of mean normalized spot volume of mock 

versus infected samples) were considered as up- or down-regulated. These protein spots of 

interest were selected for identification by MS. 

3.3.5. Protein identification by nanoHPLC-nanoESI-MS/MS 

After separation, protein spots were picked from 2-D DIGE gels using an Ettan spot picker 

(GE-Healthcare). The proteins were digested with porcine trypsin in gel and identified by 

nanoHPLC-nanoESI-MS/MS. Fully automated online pre-concentration and separation of the 

tryptic digested samples was performed using a set of capillary- and nanoHPLC instruments 

of the Agilent 1100 Series (Agilent, Waldbronn, Germany) operated in series. Mass 

spectrometric detection was carried out by online coupling nanoHPLC with a QSTAR XL 

(QqTOF) mass spectrometer (Applied Biosystems/MDS/Sciex, Darmstadt, Germany) 

operated in MS and MS/MS mode. The instrument was equipped with an online nano-

electrospray ion source (NanoSpray II Source) and upgraded with a heated interface. Data 

interpretation of acquired ESI-MS/MS peptide spectra was performed via automatic database 

search of product-ion spectra using MASCOT (Perkins et al., 1999) (version 2.2, Matrix 

Science, London, UK). For final protein confirmation at least two product-ion spectra of 

different peptides of each identified protein were verified manually. A detailed description of 

the procedure for identification of the proteins is given in the Appendix (section E). Special 

handling precautions were used to minimize human keratin contamination, e.g. working 

particle and dust-free (handling, equipment, chemicals). Additionally, during spot picking, 

tryptic digestions and MS handling steps several negative controls were conducted. 

3.3.6. Western blot analysis 

Equal amounts of protein extracts were diluted in SDS sample buffer (250 mM Tris-Cl, pH 

6.8; 40% glycerol; 8% SDS; 0.01% bromophenol blue; 10% β-mercaptoethanol) and heated 

at 95°C for 5 min. Subsequently, proteins were separated by SDS-PAGE (SDS-10%) and 

electrotransferred to polyvinylidene fluoride (PVDF)-membranes (Milipore, Schwalbach/Ts., 

Germany) using a wet-blot blotting system (BioRad, Hercules, CA, USA) according to 

standard protocols (Laemmli, 1970). The membranes were blocked with Tris buffered saline 

(TBS), containing 0.05% Tween-20 (TTBS) and 5% nonfat dry milk for 1 h at room 

temperature. Primary antibodies against NS1, actin and Mx1 (Santa Cruz biotechnology, 

Santa Cruz, CA, USA/Cell signaling, Leiden, Netherlands) were diluted in TTBS containing 

either 5% nonfat dry milk or 5% BSA in experimentally optimized final dilutions. Membranes 

were incubated with primary antibody dilutions over night at 4°C. Prior to the addition of 

secondary antibodies membranes were washed three-times with TTBS. Secondary 
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antibodies (peroxidase-conjugated donkey anti-rabbit or peroxidase-conjugated donkey anti-

mouse, Jackson Immuno Research Laboratories, Suffolk, UK) were added at experimentally 

determined optimal dilutions ranging from 1:10000 to 1:30000 diluted in TTBS containing 5% 

nonfat dry milk powder. After incubation for 1 h, blots were washed three-times with TTBS. 

Blots were developed with 1.5 mL of SuperSignal West Dura Extended Duration Substrate 

(Thermo Scientific, Waltham, MA, USA). Bands were detected with a Chemolumineszenz 

Imager CHEMOCAM (INTAS, Göttingen, Germany) detection system. Band intensities were 

normalized to ERK2 (Santa Cruz biotechnology) as a loading control and quantified using the 

Gel Pro Analyzer Software (Media Cybernetics, Bethesda, MD, USA). 

A typical workflow for the whole proteomic/2-D DIGE approach is shown in Figure 3.3-1. 
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Figure 3.3-1 Workflow for the proteomic/2-D DIGE approach 

Proteome difference abundance analysis and protein identification steps including protein extraction, 
CyDye labeling, IEF using IPG strips, SDS-PAGE, fluorescence scanning, image analysis with the 
Decyder 2D software package, and automated excision and identification via nanoHPLC-nanoESI-
MS/MS of differentially abundant spots. 
 

3.4. Analytical methods for nucleic acid quantification 

3.4.1. Extraction of total cellular RNA from cells 

Infection was performed under standard conditions (6 cm dishes, influenza A PR/8-RKI, 

MOI= 6, 4°C step; section 3.2.5). RNA was extracted at selected hpi. Following the removal 

of supernatant, cells were washed with PBS and total cellular RNA was extracted from cells 

with NucleoSpin RNA II (Macherey-Nagel, Düren, Germany). At first, lysis buffer RA1 was 

added directly to the infected cells, which were collected with a cell scraper. The rest of the 

extraction protocol was done according to the instructions of the manufacturer.  
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3.4.2. Synthetic viral RNA reference standards 

Synthetic viral RNAs used as reference standards for the validation and quantification 

procedure were prepared for each viral RNA type (vRNA(-), cRNA(+), vmRNA(+)) for the 

viral segments 4 (HA), 6 (NA), 7 (M) and 8 (NS)). The QIAamp Viral RNA Mini kit (Qiagen, 

Hilden, Germany) was used to extract vRNA(-) from 280 µL supernatant of infected MDCK 

cells at 72 hpi. Infection was performed under standard conditions (influenza A PR/8-RKI, 

MOI= 6) (section 3.2.5). Extraction protocol was done according to the instructions of the 

manufacturer. Universal RT (uniRT) was carried out using Superscript II RT (Invitrogen, 

Carlsbad, CA, USA) and the primer Uni12 (M) (Chan et al., 2006b) (Table C-2, Appendix), 

which is complementary to the conserved 12 nucleotides of the 3’ end of all influenza A virus 

RNA segments. Briefly, 10 µL of the RNA preparation was mixed with 1 µL of 15 pmol 

Uni12 (M) and 2 µL of 12.5 mM dNTP to a total volume of 13 µL. The mixture was incubated 

for 5 min at 65°C. After a cooling step to 4°C, 5 µL 5 × firststrand buffer, 4 µL 25 mM MgCl2, 

2 µL 0.1 M DTT and 1 µL Superscript II RT (50 U/µL) were added. RT reaction was carried 

out at 42°C for 60 min and was terminated by heating at 70°C for 5 min. A negative control 

with either water as template or without primer addition was handled in parallel with each 

reaction. The cDNAs obtained were used for primer extension PCR to create templates 

containing a T7 promoter gene sequence for in vitro transcription of synthetic viral RNAs 

(Fronhoffs et al., 2002). In brief, a T7 phage polymerase promoter sequence (21 nt) was 

added to the 5’ end of the corresponding primer, summarized in Table C-2 (Appendix), in 

conventional PCR assays for full-length amplification. Resulting PCR products were in vitro 

transcribed using the TranscriptAid T7 High Yield Transcription Kit (Fermentas, St. Leon-Rot, 

Germany) including DNase digestions following the manufacture’s protocol. Alternatively, the 

PCR products were cloned by standard procedure in pGEM-T Easy vectors (Qiagen, Hilden, 

Germany) according to manufactures instructions. The RNA transcript was purified using the 

‘clean-up of RNA from the reaction mixtures’ protocol of the NucleoSpin RNA II kit 

(Macherey-Nagel). Purity was verified by electrophoresis on formaldehyde gels and 

concentration was determined by spectrophotometry. The amount of RNA transcripts was 

converted to molecular copies based on the molecular weight of the corresponding base pair.  

( )
( )

( )
910⋅⋅

⋅
=

base

Atemplate
molecule Nk

Nm
n        (Equation 4) 

 
n(molecule)  number of molecules 
m(template)  template [ng] 
NA   Avogadro constant: 6.022∙1023 [mol-1] 
k average mass of base pair [ssDNA 325 Da/bp] or base respectively [ssDNA 

325 Da/base; ssDNA 340 Da/base] 
N(base)  number of bases of used molecules 
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3.4.3. Reverse transcription quantitative real-time polymerase chain 
reaction (RT-qPCR) assay 

Polarity-specific priming reverse transcription (pspRT) 

A separate quantitative pspRT step with total cellular RNA extracts, together with the 

corresponding RNA standard curve (10-fold dilution series prepared with synthetic viral RNA 

reference standards) was performed using the protocol described above (uniRT), but using 

only 4 µL RNA template instead of 10 µL. To initiate the cDNA synthesis from the vRNA(-), a 

gene specific forward primer (-RTfor) of the corresponding viral segment was used (Figure 

3.4-1). Accordingly, a gene specific reverse primer (+RTrev) of the corresponding viral 

segment was used to initiate synthesis from the positive stranded viral RNAs (vRNA(+) = 

vmRNA(+) and cRNA(+)), whereas a conventional Oligo-dT primer with 5’ T additions (Oligo-

dT) served for the synthesis of vmRNA(+) (Table C-3, Appendix). Finally, the molecule 

number of cRNA(+)s was determined by calculating the vRNA(+) minus the vmRNA(+). 

cRNA(+)

vmRNA(+)

vRNA(-)

FP
3‘ 5‘

5‘ 3‘
RP

vRNA(-)
3‘ 5‘

FP

5‘ AAAAA 3‘

Transcription

TTTTTT dT-P

Nucleus

Replication

gsp primer – positive sense (FP)

gsp primer – positive sense (FP)

gsp primer – negative sense (RP)

Oligo-dT primer (dT-P)

Nuclear
import

 
Figure 3.4-1: Polarity- and gene specific priming strategy during pspRT 

Differentiation between the three viral RNA types (vRNA(-), cRNA(+), vmRNA(+)) synthesized in the 
nucleus. FP - forward primer, RP - reverse primer, dT-P - Oligo-dT primer, gsp - gene specific primer. 
 

Quantitative real-time PCR (qPCR) 

The qPCR step was performed using the qPCR Core kit for SYBR green I QGS (Eurogentec, 

Köln, Germany) on an iCycler iQ (Biorad, Hercules, CA, USA) using software version 

v.3.1.7050 in 96-well format. Briefly, qPCR reaction components were set-up in triplicate 

according to the manufacturer’s instruction and were supplemented with 1 µL viral cDNA 

from the pspRT step and 18 pmol of corresponding forward and reverse real-time primer 

(Table C-3, Appendix) in a 25 µL reaction volume. Standard cycling conditions were 95°C for 

5 min, followed by 40 cycles of 95°C for 15 s, 58-62°C for 15 s, 72°C for 1 min and an 

additional melting curve analysis (65°C, 10 s, 60 cycles, 0.5°C temperature rise steps) was 
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carried out. For primer-annealing 58°C for segment 4 (HA) and 7 (M) and 62°C for segment 6 

(NA) and 8 (NS) were used. A negative control with water as sample was included in each 

run. The quantity of all three viral RNA molecules of the four viral segments was determined 

using the corresponding synthetic viral RNA standard curve, processed in parallel. Specificity 

of the PCR products was monitored with melting curve analysis. A typical workflow for the 

RT-qPCR assay is shown in Figure 3.4-2. Especially for vmRNA(+) of segment 7 and 8, only 

the vmRNA(+) splice variants of M1 and NS1 were detected, due to the choice of PCR 

primer binding sites (Table C-3, Appendix) at the viral segments. The total average number 

of RNA molecules per cell was obtained taking into account the dilutions made during cDNA 

synthesis and qPCR and the total number of cells used for RNA extraction.  

a
bCq

RTRNAcDNA

totalRTERNA
RNA countcell

VV
VV

c
−

−

−

−− ⋅⋅
⋅

⋅
= 101

)()(

)()(     (Equation 5) 

 

cRNA  intracellular RNA concentration [molecules/cell] 
V(RNA-E) elution volume of RNA extraction [µL] 
V(RT-total) total volume of RT reaction [µL] 
V(RNA-RT) RNA extract volume used for RT reaction [µL] 
V(cDNA) cDNA volume used for qPCR reaction [µL] 
Cq  quantification cycle  
b  ordinate intercept of regression curve 
a  slope of regression curve 
cell count total cell number 
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Figure 3.4-2: Workflow for the RT-qPCR assay 
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3.4.4. Validation procedure for the RT-qPCR assay 

A polarity and sequence-specific standard curve was generated by 10-fold serial dilution of 

synthetic viral RNA reference standards (vRNA(-), cRNA(+), vmRNA(+) of viral segments 4 

(HA), 6 (NA), 7 (M) and 8 (NS)). Regression analysis including calculation of standard curve 

slopes and intercepts (quantification cycle Cq versus log viral RNA quantity), amplification 

efficiencies E and linearity of the assay was done. Standard curve estimations were also 

used to confirm sensitivity (LOD), repeatability (intraassay variation) and reproducibility 

(interassay variation) of the assay.  

Specificity and sensitivity 

Specificity of the assay was assessed by processing NTCs during pspRT and qPCR and no-

primer controls (NPCs) or exchange of polarity-specific primer during pspRT. Additionally, 

uninfected total cellular RNA extracts were tested and melting curve analysis of PCR 

products was done to exclude unspecific products or primer dimer synthesis. Finally, 

specificity of the assay was confirmed by direct sequencing of full-length PCR products used 

for production of reference standards as well as PCR products of qPCR. Serial dilutions in 

the range of 1.0 x 100 – 1.0 x 10-7 ng/µL RNA of the viral reference standards were used in 

triplicate to determine sensitivity of the assay. For calculation of the corresponding number of 

RNA molecules a cDNA reference standard curve was processed in parallel in qPCR.  

Repeatability/Reproducibility 

Serial dilutions within a range of 1.0 x 100 – 1.0 x 10-5 ng/µL RNA of the corresponding viral 

RNA reference standards were used to determine the repeatability and reproducibility of the 

assay. CV for evaluation of the repeatability was calculated by testing three technical 

replicates of dilution series in the same RT-qPCR assay. To estimate the reproducibility, 

dilution series were analyzed in independent triplicates in three different RT-qPCR assays. 

x
SDCV ⋅= 100         (Equation 6) 

 
CV coefficient of variation [%] 
SD standard deviation 
x  mean value 

 

Linear Regression analysis of validation data 

Assay reproducibility studies were also used for checking the requirements for a linear 

regression analysis by several statistical tests, i.e. the normality of the distributions of 

residuals using the David test (David et al., 1954), and the homogeneity of variances with the 

F-test. The Grubb's test was used to detect outliers. Using linear regression a partial 

regression line was calculated, which describes the best linear relationship between the log10 
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RNA molecule concentrations and the estimated Cq values. After determination of the 

standard errors the individual predicted values were transformed into CIs (level of 

significance P=99%) around the corresponding observed Cq values. This analysis of variance 

was used to test whether the relationship between observed and expected RNA molecule 

concentrations is significant and therefore reliable. 

Validation of total cellular RNA extraction 

The validation procedure was extended to the total cellular RNA extraction from MDCK cells 

(section 3.4.1) by normalization to the cell reference genes β-actin and GAPDH (Gropp et al., 

2006). Linearity tests of a serial dilution of MDCK cell lysates before application to extraction 

columns were performed. CV for evaluation of the reproducibility of total cellular RNA 

extraction was calculated by testing five technical replicates. The RT-qPCR assay was 

performed using the protocol described above (section 3.4.3) using primer for the 

corresponding cell reference genes β-actin and GAPDH (Appendix C, Table C-1). For 

calculation of the corresponding number of RNA molecules a cDNA reference standard curve 

was processed in parallel in qPCR. 

3.4.5. Linear regression analysis of RT-qPCR data 

Viral RNA molecule numbers during the life cycle of influenza virus obtained by the RT-qPCR 

assay were analyzed by linear regression to quantify onset of production, production rates 

and time delay between start of infection and start of production of specific viral segment or 

viral RNA type. The analysis was done by Stefan Heldt (bpt group MPI Magdeburg) as a 

supporting work (Vester et al., 2010). Raw data were transformed by taking the log10 of the 

viral RNA molecule copy numbers. Analysis focused on two phases: a delay time in which 

the number of viral RNA molecules was constant or decreased only slightly in case of 

vRNA(-) and a phase of exponential increase, i.e. production of viral RNAs. Both phases 

were fitted separately to obtain the corresponding parameters. A parallel line to the abscissa 

y = p1          (Equation 7) 
 

approximated the delay phase. Whereas, the production of RNA corresponded to a straight 

line in the transformed data set and was, thus, fitted with a linear polynomial function 

y = p2x + p3        (Equation 8) 
 

For regression analysis a linear least-squares method implemented in the Curve Fitting 

Toolbox (ver 1.2.2) in Matlab R2008b (The MathWorks, Inc., Natick, MA, USA) was used. To 

assess the goodness of fit for this type of method R2 values and non–simultaneous prediction 

bounds for the parameters (95%, CI) were calculated. Three methods are considered for 
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estimation of these bounds: the calculation by intersecting confidence bands, by first–order 

propagation of variance and the application of Fieller’s theorem (Carter et al., 1991; Schwartz 

and Gelb, 1984). The intersection of both regression lines was used to calculate the time 

delay Δt [h] between infection and production of a specific segment. 

 

3.4.6. Determination of extracellular influenza viral RNA in cell culture 
supernatant by RT-qPCR 

A typical workflow for the determination of extracellular influenza viral RNA in cell culture 

supernatant by RT-qPCR is shown in Figure 3.4-3. The QIAamp Viral RNA Mini kit (Qiagen; 

section 3.4.2) was used to extract influenza genomic vRNA(-) from 280 µL cell culture 

supernatant of infected MDCK cells (RB, without 4°C step; MOI=1; influenza A PR/8-RKI 

virus; section 3.2.5) with 60 µL elution volume. Extraction protocol was done according to the 

instructions of the manufacturer. Synthetic viral RNA used as reference standard for 

quantification was produced as described in section 3.4.2. A polarity and sequence-specific 

standard curve was generated by serial dilution of synthetic viral RNA reference standard 

vRNA(-) of viral segment 7 (M) 1.0 x 10-1 – 1.0 x 10-6 ng/µL vRNA(-). A separate RT step with 

extracellular viral RNA extracts, together with the corresponding RNA standard curve was 

performed using the protocol described above (section 3.4.2), but using random hexamer 

primer instead of Uni12 (M) primer. The qPCR step was performed as described before 

(section 3.4.2) using 1 µL cDNA from the RT step and 18 pmol of corresponding forward and 

reverse primer of segment 7 (M) (Table C-4, Appendix) in a 25 µL reaction volume. Standard 

cycling conditions were 95°C for 5 min, followed by 40 cycles of 95°C for 15 s, 60°C for 1 min 

and an additional melting curve analysis (65°C, 10 s, 60 cycles, 0.5°C temperature rise) was 

carried out. The total average number of virus particles per mL was obtained taking into 

account dilutions made during cDNA synthesis and qPCR, total volume of cell culture 

supernatant used for RNA extraction and the assumption that every virus particle contains 

every RNA segment only once.  
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cVirus  viral particle titer [virions/mL] 
V(RNA-E) elution volume of RNA extraction [µL] 
V(RT-total) total volume of RT reaction [µL] 
V(RNA-RT) RNA extract volume used for RT reaction [µL] 
V(cDNA) cDNA volume used for qPCR reaction [µL] 
V(sample) total volume of supernatant sample [mL] 
Cq  quantification cycle  
b  ordinate intercept of regression curve 
a  slope of regression curve 
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For verification of the quantification efficiency of the RT-qPCR, results were compared to 

data of a HA assay for conventional virus quantification. HA titers were determined as 

described above (section 3.2.6). Titers are reported conventionally as log HA units per test 

volume (log HA units/100µL). For better comparability of both, RT-qPCR and HA data, 

results of the HA assay were converted to virions per mL (total virus particles concentration) 

by Equation 3 (section 3.2.6). 

 

Influenza virus infection of MDCK 
cells (PR/8-RKI, MOI = 1)

Influenza virus infection of MDCK 
cells (PR/8-RKI, MOI = 1)

Extracellular vRNA extractionExtracellular vRNA extraction

Reverse transcription of vRNA 
with random primer

Reverse transcription of vRNA 
with random primer

Quantitative real-time PCR (qPCR) 
with SYBR green I & qPCR primer 
 Quantification of vRNA 
molecules/mL → virus/mL

Quantitative real-time PCR (qPCR) 
with SYBR green I & qPCR primer 
 Quantification of vRNA 
molecules/mL → virus/mL

Synthetic viral RNA 
reference standard 
serial dilution (c = 10-1 

- 10-6 ng/µL)

Synthetic viral RNA 
reference standard 
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Hemagglutination assay 
titration of influenza virus 
(log HA units/mL → virus/mL)

Hemagglutination assay 
titration of influenza virus 
(log HA units/mL → virus/mL)

 
Figure 3.4-3: Workflow for determination of extracellular influenza viral RNA in cell culture supernatant 
by RT-qPCR vs. determination of virus particles concentration by conventional virus quantification (HA 
assay) 

 

For validation of the extracellular influenza viral RNA extraction step, regression analysis 

including calculation of standard curve slopes and intercepts (quantification cycle Cq versus 

log extracellular viral RNA quantity) and confirmation of linearity and sensitivity of the 

extraction step was done. 

For determination of linearity and sensitivity, three independent serial dilutions (concentrated, 

1:2, 1:10, 1:100, 1: 1000, 1:10000) of the influenza PR/8-RKI seed virus (TCID50 3.5 x 107 

virions/mL) were prepared for application to extraction columns. Extraction protocol was 

done according to the instructions of the manufacturer (section 3.4.2; QIAamp Viral RNA Mini 

kit, Qiagen). For determination of extracellular viral RNA quantity a standard curve was 

generated by serial dilution of synthetic viral RNA reference standard vRNA(-) of viral 

segment 7 (M) 1.0 x 100 – 1.0 x 10-8 ng/µL vRNA(-). Afterwards, the RT-qPCR assay was 

performed using the protocol described above in this section. 
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4. Results 

4.1. Selection of a human cell line as model for the proteomic 
approach 

There is an increasing need for a better understanding of the intracellular, molecular 

mechanisms during cell culture based influenza vaccine production processes. Several non-

human cell lines, i.e. MDCK or Vero, are potential candidates for successful vaccine 

production (Genzel and Reichl, 2009). However, application of molecular techniques (i.e. 

proteome/genome analysis) to investigate these cellular systems is restricted, as most of the 

antibodies, microarrays, etc. commercially available are limited to human or mouse models. 

Another problem is that the associated genomes have only been sequenced partially. 

Although some non-human proteins could be identified by MS with the aid of homology 

analysis (Fullekrug et al., 2006), numerous MS/MS data of proteins cannot be interpreted. 

The problem may be solved to some extend with the study of a human infection model. 

For this reason, metabolism and virus yield of three different human cell lines was compared 

to select such a model system. Therefore, a gastric carcinoma cell line (NCI-N87), a 

hepatocellular carcinoma cell line (HepG2) and a lung carcinoma cell line (A549) were 

cultivated and infected, to examine whether they are suitable for studying virus-host cell 

interactions and signal transduction mechanisms. Experiments on cell metabolism during cell 

growth and virus infection in different media and on effects of different infection parameters, 

e.g. trypsin concentration and MOI were carried out. This characterization was essential to 

have optimal growth conditions and a stable and well adapted infection system related to the 

MDCK and Vero cell system. 

However, as it transpired finally in this work, concerns have proven themselves as 

unsubstantiated. Both MDCK and Vero host cell proteins could be identified in the following 

proteome study by MS with the aid of homology analysis. Nevertheless, HepG2 and A549 

cells could be used as reference models in additional infection experiments in recent signal 

transduction studies of the molecular biology subgroup of the bpt group of the MPI 

Magdeburg and can continue to be used. 

 

4.1.1. Characteristics and morphology of three human cell lines 
The human lung carcinoma continuous cell line, A549, was first described by Giard et al. in 

1973 (Giard et al., 1973) and further characterized by Lieber et al. (Lieber et al., 1976). A549 

cells were derived through explant culture of lung carcinoma tissue from a 58-year-old man. 



  Results 

   53 

The A549 cell line was grown as a monolayer culture with a doubling time described in 

literature of about 48 h in log phase growth (Lieber et al., 1976). The cells were epithelial in 

morphology and contain numerous, small cytoplasmic granules readily seen by inverted light 

microscopy (Figure 4.1-1B). A549 cells showed comparable cell growth performance, 

confluence levels and cell morphology to MDCK and Vero cells (Figure 4.1-1). 

NCI-N87 is a gastric carcinoma cell line derived in 1976 by Park et al. (Park et al., 1990) 

established from a liver metastasis of a gastric carcinoma from an American male. The well 

differentiated adherent cell line NCI-N87 grew as islands/compact colonies of tightly cohesive 

epithelial morphology and formed coherent monolayers (Figure 4.1-1A) with a doubling time 

of about 47 h in log phase growth. NCI-N78 cells did grow to confluency. 

HepG2 is an immortalized cell line, which was derived from the liver tissue of a 15 year old 

male with a well differentiated hepatocellular carcinoma (Aden et al., 1979). These cells were 

epithelial in morphology (Figure 4.1-1). The cell line grew as a monolayer culture with a 

doubling time of about 50-60 h in log phase growth. HepG2 cells showed nearly confluent 

levels only when seed at high cell concentrations. 

  

     

     

     
Figure 4.1-1 Cell morphology during cell growth phase of A549, NCI-N87 and HepG2 cell lines 

(A) After 4/7/6 days cell growth, respectively and (B) zoom in on detail, observed with inverted light 
microscope without staining; (C) Laser scan microscopic picture of nuclei stained with propidium 
iodide (red). Scale bars (white) are only shown in (C). 
 
 

4.1.2. Cellular metabolism during cell growth and virus infection phase 

For analysis and optimization of cell growth and virus infection of A549, NCI-N87 and HepG2 

cells, experiments in T175-flasks were carried out in triplicate (mean values are given). The 

metabolite concentrations of glucose, lactate, glutamine, glutamate and ammonia in two 
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different media were compared to follow the carbon and energy metabolism as well as to 

identify media limitations and growth inhibition effects. Each medium for the three cell lines 

was either recommended by ATCC or by various publications (Barnard et al., 1988; Chailler 

and Menard, 2005; Keskinen et al., 1999). During infection phase (influenza PR/8 virus strain 

obtained from the RKI, Berlin, Germany; referred to as PR/8-RKI ;MOI = 1) the HA titers and 

cell concentrations were compared to investigate whether a special VMM was needed for 

influenza virus production. Starting cell concentrations are specified in Table 3.2-1 (section 

3.2.1) and virus infection conditions in Table 3.2-3 (section 3.2.5).  

A549 cell line 

The metabolic profiles for glucose uptake and lactate release of A549 cells indicated a 

glucose consumption of 7.68 mM F12K / 5.56 mM MEMA549 over the cultivation time and of 

10.25 mM F12K / 4.89 mM MEMA549 over the infection time, while 15.04 mM F12K / 11.44 

mM MEMA549 and 15.37 mM F12K / 7.46 mM MEMA549 lactate were released, respectively 

(Figure 4.1-2 A). This leads to an overall molar yield lactate/glucose Ylac/gluc = 1.96 F12K / 

Ylac/gluc = 2.06 MEMA549 for cell growth and Ylac/gluc = 1.5 F12K / Ylac/gluc = 1.53 MEMA549 for 

infection phase (Table 4.1-2). A549 cells consumed 1.67 mM F12K / 2.17 mM MEMA549 

glutamine while the ammonia level reached 1.62 mM F12K / 1.90 mM MEMA549 after 120 h of 

cultivation (Figure 4.1-2B). Whereas 1.41 mM F12K / 1.56 mM MEMA549 glutamine 

consumption and 1.81 mM F12K / 1.91 mM MEMA549 ammonia release were observed during 

96 h infection phase (Figure 4.1-2B). Overall molar yield ammonia/glutamine was Yamm/gln = 

0.97 F12K / Yamm/gln = 0.88 MEMA549 for cell growth and Yamm/gln = 1.29 F12K / Yamm/gln = 1.23 

MEMA549 for the infection phase (Table 4.1-2). The metabolic profiles of glutamate indicated, 

for both cell growth and infection phase, a release of 0.47 mM F12K / 0.35 mM MEMA549 or 

0.58 mM F12K / 0.79 mM MEMA549, respectively (Figure 4.1-2C). 

Parallel to the metabolite profiles the virus release was monitored in HA units of the cell 

culture supernatant of A549 cells (Figure 4.1-2C). At about 12 hpi F12K / 36 hpi MEMA549 

virus could be detected. Maximum virus yield of 1.4 log HA/100 µL was reached at 72 hpi for 

F12K and 1.55 log HA/100 µL was reached at 84 hpi for MEMA549. This corresponds to 

approximately 1411 F12K / 1562 MEMA549 viral particles per cell (Table 4.1-3) based on the 

cell concentration at time of infection (Table 4.1-1) calculated by Equation 3 (section 3.2.6). 

During time course of infection, a clear increase in viable and dead cells in the supernatant 

could be observed at 40 hpi with a final concentration of dead cells of approximately 1.0 x 

105 cells/mL F12K / 1.6 x 105 cells/mL MEMA549 at 96 hpi (Figure 4.1-2D). 
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Figure 4.1-2: Cellular metabolism during cell growth (0-120 h) and virus infection (120-240 h) of the 
A549 cell line 

Comparison of (A) glucose (gluc-) and lactate (lac-) concentration, (B) glutamine (gln-) and 
ammonia (amm-) concentration, (C) glutamate (glu-▲) concentration and HA-values ()(± SD of 
triplicates) and (D) concentration of viable () and dead () cells in supernatant in A549 cultures in 2 
different media (F12K-full symbols; MEMA549-empty symbols). Cells were cultured in T175-flasks in 
triplicate (mean values are given), infected with influenza PR/8-RKI virus, MOI=1, trypsin 500 U/flask. 
At time of infection medium exchange to VMM was performed (vertical line). 
 

NCI-N87 cell line 

The metabolic profiles for glucose uptake and lactate release were compared for both media 

in NCI-N87 cells (Figure 4.1-3; Table 4.1-1). From 4.82 mM RPMINCI-N87 / 5.33 mM MEMNCI-

N87 total glucose consumed 10.04 mM RPMINCI-N87 / 11.21 mM MEMNCI-N87 lactate was 

produced during cell growth (144 h), resulting in an overall molar yield of Ylac/gluc = 

2.08 RPMINCI-N87 / Ylac/gluc = 2.1 MEMNCI-N87 (Table 4.1-2). During virus infection 8.72 mM 

RPMINCI-N87 / 6.36 mM MEMNCI-N87 glucose were metabolized to 19.07 mM RPMINCI-N87 / 

13.06 mM MEMNCI-N87 lactate (96 h), corresponding to Ylac/gluc = 2.19 RPMINCI-N87 / Ylac/gluc = 

2.05 MEMNCI-N87. Degradation and uptake of 0.99 mM RPMINCI-N87 / 1.48 mM MEMNCI-N87 

glutamine resulted in 1.36 mM RPMINCI-N87 / 1.58 mM MEMNCI-N87 ammonia during cell 

growth, resulting in an overall molar yield of Yamm/gln = 1.27 RPMINCI-N87 / Yamm/gln = 

1.07 MEMNCI-N87 (Table 4.1-2). During virus infection still 0.52 mM RPMINCI-N87 / 1.23 mM 

MEMNCI-N87 glutamine was used and led to 1.02 mM RPMINCI-N87 / 1.44 mM MEMNCI-N87 

ammonia production, thus Yamm/gln = 1.95 RPMINCI-N87 / Yamm/gln = 1.17 MEMNCI-N87 (Table 

4.1-2). The metabolic profiles of glutamate indicated, for both cell growth and infection 
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phase, a release of 0.32 mM RPMINCI-N87 / 0.34 mM MEMNCI-N87 or 0.50 mM RPMINCI-N87 / 

0.70 mM MEMNCI-N87, respectively (Figure 4.1-3C). 

Parallel to the metabolite profiles the virus release was monitored in HA units of the cell 

culture supernatant of NCI-N87 cells (Figure 4.1-3C). At about 24 hpi RPMINCI-N87 / 24 hpi 

MEMNCI-N87 a significant increase in virus titer could be detected. Maximum virus yield of 

1.1 log HA/100 µL was reached at 24 hpi for RPMINCI-N87 and 1.1 log HA/100 µL was reached 

at 36 hpi for MEMNCI-N87. This corresponds to approximately 709 RPMINCI-N87 / 567 MEMNCI-N87 

viral particles per cell (Table 4.1-3) based on the cell concentration at time of infection (Table 

4.1-1) calculated by Equation 3 (section 3.2.6). During time course of infection, a clear 

increase in dead cells in the supernatant could be observed at 20 hpi with a final 

concentration of dead cells of approximately 1.3 x 105 cells/mL RPMINCI-N87 / MEMNCI-N87 at 

84 hpi (Figure 4.1-2D). Viable cell concentration in the supernatant first increased until 36 hpi 

with maximum cell numbers of 1.7 x 105 cells/mL RPMINCI-N87 and then decreased 

consistently (Figure 4.1-2D). 
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Figure 4.1-3: Cellular metabolism during cell growth (0-144 h) and virus infection (144-240 h) of the 
NCI-N87 cell line 

Comparison of (A) glucose (gluc-) and lactate (lac-) concentration, (B) glutamine (gln-) and 
ammonia (amm-) concentration, (C) glutamate (glu-▲) concentration and HA-values ()(± SD of 
triplicates) and (D) concentration of viable () and dead () cells in supernatant in NCI-N87 cultures in 
2 different media (RPMINCI-N87-full symbols; MEMNCI-N87-empty symbols). Cells were cultured in T175-
flasks in triplicate (mean values are given), infected with influenza PR/8-RKI virus, MOI=1, trypsin 500 
U/flask. At time of infection medium exchange to VMM was performed (vertical line). 
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HepG2 cell line 

The metabolic profiles for glucose uptake and lactate release were compared for both media 

in HepG2 cells (Figure 4.1-4; Table 4.1-1). From 11.44 mM MEMHepG2 / 9.35 mM RPMIHepG2 

total glucose consumed 29.04 mM MEMHepG2 / 23.97 mM RPMIHepG2 lactate was produced 

during cell growth (144 h), resulting in an overall molar yield of Ylac/gluc = 2.54 MEMHepG2 / 

Ylac/gluc = 2.56 RPMIHepG2 (Table 4.1-2). During virus infection 8.90 mM MEMHepG2 / 8.96 mM 

RPMIHepG2 glucose were metabolized to 22.89 mM MEMHepG2 / 22.21 mM RPMIHepG2 lactate 

(96 h), corresponding to Ylac/gluc = 2.57 MEMHepG2 / Ylac/gluc = 2.48 RPMIHepG2 (Table 4.1-2). 

Degradation and uptake of 1.57 mM MEMHepG2 / 1.39 mM RPMIHepG2 glutamine resulted in 

1.28 mM MEMHepG2 / 1.59 mM RPMIHepG2 ammonia during cell growth, resulting in an overall 

molar yield of Yamm/gln = 0.81 MEMHepG2 / Yamm/gln = 1.15 RPMIHepG2 (Table 4.1-2). During virus 

infection still 0.65 mM MEMHepG2 / 0.76 mM RPMIHepG2 glutamine was used and led to 

1.10 mM MEMHepG2 / 1.32 mM RPMIHepG2 ammonia production, thus Yamm/gln = 1.69 MEMHepG2 

/ Yamm/gln = 1.75 RPMIHepG2 (Table 4.1-2). The metabolic profiles of glutamate indicated no 

release during cell growth phase and a release of 0.85 mM MEMHepG2 / 0.70 mM RPMIHepG2 

during the infection phase (Figure 4.1-4C). 

Parallel to the metabolite profiles the virus release was monitored in HA units of the cell 

culture supernatant of HepG2 cells (Figure 4.1-4C). At about 24 hpi MEMHepG2 / 24 hpi 

RPMIHepG2 a significant increase in virus titer could be detected. Maximum virus yield of 

1.85 log HA/100 µL was reached at 72 hpi for MEMHepG2 and 1.7 log HA/100 µL was reached 

at 60 hpi for RPMIHepG2. This corresponds to approximately 1892 MEMHepG2 / 1739 RPMIHepG2 

viral particles per cell (Table 4.1-3) based on the cell concentration at time of infection (Table 

4.1-1) calculated by Equation 3 (section 3.2.6). During time course of infection, a clear 

increase in dead and viable cells in the supernatant with a maximum cell concentration of 

about 1.5 x 105 cells/mL MEMHepG2 / RPMIHepG2 at 48 hpi for dead cells and about                

9 x 104 cells/mL MEMHepG2 at 36 hpi for viable cells (Figure 4.1-2D) could be observed. 

Afterwards a clear decrease of cell concentration in the supernatant could be detected. 
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Figure 4.1-4: Cellular metabolism during cell growth (0-144 h) and virus infection (144- 240 h) of the 
HepG2 cell line 
Comparison of (A) glucose (gluc-) and lactate (lac-) concentration, (B) glutamine (gln-) and 
ammonia (amm-) concentration, (C) glutamate (glu-▲) concentration and HA-values ()(± SD of 
triplicates) and (D) concentration of viable () and dead () cells in supernatant in HepG2 cultures in 2 
different media (MEMHepG2-full symbols; RPMIHepG2-empty symbols). Cells were cultured in T175-flasks 
in triplicate (mean values are given), infected with influenza PR/8-RKI virus, MOI=1, trypsin 500 
U/flask. At time of infection medium exchange to VMM was performed (vertical line). 
 

Table 4.1-1: Comparison of growth parameters and differences in initial and final total metabolite 
concentrations (Δ values) of human cell lines 
 A549 NCI-N87 HepG2 

F12K MEMA659 RPMINCI-N87 MEMNCI-N87 MEMHepG2 RPMIHepG2 

Initial cell conc. Cell growth 0.4 0.4 3.0 4.0 3.2 3.2 
(x 105 cells/mL) Virus infection 4.3 4.3 3.5 3.5 4.4 4.4 

Cultivation time Cell growth 120 120 144 144 144 144 
(h) Virus infection 96 96 96 96 96 96 

Metabolite concentrations a, b)       
Δ glucose Cell growth -7.68 -5.56 -4.82 -5.33 -11.44 -9.35 
(mM) Virus infection -10.25 -4.89 -8.72 -6.36 -8.90 -8.96 
Δ lactate Cell growth 15.04 11.44 10.04 11.21 29.04 23.97 
(mM) Virus infection 15.37 7.46 19.07 13.06 22.89 22.21 
Δ glutamine Cell growth -1.67 -2.17 -0.99 -1.48 -1.57 -1.39 
(mM) Virus infection -1.41 -1.56 -0.52 -1.23 -0.65 -0.79 
Δ ammonia Cell growth 1.62 1.90 1.36 1.58 1.28 1.59 
(mM) Virus infection 1.81 1.91 1.02 1.44 1.10 1.32 
Δ glutamate Cell growth 0.47 0.35 0.32 0.34 0.00 0.08 
(mM) Virus infection 0.58 0.79 0.50 0.70 0.85 0.70 

a)  Δ values were calculated by dividing the corresponding metabolite concentration at the start and the 
end of cultivation and infection phase 

b)  Negative Δ values indicate that substrate is consumed, positive values that metabolite is released 
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Table 4.1-2: Comparison of metabolite yields during cell growth and infection of human cell lines 

Metabolite yields a) A549 NCI-N87 HepG2 
F12K MEMA659 RPMINCI-N87 MEMNCI-N87 MEMHepG2 RPMIHepG2 

Cell growth Ylac/gluc 1.96 2.06 2.08 2.10 2.54 2.56 
Virus infection Ylac/gluc 1.50 1.53 2.19 2.05 2.57 2.48 
Cell growth Yamm/gln 0.97 0.88 1.37 1.07 0.81 1.15 
Virus infection Yamm/gln 1.29 1.23 1.95 1.17 1.69 1.75 

a)  Calculation of yields (Y) were done as described in section 3.2.4 (Equation 2) 
 

 

Table 4.1-3: Comparison of max. HA titers and cell specific virus yields of different human cell lines 

 A549 NCI-N87 HepG2 
F12K MEMA659 RPMINCI-N87 MEMNCI-N87 MEMHepG2 RPMIHepG2 

Max. HA titer (log HA/100 µL) 1.40 1.55 1.10 1.10 1.85 1.70 

Cell specific virus yield a) 1411 1562 709 567 1892 1739 
a)  Calculation of cell specific virus yields were done as described in section 3.2.6 (Equation 3) divided 

by the cell concentration at time of infection (Table 4.1-1) 
 

 

In summary, no significant differences in initial and final concentration of metabolites (Δ 

values) were observed comparing the two media of the three human cell lines. HepG2 

showed higher amounts of consumed and released metabolites, indicating a higher overall 

glycolytic activity (Table 4.1-1). Glutamate release was always coupled to virus replication in 

the human cell lines (Table 4.1-1). Neither ammonia nor lactate concentrations reached 

inhibiting concentration for cell growth in both media (Table 4.1-1). For cell cultivation HepG2 

and NCI-N87 cells had to be seeded at high cell concentration since most of the seeded cells 

did not attached to the T-flaks surface and died fastly (Table 4.1-1). Additionally, although 

using this high seeding cell concentrations, HepG2 and NCI-N87 cells did not grow to 

confluency at all. Lowest maximum HA titers were observed for NCI-N87 cells (Table 4.1-3). 

 

4.1.3. Effect of different infection parameters on virus yield 

The effect of MOI in combination with different VMM and trypsin addition was tested for 

influenza PR/8-RKI virus infection. Additionally, the cell specific infective virus particle 

concentration was determined by TCID50 assay. Studies were carried out in T75-flasks. 

Starting cell numbers (Table 3.2-1; section 3.2.1) and virus infection conditions (Table 4.1-1; 

section 3.2.5) were as specified before. Variations from MOI 0.1 to 1.5 were compared by HA 

titers for both VMM. Since especially proteome analysis must be done without proteases to 

avoid protein degradation, experiments focused on infection conditions without trypsin 

addition. Therefore, infection with (250 U/flask) and without trypsin was compared by HA 

titers, glutamate release and cell concentrations in supernatant for one VMM and a fixed MOI 

of 1.  
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A549 cell line 

No influence on maximum HA titers was observed for variations in MOI during A549 cell 

culture infection for both media (Figure 4.1-6A, B). Finally, all infections reached the same 

maximum titer of about 2.0 log HA unit/100 µL only at different time points. Thus, the MOI 

had an effect on virus growth dynamics but not on final yields. The lower the MOI the longer 

the lag phase before HA titers were detectable and increased. 

Testing the effect of trypsin addition during infection of A549 cells revealed highest virus 

titers of 1.9 HA units/100 µL at 60 hpi with trypsin. Without trypsin activation, virus replication 

was delayed and lower HA titers of 1.1 HA units/100 µL were reached at 84 hpi compared to 

infection with trypsin (Figure 4.1-6A). This delay was also reflected in the released amounts 

of glutamate without trypsin activation (Figure 4.1-6A). No significant differences could be 

observed for the cell concentrations in the supernatant (Figure 4.1-6B). 
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Figure 4.1-5: Effect of MOI on virus yields of the A549 cell line 
Infection with influenza PR/8-RKI virus in (A) F12K and (B) MEMA549 VMM (T75-flasks; after 120 h 
growth ; trypsin: 250 U/flask) with different MOI (1.5-◊, 1.0-*, 0.5-, 0.25-∆, 0.1-▲). 
 

0.0

0.4

0.8

1.2

1.6

2.0

0 24 48 72 96
time post infection (h)

lo
g 

H
A

 u
ni

ts
/1

00
 µ

L 
 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

gl
u 

co
nc

. (
m

M
)  

 

0

20

40

60

0 24 48 72 96
time post infection (h)

ce
ll 

co
nc

. (
E4

 c
el

ls
/m

L)
   

A B

 
Figure 4.1-6: Effect of trypsin addition on virus yields of the A549 cell line 
Infection with (250 U/flask) (full symbols) or without (empty symbols) trypsin supplementation to F12K 
VMM. Cells were infected after 120 h growth with influenza PR/8-RKI virus with MOI=1 in T75-flasks. 
(A) glutamate (glu-) concentration and HA-values () and (B) concentration for viable () and dead 
() cells in supernatant of A549 cultures are shown. 
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NCI-N87 cell line 

For variations in MOI during NCI-N87 cell culture infection an influence on maximum HA 

titers was observed for both media (Figure 4.1-7A, B). As before a maximum HA titer of 1.2 

log HA unit/100 µL was reached when using MOI in the range 1.5-1.0. The lower the MOI the 

lower the maximum HA titers reached, showing a possible MOI-dependency for this cell line. 

Testing the effect of trypsin addition during infection of NCI-N87 cells revealed highest virus 

titers of 1.2 HA units/100 µL with trypsin at 96 hpi. Without trypsin activation, virus replication 

was delayed and similar HA titers of 1.1 HA units/100 µL were reached compared to infection 

with trypsin (Figure 4.1-8A). This almost identical time course was also reflected in similar 

glutamate release dynamics (Figure 4.1-8A). No significant differences could be observed for 

the cell concentrations in the supernatant (Figure 4.1-8B). 
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Figure 4.1-7: Effect of MOI on virus yields of the NCI-N87 cell line 
Infection with influenza PR/8-RKI virus in T75-flasks after 144 h of cultivation in (A) RPMINCI-N87 and 
(B) MEMNCI-N87 VMM (trypsin: 250 U/flask) with different MOI (1.5-◊, 1.0-*, 0.5-, 0.25-∆, 0.1-▲).  
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Figure 4.1-8: Effect of trypsin addition on virus yields of the NCI-N87 cell line 
Infection with (250 U/flask) (full symbols) or without (empty symbols) trypsin supplementation to 
RPMINCI-N87 VMM. Cells were infected after 144 h growth with influenza PR/8-RKI virus with MOI=1 in 
T75-flasks. (A) glutamate (glu-) concentration and HA-values () and (B) concentration for viable 
() and dead () cells in supernatant of NCI-N87 cultures are shown. 
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HepG2 cell line 

For variations in MOI during HepG2 cell culture infection no influence on maximum HA titers 

was observed for both media (Figure 4.1-9A, B). Finally, all infections reached the same 

maximum titer of about 2.3 log HA unit/100 µL only at different time points. Thus, the MOI 

had an effect on virus growth dynamics but not on final yields. The lower the MOI the longer 

the lag phase before maximum HA titers were detectable and increased. 

Testing the effect of trypsin addition during infection of HepG2 cells revealed highest virus 

titers of 1.9 HA units/100 µL with trypsin at 72 hpi. Without trypsin activation, virus replication 

was delayed by 12 h, however maximum HA titers of 1.4 HA units/100 µL reached similar 

levels (Figure 4.1-10A). This delay was also reflected in the released amounts of glutamate 

without trypsin activation (Figure 4.1-10A). No significant differences could be observed for 

the cell concentrations in the supernatant (Figure 4.1-10B). 
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Figure 4.1-9: Effect of MOI on virus yields of the HepG2 cell line 
Infection with influenza PR/8-RKI virus in T75-flasks after 144 h of cultivation in (A) MEMHepG2 and (B) 
RPMIHepG2 VMM (trypsin: 250 U/flask) with different MOI (1.5-◊, 1.0-*, 0.5-, 0.25-∆, 0.1-▲). 
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Figure 4.1-10: Effect of trypsin addition on virus yields of the HepG2 cell line 
Infection with (250 U/flask) (full symbols) or without (empty symbols) trypsin supplementation to 
MEMHepG2 VMM. Cells were infected after 144 h growth with influenza PR/8-RKI virus with MOI=1 in 
T75-flasks. (A) glutamate (glu-) concentration and HA-values () and (B) concentration for viable 
() and dead () cells in supernatant of HepG2 cultures are shown. 
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Cell line specific infective virus particle concentration was determined by TCID50 assay 

(section 3.2.6) to verify the stability of the produced active virus particles (Figure 4.1-11). The 

maximum number of active virus particles was reached at 24 hpi for HepG2 cells (107.6 

virions/mL), at 48 hpi for A549 cells (107.5 virions/mL). Afterwards the virus activity decreased 

within the next 48 h by about 1 log step for HepG2 cells and within the last 24 hpi by half log 

step for A549 cells. Only very low active virus particle titers of about 105.9 virions/mL were 

observed for NCI-N87 cells, showing no significant increase in titers compared to the starting 

concentration. 
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Figure 4.1-11: Cell line specific infective virus particle titers (TCID50) 

Infection of A549 cells in F12K (), NCI-N87 cells in RPMINCI-N87 () and HepG2 cells in MEMHepG2 (◊) 
VMM (with 250 U/flask trypsin) with influenza PR/8-RKI virus (MOI=1 in T75-flasks). 
 

 

In summary, no influence of MOI on maximum HA titers were observed for A549 and HepG2 

cells for both media. Only NCI-N87 cells showed MOI-dependency. As before, lowest 

maximum HA titers were observed for NCI-N87 cells. HA titers were lower without trypsin 

addition, however viral replication could be detected. Glutamate release was always coupled 

to virus replication in all three human cell lines. Maximum active virus particle concentrations 

(TCID50) were reached before maximum HA titers, except for NCI-N87 cells. 

Overall, metabolism and virus yield screening of three human cell lines demonstrated that 

only A549 and HepG2 cells are promising candidates as a human cell reference model. 

Finally, on the basis of these data, A549 cells were selected for proteomic approaches, 

because they showed (I) comparable cell growth performance and cell morphology to MDCK 

and Vero cells, (II) comparatively high virus titer (HA, TCID50) and virus replication even 

without trypsin addition and (III) lower metabolic activity and growth in uncomplex media. 
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4.2. Proteome alterations in human influenza A virus infected 
mammalian cell lines 

4.2.1. Infection kinetics and proteome alterations in A549 and MDCK 
cells infected with influenza A PR/8-RKI 

For a better understanding of virus-host cell interactions the changes in relative protein 

abundances caused by human influenza virus infection in MDCK and in A549 cells were 

examined at different time points during the infection (Vester et al., 2009). MDCK cells are 

used widely and are considered candidates for influenza virus vaccine production processes 

(Brands et al., 1999; Genzel and Reichl, 2007; Tree et al., 2001). As discussed under 4.1 

A549 cells were selected for a comparison of influenza virus infection in a human cell line. 

Under standardized conditions relevant for vaccine production (Genzel et al., 2004) the 

PR/8-RKI virus variant was used to infect MDCK and A549 cells. To ensure a direct infection 

of all cells (single step infection) a MOI of 6 was used. Successful influenza virus infection 

was verified by measuring virus titers in the cell culture supernatant using the HA assay 

(Figure 4.2-1; section 3.2.6).  
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Figure 4.2-1: Virus titers (HA) for influenza PR/8-RKI virus infected (A) A549 cells and (B) MDCK cells 

Infection kinetics of (A) A549 cells infected with PR/8-RKI virus (∆) and mock infection (�)and (B) of 
MDCK cells infected with PR/8-RKI virus (◊) and mock infection (o) (T-flasks, without trypsin addition, 
MOI = 6). Symbols represent mean values ± SD of three independent experiments. 
 

Influenza virus infected MDCK cells started to produce virus particles at about 4 to 6 hpi 

whereas in infected A549 cells virus production did not start until 24 hpi (Figure 4.2-1). Due 

to this result, different protein extraction time points were chosen to display the different 

dynamics in virus replication and also the resulting protein abundance changes during early 

infection phases. As the aim was to look for the proteome response of the infected cells early 

time points post infection were of interest. It was thus not necessary to reach maximum HA 

values or maximum virus yields as shown during the experiments. Later infection events 
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have not been considered. Proteins were extracted 4, 8 and 12 hpi for MDCK cells and at 24, 

48 and 72 hpi for A549 cells, respectively. Proteome response was analyzed only from 

attached cells. Influenza virus replication comprises typical steps starting with attachment of 

virus to the host cell and internalization by endocytosis. Viral RNA genome replication and 

translation occurs in the nucleus leading to assembly of vRNP complexes in the cytoplasm 

and release of viral particles by budding (Sidorenko and Reichl, 2004). Time series of HA 

displayed significant differences in virus replication dynamics depending on cell line, from 

early and maximum virus production phase to the beginning of virus induced apoptosis, 

which was also reported by Schulze-Horsel et al. (Schulze-Horsel et al., 2009).  

The proteome profiles of MDCK and A549 cells were examined by 2-D DIGE (see section 

3.3), resolving a range of about 1200 protein spots for MDCK cells and about 1050 protein 

spots for A549 cells on individual gels. When comparing mock infected against influenza 

virus infected labeling a total number of only 8 differentially abundant spots in the protein 

profile were found for each cell line at different time points post infection. A set of 

representative 2-D DIGE gels is shown in Figure 4.2-2A for A549 cells at 72 hpi and in Figure 

4.2-2B for MDCK cells at 12 hpi (altered proteins labeled serially with numbers).  

 

 

     

Figure 4.2-2: Representative 2-D DIGE gels of the proteome response of PR/8-RKI infected (A) A549 
cells and (B) MDCK cells 

Total protein extracts (Cy2-labeled proteins) resolved by 2-D DIGE (24 cm; pH 4-7; 10% SDS-PAGE) 
from 72 hpi (A549) and 12 hpi (MDCK). 
 

Identified proteins are listed in Table 4.2-1 for A549 cells and in Table 4.2-2 for MDCK cells. 

Every protein spot was identified by at least two peptides using nanoHPLC-nanoESI-MS/MS 

(section 3.3.5). Identified proteins fulfill relevant functions in diverse biological processes 

such as stress response through molecular chaperones or proteolysis, mRNA translation, 

influenza virus induced signal transduction and as cytoskeleton components.  

A B 
4 7 pH 4 7 pH 
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Table 4.2-1: Proteins identified as being differentially abundant in A549 cells infected with influenza 
PR/8-RKI virus variant compared to mock infected cells 

Spot 
IDa) 

NCBI 
nob) 

Protein description MASCOT scores Protein function Matched 
peptides c) 

Mowse 
score d) 

1 662841 Heat shock protein 27 (HSP27) 4 182 Chaperone/apoptosis 
2 31542939 Hydroxyprostaglandin dehydrogenase 

15-(NAD) (HPDG) 
9 290 Prostaglandin 

inactivation 
3 40354192 Keratin 10 8 398 Cytoskeleton protein 
4 188901 IFN induced Mx protein (MxA) 16 501 Signal transduction (IFN 

induced) 
5 188901 IFN induced Mx protein (MxA) 11 367 Signal transduction (IFN 

induced) 
6 39777597 Transglutaminase 2 isoform a (TGM2) 14 451 Signal 

transduction/apoptosis 
7 189308 Nucleobindin (Nuc) 7 357 Signaling, apoptosis 
8 1008915 Proteasome activator hPA28 subunit 

beta (PA28beta) 
8 243 Ubiquitin pathway (IFN 

induced) 
a)  Spot ID represents the number on the 2-DE gels (Figure 4.2-2A) 
b) Accession numbers according to the NCBInr database.  
c)  Number of peptides identified by MS/MS given by MASCOT 
d)  Mowse score is -10 x log(p), where p is the probability that the observed match is a random event. 

Based on the NCBInr database using the MASCOT searching program as MS/MS data. Scores 
greater than 53 are significant (p < 0.05) 

 

 

Table 4.2-2: Proteins identified as being differentially abundant in MDCK cells infected with influenza 
PR/8-RKI virus variant compared to mock infected cells 

Spot 
IDa) 

NCBI 
nob) 

Protein description MASCOT scores Protein function 
Matched 
peptidesc) 

Mowse 
scored) 

1 73969443 Ran GTPase-activating protein 1 
(RanGAP1)e) 

4 91 mRNA processing/export 

2 50978856 Myxovirus resistance protein (Mx1) 5 156 Signal transduction (IFN 
induced) 

3 61740600 Keratin 10 20 620 Cytoskeleton protein 
4 61740600 Keratin 10 8 303 Cytoskeleton protein 
5 61740600 Keratin 10 9 358 Cytoskeleton protein 
6 73974634 N-myc downstream regulated gene 

1 (NDRG1)e) 
4 77 Cell signaling 

7 73974634 N-myc downstream regulated gene 
1 (NDRG1)e) 

4 131 Cell signaling 

8 57096100 Eukaryotic translation elongation 
factor 1 (EF-1)e) 

2 101 Protein synthesis 

a)  Spot ID represents the number on the 2-DE gels (Figure 4.2-2B) 
b) Accession numbers according to the NCBInr database.  
c)  Number of peptides identified by MS/MS given by MASCOT 
d)  Mowse score is -10 x log(p), where p is the probability that the observed match is a random event. 

Based on the NCBInr database using the MASCOT searching program as MS/MS data. Scores 
greater than 53 are significant (p < 0.05) 

e) Predicted protein; derived from annotated genome sequence (NW_876264) using gene prediction 
method (GNOMON) 
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The differentially abundant protein patterns of both cell lines showed no overlap except for 

two proteins. These two proteins are the myxovirus resistance protein (Mx1, spot 2, Table 

4.2-2) in MDCK cells, named IFN induced Mx protein in human cells (MxA, spots 4 and 5, 

Table 4.2-1) and keratin 10 (MDCK: spots 3, 4 and 5, Table 4.2-2; A549: spot 3,Table 4.2-1).  

The fact that various proteins (e.g. NDRG1, MxA, keratin 10) are identified in more than one 

spot on the gel indicates that some regulated proteins had PTM or several kinds of 

cleavages. PTMs can be hypothesized for protein spots with the same molecular weight but 

different pI (Goerg et al., 2004). This can be assumed for NDRG1 (spot 6 and 7, Figure 

4.2-2B) in MDCK cells, which are reported to be phosphorylated (Olsen et al., 2006). 

However, PTMs have not been described for MxA proteins (spot 4 and 5, Figure 4.2-2A) in 

A549 cells so far and this shift in pI can therefore not be explained (Haller et al., 2009). 

Compared to their corresponding molecular weight and pI the three keratin 10 spots 

identified in infected MDCK cells (spot 3, 4 and 5, Figure 4.2-2B) showed varying locations in 

the corresponding gels. This could indicate several kinds of cleavage products or 

fragmentations (Liu et al., 2008). 

The 16 identified proteins showed high variability of relative protein abundance over time 

indicating dynamic changes in the host cell proteomes in response to influenza virus 

infection. Interestingly, all of these proteins were up-regulated and none were down-

regulated during influenza virus infection (Figure 4.2-3). 
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Figure 4.2-3: Quantitative data of proteome alterations of influenza PR/8-RKI infected A549 cells and 
MDCK cells 
Average ratios of relative protein abundance of influenza PR/8-RKI virus infected (A) A549 cells and 
(B) MDCK cells against mock infected cells. Bar charts represent average ratios of the spot volumes 
(mean values ± SD of three independent experiments). 
 

The diagram of Figure 4.2-3 shows that none of the identified proteins was differentially 

abundant at the earliest time point post infection at 4 hpi in MDCK cells. Only one protein 

(HSP27, spot 1, Figure 4.2-2A) in A549 cells was found to be regulated at all three time 

points (Figure 4.2-4A). This was unexpected with respect to the infection kinetics (Figure 
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4.2-1) showing an increase in HA at the same time point. The first extraction time points were 

chosen to represent early events in intracellular virus replication and virus release. Most of 

the identified proteins were not regulated significantly until the second extraction time point, 

which correlates to an increased production of viruses (Figure 4.2-1) measured by HA assay. 

Number and ratio of differentially abundant proteins increased at the third time point (Figure 

4.2-3). In MDCK cells three proteins (NDRG1, EF-1) appeared to be up-regulated only at the 

last extraction time point after 12 hpi (spot 6, 7 and 8, Figure 4.2-3B). TGM2, nucleobindin 

and PA28-beta (spot 6, 7 and 8, Figure 4.2-3A) were regulated only at the last extraction 

time point in A549 cells, representing proteome changes at a very late stage of influenza 

virus infection. MDCK cells showed a wide dynamic range of protein abundance changes 

with an average ratio spanning from two-fold up to 50-fold for spot 5 (keratin 10) at 12 hpi 

(Figure 4.2-4B). Whereas for A549 cells only a range from about two-fold up to 12-fold was 

found (Figure 4.2-3A).  

 

 

Figure 4.2-4: Selected altered abundant protein spots of proteome response in PR/8-RKI  infected (A) 
MDCK cells and (B) A549 cells 

Enlarged region of the respective 2-D DIGE map and the corresponding spot volume, showing a three 
dimensional view of representative altered abundant proteins during influenza PR/8-RKI virus 
infection. Bar charts represent average ratios of the spot volumes. 
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4.2.2. Infection kinetics and proteome alterations in MDCK cells infected 
with different influenza A PR/8 virus variants  

A comparison of virus variants of the PR/8 strain by Schulze-Horsel et al. (Schulze-Horsel et 

al., 2009) obtained from two different suppliers (NIBSC, RKI) showed clear differences in 

maximum virus titers (TCID50 and HA) and virus replication dynamics. In particular, induction 

of apoptosis and average life-time of infected MDCK cells were correlated with virus yields. 

To obtain further insights into the biological mechanisms of these differences, proteome data 

on MDCK cell infections with a virus variant obtained from RKI described in the previous 

study  (see section 4.2.1) and referred to as ‘data on PR/8-RKI variant’ (Vester et al., 2009) 

are compared in the following to the PR/8-NIBSC variant (Vester et al., 2010). 

High virus titers at the start of infection reflect the high MOI of 6 used for the infection (Figure 

4.2-5;4.2-1) as well as the lower TCID50 of the PR/8-NIBSC seed virus compared to the 

PR/8-RKI seed virus (data not shown). During infection with PR/8-NIBSC increase in virus 

titers could be seen 4 hpi, which was the same as described for PR/8-RKI virus (Figure 

4.2-1) (Vester et al., 2009). The concentration of total virus particles increased over time from 

1.5 to 2.0 log HA units/100µL at 12 hpi for MDCK cells infected with PR/8-NIBSC virus 

(Figure 4.2-5) and from 0.7 to 1.6 log HA units/100µL infected with PR/8-RKI (Figure 4.2-1). 

These differences in virus yields in comparison to previously described yields (Schulze-

Horsel et al., 2009) could be due the early investigation time points and to the lack of trypsin 

in the virus growth medium used in this study. Flow cytometric monitoring of influenza virus 

infectivity was used for verification of infection in MDCK cells (Schulze-Horsel et al., 2009) 

and showed that 90% of the cells were infected at 6 hpi using PR/8-RKI / -NIBSC virus (data 

not shown). 
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Figure 4.2-5: Virus titers (HA) for influenza PR/8-NIBSC virus infected MDCK cells 

Infection kinetics of MDCK cells infected with PR/8-NIBSC (◊) and mock infection (o) (T-flasks, without 
trypsin addition, MOI = 6). Symbols represent mean values ± SD of three independent experiments. 
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Proteome alteration profiles at early time points post infection of PR/8-NIBSC infected MDCK 

cells were compared with mock infected MDCK cells using 2-D DIGE technology (see 

section 3.3). A representative 2-D DIGE gel of the proteome response at 12 hpi is shown in 

Figure 4.2-6A. The analysis with the BVA module of the DeCyder 2D software detected 

about 1440 ± 178 protein spots in total. Among them, 36 protein spots revealed changes in 

the relative abundance with statistical significance (± 1.7- fold change in relative abundance, 

p < 0.001) and are labeled serially with numbers in Figure 4.2-6A. Some characteristic 

proteins showing consistent abundance changes were selected as examples, and are 

displayed in Figure 4.2-6B in enlarged form. Comparison of the proteome profiles showed 

that infection with the two virus variants resulted in significant differences in the total number 

of regulated proteins. The PR/8-NIBSC virus variant caused the highest abundance changes 

while PR/8-RKI showed only 8 changes (Figure 4.2-2). Furthermore, PR/8-NIBSC induced 

an earlier perturbation of the proteome profile. 

 

 

Figure 4.2-6: Representative 2-D DIGE gel of the proteome response and enlarged region of selected 
altered abundant proteins in PR/8-NIBSC infected MDCK cells 

(A) Total protein extract (Cy2-labeled proteins) resolved by 2-D DIGE (24 cm; pH 4-7; 10% SDS-
PAGE) of influenza PR/8-NIBSC virus variant infected MDCK cells at 12 hpi. (B) Enlarged regions of 
the respective 2-D DIGE gel region of selected altered abundant proteins (Mx1, spot 7; KCIP-1, spot 
19; TUBA2, spot 13; hHRB23B, spots 9 and 10; NS1, spot 26). 
 

Application of IPG strips with a broader pH range (pH 3–11)  was tested before, but did not 

show any additional regulated protein spots (data not shown) is this particular case. As a 

result,  whole proteome analysis was done with low range pH strips (pH 4-7) in the interest of 

improved separation efficiency. 

The PR/8-RKI variant resulted in only up-regulated proteins (Figure 4.2-3), whereas the 

PR/8-NIBSC variants showed variability in the dynamics of relative protein abundance, 

resulting in 12 protein spots with decreased and 24 protein spots with increased abundance 
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levels displayed in Figure 4.2-7. More precisely, 3 protein spots were found to be 

differentially abundant at the earliest time points investigated at 4 hpi. However, the majority 

of the identified protein spots were not regulated significantly until 8 hpi and showed 

increased regulation levels only 12 hpi. Additionally, 10 protein spots appeared to be 

regulated only at the last extraction time point at 12 hpi.  
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Figure 4.2-7: Quantitative data of proteome alterations of PR/8-NIBSC infected MDCK cells 
Average ratios of relative protein abundance of infected against mock infected MDCK cells (influenza 
PR/8-NIBSC virus variant) at 4, 8 and 12 hpi. Bar charts represent average ratios of the spot volumes 
(mean values ± SD of three independent experiments). 
 

All protein spots showing altered abundance levels were excised from the gel and in-gel 

digested with trypsin, followed by nanoHPLC-nanoESI-MS/MS analysis (section 3.3.5). Out 

of these 36 proteins analyzed 32 were identified unambiguously through their peptide 

fragmentation mass fingerprints using MASCOT and protein databases. Figure 4.2-8 shows 

an example of the nanoHPLC-nanoESI-MS/MS analysis results of a selected spot. The 32 

identified proteins are summarized in Table 4.2-3, numbered according to Figure 4.2-6. 

These proteins act in diverse biological processes such as influenza virus induced signal 

transduction, cytoskeleton and microtubule remodeling, vesicle transport, proteolysis or DNA 

transport and repair. In comparison to the PR/8-RKI variant proteins for signal transduction, 

cytoskeleton remodeling and transport mechanisms were additionally affected by infection. 

 

Table 4.2-3: Proteins identified as being differentially abundant in MDCK cells infected with influenza 
PR/8-NIBSC virus variant compared to mock infected cells 

Spot 
IDa) 

NCBI 
nob) 

Protein description MASCOT scores Protein function 
Matched 
peptidesc) 

Mowse 
scored) 

Sequ. 
cov (%) 

 
 
 
 
 
 
 
 
 

1 229552 Albumin 25 1083 42 Transport/cargo  
2 229552 Albumin 25 1136 40 Transport/cargo  
3 229552 Albumin 28 1349 43 Transport/cargo  
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4 50978856 Myxovirus resistance protein 1 
(Mx1) 

8 258 11 Signal transduction (IFN 
induced) 

5 50978856 Myxovirus resistance protein 1 
(Mx1) 

6 169 9 Signal transduction (IFN 
induced) 

6 50978856 Myxovirus resistance protein 1 
(Mx1) 

14 484 22 Signal transduction (IFN 
induced) 

7 50978856 Myxovirus resistance protein 1 
(Mx1) 

11 508 15 Signal transduction (IFN 
induced) 

8 61740600 Keratin 10 9 297 14 Cytoskeleton component 
9 57094213 UV excision repair protein RAD23 

(hHRB23B) e) 
7 268 15 Protein degradation 

10 57094213 UV excision repair protein RAD23 
(hHRB23B) e) 

2 90 4 Protein degradation 

11 73946455 Heterogeneous nuclear ribo-
nucleoprotein K (hnRNP K) e) 

10 396 17 Nucleic acid transport 

12 73946449 Heterogeneous nuclear ribo-
nucleoprotein K (hnRNP K) e) 

8 373 19 Nucleic acid transport 

13 73996516 Tubulin alpha-2 (TUBA2) e) 4 171 7 Cytoskeleton component 
14 73996455 Cytokeratin 8 (CK-8) 18 933 35 Cytoskeleton component 
15 73996455 Cytokeratin 8 (CK-8) 22 998 37 Cytoskeleton component 
16 73996455 Cytokeratin 8 (CK-8) 18 873 30 Cytoskeleton component 
17 73958059 Beta-actin e) 5 212 14 Cytoskeleton component 
18 61740600 Keratin 10 12 674 20 Cytoskeleton component 
19 73992048 Protein kinase C inhibitor protein-

1 (KCIP-1) e) 
5 285 20 Signal transduction 

20 73981584 Proteasome subunit beta(PSMB4)e) 3 175 9 Protein degradation 
21 61740600 Keratin 10 8 322 12 Cytoskeleton component 
22 73996314 Cytokeratin 5 (CK-5) 11 555 13 Cytoskeleton component 
23 73949168 F-box protein, helicase, 18 e) 22 912 35 DNA replication/repair 
24 61740600 Keratin 10 4 118 5 Cytoskeleton component 
25 73946797 Annexin A1 (ANXA1) e) 5 176 17 Vesicle transport 

26 8486133 Non-structural protein 1 (NS1) 3 119 13 Influenza viral protein 
27 73946455 Heterogeneous nuclear ribo-

nucleoprotein K (hnRNP K) e) 
6 239 13 Nucleic acid transport 

28 57106546 Triosephosphate isomerase (TIM)e) 2 140 8 Metabolism/glycolysis 
30 73969353 Tubulin-tyrosine ligase (CG1550-

PA) e) 
6 192 10 Cytoskeleton modification 

31 73952424 Interferon-induced protein with 
tetratricopeptide repeats 1 e) 

4 161 9 Zn-dependent protease 

32 73958059 Beta-actin e) 3 116 7 Cytoskeleton component 
33 61740600 Keratin 10 13 518 19 Cytoskeleton component 
a)  Spot ID represents the number on the 2-D DIGE gels (Figure 4.2-6) 
b) Accession numbers according to the NCBInr database 
c)  Number of peptides identified by LC-MS/MS given by MASCOT 
d)  Mowse score is -10 x log(p), where p is the probability that the observed match is a random event. 

Based on the NCBInr database using the MASCOT searching program as LC-MS/MS data. 
Scores greater than 53 are considered significant (p < 0.05) 

e) Predicted protein; derived from annotated genome sequence (NW_876264) using gene prediction 
method (GNOMON) 
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+TOF MS: Experiment 1, 17.151 min from 20060920_DV-MDCK-2G_018.wiff
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+TOF Product (617.8): Experiment 2, 17.099 min from 20060920_DV-MDCK-2G_018.wiff
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Figure 4.2-8: nanoHPLC-nanoESI-MS/MS results of spot 28 (PR/8-NIBSC infected MDCK cell) after 
in-gel digestion 

Representative spectra of a spot from the PR/8-NIBSC infection in MDCK cells separated by 
nanoHPLC-nanoESI-MS/MS. (A) Contour plot (x-axis: retention-time / y-axis: m/z) of the tryptic 
digested spot 28, (B) base peak chromatogram of the reversed phase (C18) separation of the tryptic 
peptides of spot 28, (C) MS spectrum at time point 17.15 min of the chromatographic separation 
showing the fragmentation pattern (MS/MS fragment ion spectrum) of the precursor ion at m/z 617.8. 
The protein spot was identified as TIM (spot 28; Table 4.2-3) by searching the NCBInr database. 
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4.2.3. Infection kinetics and proteome alterations in Vero cells infected 
with influenza A PR/8 virus 

Besides the MDCK cell line, an alternative vaccine production cell line with specific 

characteristics has been used to determine the effects of viral replication on proteome 

profiles (Vester et al., 2010). The Vero cell line used is deficient in IFN expression 

(Govorkova et al., 1995) and previous studies reported the common method of passaging of 

influenza virus for several times as a need to obtain higher yields with faster replication 

dynamics (Ozaki et al., 2004). To get insights into complex mechanism involved in the 

cellular immune response of these cells lacking an IFN system or mechanisms relevant for 

adaptation of virus strains, proteome alterations of Vero cells in response to infection with a 

cell line adapted and a non-adapted human PR/8 strain were analyzed (Vester et al., 2010). 

For Vero cells infected with cell line adapted PR/8-RKI-Vero virus, HA titer did not increase 

significantly until 24 hpi and reached maximum titers of 1.6 log HA units/100µL at about 72 

hpi (Figure 4.2-9). Due to this result, compared to MDCK cells later protein extraction time 

points were chosen to display the different dynamics in virus replication and also the 

resulting protein abundance changes. In the observed sampling time no virus particle release 

could be detected for Vero cells infected with non-adapted virus (Figure 4.2-9). Differences in 

the HA at 0 hpi were due to different TCID50 values of the two seed viruses.  

Flow cytometric monitoring of influenza A virus infectivity (Schulze-Horsel et al., 2009) was 

used for verification of infection in Vero cells and showed that 95% of the cells were infected 

at 20 hpi using the PR/8-RKI-Vero strain (data not shown). 
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Figure 4.2-9: Virus titers (HA) for influenza PR/8-RKI-Vero virus infected Vero cells 

Infection kinetics of Vero cell infected with cell line adapted PR/8-RKI-Vero virus (∆) and non-adapted 
PR/8-RKI virus (∗) and mock infection (�)(T-flasks, without trypsin addition, MOI = 6). Symbols 
represent mean values ± SD of three independent experiments. 
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The proteome profiles of Vero cells at different time points of infection with both, a cell line 

adapted influenza virus and a non-adapted virus were compared. After 2-DE separation 

(section 3.3) a total number of 1635 ± 66 protein spots were detected. A set of representative 

gels of the proteome profiles of Vero cells at the corresponding time points post infection are 

shown in Figure 4.2-10A-C for cell line adapted virus infection. The analysis revealed 

changes in abundance of 55 proteins, (infection versus mock infection, spot volume ratios ± 

1.7- fold change in relative abundance, p < 0.001) in response to infection with the cell line 

adapted virus (Figure 4.2-11A). 24 proteins were down- and 31 proteins were up-regulated 

(Figure 4.2-11A).  

 

 

Figure 4.2-10: Representative 2-D DIGE gels of the proteome response and enlarged regions of 
selected altered abundant proteins in PR/8-RKI-Vero infected Vero cells 

Total protein extracts (Cy2-labeled proteins) resolved by 2-D DIGE (24 cm; pH 4-7; 10% SDS-PAGE) 
of cell line adapted PR/8-RKI-Vero infected Vero cells at (A) 24, (B) 48 and (C) 72 hpi. (D) Enlarged 
regions of the respective 2-D DIGE gel region of selected altered abundant proteins (HSP27, spot 18; 
ANXA4, spot 48; ITGA3, spot 13; GAPDH, spot 28; NS1, spots 16 and 17). 
 

Representative regulated proteins differed not only with respect to the extent of changes in 

abundance, but also in the time course of these changes as displayed in 4.2-10D (enlarged 

region of representative gel map). At the first infection time point (24 hpi) differences were 

identified for only 20 proteins (Figure 4.2-11A). The most pronounced changes of the 

proteome were observed at 48 hpi, with 41 altered abundant proteins. Towards the end of 

C A 

B D 
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the infection with cell line adapted virus (72 hpi) relative abundance changes decreased 

slightly to 34 regulated proteins. 

In contrast, infection with the non-adapted virus led to a total of only five regulated proteins 

(4.2-11B). Two proteins were up- and three down-regulated. Protein spots 2-5 (4.2-11B) 

were also found to be regulated by the cell line adapted virus (spots 10-13, Table 4.2-4).  
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Figure 4.2-11: Quantitative data of proteome alterations of (A) cell line adapted PR/8-RKI-Vero and (B) 
non-adapted PR/8-RKI infected Vero cells 

Average ratios of relative protein abundance of infected against mock infected Vero cells at 24, 48 and 
72 hpi.(B) spot numbers in brackets correspond to spot numbers of (A). Bar charts represent average 
ratios of the spot volumes (mean values ± SD of three independent experiments). 
 

Following to spot picking and tryptic digestion, protein identification was carried out by 

nanoHPLC-nanoESI-MS/MS analysis (section 3.3.5). 50 out of 55 protein spots selected for 

the cell line adapted virus infection were identified (Table 4.2-4). The identified proteins 

included cell interaction or cell adhesion factors, members of the cytoskeleton and 

intermediate filament system, proteins involved in maintenance of the intracellular redox 

state or glycolytic metabolism, as well as stress response proteins comprising protein folding 

and anti-apoptosis associated proteins. The small set of identified proteins altered due to 

infection with non-adapted virus is listed in Table 4.2-5 and included one type of protein, 

Integrin alpha 3 (ITGA3). 

A 

B 
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Table 4.2-4: Proteins identified as being differentially abundant in Vero cells infected with cell line 
adapted influenza PR/8-RKI-Vero virus compared to mock infected cells 

Spot 
IDa) 

NCBI nob) Protein description MASCOT scores Protein function 
Matched 
peptidesc) 

Mowse 
scored) 

Sequ. 
cov (%) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

2 229552 Albumin 14 550 23 Transport/cargo  
4 109115262 Keratin 10 13 610 20 Cytoskeleton component 
5 109115262 Keratin 10 15 861 22 Cytoskeleton component 
7 109096460 Tubulin, alpha (TUBA) e) 5 229 11 Cytoskeleton component 
8 109102035 Histone-binding protein (RBBP4)e) 10 525 21 Chromatin remodeling 
9 75075845 Vimentin 20 932 36 Intermediate filament 
10 109114294 Integrin alpha 3 (ITGA3) e) 9 257 12 Cell adhesion/interaction 
11 109114294 Integrin alpha 3 (ITGA3) e) 6 169 6 Cell adhesion/interaction 
12 109114294 Integrin alpha 3 (ITGA3) e) 6 161 6 Cell adhesion/interaction 
13 109114294 Integrin alpha 3 (ITGA3) e) 9 257 12 Cell adhesion/interaction 
14 114554262 EF-hand domain family, member 

D2 (EFHD2) e) 
12 597 27 Ca2+ signal modulators 

16 8486133 Non-structural protein 1 (NS1) 5 339 23 Influenza viral protein 
17 8486133 Non-structural protein 1 (NS1) 9 464 36 Influenza viral protein 
18 109066218 Heat shock protein 27kDa 15 196 52 Chaperone/apoptosis 
19 109003875 Peroxiredoxin (PRX) e) 12 202 49 Oxidative stress 
20 109086287 Golgi-associated microtubule-

binding protein (HOOK3) e) 
5 179 6 Microtubule-binding 

protein 
21 109096823 Keratin 1 27 1279 32 Cytoskeleton component 
22 109095369 Enolase 2 e) 9 386 20 Metabolism/glycolysis 
23 109096855 Keratin 8 8 395 15 Cytoskeleton component 
24 109087525 N-myc downstream regulated 

gene 1 (NDRG1) e) 
5 199 14 Signaling/apoptosis 

25 114554262 EF-hand domain family, member 
D2 (EFHD2) e) 

12 524 46 Ca2+ signal modulators 

26 114577902 Annexin IV (ANXA4) e) 18 777 47 Vesicle transport 
27 109081748 Pyruvate kinase (PK) e) 23 645 48 Metabolism/glycolysis 
28 109095230 Glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) e) 
3 63 14 Metabolism/glycolysis 

29 90082004 Unnamed protein product 7 286 25 Chaperone/stress 
response 

31 114667194   Hypothetical protein e) 5 212 3 Intermediate filament  
32 114649455 Heat shock protein 105kD e) 14 577 12 Chaperone/ER stress  
33 114649455 Heat shock protein 105kD e) 16 717 15 Chaperone/ER stress 
34 114649455 Heat shock protein 105kD e) 12 581 12 Chaperone/ER stress  
35 114649455 Heat shock protein 105kD e) 17 822 16 Chaperone/ER stress  
36 109100308 Integrin alpha V (ITGAV) e) 10 181 9 Cell adhesion/interaction 
37 109100308 Integrin alpha V (ITGAV) e) 12 593 10 Cell adhesion/interaction 
38 109100308 Integrin alpha V (ITGAV) e) 16 272 18 Cell adhesion/interaction 
39 109100069 Dynein 1 e) 9 176 12 Cytoplasmic intermediate 

chain 
40 109053865 Leprecan-like 1 (LEPREL1) e) 12 314 21 Collagen biosynthesis 
41 109071319 Heat shock protein 90kDa e) 5 146 9 Chaperone/viral gene 

expression 
42 109114294 Integrin alpha 3 (ITGA3) e) 6 178 6 Cell adhesion/interaction 
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43 109111923 Heterogeneous nuclear ribo-
nucleoprotein K (hnRNP K) e) 

13 590 27 Nucleic acid transport 

44 109070524 Heat shock protein 70kDa e) 10 265 15 Chaperone/nuclear 
transport 

45 109070524 Heat shock protein 70kDa e) 30 416 24 Chaperone/nuclear 
transport 

46 109070524 Heat shock protein 70kDa e) 18 899 17 Chaperone/nuclear 
transport 

47 55846684 Glial fibrillary acidic protein (GFAP  23 1262 45 Intermediate filament 
48 114577902 Annexin IV (ANXA4) e) 21 994 55 Vesicle transport 
49 109114613 Short-chain dehydrogenase/ 

reductase (SDR) e) 
5 178 19 Oxidoreductase 

50 74136169 Superoxide dismutase  (MnSOD) 3 68 16 Oxidative stress 
51 109072274 Villin 2 (Ezrin) e) 18 636 17 Cytoskeleton 

organization/signaling 
52 109043586 Nuclear receptor co-repressor/ 

HDAC3 complex subunit e) 
6 266 21 Transcription regulation 

53 109065595 Chaperonin containing TCP1 e) 14 404 30 Chaperone/protein 
folding 

54 114684889 Formiminotransferase 
cyclodeaminase (FTCD) e) 

10 364 17 Amino acid metabolism 

55 109080868 Protein disulfide isomerase-
associated 3 (PDIA3) e) 

7 186 13 ER - glycoprotein folding 

a)  Spot ID represents the number on the 2-D DIGE gels (Figure 4.2-10) 
b) Accession numbers according to the NCBInr database 
c)  Number of peptides identified by LC-MS/MS given by MASCOT 
d)  Mowse score is -10 x log(p), where p is the probability that the observed match is a random event. 

Based on the NCBInr database using the MASCOT searching program as LC-MS/MS data. 
Scores greater than 53 are considered significant (p < 0.05) 

e) Predicted protein; derived from annotated genome sequence (NW_001122895) using gene 
prediction method (GNOMON) 

 

Table 4.2-5: Proteins identified as being differentially abundant in Vero cells infected with non-adapted 
influenza PR/8-RKI virus compared to mock infected cells 

Spot 
IDa) 

NCBI 
nob) 

Protein description MASCOT scores Protein function 
Matched 
peptidesc) 

Mowse 
scored) 

Sequ. 
cov (%) 

 
 

1 109114294 Integrin alpha 3 (ITGA3) e) 3 80 3 Cell adhesion/interaction 

2 109114294 Integrin alpha 3 (ITGA3) e) 5 105 6 Cell adhesion/interaction 

3 109114294 Integrin alpha 3 (ITGA3) e) 6 80 6 Cell adhesion/interaction 

4 109114294 Integrin alpha 3 (ITGA3) e) 9 257 12 Cell adhesion/interaction 

5 109114294 Integrin alpha 3 (ITGA3) e) 6 161 7 Cell adhesion/interaction 
a)  Spot ID represents the number of the diagram of quantitative protein abundance (Figure 4.2-11) 
b) Accession numbers according to the NCBInr database 
c)  Number of peptides identified by LC-MS/MS given by MASCOT 
d)  Mowse score is -10 x log(p), where p is the probability that the observed match is a random event. 

Based on the NCBInr database using the MASCOT searching program as LC-MS/MS data. 
Scores greater than 53 are considered significant (p < 0.05) 

e) Predicted protein; derived from annotated genome sequence (NW_001122895) using gene 
prediction method (GNOMON) 
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4.2.4. Western blot verification 

To validate data obtained from 2-D DIGE, Western blot analysis (section 3.3.6) was 

performed for 3 proteins showing consistent and clear abundance changes after PR/8-

NIBSC and PR/8-RKI virus infection in MDCK cells. Proteins chosen were involved in 

different cellular processes, e.g. actin, a cytoskeleton component and Mx1, a protein involved 

in the antiviral response. Additionally, the viral NS1 protein found abundantly in PR/8-NIBSC 

infected MDCK cells was monitored over the time course of infection. Western blot analysis 

confirmed the differential abundance for all of these proteins (Figure 4.2-12). The protein 

expression profile of two selected differentially abundant proteins was further confirmed by 

RT-qPCR (Seitz et al., 2010). Here, the determination of the mRNA transcript level of the 

viral NS1 and Mx1 in MDCK cells infected with both PR/8-NIBSC and PR/8-RKI virus 

variants further supported results obtained by proteome data. 

Western blots were also carried out for proteins of Vero cells infected with PR/8-RKI-Vero. 

Therefore, the time course of the viral NS1 regulatory protein and Mx1, an IFN induced 

antiviral response protein as a negative control for IFN deficiency of Vero cells were 

analyzed. Consistent with the observations in 2-D DIGE analysis, NS1 was found to be up-

regulated and no Mx1 protein could be detected, due to the absence of IFN (Figure 4.2-12). 
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Figure 4.2-12: Western blot analysis of representative altered abundant proteins 

Influenza PR/8-RKI and PR/8-NIBSC virus infected MDCK cells and influenza PR/8-RKI-Vero virus 
infected Vero cells. Protein profiles of viral NS1, actin and Mx1 are shown for infected and mock 
infected (M) MDCK cells and viral NS1 and Mx1 for infected and mock infected (M) Vero cells. After 
densitometric analysis, signal intensity was normalized to ERK2. Bar charts show relative induction of 
normalized densitometric values of some representative proteins. 
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4.3. RT-qPCR assay for the analysis of human influenza A virus 
transcription and replication dynamics 

4.3.1. Development of a RT-qPCR assay 

To verify the existing mathematical model on influenza virus replication and to better 

understand virus replication dynamics during vaccine production an assay system able to 

distinguish specifically between viral genome vRNA(-), replicative intermediates cRNA(+) and 

viral messenger RNA (vmRNA(+)) of segments 4 (HA), 6 (NA), 7 (M) and 8 (NS) during the 

life cycle of influenza virus was needed. Hence, a RT-qPCR assay was developed for the 

analysis of influenza A virus transcription and replication dynamics in MDCK cells (Vester et 

al., 2010). 

As a first step for assay development an optimal RNA extraction method was established. 

Consequently, 4 different extraction protocols were compared, including (I) Trizol  extraction 

method (Invitrogen), (II) the QIAamp Viral RNA Mini Spin Kit (Qiagen), (III) RTP DNA/RNA 

Virus Mini Kit (Invitek) and (IV) NucleoSpin RNA II (Macherey-Nagel). Due to laborious and 

time-consuming handling steps the Trizol method was inapplicable and the RTP DNA/RNA 

Virus Mini Kit showed no linear correlation after serial dilution of viral RNA and both methods 

were therefore excluded after first tests (data not shown). Based on good linearity and 

sensitivity results (data not shown) the QIAamp Viral RNA Mini Kit was used to extract 

vRNA(-) from supernatant of infected cells and the NucleoSpin RNA II Kit for extraction of 

total cellular RNA of cells by applying a direct lysis on culture dish (section 3.4.1).  

Accurate transcript quantification using RT and qPCR depends on the construction of 

standard curves. To date, different approaches for the development of standard curves 

include the use of plasmid clones containing the cDNA of interest as a template  or 

constitutively expressed genes, such as β-actin and 16S ribosomal RNA. In contrast, 

external RNA standards used to obtain a standard curve offering some important advantages 

by processing samples and RNA standards in parallel and therefore with the same efficiency 

and conditions. Hence, for the RT-qPCR assay the production of synthetic viral RNAs used 

as reference standards for validation and quantification was established for each influenza 

viral RNA type and segment. For uniRT Uni12 (M) primer were selected from the 

complementary sequence to the conserved viral RNA-termini. Previous studies performed 

with Uni12 (M) primer (Chan et al., 2006b; Hoffmann et al., 2001) showed that they were 

applicable to all subtypes of influenza A virus to ensure an optimal and broad application 

range. Uni 12 (M) primer were used to generate a full-length cDNAs of each segment and 

viral RNA type followed by conventional PCR with gene specific primer for amplification of 

full-length PCR products (Figure 4.3-1). Here, modified primer pairs (Table C-2, Appendix) 
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from sequences described previously (Chan et al., 2006b) were used for amplification of the 

full-length segments of influenza A virus. Due to difficulties with long cDNAs and PCR 

products and probably secondary RNA structures it was not possible so far to produce full-

length products of segment 1 (PB2), 2 (PB1) and 3 (PA). PCR products of segment 4 (HA), 6 

(NA), 7 (M) and 8 (NS) were chosen for further analysis and were identified accurately using 

agarose gel electrophoresis, representative shown for segment 6 (NA) and 8 (NS) (Figure 

4.3-2A). Synthetic viral RNA synthesis by in vitro transcription of viral cDNA, based on an 

optimized protocol described by Frohnhoffs et al., was applied (Fronhoffs et al., 2002). This 

protocol avoids labor intensive cloning procedure and create templates containing a T7 

promoter gene sequence for in vitro transcription of these standard viral RNAs (Figure 4.3-1). 

In vitro transcribed RNAs were identified accurately using formaldehyde gel electrophoresis 

representative shown for segment 6 (NA) and 8 (NS) (Figure 4.3-2B). The viral RNA 

reference standards have the advantage that both, standard viral RNA and unknown viral 

RNA sample undergo the same pspRT and qPCR conditions (Bustin et al., 2009).  

 

In vitro transcription 5’ 3’ 
Synthetic 
vRNA T7 promoter Oligo dA 

Oligo dT 

Full length PCR with 
elongated primers for 
in vitro transcription 

5’ 3’ cDNA 
T7 promoter 

Universal reverse 
transcription (uniRT) 

5’ 3’ vRNA 
Uni12 (M) 

 

Figure 4.3-1: Scheme of in vitro transcribed viral RNA reference standards for vmRNA(+) synthesis 

Primer pairs were elongated at the 5′-end of the 5′-primer with T7-promoter (5′-T7), and at the 5′-end 
of the 3′-primer with Oligo-dT (3′-Oligo-dT). Synthesis of cRNA was performed by in vitro transcription 
with T7 RNA polymerase. 
 

 

 

                 
Figure 4.3-2: Quality control of viral RNA reference standards of segment 6 (NA) and 8 (NS) 

(A) Agarose gel electrophoresis of full-length PCR products and (B) formaldehyde gel electrophoresis 
of in vitro transcribed RNA standards of cRNA(+), vRNA(-), vmRNA(+) of segment 6 (NA) and 8 (NS). 
M: GeneRuler DNA Ladder (Fermentas) (A); M: RiboRuler High Range RNA Ladder (Fermentas) (B). 
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A polarity-specific priming strategy during RT was established to distinguish in a total cellular 

RNA mixture between the three types of viral RNAs (vmRNA(+), cRNA(+) and vRNA(-)) and 

synthesize these specifically (section 3.4.3). Through the construction of gene specific sense 

(-RTfor), antisense (+RTrev) and the use of Oligo-dT primer (Table C-2 Appendix) for the 

four viral segments, the cDNA synthesis of the different viral types could be initiated 

separately based on their different polarities.  

As a first step in building up a qPCR platform based on SYBR green I detection, single 

dilution series of the polarity-specific reverse-transcribed synthetic RNA standards were 

amplified (section 3.4.3). A representative qPCR amplification curve and the resulting 

standard curve is shown for the vmRNA(+) of segment 7 (M) in Figure 4.3-3. Primer sets for 

qPCR were designed particularly producing only short amplification products of each 

segment to prevent mismatching and false-amplification (Bustin and Nolan, 2004) (Table 

C-3, Appendix). The fluorescence emitted from SYBR green I bound to dsDNA, which is 

proportional to the amount of amplified DNA, was measured at the end of the annealing 

phase of each PCR cycle. The log-linear phase of the amplification reaction can easily be 

detected. Quantification of viral RNA is achieved by extrapolation of fluorescence signals 

from test samples against the synthetic RNA reference standard curves, which represent the 

initial copy numbers for a defined fluorescence signal.  
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Figure 4.3-3: RT-qPCR amplification curve and standard curve of vmRNA(+) reference standard of 
segment 7 (M) 

(A) Amplification curves of descending 10-fold dilution of synthetic vmRNA(+) reference standard of 
segment 7 (M) in triplicate. (B) Obtained standard curve by plotting Cq values vs. the logarithm of initial 
molecule number of the corresponding synthetic RNA reference. 
 

High quality data needed for high precision and reliability of the assay were obtained by 

optimizing pspRT and qPCR conditions (Bustin et al., 2009). Optimization included design 

and selection of optimal primer combinations and concentrations, temperature and duration 

time of pspRT synthesis and annealing and extension of PCR, type of RT enzyme and 

concentration of Mg2+ (optimization data not shown; optimal conditions, section 3.4.2/3.4.3). 
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4.3.2. Validation of the RT-qPCR assay 

For assay validation standard curves were generated in triplicates by serial dilution of viral 

RNA reference standards of viral segments 4 (HA), 6 (NA), 7 (M) and 8 (NS) (section 3.4.4). 

Specificity and sensitivity of the assay 

Sequence analysis of the PCR products of all viral segments used, confirmed the accurate 

amplification of the respective viral segments (data not shown). Additionally, for assay 

specificity verification a melting curve analysis was used to identify different reaction 

products, including nonspecific products and primer-dimers (Ririe et al., 1997). Melting 

curves were generated after completion of amplification by increasing the temperature in 

small steps and monitoring the fluorescent signal at each step. As the dsDNA in the reaction 

denatured, fluorescence decreased rapidly and significantly. A plot of the negative first 

derivative of the change in fluorescence (-dF/dT, rate of change of fluorescence) vs. 

temperature has distinct peaks that correspond to the Tm of each product. Representative 

melting curves are shown for vRNA(-) of segment 6 (NA) and 8 (NS) with Tm values of 

85.5°C and 86.9°C, respectively in Figure 4.3-4. Analysis of all corresponding qPCR 

products showed no unspecific products or primer dimer synthesis.  

  

Figure 4.3-4: Melting curve analysis of PCR products of vRNA(-) of segment (A) 6 (NA) and (B) 8 (NS) 

After completion of amplification, melting curves were generated by increasing temperature and 
monitoring  fluorescent signal. As dsDNA denatured, fluorescence signal decreased. The negative first 
derivative of change in fluorescence (-dF/dT)  was plotted as a function of temperature. 
 

No cross reactivity was detected with RNA extracts from uninfected cells or by the use of a 

complementary polarity-specific primer during pspRT (data not shown). 

According to the ‘MIQE guidelines for qPCR’ (Bustin et al., 2009), NTCs with high Cq can be 

ignored if the Cq for the lowest concentration tested is at least 5 Cq values lower than the Cq 

of the NTC. Cq of positive tested NTC were in the range of about 33 - 34. Using this guideline 

the lowest concentration of detected viral RNA molecules was in the range of a Cq of about 

28, which corresponds to 1.0 x 103 – 8.5 x 103 RNA molecules for all viral RNA reference 

standards tested. Linearity was shown for a minimum of five orders of magnitude. The 

precise working range of the respective viral RNA type and segment is listed in Table 4.3-1.  

A B 

temperature (°C) temperature (°C) 
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Table 4.3-1: Validation results of the RT-qPCR assay   

 
Parameter 

Segment 4 (HA) Segment 6 (NA) 
vRNA(-) cRNA(+) vmRNA(+) vRNA(-) cRNA(+) vmRNA(+) 

Sensitivity (LOD) (× 103 mol) 5.6 5.5 5.7 5.1 5.1 5.3 

Linear range (× 103-107 mol) 5.6 5.5 5.7 5.1 5.1 5.3 

CV repeatability Cq (%) < 2.3 < 0.8 < 1.7 < 1.3 < 1.4 < 1.4 

CV reproducibility Cq (%) < 1.6 < 1.6 < 2.8 < 1.7 < 2.6 < 1.4 

Linear Regression       

Slope -3.41 -3.41 -3.53 -3.42 -3.25 -3.33 

Intercept 41.21 41.16 41.62 38.18 38.54 38.17 

Amplification efficiency (E%) 96 96 92 96 103 100 

R2 0.995 0.996 0.995 0.999 0.997 0.995 
Standard deviation of the 
method (SD) 0.48 0.45 0.33 0.19 0.31 0.13 

 
 

Segment 7 (M) Segment 8 (NS) 
 vRNA(-) cRNA(+) vmRNA(+) vRNA(-) cRNA(+) vmRNA(+) 

Sensitivity (LOD) (× 103 mol) 8.2 7.9 1.0 8.5 7.7 6.6 

Linear range (× 103-107 mol) 8.2 7.9 1.0 8.5 7.7 6.6 

CV repeatability Cq (%) < 1.8 < 2.0 < 1.5 < 2.3 < 2.0 < 1.5 

CV reproducibility Cq (%) < 3.1 < 3.0 < 2.5 < 1.7 < 2.3 < 2.8 

Linear Regression       

Slope -3.73 -3.64 -3.45 -3.35 -3.60 -3.45 

Intercept 42.31 42.00 45.6 39.77 40.34 39.29 

Amplification efficiency (E%) 85 88 92 99 90 95 

R2 0.995 0.993 0.989 0.997 0.996 0.999 

Standard deviation of the 
method (SD) 

0.34 0.18 0.55 0.09 0.14 0.12 

Serial dilution series of different synthetic viral RNA reference standards for quantification of vRNA(-), 
cRNA(+), vmRNA(+) of viral segments 4 (HA), 6 (NA), 7 (M) and 8 (NS) were used. 
 

 

Repeatability/reproducibility of the assay 

The mean values of the CV of the repeatability (intraassay variation) of the Cq values for the 

linear range of the assay were < 2.3% for segment 4 (HA), < 1.4% for segment 6 (NA), < 

2.0% for segment 7 (M) and < 2.3% for segment 8 (NS) when measuring triplicates (Table 

4.3-1). The mean values of the CV of the reproducibility (interassay variation) of the Cq 

values were < 2.8% for segment 4 (HA), < 2.6% for segment 6 (NA), < 3.1% for segment 7 

(M) and < 2.7% for segment 8 (NS) when measuring three independent viral RNA reference 

standard curves. Overall, results confirmed good repeatability and reproducibility of the RT-

qPCR method for high and low copy numbers of viral RNAs (Table 4.3-1).  
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Linear Regression analysis of assay validation data 

All tested viral RNA reference standard curves met the criteria for applying linear regression 

analysis within the calibration range. All residuals of the calibrations curves showed normal 

distributions within homogeneous variances. No outliers were detected. Representative 

regression curves of the synthetic viral RNA reference standard of vRNA(-), cRNA(+) and 

vmRNA(+) of segment 8 (NS) are shown in Figure 4.3-5. Results are summarized in Table 

4.3-1. SD in a range of 0.12 – 0.48 (1 – 4% standard error) of the calibration range 

demonstrated precise regression results. Regression models seemed to fit the data well, and 

R2 showed strong linear correlations (>0.98). Overall amplification efficiency (Equation 1) 

was between 85% and 103% depending on the viral segment and viral RNA type (Table 

4.3-1). 
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Figure 4.3-5: Regression curves of the synthetic viral RNA reference standards of segment 8 (NS) 

Regression curve (red line) of vRNA(-) (A), cRNA(+) (B) and vmRNA(+) (C) of segment 8 (NS) 
obtained by plotting log10 molecule number against the Cq value with corresponding CI (99%) (dashed 
black lines), SD and CV.  
 

A B 
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Validation of total cellular RNA extraction 

The validation procedure of the established assay was extended to the initial step of total 

cellular RNA extraction from the cells (section 3.4.1) by normalization to the cell reference 

genes β-actin and GAPDH (Figure 4.3-6) (Gropp et al., 2006). Linearity and reproducibility 

tests of a serial dilution of MDCK cell lysates before application to extraction columns and 

fivefold repetition of the procedure were done. Results showed linearity to 2.4 x 101 RNA 

molecules for β-actin and 1.7 x 101 RNA molecules for GAPDH and a CV of 3-5% for β-actin 

and 3-6% for GAPDH (Figure 4.3-7). 

 

       
 

Figure 4.3-6: RT-qPCR amplification curves of (A) β-actin and (B) GAPDH 

Descending 10-fold dilution of total cellular RNA extracts used in triplicate as template for RT-qPCR 
for quantification of the reference genes (A) β-actin and (B) GAPDH. 
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Figure 4.3-7: Regression curves of RNA serial dilution series of (A) β-actin and (B) GAPDH 

Regression curves (red line) obtained by the RT-qPCR amplifications above (Figure 4.3-6) by plotting 
log10 molecule number against the Cq value with corresponding CI (99%) (dashed black lines), SD and 
CV.  
 

In summary, RT-qPCR assay validation demonstrated linearity over five orders of magnitude, 

with a sensitivity of 1.0 × 103 – 8.9 × 103 of viral RNA molecules, specificity, repeatability and 

reproducibility of less than 0.8 – 3.1% CV (Table 4.3-1). Therefore, this RT-qPCR assay 

appeared to be suitable for the analysis of human influenza A virus replication dynamics. 
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4.3.3.  Analysis of human influenza A virus replication dynamics 

The general time course of influenza virus replication in their host cells is well understood, 

however much about regulation of viral genome replication and viral transcription, especially 

for the different viral RNA segments still remains unknown. Hence, total cellular RNA from 

MDCK cells infected with influenza virus A PR/8-RKI at a MOI of 6 was extracted at 30 min 

intervals for the first 4 hpi. Subsequently, one hour intervals were used. Time courses of 

transcription and replication of the viral segments 4 (HA), 6 (NA), 7 (M) and 8 (NS) were 

determined by RT-qPCR assay specific for vmRNA(+), cRNA(+) and vRNA(-) (section 3.4.3). 

The time courses are shown in Figure 4.3-8.  

Transcription of vmRNA(+) (Figure 4.3-8A) started at an average of 0.4 hpi for viral segments 

4 (HA), 6 (NA) and 8 (NS1) and about 1.0 hpi for segment 7 (M1). Start point was also 

confirmed by linear regression analysis (Δt, Table 4.3-2). The average number of vmRNA(+) 

per cell of all segments increased rapidly within the first 5 hpi. Only segment 6 (NA) showed 

a slightly slower synthesis rate (p2 = 0.66, Table 4.3-2) compared to the other segments 

(average p2 = 0.9, Table 4.3-2). Afterwards, the average number of vmRNA(+) per cell of all 

segments remained at high levels (2300 – 6400 molecules per cell) until about 12 hpi. A 3-

fold decrease in the number of vmRNA(+) per cell was visible for segments 4 (HA), 6 (NA) 

and 8 (NS1). In contrast, the number of vmRNA(+) per cell of segment 7 (M1) dropped only 

by a factor of 1.5. 

Synthesis of replicative intermediates cRNA(+) (Figure 4.3-8B) started immediately after the 

transcription of vmRNA(+) on average at an average of 0.3 – 0.9 hpi for viral segments 4 

(HA), 6 (NA) and 7 (M), which was also confirmed by linear regression analysis (Δt, Table 

4.3-2). The average number of cRNA(+) per cell increased rapidly for the next 5 h and 

remained at high levels with only a slight decrease after 12 hpi. Maximum average numbers 

in the range 2100 - 4300 cRNA(+) molecules per cell were achieved. Only synthesis of 

cRNA(+) of segment 8 (NS) was slightly different. Increase started about half an hour earlier 

compared to the other cRNA(+) molecules, but reached only half of the average number of 

the other cRNA(+) per cell (maximum about 1200 per cell). Interestingly, vmRNA(+) and 

cRNA(+) synthesis showed the same time courses for segment 8 (NS). 

In contrast to the other two RNA types, the vRNA(-) (Figure 4.3-8C) of the four analyzed 

segments were synthesized in equimolar amounts with similar dynamics, also confirmed by 

linear regression analysis (Δt 2.09-2.85, Table 4.3-2, Figure 4.3-10). Results showed that 

both, cRNA(+) and vmRNA(+) were produced with an approximately 1.6 – 1.7-fold higher 

rate compared to vRNA(-) (p2, Figure 4.3-10). However, only net increases were taken into 

account not considering vRNA(-)s already packed and released at this time point. 

Corresponding to the high MOI used for infection (MOI=6) about 53 – 87 vRNA(-) molecules 
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per cell were detected during the first hour after the ‘cold infection’ at 4°C (Matlin et al., 

1981). The total amount of these genome equivalents decreased at an average of 2.5 hpi 

(average Δt, Table 4.3-2, Figure 4.3-10) and then increased rapidly until 7 hpi. Afterwards the 

average number of vRNA(-) molecules remained at high levels (about 3500 - 5300 per cell) 

until the last extraction time point at 24 hpi. The delay between the initiation of active 

replication of the vRNA(-) (average Δt 2.5 hpi) and the increase of the number of their 

precursor molecules (cRNA(+)) was about 1.9 h (average Δt 0.6 hpi).  

For comparison, the release of total number of influenza virus particles was monitored by a 

conventional HA assay (section 3.2.6). Virus titer in the supernatant started to increase 6 hpi. 

A high number of virus particles were released into the supernatant for the following 6 h until 

virus replication ceased, and a maximum virus titer of 2.7 log HA units/100µL was obtained 

at the last extraction time point (24 hpi). Interestingly, the onset of maximum virus particle 

release (HA titer, Figure 4.3-8) correlated with the maximum concentration of all viral RNA 

types at about 6 hpi. Afterwards, a characteristic drop in the concentration of the three RNA 

types of all viral segments was visible at about 8 hpi (Figure 4.3-8). 



  Results 

   89 

0.1

1

10

100

1000

10000

0 2 4 6 8 10 12 14 16 18 20 22 24

time post infection (h)

av
er

ag
e 

m
ol

ec
ul

es
/c

el
l 

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

lo
g 

H
A

 u
ni

ts
/1

00
µL

 
 

0.1

1

10

100

1000

10000

0 2 4 6 8 10 12 14 16 18 20 22 24

time post infection (h)

av
er

ag
e 

m
ol

ec
ul

es
/c

el
l

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

lo
g 

H
A

 u
ni

ts
/1

00
µL

 

0.1

1

10

100

1000

10000

0 2 4 6 8 10 12 14 16 18 20 22 24

time post infection (h)

av
er

ag
e 

m
ol

ec
ul

es
/c

el
l

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

lo
g 

H
A

 u
ni

ts
/1

00
µL

 
Figure 4.3-8: Time course of vmRNA(+) (A), cRNA(+) (B) and vRNA(-) (C) synthesis for segments 4 
(HA), 6 (NA), 7 (M) and 8 (NS) during influenza PR/8-RKI virus infection in MDCK cells 

Viral segments 4 (HA-), 6 (NA-�), 7 (M-) and 8 (NS-▲) in PR/8-RKI infected (MOI=6) MDCK cells. 
Average molecules per cells were determined by RT-qPCR assay with corresponding synthetic viral 
RNA reference standard curves. Total virus particles (*) in the supernatant expressed as log HA units 
per test volume (log HA units/100µL) plotted in each graph. 
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Time courses of the ratio of vmRNA(+)s to viral genome equivalents vRNA(-) (vmRNA(+) / 

vRNA(-)) are shown in Figure 4.3-9, to reflect the viral replication level and its activity. The 

kinetics of vRNA(-) replication and the ratios indicated that the replication of the viral genome 

started after a short delay at 2 hpi and reached a peak between 3.5 - 4 hpi  for segment 4 

(HA), 6 (NA) and 8 (NS) and 5 hpi for segment 7 (M). Overall, however, the time courses of 

viral transcription and replication of all segments followed the same dynamics. 
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Figure 4.3-9: Time course of vmRNA(+) molecules to viral genome molecules vRNA(-) for segments 4 
(HA), 6 (NA), 7 (M) and 8 (NS) during influenza PR/8-RKI virus infection in MDCK cells 

Ratios of vmRNA(+)/vRNA(-) of viral segments 4 (HA-), 6 (NA-�), 7 (M-) and 8 (NS-▲) during the 
first 24 hpi in PR/8-RKI infected (MOI=6) MDCK cells. 
 

For statistical verification of obtained viral segment molecule numbers a linear regression 

analysis was done by Stefan Heldt (bpt group, MPI Magdeburg) as supporting work (Vester 

et al., 2010). The mathematical analysis aims at elucidating the onset of production and the 

production rates of the different viral RNA types. RNA production rates (regression 

parameter p2) and its respective 95% confidence bounds were obtained by fitting a linear 

polynomial to the exponential increase of viral RNA molecule number. The time delays Δt 

were calculated as the intersection of this regression line with a parallel line to the abscissa, 

which was fitted during the initial delay phase. Error bars of Δt for all four viral RNAs are 

based on Fieller’s theorem. The respective bars for vmRNA(+)s and cRNA(+)s were 

calculated by intersecting confidence bands neglecting p1 uncertainty. Table 4.3-2 shows the 

obtained regression parameters and Figure 4.3-10 the RNA production rates p2 and the 

calculated time delays Δt. 
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Figure 4.3-10: Statistical verification through linear regression analysis of the time course data of four 
viral segments during influenza PR/8-RKI virus infection in MDCK cells 

Statistical analysis of the time courses of viral segments (4 (HA), 6 (NA), 7 (M) and 8 (NS)) during 
PR/8-RKI infection in MDCK cells. Regression parameters p2 (�) and respective 95% confidence 
bounds obtained by fitting a linear polynomial to the exponential increase of viral RNA molecule copy 
number. Time delay Δt () calculated as intersection of the regression line with a parallel line to the 
abscissa fitted during initial delay phase. Error bars of Δt based on confidence interval (CI) of p2 from 
Table 4.3-2. 
 

Table 4.3-2: Parameters, 95% confidence intervals (CI) and R2 values for linear regression analysis of 
time course of four viral segments during influenza PR/8-RKI virus infection in MDCK cells  

    Base line Exponential phase Δt [h] 
   p1 ± (95%) p2

  [h-1] ±(95%) p3 ± (95%) R2   

vRNA(-) 

S4 (HA) 1.51 0.23 0.50 0.12 0.26 0.49 0.94 2.49 
S6 (NA) 1.41 0.26 0.54 0.14 0.03 0.61 0.94 2.57 
S7 (M) 1.44 0.17 0.56 0.18 -0.15 0.83 0.93 2.85 
S8 (NS) 1.49 0.30 0.46 0.10 0.53 0.42 0.94 2.09 

cRNA(+) 

S4 (HA) -0.71 0.25 0.83 0.26 -1.47 1.11 0.89 0.92 
S6 (NA) -0.85 1.91 0.86 0.21 -1.37 0.58 0.92 0.60 
S7 (M) -1.02 1.71 0.85 0.10 -1.28 0.28 0.98 0.31 
S8 (NS) -0.80 * 0.65 0.19 -0.40 0.52 0.89 * 

vmRNA(+) 

S4 (HA) -0.59 0.86 0.92 0.17 -0.78 0.48 0.96 0.20 
S6 (NA) 0.28 2.12 0.66 0.07 -0.04 0.21 0.98 0.48 
S7 (M) -0.70 0.32 0.99 0.16 -1.72 0.48 0.98 1.02 
S8 (NS) -1.00 * 0.95 0.13 -0.53 0.36 0.97 * 

* Number of initial sampling points of the respective RNA did not allow fitting of base line and 
calculation of Δt. 
 

In summary, the qPCR assay was shown to be important for determining essential features 

of intracellular events and dynamics of the life cycle of influenza virus in MDCK cell culture. 
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4.3.4. Determination of extracellular influenza viral RNA in cell culture 
supernatant by RT-qPCR 

A slightly modified RT-qPCR assay (section 3.4.6), to complement existing conventional 

virus quantification methods (e.g. HA assay) was established to measure titers of influenza 

virus in cell culture supernatants of infected MDCK cells. For characterization of the RT-

qPCR assay the important step of extracellular viral RNA extraction was validated for 

determination of the dynamic range and sensitivity of this step. For verification of feasibility in 

mammalian cell culture a cross-validation with a conventional HA assay for influenza virus 

quantification was done by following the time course of influenza PR/8-RKI virus infection in 

MDCK cells. The conventional HA assay detects the total number of virus particles by 

hemagglutination based on the agglutination of RBC with the viral surface proteins 

expressed as log HA units/100µL. Whereas the RT-qPCR assay detects the total number of 

vRNA(-) of segment 7 (M), which can be converted into virus particle concentrations using 

the assumption that every virus particle contains every RNA segment only once. Both assays 

detect infectious and non-infectious virus particles. For better comparability of both data, 

results were converted to virus particles per mL (Equation 3 and 9). 

The validation procedure of the extracellular influenza viral RNA extraction step (section 

3.4.6) was done with three serial dilutions of PR/8-RKI seed virus (TCID50 3.5 x 107 

virions/mL) before application to extraction columns. Quantification was done by RT-qPCR 

with the protocol described in section 3.4.6 using the synthetic RNA reference standard for 

vRNA(-) of segment 7 (M). The extracellular viral RNA extraction showed linearity over four 

orders of magnitude and a confirmed sensitivity (LOD) to 1.7 x 104 viral RNA molecules 

corresponding to 1.1 x 10-5 ng of viral RNA (Figure 4.3-11). 
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Figure 4.3-11: Regression curve of three dilution series of influenza A PR/8-RKI seed virus used for 
extracellular RNA extraction obtained by RT-qPCR of segment 7 (M) 

Regression curves (red line) obtained by the RT-qPCR of segment 7 (M) by plotting log10 molecule 
number against the Cq value with corresponding CI (99%) (dashed black lines), SD and CV.  
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Following the time course of influenza PR/8-RKI virus infection in MDCK cells both methods, 

HA and RT-qPCR assay showed comparable dynamics of influenza virus particle 

concentrations (Figure 4.3-12). Both assays detected almost identical maximum virus 

concentrations of about 50 hpi. Nevertheless, both quantification methods showed variations 

of virus particle concentration at the beginning (about 6 – 18 hpi) and the end (about 50 – 77 

hpi) of influenza virus infection. At these time points the HA assay detected lower or higher 

virus titers, respectively, compared to RT-qPCR results. Variations in the beginning 

accounted for the low virus particle concentration at this time of infection and the low LOD of 

2.0 x 107 virions/mL of the HA assay. Whereas the minimal virus concentration detected by 

the RT-qPCR assay was 1.47 x 106 virions/mL corresponding theoretically to log HA units -

1.13. Through the use of synthetic viral RNA reference standard curves (segment 7 (M) 

vRNA(-)) for quantification, the sensitivity of the assay could be estimated which was 

equated with the last dilution step. Hence, the effective minimal virus concentrations that 

could be detected in this time course was approximately 5.0 x 103 virions/mL, which was 

much lower than the real minimum virus concentration detected during this experiment.  
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Figure 4.3-12: Virus particle concentration in cell culture supernatant of influenza PR/8-RKI (MOI=1) 
virus infected MDCK cells determined by RT-qPCR and HA assay 

Virus titers in the cell culture supernatant determined by RT-qPCR assay (▲) with extracellular viral 
RNA of viral segment 7 (M) quantified with corresponding synthetic viral RNA reference standard 
curves expressed as virions/mL (mean values ± SD of three intraassay replicates). Virus titers in the 
cell culture supernatant determined by HA assay () expressed as virions/mL (± SD of the method). 

 

In conclusion, the RT-qPCR assay offers improvements over the conventional HA 

quantification method for measuring influenza virus concentration in the cell culture 

supernatant of infected MDCK cells due to lower detection limits.  
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5. Discussion 

5.1. Selection of a human cell line as model for the proteomic 
approach 

Application of molecular techniques (i.e. proteome and genome analysis) to the investigation 

of mammalian cell systems is limited largely to human and mouse models due to restricted 

availability of constituent assay components such as antibodies, genome sequences or 

protein databases. For this reason, three different human cell lines were compared to select 

such a model system: a gastric carcinoma cell line (NCI-N87), a hepatocellular carcinoma 

cell line (HepG2) and a lung carcinoma cell line (A549). Cellular metabolism and the effect of 

different infection parameters (MOI, trypsin, media) were characterized with respect to 

growth behavior and influenza virus yield of three different human cell lines. This 

characterization was essential to have optimal growth conditions and a stable and well 

adapted infection system related to the MDCK and Vero cell system. 

A549 cells reportedly support viral pathogens and were used in a wide range of viral infection 

studies, i.e. for influenza virus (Nyman et al., 2000). In contrast, NCI-N87 cells were used in 

a wide range of studies of the regulation of digestive functions in the context of gastric 

physiology and pathology (Basque et al., 2001; Chailler and Menard, 2005), but was never 

before used in influenza virus infection studies. HepG2 cells have a model chromosome 

number of 55 and are not tumorgenic in nude mice (Aden et al., 1979). HepG2 cells secret a 

variety of major plasma proteins; e.g., albumin, transferrin and plasminogen (Knowles et al., 

1980). They have been grown successfully in large scale cultivation systems. HepG2 cell line 

was shown to be highly permissive for influenza virus (Ollier et al., 2004). Cells expressed 

plasmin, a trypsin-like protease known to activate HA of influenza virus that is thus present 

potentially in the supernatant of HepG2 cell cultures. This protease could enable these cells 

to support the replication of influenza viruses even without the addition of trypsin. Keskinen 

et al. showed that HepG2 cells are extremely poor IFN producers and they also exhibit a very 

weakly antiviral response, which could account for impaired ability to eradicate viral infection 

(Keskinen et al., 1999). 

It is well known that growth and survival of mammalian cells in culture depends on the 

availability of nutrients, the characteristics of the cell culture surface (for adherent cells), the 

accumulation of cytotoxic metabolites, and the oxygen supply (Quesney et al., 2003). 

Therefore, it is necessary to examine the nutrient consumption and metabolite production of 

cells by following the metabolic profiles and yields to prevent their depletion and to limit the 

production of cytotoxic metabolites, which could cause poor growth characteristics or cell 
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death. The energy necessary for growth and cell survival is provided by several metabolic 

pathways including the glycolysis, the citric acid cycle and the respiratory chain. Genetic 

variances, which are characteristic for continuous cell lines affect the metabolism of cell lines 

(Haegstroem, 2000). Such variances cause high substrate consumptions with poor energy 

efficiency and accumulation of toxic waste products, i.e. lactate and ammonia in culture 

supernatant (Hassell et al., 1991). Glucose used as main carbon source is oxidized mainly in 

glycolysis to pyruvate and then to lactate. This results in an acidification of culture media and 

growth inhibition when lactate increases over 40 mM (Glacken et al., 1986). By using the 

molar yield-coefficient YLac/Gluc characterization of growth behavior of cells and their 

metabolism is possible. Theoretically, 2 mol lactate can be generated from 1 mol glucose 

when out of the C6-chain of glucose 2 C3-chains are formed (yield-coefficient YLac/Gluc = 1). 

Glutamine metabolism often is the main energy source of cells (30-50% cellular energy) with 

2 main pathways: the transaminase pathway and the glutamate dehydrogenase (GDH)  

pathway (Haegstroem, 2000). In both pathways the carbon body is integrated in the citric 

acid cycle via α-ketoglutarate. For the evaluation of growth behavior in relation to glutamine 

metabolism the yield-coefficient YAmm/Gln can be used. From the GDH-pathway 2 mol 

ammonia can be produced from 1 mol glutamine, this leads to YAmm/Gln > 1. Ammonia 

concentrations of >2-10 mM are typically inhibiting cell growth (Glacken et al., 1986). 

Glucose and glutamine concentration were not a limiting factor in the cell growth or infection 

phase for the three human cell lines, as residual glucose concentration was about 10 mM 

and culture residual glutamine concentration was about 0.5 mM. The consumption of glucose 

and glutamine results in the accumulation of toxic metabolites such as lactate and ammonia. 

The maximum lactate concentration measured under the experimental conditions used 

(about 15 mM for A549 and NCI-N87 cells; about 30 mM for HepG2 cells) was below levels 

considered toxic for animal cell cultures described by Hassell et al. (Hassell et al., 1991). 

Also ammonia was produced at non-toxic concentrations (about 2.0 mM A549 cells; 1.4 mM 

NCI-N87 cells; 1.5 mM HepG2 cells).  

Considering the overall molar yields for lactate and glucose Ylac/gluc a comparatively high level 

and inefficient use of glucose was found (e.g. on average 1.5 – 2.6). Thus, probably most of 

the glucose went directly into lactate production, which seems to be typically for continuous  

cell lines as it is often reported in literature (Haegstroem, 2000). The Ylac/gluc molar yields of 

more than 2, found for HepG2 could not be explained by glucose metabolism in glycolysis. 

Typically, Yamm/gln molar yields for the cell growth phase were in the range of about 1. So it 

seems that, in particular in this phase, the glutamine metabolism mainly took place over the 

transaminase pathway, whereas in most of the infection phases the cells were using both the 

transaminase and glutamine dehydrogenase pathway (yield factor >1.2) or ammonia was 

produced from other AA.  
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Although glutamine is the most relevant AA in cell culture, it is important to consider the 

metabolism of other AAs such as glutamate. Consumption of AAs could be explained by their 

integration in peptides during protein synthesis. A minimal consumption of glutamate was 

seen for HepG2 cells at the end of the cell growth phase. Interestingly, A549 and NCI-N78 

cells showed a release of glutamate into media during the entire cell growth phase indicating 

that glutamine was transformed into glutamate or underwent deamination. When comparing 

the glutamate profiles after infection it could be seen that glutamate was released in parallel 

to the increase in virus titer. Infected cells go into apoptosis, thus membranes of 

mitochondria are permeabilized and destabilized, later the cells lyse as they release viruses. 

Thus, the increase in glutamate in the medium during infection may represent the release of 

the intracellular glutamate pool, as discussed previously by Genzel et al. (Genzel et al., 

2006). Nevertheless, there must be additional processes or events to explain the glutamate 

levels found, since the intracellular glutamate pool is not big enough to make such effects 

possible. Overall, with the exception of glutamate no significant influence of virus infection on 

the measured metabolism could be seen. From some media only slightly higher lactate 

release was measured during infection phase.  

For infection studies cell lines should grow fast to high cell concentrations in order to provide 

enough host cells for virus production. With A549 and HepG2 cell concentrations of 4.3-

5.4 × 105 cells/mL were obtained and confluence was achieved after 4 days of cultivation. 

Both cell lines showed similar morphology and growth characteristics compared to MDCK 

cells. In contrast, NCI-N87 cells showed much lower cell concentrations. Cells grew more in 

compact colonies or cell clumps rather than to confluent monolayers. 

Comparison of the virus yields of the human cell lines in this study showed that A549 and 

HepG2 cells were capable of efficient virus amplification with maximum titers of about 2.0 or 

2.3 HA units/100 µL, respectively. Much lower maximum titers of about 1.2 HA units/100 µL 

were obtained with NCI-N87 cells. With respect to maximum HA titers, A549 and HepG2 

cells showed to be candidate model cell lines to Vero or MDCK cells achieving HA titers in 

the range 2.5-3.3 for influenza PR/8 virus (Genzel and Reichl, 2009). Determination of cell 

specific virus yields showed that human cell lines released about 1500 (A549 cells), 1800 

(HepG2 cells) and 700 (NCI-N87 cells) viruses. However, compared to MDCK cells, from 

which up to 12000 virus particles per cell with influenza PR/8 virus can be released, these 

viral yields are very low. 

Trypsin addition did have a low effect on maximum HA titers of influenza virus in all three cell 

lines. However, the effect on virus replication dynamics was much more pronounced. Trypsin 

addition resulted in faster replication. However, even without trypsin an infection occurred but 

with lower maximum virus titers. This delay was also described by Tree et al. showing that 

without trypsin the maximum virus titer was reached later than with trypsin added at time of 
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infection for influenza A/PR8/34 virus in MDCK cells (Tree et al., 2001). Similar results were 

also reported for infections in avian suspension designer cells AGE1.CR (Lohr et al., 2009). 

Keskinen et al. reported that especially HepG2 cells support the replication of influenza 

viruses even without the addition of trypsin (Keskinen et al., 1999), which was also confirmed 

by this study (Figure 4.1-10). For other cell lines, i.e. PER.C6 and Vero, it is reported that 

replication requires trypsin addition (Govorkova et al., 1995; Pau et al., 2001). Additionally, it 

could be seen that MOI had no influence on the obtained maximum HA titer for the HepG2 

and A549 cell lines tested, indicating that this parameter is not critical for the infection 

process. As expected, the time point of detectable HA increase was shifted with decrease in 

MOI. This relationship was also described by Rimmelzwaan et al. for influenza A/Neth/18/94 

virus in MDCK cells (Rimmelzwaan et al., 1998). The lower the MOI was set, the later the 

increase of HA was observed. This delay appears to be a function of the number of influenza 

virus particles used for infection. In contrast to A549 and HepG2 cell lines, NCI-N87 cells 

showed slightly lower titers when using low MOI. A similar effect was also reported by Hao et 

al. (Hao et al., 2008b). They found that influenza virus replication of respiratory dendritic cells 

increased with increasing MOIs. In contrast, evaluation of HEK-293 as a suitable expression 

platform for the production of influenza virus vaccine indicated that at high MOI, the number 

of viable virus producing cells was reduced shortly after the infection and resulted in lower 

virus yields (Le Ru et al., 2010). They suggested an early induced apoptosis before efficient 

virus production could have taken place. Additionally, MOI-dependency was also shown 

before to be not only cell line specific but also virus strain specific (Merten, 2002). 

Virus replication also depends on metabolism of cells and inhibiting media compounds. For 

influenza virus, is it well known that high ammonia chloride concentrations (20 mM) prevent 

the HA mediated fusion of the viral envelope with endosomes thus preventing the release of 

the viral genome into the cytoplasm of the host cell (Cruz et al., 1999). Low ammonia 

concentrations are thus crucial during the first hours of the infection cycle. In this study with a 

maximum ammonia concentration of less than 1.5 mM at the end of the cell growth phase 

and less than 2.5 mM after virus replication, an inhibition was not likely. 

In summary, each human cell line supports the replication of influenza A virus. Dynamics but 

not necessarily maximum titers differ with the MOI, different media or trypsin addition does 

not have or have only slightly an effect on maximum HA titers. Overall, metabolism and virus 

yield screening of the three human cell lines demonstrated that only A549 and HepG2 cells 

are promising candidates as a human cell reference model. Finally, on the basis of these 

data, A549 cells were selected for proteomic approaches, because they showed (I) 

comparable cell growth performance and cell morphology to MDCK and Vero cells, (II) 

comparatively high virus titer (HA, TCID50) and virus replication even without trypsin addition 

and (III) lower metabolic activity and growth in uncomplex media. 
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5.2. Proteome alterations in human influenza A virus infected 
mammalian cell lines  

Proteome alterations of A549, MDCK and Vero cells infected with different variants of the 

influenza PR/8 virus strains were profiled and a set of differentially abundant proteins were 

identified. These proteins are involved in diverse biological processes. The different 

pathways and their interdependency, as well as some interesting proteins are discussed in 

the following. 

5.2.1. Functional significance of altered abundant proteins in A549 and 
MDCK cells infected with influenza A PR/8-RKI 

Cytoskeleton protein 

Alterations in keratin abundance with a wide dynamic range and high regulation level (up to 

50-fold up-regulation compared to mock infected cells, Figure 4.2-3) were identified in both 

infected cell lines. Keratin 10 belongs to the type I cytokeratin family, which are 

heteropolymeric structural proteins and components of intermediate filaments. The data 

support a role in the mechanisms and regulation of gene expression of the cytoskeleton 

system during influenza virus infection, which was described repeatedly (Arcangeletti et al., 

2008; Arcangeletti et al., 1997; Avalos et al., 1997). Interactions of cytokeratin with influenza 

virus were also shown in a recent proteome study of avian virus infected AGS cells (Liu et 

al., 2008). Arcangeletti et al. reported that various cytoskeleton networks, which are involved 

in the replication and expression of influenza virus, may also act as a regulator in virus 

induced signaling (Arcangeletti et al., 1997). This was supported by the demonstration that 

influenza viral NP and M1 proteins are associated to cytoskeleton elements (Avalos et al., 

1997). The mechanism and regulation of gene expression by transporting and positioning of 

mRNAs seems to be the same as described for actin (Miralles and Visa, 2006). For this 

purpose cytoskeleton components acquire a high affinity for nucleic acids, when they are 

cleaved into subunits by proteases. This could explain the appearance of PTMs such as 

fragmentation as observed for protein spot 3, 4, 5 (Figure 4.2-2), and indicate a modification 

step induced by influenza virus infection rather than an increased protein synthesis (Badock 

et al., 2001). In addition, general morphological changes of infected cells with specific 

alterations of the cytoskeleton have been shown (Arcangeletti et al., 1997). Moreover, the 

transport of various viruses or viral components between nucleus and cell periphery seems 

to be regulated by the cytoskeleton, this may for instance facilitate an efficient spread of 

progeny virus particles, as observed for vaccinia virus (Cudmore et al., 1995). 
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Protein synthesis and degradation 

During influenza virus infection protein synthesis is maintained at high levels and a switch 

from cellular to viral protein synthesis occurs despite the presence of high levels of functional 

cellular mRNAs in the cytoplasm of infected cells (Chan et al., 2006a). So it is not surprising 

that eukaryotic translation elongation factor 1 (EF-1, spot 8, Table 4.2-2) was found to be 

differentially abundant in MDCK cells. The up-regulation of EF-1 is already described in 

microarray studies on HeLa cells infected with influenza virus (Geiss et al., 2001). EF-1 is 

responsible for the enzymatic delivery of aminoacyl tRNAs to the ribosome. Regarding the 

translational control by influenza virus it is known that suppression of the eukaryotic initiation 

factor 2 (eIF-2) is used for selective translation of influenza virus vmRNA(+)s (Katze et al., 

1986). Furthermore, interactions of EF-1 with HIV proteins are described, representing 

possible interaction platforms for influenza virus as well. Accordingly, EF-1 stimulates the 

binding of Pol II to HIV-1 TAR RNA and the release of viral HIV RNA from polysomes, 

permitting RNA to be packaged into viruses (Cimarelli and Luban, 1999). 

Another protein of interest induced by influenza virus is Ran GTPase-activating protein 1 

(RanGAP1, spot 1, Table 4.2-2). O'Neill et al. reported a role of RanGAP1 as a transport 

factor in nuclear import of influenza A vRNPs (O'Neill et al., 1995). On the other hand 

microarray studies of Geiss et al. in influenza virus infected HeLa cells reported a down-

regulation of RanGAP1 genes (Geiss et al., 2001). The authors suggested a correlation with 

the viral NS1 in inhibiting mRNA polyadenylation, splicing and export of cellular mRNAs 

within the nucleus. RanGAP1 is a homodimeric 65-kD polypeptide that induces specifically 

the GTPase activity of Ran, representing a key regulator of the Ran GTP/GDP cycle. Ran is 

a Ras-related, mainly nuclear protein, which induces regulatory pathways involved in mitosis, 

nucleus import of proteins with NLS, pre-mRNA processing and nucleus export (Bischoff et 

al., 1995).  

High abundance was also identified for proteasome activator hPA28 subunit beta 

(PA28_beta, spot 8, Table 4.2-1), a member of the protein degradation pathway regulated by 

viral replication at late time of infection in A549 cells. Similar results were shown by Geiss et 

al., who described enhanced mRNA levels of PA28_beta in microarray analysis of influenza 

virus infected HeLa cells (Geiss et al., 2001). The proteasome pathway plays a central role in 

degradation of intracellular proteins and is critical for diverse cellular functions. For cellular 

immune responses, it may represent an important pathway affected by influenza virus 

replication (Coux et al., 1996). In cellular immune response the modified IFN induced 

proteasome variant, the immunoproteasome, is the major source for the generation of viral 

antigens (Sijts et al., 2002). As shown by Shin et al., the immuno-proteasome is regulated by 

HCV induced innate cellular immune response (Shin et al., 2007). 
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Signal transduction, stress response and apoptosis 

Proteins with different levels of abundance involved in signal transduction, stress response 

and apoptosis were found in MDCK and A549 cells. The identified proteins included a well-

known IFN induced protein, an obviously upregulated myxovirus resistance protein (Mx1, 

spot 2, Table 4.2-2, Figure 4.2-2) or IFN induced Mx protein (MxA, spot 4 and 5, Table 4.2-1, 

Figure 4.2-2). Determination of the mRNA transcript level of Mx1 by RT-qPCR also showed a 

higher expression level in infected MDCK cells (Seitz et al., 2010). Geiss et al. reported a 

significant induction of Mx genes during a microarray analysis in A549 cells in response to 

infection with wild type and mutant influenza A virus (Geiss et al., 2002). This was also 

shown in a macaque infection study using specific oligonucleotide arrays, and non-gel based 

proteomics (Baas et al., 2006). In contrast, a proteome study on the cellular response to 

avian influenza virus in a human gastric cell line did not detect Mx proteins (Liu et al., 2008). 

These proteins belong to the class of dynamin-like large GTPases known to be involved in 

intracellular vesicle trafficking and organelle homeostasis. Mx proteins are key components 

of the antiviral state in many species (Haller et al., 2007b). They show antiviral activity 

against a wide range of RNA viruses, including influenza viruses. In principle, Mx proteins 

detect viral infection by sensing nucleocapsid-like structures. Viral components are trapped 

and sorted to locations where they become unavailable for the generation of new viral 

particles (Haller et al., 2007a). The virus is inhibited at an early stage in its life cycle, soon 

after host cell entry and before genome amplification. 

Another protein up-regulated during progress of infection of MDCK cells was the N-myc 

downstream-regulated gene 1 (NDRG1, spot 6 and 7, Table 4.2-2), which belongs to the 

alpha/beta hydrolase superfamily. To our knowledge it has not been described before that 

NDRG1 to be altered in the presence of influenza virus. A relation to infections was only 

shown for HV in yeast-two hybrid assays, which reported NDRG1 interaction with viral 

proteins (Ahn et al., 2004). NDRG1 is a 43 kDa protein and highly conserved among multi-

cellular organisms. It is a predominantly cytosolic protein expressed ubiquitously in tissues in 

response to cellular stress signals. NDRG1 induces stress mechanisms involved in cellular 

differentiation, proliferation and growth arrest, tumor progression or heavy metal 

accumulation, hypoxia and DNA damage response (Ellen et al., 2008). Stein et al. reported a 

regulation of NDRG1 by the p53 protein, which is essential for the induction of apoptosis and 

which is involved in the IFN response in influenza virus infected cells (Stein et al., 2004). 

These findings indicate the role of NDRG1 as a mediator of apoptosis. 

Heat shock proteins (hsp) are synthesized in response to a wide variety of stressful stimuli, 

including viral infections with the biological purpose of rendering the host cells to be resistant 

to further and more severe stress (Ciocca et al., 1993). It has been reported that hsps inhibit 

the replication of a variety of RNA viruses as well as influenza virus (Watanabe et al., 2006). 
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On the other hand, many viruses utilize specific hsps for their replication. Interactions of 

influenza virus and hsps are reported by modulating hsp activity or as an influenza virus M1 

protein binding factor involved in the virus life cycle (Liang et al., 2007). This study observed 

the most consistent accumulation of heat shock protein 27 (HSP27, spot 1, Table 4.2-1) in 

response to influenza A virus infection of human A549 cells, also described for avian 

influenza virus H9N2 infection (Liu et al., 2008). HSP27 is an important small hsp (27 kDa) 

that functions as a molecular chaperone in human cells. Besides its putative role in 

thermotolerance, it is of special clinical interest, because of an association with other viral 

infections, e.g. adenovirus and HV (Ciocca et al., 1993) or its contribution to cellular intrinsic 

immunity against HIV (Liang et al., 2007). Recent data indicate a role in signal transduction 

pathways of several cell regulators (e.g. tumor necrosis factor (TNF) alpha, interleukin 1, 

protein kinase C (PKC)), which affect HSP27 phosphorylation (Ciocca et al., 1993). 

For A549 cells, significant differences were detected in protein levels of a catabolic enzyme, 

the hydroxyprostaglandin dehydrogenase 15-(NAD) (HPDG, spot 2, Table 4.2-1). 

Investigations describing major alteration during influenza virus infections have so far not 

been reported for this protein. A prostaglandin synthase was found to be regulated during the 

microarray analysis of A549 cells in response to influenza virus infection (Geiss et al., 2002). 

HPDG controls the biological activity of prostaglandin by converting it into an inactive keto-

metabolite. Apparently, HPDG interacts with cyclooxygenase-2 to control the cellular levels 

of prostaglandins (Tai et al., 2006). Tai et al. reported that prostaglandins are indeed an 

important regulator of immune responses affecting cytokine production (Tai et al., 2006). 

They also mentioned a significant role in cancer, inflammation and reproduction processes. 

Preclinical studies reported a therapeutic efficacy of prostaglandins against influenza virus 

(Bernasconi et al., 2005) by inhibition of virus induced inflammatory reactions and virus 

replication in pulmonary cells. Due to these facts it seems possible that HPDG is involved in 

the specific induction of the inactivation of prostaglandins by influenza virus to overcome host 

cell induced virus defense mechanisms. 

The induction of cellular proteins correlated directly to apoptosis was not observed for A549 

cells until 72 hpi, the latest time point of infection analyzed. One of these altered proteins is 

transglutaminase 2 (TGM2, spot 6, Table 4.2-1), which is an inducible transamidating 

acyltransferase that catalyzes Ca2+-dependent protein modifications. Similar to mRNAs 

coding for Mx and prostaglandin synthase it was found to be regulated in influenza virus 

infected A549 cells (Geiss et al., 2002). TGM2 is reported to act in transmembrane signaling 

and cell surface adhesion processes as well as having a general protective and stabilizing 

role in cells and tissues. TGM2 is well-characterized, involved in intracellular signaling 

(induced by TGFbeta, NF-κB and AP for cellular defense), apoptosis and regulation of the 

cytoskeleton network (Fesus and Piacentini, 2002). It is induced in cells undergoing 
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apoptosis. TGM2 interacts with mitochondria, shifting them to a higher polarized state and an 

altered redox status (Fesus and Piacentini, 2002). Recently, a growing number of viral and 

cellular proteins has been found to be modified by TGM2, suggesting a novel function in viral 

pathogenesis (Jeon and Kim, 2006).  

Nucleobindin (Nuc, spot 7, Table 4.2-1), also induced during the late infection phase of A549 

cells, is a class Ca2+-binding protein containing an EF-hand motif that has multiple functions. 

To our knowledge, a study reporting Nuc altered in the presence of influenza virus has not 

been described before. The 55-kDa, hydrophilic Nuc shows features of a secretory protein 

(Ballif et al., 1996) and also of a transcription factor through the leucine zipper regions 

(Valencia et al., 2008). It is highly abundant in the Golgi region and could play a key role in 

Ca2+ homeostasis within the cis-Golgi network. Additionally, it interacts with multiple binding 

partners, including cyclooxygenases and hydroxyprostaglandin synthase, engaged as a 

potential regulator (Ballif et al., 1996). Nuc was first identified by its binding to laddered DNA 

during apoptosis in mouse cell lines and is reported to promote autoimmunity and apoptosis 

in mice (Ballif et al., 1996). However, despite its great importance in various signaling 

pathways, understanding of the regulation of its biological functions remains limited. 

Probably, Nuc is related to influenza virus infection via its presence in the Golgi network 

during modification steps of virus proteins or it plays a role in apoptosis triggered by the virus 

in late phase of infection. 
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Figure 5.2-1: Possible involvement of identified proteins in host cell response during influenza A virus 
infection  
Different steps of the replication cycle of influenza A virus are signed by numbers and continuous 
lines, corresponding to published literature (Sidorenko and Reichl, 2004). Dotted arrows indicate 
hypothetical interactions of the proteins (abbreviations framed). 
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5.2.2. Virus-host cell interactions in A549 and MDCK cells infected with 
influenza A PR/8-RKI virus  

It is well known that 2-DE is limited to the identification of high abundant proteins (Olsen et 

al., 2006). As expected, low abundant regulatory proteins e.g. transcription factors and 

kinases, could not be found to differ in abundance during the infection cycle in the present 

study since they were all below the LOD of current 2-DE technology (Corthals et al., 2000). 

Moreover, no influenza A virus proteins (including viral membrane proteins) could be 

identified within the analyzed protein samples of PR/8-RKI infected A549 and MDCK cells. 

This could be due to solubilization, strip internalization or separation problems known for 

basic proteins (Shaw and Riederer, 2003) or due to high-abundant proteins masking lower 

abundant viral proteins (Corthals et al., 2000). Determination of the mRNA transcript level of 

the viral NS1 by RT-qPCR for example showed a low expression level of the PR/8-RKI 

variant (Seitz et al., 2010), accounting also for the absence in this study. 

Results of the 2-D DIGE analysis suggested clearly that the proteome cellular network of 

infected MDCK cells was not affected significantly until 8 hpi (Figure 4.2-3), whereas virus 

production already started at 4 hpi (Figure 4.2-1). Possible involvements of the identified 

proteins during intracellular influenza virus life-cycle in A549 and MDCK cells are shown in 

Figure 5.2-1. Enhanced inductions of RanGAP1, a protein responsible for mRNA transport in 

the nucleus, as well as the emergence of keratin 10 cleaving products responsible for 

transport and positioning of mRNAs were found (Figure 5.2-1). These findings indicated an 

early perturbation of the host cell protein synthesis machinery, to allow for an enhanced virus 

protein synthesis. The induction of Mx1 (Figure 4.2-4B) is of particular interest, because it is 

involved in the early host cell defense mechanism induced by IFN. This signal transduction 

mediator is related to a larger set of proteins, involved in IFN stimulated host cell defense 

that should have been affected but could not be identified by 2-DE in this study. However, 

MDCK cell stress response to influenza virus infection was not observed until 12 hpi when 

first abundance changes of NDRG1 occurred, a protein, which is essential for the induction 

of cellular stress mechanisms and apoptosis (Figure 5.2-1).  

In contrast to MDCK cells the proteome abundance changes in response to influenza virus 

infection of A549 cells are quite different. Data did not show an extensively affected cellular 

protein synthesis, which is causing possibly the delayed virus production (Figure 4.2-1). Of 

particular interest is the up-regulation of HPDG, which suggests a specific inactivation of 

prostaglandins by influenza virus to overcome host cell induced virus defense mechanisms 

(Figure 5.2-1) The opposite to this pathway is the host cell immune response reflected by 

changes in abundance of MxA (Figure 4.2-4A). Furthermore, influenza virus replication is 

correlated with a strong accumulation of HSP27 (Figure 4.2-4A), a protein with stress 
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protection function. Whether this is induced directly by the virus or part of the immune 

response of the host cell is not clear. In the latest infection phase (72 hpi) an enhanced 

stress response is suggested by induction of TGM2 (signal transduction), Nuc (transcription 

factor) and PA28-beta (protein degradation) (Figure 4.2-3A). These proteins indicate an 

increased level of apoptosis.  

In summary, greater evidence of enhanced induction of apoptosis and cell stress response 

was detected for A549 cells compared to MDCK cells, which could be due to the significant 

longer infection times. In contrast to that, proteome changes for MDCK cells indicated an 

early, virus induced perturbation of protein synthesis and antiviral response mechanisms. 

This suggests that proteins involved in antiviral response mechanism in mammalian cells 

induced by Mx proteins could be a promising target for engineering high producer cell lines 

for vaccine production. Turning off Mx activity could result in a delayed cellular immune 

response to viral infection. This would results in extended virus production phases and higher 

virus yields. This suggestion was also supported by a study of Koerner et al., which shows a 

dramatically higher susceptibility to influenza virus infection in mice fibroblast and in vivo in 

mice lacking Mx genes (Koerner et al., 2007). Unfortunately, recent studies reported that in 

MDCK cells Mx proteins did not showed an anti-influenza activity, which correlates to a lack 

of IFN induced antiviral activity (Seitz et al., 2010). However, other proteins identified in this 

study might also represent potential targets for improvement of cell line performance in 

vaccine production. For example, NDRG1 a known apoptosis inducer could be a target to 

reduce or delay the onset of apoptosis and prolonging the viability of host cells leading also 

to longer virus production phases. Similar effects were reported for overexpression of an 

anti-apoptotic protein bcl-2 known to suppress the mitochondrial apoptotic pathway in diverse 

cellular systems (Kuystermans et al., 2007). Overexpression of bcl-2 resulted in an improved 

robustness to nutrient deprivation and toxin exposure, including longer survival in intensified 

culture systems (Tey and Al-Rubeai, 2004). 

 

5.2.3. Functional significance of altered abundant proteins in MDCK cells 
infected with influenza A PR/8-NIBSC virus 

Signal transduction 

The proteins identified included several well-known IFN induced proteins, which are involved 

in signal transduction processes. Apparent up-regulation of different isoforms of myxovirus 

resistance protein 1 (Mx1, spots 4-7, Table 4.2-3), PKC inhibitor protein-1 (KCIP-1, spot 19, 

Table 4.2-3) and IFN induced protein with tetratricopeptide repeats 1 (IFI-1, spot 31, Table 

4.2-3) could be observed. Mx proteins are believed to counteract influenza virus infection by 

interfering in different steps of the virus replication cycle (Haller et al., 2007a). Influenza virus 
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entry requires PKC activity and this is believed to be stimulated upon the binding of virus to 

cellular receptors (Hoffmann et al., 2008). In support of this, PKC inhibitors have been shown 

to inhibit influenza virus replication (Hoffmann et al., 2008). Thus, the pathways associated 

with these IFN induced and up-regulated proteins are indicating an early establishment of an 

antiviral state in MDCK cells infected with the PR/8-NIBSC virus variant. This finding is 

consistent with the previous proteome study of influenza PR/8-RKI virus (Vester et al., 2009). 

However, in this previous study only one isoform of Mx1 and no other IFN induced proteins 

were reported to be up-regulated.  

Cytoskeleton proteins 

Significant differences between infected and mock infected cells were detected in protein 

levels of several cytoskeletal network proteins, e.g. keratin 10 (spot 8, 18, 21, 24, 33, Table 

4.2-3), cytokeratin 8 (CK-8, spots 14-16, Table 4.2-3), cytokeratin 5 (CK-5, spot 22, Table 

4.2-3), beta-actin (spot 17, 32, Table 4.2-3), tubulin alpha-2 (TUBA2, spot 13, Table 4.2-3) 

and tubulin-tyrosine ligase (CG1550-PA, spot 30, Table 4.2-3). Most of these protein spots 

were up-regulated and only one isoform of keratin 10 (spot 8, Figure 4.2-6A), one isoform of 

cytokeratin 8 (spot 15, 16, Figure 4.2-6A) and the tubulin remodeling protein (spot 30, Figure 

4.2-6A) were down-regulated significantly during PR/8-NIBSC infection. Various controls and 

special handling precautions were used to avoid and check for human keratin contamination 

(data not shown). Similar results for changes in cytokeratin levels during influenza virus 

replication were also shown for the PR/8-RKI variant in MDCK cells reported in this work 

before (see section 4.2.1) and for avian virus infected AGS cells (Liu et al., 2008). The host 

cell cytoskeletal network is involved in the transport of viral components in the cell, in 

particularly during the stages of virus entry and virus budding (Radtke et al., 2006). It has 

been shown that influenza virus requires an intact actin cytoskeleton for entry (Sun and 

Whittaker, 2007), and it has been hypothesized that interactions between the cytoskeleton 

and lipid rafts facilitate budding of virus particles (Simpson-Holley et al., 2002). Several 

studies have also indicated that cytoskeletal proteins such as tubulin and actin are involved 

in regulation of viral gene expression (Arcangeletti et al., 1997). Furthermore, an association 

of influenza viral NP and M proteins with cytoskeletal elements has been reported (Avalos et 

al., 1997), and actin and tubulin were both identified as proteins that interact with influenza 

vRNP complexes (Mayer et al., 2007). 

Protein degradation 

For the UV excision repair protein RAD23 (hHRB23B, spots 9-10, Table 4.2-3) two 

differentially abundant isoforms were observed. Probably, both spots correspond to different 

levels of an inactive and an active form with spot 9 up-regulated and spot 10 down-regulated 

(Figure 4.2-7). The two spots with different pI but same molecular weight were identified 
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clearly as the same protein, suggesting PTMs. RAD23 belongs to a family of adaptor 

molecules with affinity for both the proteasome and ubiquitinylated proteins. It is assumed 

that RAD23 shuttles the ubiquitinylated proteins to the proteasome for destruction, and 

therefore has an important role during protein degradation (Schauber et al., 1998). 

Consistent with these findings higher abundance levels of the proteasome subunit beta 

(PSMB4, spot 20, Table 4.2-3) were found in response to influenza virus infection. Both 

proteins have central roles in degradation of intracellular proteins and are critical for diverse 

cellular functions (Coux et al., 1996; Schauber et al., 1998). Therefore, their change in 

abundance levels may indicate to an important pathway affected by influenza virus 

replication and suggesting an enhanced stress response during PR/8-NIBSC virus infection. 

Others 

An important characteristic of PR/8-NIBSC virus infection was the high induction of the viral 

NS1 (spot 26, Table 4.2-3) at 8 hpi and its further increased abundance at 12 hpi (Figure 

4.2-7). The NS1 protein is encoded by viral RNA segment 8. It binds dsRNA and forms 

dimers in vivo, and has been suggested to perform several important accessory functions for 

optimal replication of the virus in its host cell (Hale et al., 2008). Importantly, the NS1 protein 

represses the host cell antiviral response by multiple mechanisms. These mechanisms 

include the inhibition of the IFN inducible dsRNA activated kinase PKR and the blocking of 

IFN production (Kochs et al., 2007). However, NS1 has multiple functions, which may 

contribute additionally towards efficient virus replication, including a temporal regulation of 

viral RNA synthesis, control of vmRNA(+) splicing, enhancement of viral vmRNA(+) 

translation, regulation of virus particle morphogenesis and suppression of apoptosis (Hale et 

al., 2008). Interestingly, the NS1 protein was not detected during PR/8-RKI infections 

suggesting different capacities of different virus variants to suppress the host cell response 

(Krug et al., 2003). 

Noteworthy, three isoforms of albumin were found with an increased abundance level in 

mock infected MDCK cells (spots 1-3, Table 4.2-3) but only at early extraction time points. 

Albumin is a common plasma protein and a typical component of serum-containing cell 

culture media. Epithelial MDCK cells perform endocytosis and take up plasma proteins with 

their cargo for further use (e.g. cholesterol carrying low density lipoproteins, fatty acid 

carrying albumin, iron carrying transferrin, etc.) (Simionescu et al., 2002). Albumin, acting as 

a transport or cargo protein for some important substrates such as fatty acids etc., was found 

only at low level in infected cells. This might indicate either lower permeability for albumin, 

consumption of stored or attached albumin in infected cells or competition of albumin with the 

virus for endosomes. 
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Another protein of interest induced by PR/8-NIBSC virus is annexin A1 (ANXA1, spot 25, 

Table 4.2-3). Annexins are calcium-dependent phospholipid-binding proteins and are 

proposed to act as scaffolding proteins at certain membrane domains. ANXA1 has been 

shown to prevent fusion of raft-associated vesicles (Derry et al., 2007). Interestingly, ANXA2, 

which interacts with A1, has the opposite effect and is required for the apical transport of raft-

associated vesicles (Jacob et al., 2004). Since influenza virus also buds from raft domains 

this indicates a potential regulatory role of ANXA1 (Derry et al., 2007). 
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Figure 5.2-2: Functional classification of the identified proteins regulated after PR/8-NIBSC infection in 
MDCK cells. Number of identified proteins is indicated, respectively. 
 

5.2.4. Differences in virus-host cell interactions in MDCK cells infected 
with influenza A PR/8-NIBSC and PR/8-RKI virus 

Early cellular proteome alterations in MDCK cells after infection with two influenza PR/8 virus 

variants with differences in replication characteristics were compared. Analysis of proteome 

data showed that infection with the virus variants resulted in significant differences in the total 

number of regulated proteins. The PR/8-NIBSC virus variant caused the highest abundance 

changes with 36 regulated proteins while PR/8-RKI showed only 8 changes. Furthermore, 

PR/8-NIBSC induced an earlier perturbation of the proteome profile. Additionally, PR/8-

NIBSC infections seem to induce a stronger IFN stimulated host cell response than PR/8-

RKI. As a result three well-known IFN induced proteins (Mx1, KCIP1, IFI-1, Figure 4.2-7) are 

up-regulated significantly. Moreover, three additional isoforms of Mx1 occurred, indicative for 

PTMs marking different regulation states, were identified after infection with PR/8-NIBSC. 

Identification of an inhibitor of PKC, i.e. KCIP1 could be another possible hint on increasing 

overall productivity of the vaccine production process. As stated before influenza virus entry 

requires PKC activity (Hoffmann et al., 2008). Hence, treatment with PKC inhibitor 

significantly reduces viral replication (Hoffmann et al., 2008). In contrast, activation of PKC 
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leads to enhanced virus production in cell culture. These opposing effects strongly support a 

role for PKC activity in influenza virus replication and may serve as a target for antiviral 

drugs. This means that compounds that result in increased virus titers may be beneficial for 

boosting the production of cell culture grown influenza virus vaccines. 

An enhanced stress response after PR/8-NIBSC infection is also suggested from the finding 

that several proteins responsible for protein degradation were induced. Most interesting was 

the significant higher abundance of the viral NS1 protein during PR/8-NIBSC infection. This 

regulatory viral protein is essential for the virus to prevent the establishment of a cellular 

antiviral state. Higher induction of the antiviral state despite higher NS1 abundance could 

indicate different capacities of different NS1 variants to counteract and suppress the host cell 

response (Krug et al., 2003). In contrast, the NS1 protein was not detected during PR/8-RKI 

infections. A possible explanation for such differences was reported in recent studies, which 

showed that the AA at position 55 of NS1 affects virus growth positively in MDCK cells 

(Murakami et al., 2008). They suggested that a Lys-to-Glu substitution is responsible for the 

enhanced type of IFN antagonistic property of NS1, leading to high growth in MDCK cells. 

Interestingly, the PR/8-RKI strain showed the same NS1 mutation in recent sequencing 

experiments (data not shown). Two possible explanations are proposed: (I) Substitution may 

enhance the productivity of this protein in this cell line, via its increased interaction with host 

cell molecules, such as chaperones, which can precisely hold and rapidly transport NS1. (II) 

Substitution may increase the intrinsic IFN antagonism of NS1 via a higher affinity for host 

cell mRNAs, resulting in the enhanced inhibition of IFN gene expression. 

It is known that influenza viruses take advantage or interfere with the antiviral host cell 

response for efficient replication (Hale et al., 2008; Iannello et al., 2006; Ludwig et al., 2006). 

Additionally, different virus strains have significant differences in their capabilities to induce 

or suppress the establishment of an antiviral state (Hayman et al., 2006). Obviously, such 

differences between strains and subtypes can be correlated with replication efficiency and 

form the biological basis for the different replication characteristics of PR/8-NIBSC and PR/8-

RKI investigated in this study. Due to the high relevance of such findings for yields in vaccine 

manufacturing these differences should be further investigated and additional strains 

incorporated in a more comprehensive study. For example, comparing different high and low 

yield strains could reveal different strategies to escape the host cell antiviral response due to 

their strain specific virulence and replication mode. Understanding of these differences in 

viral strategies could help to find a general cell engineering procedure for suppression of 

antiviral response and improvement of virus yields. 
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5.2.5. Functional significance of altered abundant proteins in Vero cells 
infected with influenza A PR/8 virus  

Cell-cell interactions 

The largest group of functional related proteins that were differentially abundant in Vero cells 

infected with cell line adapted but also with non-adapted virus was found to be involved in 

cell-cell interactions. These proteins include different isoforms of ITGA3 (spots 10-13, 42, 

Table 4.2-4; spots 1-5, Table 4.2-5) and for cell line adapted virus infections additionally 

different isoforms of integrin alpha V (ITGA5, spots 36-38, Table 4.2-4) were either up- or 

down-regulated (Figure 4.2-11). Integrins are heterodimeric cell adhesion molecules that link 

the extracellular matrix to the cytoskeleton (van der Flier and Sonnenberg, 2001). 

Additionally, they act as receptors that organize the cytoskeleton, integrins play an important 

role in controlling various steps in the signaling pathways, which regulate processes as 

diverse as proliferation, differentiation, apoptosis, and cell migration. Integrins are receptor 

molecules for the extracellular matrix such as fibronectin, collagen, and laminin, which act as 

a potent regulator of cell growth, differentiation, and gene expression. Ligand binding or 

aggregation of integrin receptors also initiates a number of metabolic changes (van der Flier 

and Sonnenberg, 2001). In some instances activation of transcription factors and induction of 

gene expression have been demonstrated (Lafrenie and Yamada, 1996). Most interesting is 

the fact that integrins can protect cells from apoptosis during influenza virus infection by a co-

operation with TNF-alpha signaling (Richter and Topham, 2007). 

Heat shock proteins 

Another large functionally related group of most consistently up-regulated proteins in infected 

Vero cells (Figure 4.2-11A) contained 4 different kinds of hsp, including HSP 27kDa (spot 18, 

Table 4.2-4), HSP 105kDa (spots 32-35, Table 4.2-4), HSP 90kDa (spot 41, Table 4.2-4) and 

HSP 70kDa (spots 44-46, Table 4.2-4). Mammalian cells have developed response 

networks, which detect and control diverse forms of stress. One of these responses, known 

as heat shock response is a universal mechanism necessary for cell survival under a variety 

of unfavorable conditions such as virus infections (Santoro, 2000). These heat shock 

proteins serve as cellular chaperones, participating in protein synthesis and transport through 

various cellular compartments. Virus infection of mammalian cells often results in induction of 

hsp synthesis. Interactions between stress proteins and viral components have been 

described at different stages of the viral life cycle and a possible role in the control of virus 

replication and morphogenesis is discussed (Santoro, 1996). However, for example HSP90 

is an abundant, house-keeping protein, essential for viability of eukaryotic cells. It interacts 

with the PB2 subunit of the viral RNA polymerase and is suggested to have an important role 

in viral gene expression (Naito et al., 2007). HSP70 was identified as an influenza virus M1 



  Discussion 

   110 

protein binding factor involved in the virus life cycle. It may play a role within the nuclear 

transport of vRNP complexes (Watanabe et al., 2006). For HSP27 recent data indicate a role 

in signal transduction pathways of several cell regulators (e.g. TNF-alpha, interleukin 1, PKC) 

(Ciocca et al., 1993). 

Metabolism/glycolysis 

For some of the identified proteins it is not clear if their functions are either associated with 

response to influenza virus infection or in virus replication cycle (Shaw et al., 2008). 

However, some of these proteins have further roles in addition to their known basic functions. 

For example, different proteins involved in the glycolytic pathway were found to be regulated 

(pyruvate kinase, spot 27; GAPDH, spot 28; enolase 2, spot 22; Table 4.2-4). Enolase in 

addition to tubulin, has been reported to stimulate transcription of the Sendai virus genome 

(Ogino et al., 2001). A role in RNA virus transcription has been proposed for GAPDH. 

Phosphorylated forms of GAPDH have been shown to bind to the genomic cis-acting RNA of 

human parainfluenza virus type 3 (Choudhary et al., 2000). In vitro data indicate that GAPDH 

has a negative regulatory role in transcription of this virus depending on its phosphorylation 

(Choudhary et al., 2000). However, it is not clear whether these glycolytic activities are 

required during infection or whether these are alternative new functions for these well-known 

proteins, or if it is just a stress response of metabolism. 

Oxidative stress response 

Finally, it was found that influenza virus infections induce a number of different enzymes 

involved in the maintenance of the redox state of cells. Influenza virus infections have been 

shown previously to induce the formation of reactive oxygen species, which cause oxidative 

stress and may play a role in inflammatory response (Choi et al., 1996). 2-D DIGE has 

identified peroxiredoxin (PRX, spot 19, Table 4.2-4), superoxide dismutase (MnSOD, spot 

50, Table 4.2-4) and an oxidoreductase (SDR, spot 49, Table 4.2-4) as being up-regulated 

by influenza virus infection in Vero cells. Besides their obvious redox functions, different roles 

have also been identified for these proteins in apoptosis and transcription in cells (Choi et al., 

1996). 
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Figure 5.2-3: Functional classification of the identified proteins regulated after PR/8-RKI-Vero infection 
in Vero cells. Number of identified proteins is indicated, respectively. 
 

5.2.6. Virus-host cell interactions in IFN deficient Vero cells infected with 
influenza A PR/8 virus and influenza virus adaptation mechanisms 

It is reported that Vero cells, in addition to their inability to produce IFN, are also defective in 

their ability to induce ISGs. However, Vero cells have the ability to induce an antiviral state in 

an IFN independent manner (Chew et al., 2009). The existing antiviral signaling pathways in 

Vero cells is known to be atypical and do not rely on classical antiviral signaling pathways 

such as in MDCK cells. Whether this can explain the permissive nature of Vero cells to viral 

infections (Kistner et al., 1998) has to be further elucidated and the exact mechanisms 

characterized. In agreement with this, the present proteome study did not show regulation of 

any IFN stimulated proteins for example Mx proteins etc. as identified in infected MDCK 

cells. Therefore, no clear suggestions concerning the specific role of the HSP27 kDa protein 

and other identified proteins associated with signal transduction pathways in establishment of 

an antiviral state can be made. On the other hand, the significant higher abundance of the 

viral NS1 protein seems to indicate a high viral activity to suppress antiviral mechanisms 

involved in Vero host cell response. However, it is unlikely that the regulatory activity of IFN 

pathways is involved during virus replication in Vero cells. On the other hand NS1 could also 

be involved in an anti-apoptotic effect in this cell line as reported by Zhirnov et al. (Zhirnov et 

al., 2002). They proposed a concept that apoptosis is induced in Vero cells by alternative IFN 

independent pathways not used in MDCK and that they may restrain an anti-apoptotic 

program by the NS1 directed down-regulation of NF-κB. Enhancement of this anti-apoptotic 

effect by additional knockdown of NF-κB could be used to reduce or delay the onset of 

apoptosis and prolonging the viability of Vero cells is suggested to be a possible successful 

cell engineering strategy. Another study suggested that specific accumulation of NS1 in the 

nucleus may contribute to efficient viral replication in Vero cells due to control of vmRNA(+) 
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synthesis (Ozaki and Kida, 2007). The Lys-to-Glu substitution in NS1 detected in the PR/8-

RKI strain (data not shown) was reported not to mediate viral growth enhancement in Vero 

cells, which was for example found in MDCK cells (Murakami et al., 2008). Another strategy 

to increase cell viability and productivity, which could also be a possible Vero cell 

engineering target is the hsp70 kDA. Since transfection of NS0 myeloma fusion partner cells 

with hsp70 kDA gene resulted in higher hybridoma yield by improving cellular resistance to 

apoptosis (Lasunskaia et al., 2003). 

Furthermore, the signaling pathway induced by integrin receptors is of interest because it 

might represent early virus recognition events or responses to virus particle entry. Both 

functions could display the first line of defense against incoming pathogens. This hypothesis 

is also supported by results obtained for non-adapted virus infection, which also resulted in 

regulation of 5 isoforms of integrin alpha 3 (Figure 4.2-11B). The absence of virus particle 

release after infection with non-adapted viruses indicated a lack of essential properties for 

successful viral replication, however virus particles could still attach to or enter their host 

cells. Therefore, this integrin mediated signaling via extracellular matrix interactions is 

possibly a first virus recognition signal acting as cell to cell communication pathway 

substituting IFN signaling. 

In future studies, mechanisms of virus adaptation to production cell lines have to be further 

investigated. It is still not clear whether viruses undergo a natural selection process or 

changes in the genome sequence of viral proteins (e.g. HA or NS1) play a crucial role during 

adaptation. Notably, passaged viruses adapt to their host cell through mutation in the 

receptor binding site of the viral HA gene (Connor et al., 1994; Gambaryan et al., 1999; 

Mochalova et al., 2003). In particular for HA, the most abundant surface protein, changes in 

the glycosylation pattern seem to play an important role in the adaptability (Diaz et al., 1988; 

Ozaki et al., 2004; Schwarzer et al., 2009).  
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5.3. RT-qPCR assay for the analysis of human influenza A virus 
transcription and replication dynamics 

The general time course of influenza virus replication in their host cells is well-understood, 

however much about regulation of viral genome replication and vmRNA(+) transcription still 

remains unknown (Cheung and Poon, 2007). The ability to determine quantitatively the 

amounts of the three different types of influenza A viral RNAs occurring during virus life cycle 

in mammalian cells will facilitate the study and modeling of the time course and dynamics of 

viral transcription and replication. Several studies have been described in the past for 

analyzing virus dynamics (Kumar et al., 2008b; Ng et al., 2008; Robb et al., 2009; Uchide et 

al., 2002; Vreede et al., 2008). These studies used diverse techniques, for example primer 

extension and vRNP reconstitution assays or semi-quantitative southern hybridization and 

RT-qPCR assays. Nevertheless, most of the results are contradictory and therefore different 

hypothesis were suggested for regulation and dynamics of viral replication. 

Here, a RT-qPCR assay based on synthetic viral RNA reference standards, a pspRT and a 

qPCR was established and optimized (Vester et al., 2010). The assay was used to 

distinguish specifically between and to quantitatively determine the average number of 

molecules per cell for vRNA(-), cRNA(+), vmRNA(+) of viral segments 4 (HA), 6 (NA), 7 (M) 

and 8 (NS) during the life cycle of influenza virus. 

 

5.3.1. Development and validation of the RT-qPCR assay 

For validation of molecular techniques such as qPCR, i.e. in terms of the MIQE guidelines 

(Bustin et al., 2009), the full determination of assay performance characteristics, e.g. 

efficiency, specificity, linear dynamic range, LOD and precision are required. These 

parameters must be thoughtful considered for qPCR assays to ensure its precision, correct 

interpretation, reliability and relevance (Freeman et al., 1999). 

Successful synthesis and amplification by the qPCR method relies on the specificities of the 

designed primer. The study aimed at the establishment of either (I) full length cDNAs or (II) 

PCR products due to the choice of primer binding sites at conserved regions of the viral 

segments, to assess the different polarities of the three types of viral RNAs during the RT 

step or (III) to amplify only short gene specific PCR products during the qPCR step. All 

primer were carefully designed and optimized for theses different application areas and 

requirements. Since the assay was validated for infection with influenza PR/8 virus strain, 

when using other virus subtypes only new real-time primer need to be adapted and 

optimized. Most of the pspRT primer, the universal primer Uni12 (M) and the primer for full-

length PCR products will not need an optimization due to the choice of primer binding sites at 
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conserved regions of the viral segments. Moreover, the PR/8 strain was chosen due to its 

high relevance as a backbone for genetic reassortment for the annual seed virus generation 

in vaccine production for H1N1 viruses (Kilbourne et al., 1971).  

To obtain high precision in pspRT and qPCR a highly defined calibration curve was needed 

(Kubista et al., 2006). Therefore, validation and quantification procedures were done with 12 

synthetic  viral RNA reference standards according to each of the four viral segments and the 

three viral RNA types to be measured. An optimized protocol, which avoids labor-intensive 

cloning procedures (Fronhoffs et al., 2002), was used to create templates containing a T7 

promoter gene sequence for in vitro transcription of these standard viral RNAs. The viral 

RNA reference standards have the advantage that both, standard viral RNA and unknown 

viral RNA samples, undergo same pspRT and qPCR conditions (Bustin et al., 2009).  

Another aspect to obtain high precision and reliability of the assay was the optimization of 

pspRT and qPCR conditions (Bustin et al., 2009). Optimization included the design and 

selection of optimal primer combinations and concentrations, the temperature and duration 

time of pspRT synthesis and annealing and extension of PCR, the type of RT enzyme and 

the concentration of Mg2+ (data not shown).  

As demonstrated, the synthesis and amplification in all calibration curves was linear over a 

wide range of input copies, with good sensitivity, precision, repeatability and reproducibility 

(Table 4.3-1). Regarding specificity, although the SYBR Green I dye can bind 

indiscriminately to any dsDNA (Arya et al., 2005), monitoring of the qPCR reaction products 

by melting curve analysis showed that the assay was specific for the respective segment and 

viral RNA type. Additionally, clearly different Cq values were obtained for all negative and 

complementary controls and sequencing of the amplicons confirmed the specificity of the 

assay. Results indicate that the assay has a good repeatability and reproducibility, as shown 

by low CV values of less than 0.8 – 3.1% within and between qPCR assays. In terms of 

sensitivity, the smallest amount of viral RNA detected reliably, was about 1.0 x 103 – 8.9 x 

103 viral RNA molecules. Compared to conventional RT-qPCR assays used for diagnostic 

procedures (Di Trani et al., 2006) the sensitivity determined was lower. In contrast to these 

diagnostic assays the LOD was defined as a precaution due to the complex priming 

strategies and occasional emerging low rate of incorrect strand detection. LOD was not 

based on linear regression analysis (Bustin et al., 2009). Nevertheless, sensitivity of the 

assay established is adequate as quantification is based on a high number of infected cells 

cultured in parallel, and usefulness is demonstrated clearly in the time courses obtained for 

infection studies. 

Further improvement of sensitivity and specificity by modifying the complex RT strategy 

would facilitate interpretation of experimental results and parameter estimation for 
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mathematical modeling. Options for improvement of sensitivity and specificity might be, for 

example, to perform the pspRT reaction at higher temperature to reduce secondary 

structures inducing self priming of the RNA, to reduce the comparatively high concentration 

of target RNA templates or to reduce or to eliminate the possible carry-over of active RT 

enzymes and RT primer (Bustin and Nolan, 2004). Other studies reported the use of tagged 

RT primer with non-viral and viral-specific sequences, which can be amplified during PCR 

with primer corresponding to the tag-sequence and viral-specific primer (Craggs et al., 2001). 

Another advent could be the inclusion of an internal positive control (IPC) to monitor false 

negative results due to PCR failure caused by expired reagents, poor technique, equipment 

failure or presence of enzyme inhibitors. IPC could also help to determine RNA extraction 

efficiency. Practically, an IPC could be added to each sample before the extraction step (Di 

Trani et al., 2006). It consists of a second target sequence, represented by a rodent RNA for 

example, unrelated to the sequence to be detected and available in commercial kits. Adding 

the IPC before influenza virus RNA extraction would allows monitoring of the whole process 

from extraction to RT-qPCR. 

A recent publication, published after completion of  this work suggested low specificity of the 

developed RT-qPCR assay (Kawakami et al., 2011). They recommended a method which is 

based on RT using tagged primers to add a 'tag' sequence at the 5' end and a hot-start 

method. Nevertheless, validation procedure for specificity determination of this publication 

was done with 109 copies of synthetic viral vRNA, cRNA, and mRNA of segment 5 (NS) of 

A/WSN/33 virus (WSN;H1N1) generated by reverse genetics. This means, validation was 

done with a segment, a virus and a measuring range or viral RNA concentration not used in 

this work. Especially the high RNA copy number is not matching our measuring range which 

ends at about 107 viral copies and which was validated for specifity in our work. 

Notwithstanding, these findings have to be considered when using the RT-qPCR assay. 

 

5.3.2. Human influenza A virus replication dynamics 

The validated RT-qPCR assay was evaluated finally by following the time course of influenza 

PR/8-RKI virus infection in MDCK cells for four viral segments. It is accepted widely that the 

replication and transcription of the influenza viral genome is a selective process (Smith and 

Hay, 1982). In infected cells, the synthesis of each vmRNA(+) molecule is known to vary over 

the time course of infection, also shown by this study. Predominantly, transcription of 

vmRNA(+) in early phases of virus infection was detected (Figure 4.3-8A), which was 

reported before (Cheung and Poon, 2007). Moreover, these studies also described the 

preferential synthesis of NS1 vmRNA(+) and a delay for M1 vmRNA(+) correlated with the 

synthesis rates of the corresponding proteins (Hay et al., 1977). Findings that NS1 is a 
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predominant viral protein in infected cells in early phases of infection are in agreement with 

its function in the control of cellular mRNA synthesis and cellular signal transduction (Hale et 

al., 2008). The same applies also to the viral M1 protein, which is synthesized preferentially 

during later stages of infection, in agreement with its function as a translocation-factor and 

regulator of vRNPs nuclear export (Lamb and Krug, 2001). Except for M1, the amounts of 

vmRNA(+) decreased 3-fold during late phase of infection, this could be due to shut down of 

vmRNA(+) synthesis (Shapiro et al., 1987) and degradation of vmRNA(+) molecules. 

With a short delay in the middle at an average of 0.3-0.9 hpi after onset of viral transcription 

first cRNA(+) molecules could be detected followed by the synthesis of vRNA(-) genome 

equivalents at an average of 2.5 hpi (Figure 4.3-8C). As described before (Hatada et al., 

1989), cRNA(+)s were synthesized nearly simultaneously and in equimolar amounts for viral 

segments 4 (HA), 6 (NA) and 7 (M). Only synthesis of cRNA(+) of segment 8 (NS) was 

slightly different. 

Interestingly, about 53 – 87 vRNA(-) molecules per cell were detected at time of infection 

(Figure 4.3-8C) although viral genome replication could not have taken place. This could be 

due to the ’cold infection’ step at 4°C, which allows virus particles to attach to the cell 

membrane but not to enter due to inhibition of endocytosis (Shapiro and Krug, 1988). 

Obviously, the genomes of virus particles attached were also detected by the assay and the 

decrease in the number of vRNA(-) per cell until 2.5 hpi could allow determining detachment 

kinetics. As infection was performed at a MOI of 6, the comparatively high number of   

vRNA(-) per cell reflects attachment of non-infectious virus particles, which enter the cells but 

do not have the ability to reproduce and are finally degraded (Marcus et al., 2009).  

Another characteristic during the time course of infection observed for all viral RNA types is a 

drop in the number of viral molecules per cell of all segments at about 8 hpi. This drop was 

also identified in other infection experiment (data not shown) and seems to be correlated to 

the strong increase in HA activity 6 hpi, and therefore the onset of virus budding and release. 

This correlation could be referring to a short interruption of viral RNA synthesis due to a 

bottleneck in use of cellular resources or in molecules required for virus replication. The 

budding of a high number of virus particles including their genome copies could however only 

explain a drop in vRNA(-) genome equivalents but not for their precursor cRNA(+) or 

vmRNA(+). Accordingly, putting both hypothesis together, high budding and release activities 

could refer to high genome replication rates and this could lead to a shortage of resources for 

the synthesis of cRNA(+) and vmRNA(+). 

Overall, it has to be considered that the HA assay underestimates the release of virus 

particles due to its low sensitivity and high standard error. Hence, budding and release of 

virus particle could have been started much earlier than expected by the HA titers and 
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genome copies (vRNA(-)) were continuously assembled into viral particles and released. 

Consequently, this could lead to an underestimation of the synthesis rate of vRNA(+) due to 

a balance in synthesis, assembly and release of vRNA(-) genome copies. This could also 

account for the much lower synthesis rates of vRNA(-) (on average of 0.5) compared to the 

synthesis rates of cRNA(+) and vmRNA(+) (p2 0.8 and 0.9, respectively) in the beginning of 

infection. 

The ratios of vmRNA(+) molecules to viral genome molecules vRNA(-) (Figure 4.3-9), 

reflecting the viral replication level and its activity reached a peak at 3.5 - 4 hpi of viral 

segment 4 (HA), 6 (NA) and 8 (NS). The similar time course of the ratios indicated that the 

dynamic pattern of viral replication and transcription is similar. The fact that segment 7 (M) 

showed a peak after a time lag of 1 h (at about 5 hpi) is most likely due to its delay in 

vmRNA(+) transcription. 

These quantitative data of viral replication and transcription dynamics should be used to 

estimate key parameters and validate a mathematical model describing influenza virus 

infection of epithelial cells (Sidorenko and Reichl, 2004). This model used general 

information available in literature and the following parameters and modeling assumptions 

were supposed. In general, the present model considered a small number of viruses infecting 

a cell (10 viruses/cell) and an average life cycle of infected cells of about 12 h. Virus particles 

unable to fuse with the membrane are degraded by lysosomes, an assumption also 

suggested by the quantitative qPCR data. The splicing of M and NS vmRNA(+) is not 

considered in the model. For the overall dynamics of virus life cycle: (I) Most of the viruses 

attached to the cellular membrane within 2 – 5 min post infection. (II) Endocytosis is 

accomplished in about 10 min. (III) At about 30 min post infection the first vRNPs reach the 

nucleus and vmRNA(+)s are transcribed in high copy numbers. These assumptions also 

agree with the present experimental results. NP promotes the initiation of unprimed 

transcription and blocks synthesis of vmRNA(+)s. (IV) This switch from viral transcription to 

viral genome replication takes place at about 3 hpi and vRNA(-) is replicated and all vRNA(-) 

molecules are synthesized at similar rates. Data from the infection experiments supported 

both assumptions. For the formation of new vRNPs in the nucleus, the number of M1 

proteins represents a limiting factor, which is maybe in agreement with its late transcription 

and degradation of vmRNA(+) molecules shown by the experimental data. (V) Approximately 

5 hpi, newly produced virus particles are released into the supernatant. Until now it is not 

clear if each viral genome segment is selectively incorporated into progeny viruses or if 

packaging is a purely random process. The model assumes for simplicity, all virus particles 

contain eight segments.  (VI) At late periods of infection (about 12 hpi) nuclear vmRNA(+) are 

produced at the maximum rates and the total amount of all virus proteins and viral RNAs, as 

well as the number of budding virus, increase linearly with times. In contrast to model 
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assumptions and simulation studies the measured viral RNAs concentrations achieved 

stationary state during late infection time points and, moreover, especially vmRNA(+)s were 

degraded. The overall dynamics of the model simulations agrees with the quantitative data 

obtained from the infection experiments. However, some parameters, estimations and the 

structure of the model have to be checked and adjusted eventually. 

 

5.3.3. Determination of extracellular influenza viral RNA in cell culture 
supernatant by RT-qPCR 

For extracellular viral RNA determination a RT-qPCR assay for vRNA(-) of segment 7 (M) 

was established (section 3.4.6). Validation of the extracellular viral RNA extraction showed 

linearity over four orders of magnitude and confirmed sensitivity (LOD) to 1.7 x 104 viral RNA 

molecules corresponding to 1.1 x 10-5 ng of viral RNA (Figure 4.3-11).  

The assay was tested successfully on estimation of influenza virus particle concentrations in 

cell culture supernatants. Results were compared to conventional HA assay data, which 

showed a significant correlation in the results of both methods (Figure 4.3-12). Nevertheless, 

both quantification methods showed variations in the time courses of virus particle 

concentrations at the beginning (about 6 – 18 hpi) and the end (about 50 – 77 hpi) of virus 

infection. Variations in the beginning accounted for the low virus titers at this time of infection 

and the low LOD of the HA assay. Whereas, by using a RT-qPCR assay, it was possible to 

detect virus concentrations as low as approximately 5.0 x 103 virions/mL. Variations at the 

end of infection accounted for deterioration and lyses of virus particles due to temperature 

and enzymatic effects. The RT-qPCR assay monitors only the concentration of intact virions, 

in contrast to the HA assay, which is compromised by the presence of viral membranes or 

HA proteins of the cellular membrane. Accordingly, values of virus titers were determined 

more precisely when looking at functional and intact virus particles by using RT-qPCR 

quantification. 

Similar RT-qPCR assay systems for quantification of influenza virus have been developed, 

validated and cross-checked with other conventional quantification assays (Di Trani et al., 

2006; Ward et al., 2004; Youil et al., 2004). These assays showed very low detection limits of 

2.1 x 102 virions/mL (Ward et al., 2004) or of 5 to 50 viral RNA copies (Di Trani et al., 2006). 

However, systems were developed for molecular diagnostic in throat swab or clinical 

specimens that depend for this purpose on reliable quantitative results with great sensitivity. 

In conclusion, the RT-qPCR assay offers significant improvements over the conventional 

quantification method (HA assay) for measuring viral concentration in the cell culture 

supernatant of infected cells due to lower detection limits of intact virus particles. Additionally, 

larger numbers of samples can be rapidly tested. Resulting from that, the RT-qPCR assay 
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can be used for the detection, quantification and monitoring of influenza virus replication in 

mammalian cell culture. 
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6. Conclusion and Outlook 

In summary, when selecting between three different human epithelial cell lines (A549, NCI-

N87, HepG2) to be used as human model cell line for the proteome approach it could be 

seen that each human cell line supported replication of influenza A virus. MOI and trypsin 

addition had only slight effects on maximum HA titers of influenza virus and no influence of 

media composition was found. Additionally, regarding metabolism glucose and glutamine 

were not completely depleted and did not reach limiting levels that could induce cell death. 

Also, no toxic levels have been reached for cytotoxic metabolites such as lactate and 

ammonia ions. Finally, the A549 cell line was selected as the most promising candidate for a 

human cell reference model, because of its growth characteristic, best virus yield and wide 

use in other infection studies. With respect to proteome alteration characterization by 

quantitative 2-D DIGE analysis of influenza A virus infections, A549 cells have been 

successfully applied as a human cell infection model in comparison to canine MDCK cells 

(Vester et al., 2009). Furthermore, feasibility of the human cell line model has successfully 

been demonstrated by the use of HepG2 and A549 cells as reference models in infection 

experiments in recent signal transduction studies of the molecular biology subgroup of the 

bpt group of the MPI Magdeburg. Nevertheless, for optimal use of A549 and HepG2 cells as 

an infection model in further studies adaptation of the corresponding influenza viruses used 

is recommended (Genzel and Reichl, 2009). 

Through the use of quantitative proteome-profiling, basic insights into virus-host cell 

interactions and into cellular pathways involved in influenza A virus replication in vaccine 

production cell lines and in a human cell infection model were obtained. This proteomic 

approach explains virus-host cell interaction behaviors at a more global level, and reveals 

properties of the infection process from a ‘systems level’ point of view. While additional 

studies are necessary to better characterize different effects of influenza virus replication on 

host cell response, this study is a first step towards improving our understanding of the 

complex cellular events and virus-host cell interactions that occur during virus replication in 

various vaccine production cell lines. Furthermore, it allows the investigation of mechanisms 

relevant for the production of different virus strain variants in their corresponding host cells. 

Major alterations in influenza virus infected host cells were observed for proteins involved in 

signal transduction, protein synthesis and degradation, cytoskeleton rearrangement, 

maintenance of metabolism, cellular stress response and viral defense mechanisms. Some 

of these proteins were also identified in gene expression studies and in proteome analysis of 

avian influenza virus infected cells (Baas et al., 2006; Geiss et al., 2001; Geiss et al., 2002; 

Liu et al., 2008) demonstrating the suitability of this proteome approach and the cell culture 
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model for studying virus-host cell interactions. 

The total number of differentially abundant proteins was low for MDCK and A549 cell lines 

infected with the influenza PR/8-RKI virus variant. This low effect on proteome changes after 

influenza virus infection was also reported by similar proteome studies (Baas et al., 2006; Liu 

et al., 2008). The fact that more proteome alterations were detected in MDCK cells infected 

with the PR/8-NIBSC variant suggests hat virus strains have varied abilities to control the 

cellular machinery of their host cells and to suppress an antiviral response. Due to 

differences in virus spreading and replication, virus strains show a specific pattern in altering 

host cell response. It seems that there is a correlation between high cell specific virus yields 

and the induction of only minor changes in the host cell proteome patterns during infection. 

This suggests a lower induction of cellular antiviral and stress mechanisms by ‘high yield 

strains’. Nevertheless, the low effect on proteome changes could also be due to limitations of 

the 2-D DIGE approach used in this study, which allows only for the identification of high 

abundant proteins (Carrette et al., 2006). Most likely, influenza virus infection involves 

changes in abundance levels of numerous others, low-copy number proteins. Specific 

optimizations on separation techniques and the use of sample prefractionation and other 

enrichment techniques will help to identify such equally important alterations of low abundant 

host cell proteins. Therefore, studies on evaluating different strategies for the enrichment of 

subcellular fractions and the use of solid phase hexapeptide library (ProteoMiner beads; 

BioRad) are in progress in the bpt group of the MPI Magdeburg. Procedures for the 

enrichment and isolation organelles and subcellular compartments by differential detergent 

fractionation (DDF) or classical sequential extraction and centrifugation techniques are tested 

(Michelsen and von Hagen, 2009). By using a large bead based library of combinatorial 

peptide ligands (ProteoMiner beads), the dynamic range of the protein concentration is 

compressed. With that the high abundant proteins present in the sample are reduced and the 

low abundant proteins are enriched, while retaining representatives of all proteins within the 

sample. Their application to proteomics, though, is relatively new (Thulasiraman et al., 2005). 

So far, this technique has been mainly applied for biomarker discovery with serum samples, 

urine, red blood cells and monitoring of recombinant DNA product (Boschetti and Righetti, 

2009). Additionally, after influenza virus infections, PTMs of a much higher number of 

regulatory proteins are to be expected since this is the most common way of inactivating or 

activating signal transduction molecules. These PTMs should be further investigated by 

additional, more specific assays. For this reason, fluorescent staining or modification-specific 

enrichment techniques combined with advanced MS/MS methods could be tested (Hoffman 

et al., 2008; Zhao and Jensen, 2009). 

It was shown that a Vero cell line with known deficiency in IFN production has still the ability 

to build-up a host cell defense state in an IFN independent manner. This virus production cell 
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line showed also a much higher induction of stress response compared to the MDCK cell 

line. The proteins identified as stress factors in this study could give useful hints concerning 

future cell engineering strategies to overcome virus induced apoptosis and stress 

mechanisms to improve cell-specific virus yields. In future studies, mechanisms of virus 

adaptation to new production cell lines should be further investigated, e.g. through the use of 

glycosylation profiling (Schwarzer et al., 2009), sequence and mutational analysis of 

segment HA, NA and NS1 (de Wit et al. 2010; Ma et al., 2010) and determination of viral 

polymerase activity (Gabriel et al., 2007). 

Overall, findings provide insights concerning virus induced changes in cellular processes in 

vaccine production cell lines, in particular those processes related to signal transduction, 

cellular stress response and apoptosis. In this regard, an important aspect that has to be 

addressed is screening for potential target proteins for improvement of cell line performance 

in vaccine production among these altered proteins and pathways during influenza virus 

infection. For example, NDRG1 or KCIP1 in MDCK cells and hsp70 kDA or NS1/NF-κB in 

Vero cells might represent potential targets. These appropriate candidates should be 

characterized in detail for their function and influence on cell culture behavior and on virus 

yield. Further studies analyzing proteome and gene expression patterns are in progress to 

provide a more complete picture of the regulation of cellular machineries specific for different 

production cell lines and virus strains relevant for an increase in cell-specific virus yields 

(Heynisch et al., 2010) ( Seitz and Frensing, personal communication). In future, these 

findings could be used to improve virus yields in cell culture derived influenza virus vaccine 

processes or to support the development of new antiviral strategies required to fight 

pandemics. 

Besides analysis of virus-host cell interactions during the infection phase proteome profiling 

could also be implemented during cell culture and virus replication phase in influenza vaccine 

production processes. Proteomics might support at least three areas during the process: (I) 

analysis of cellular functions to enhance productivity or influence desired properties of 

biological products (cell line engineering); (II) knowledge of cell function in response to 

environmental condition changes, including evaluation of different cell culture media, 

bioreactor types and cell culture conditions such as cell density or temperature (upstream); 

and (III) knowledge of cell function and properties to improve product purification and 

characterization (downstream), e.g. monitoring of integrity (glycosylation or phosphorylation 

patterns) and purity (host cell protein impurities) (Gupta and Lee, 2007). Proteome studies 

concerning the impact of adaptation and cultivation of a new suspension MDCK cell line, 

MDCK.SUS2 (Lohr et al., 2010) are in progress in the bpt group of the MPI Magdeburg. They 

will help to gain a better understanding of the complex process of cell growth in suspension 

as well as the changes in the cellular proteome after adaptation to chemically defined 
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medium. Feasibility of the proteomic approach for profiling cell culture processes has been 

demonstrated by the application to a recent study of Vero cells grown under various 

conditions in bioreactor and static cultures and after infection with rabies virus in a 

cooperation project with the Pasteur Institute Tunis (Rourou et al., in preparation). Studies on 

the new MDCK suspension line and the rabies process led to an overwhelming amount of 

data generated by this approach. Therefore, it will be necessary to use a two-dimensional 

colored map, i.e. cluster heat maps, as a common approach to the visualization of large 

number of data sets (Eisen et al., 1998). Furthermore, it will be necessary to apply special 

statistical or mathematical tools for data analysis after protein identification, e.g. principal 

component analysis (PCA) (Jolliffee, 2005). PCA involves a mathematical procedure that 

transforms a number of possibly correlated variables into a smaller number of uncorrelated 

variables or hierarchical cluster analysis to detect coordinated protein regulation, functional 

classification or protein interactions. 

Regarding the third part of the presented work it could be shown that the established, 

optimized and validated RT-qPCR assay showed good sensitivity, reproducibility and 

specificity. Moreover, the qPCR assay was shown to be important for determining essential 

features of intracellular events and dynamics of the life cycle of influenza virus in MDCK cell 

cultures. Establishment of the assays for the remaining four influenza viral segments 

(polymerase subunits: PB2, PB1 and PA; NP) and the corresponding viral RNA types is in 

progress and will allow detailed analysis and comparison of the overall virus replication 

dynamics of additional virus strains (e.g. PR/8-NIBSC, PR/8-delNS1 mutant strain) in MDCK 

cells and in other host cells (e.g. Vero, MDCK.SUS2) and under a variety of infection 

conditions (e.g. MOI, trypsin). Since the assay was validated for infection with the influenza 

PR/8 virus strain, only real-time primer needs to be adapted and optimized when using other 

virus subtypes. Based on the quality of the quantitative experimental data obtained, 

mathematical models for influenza virus replication (Sidorenko and Reichl, 2004) can be 

validated and key parameters of such models estimated. Therefore, this approach is a 

significant step towards systems biology of virus-host cell interactions. Ultimately, the fully 

established method could also help to understand the role of PB1, PB2 and PA in viral 

genome replication and transcription, the postulated switch between viral transcription and 

replication, the mechanism of vRNA(-) packaging, the significance of the non-coding regions 

in virus amplification and the different replication characteristics of virus strains. For this 

detailed understanding, cross-linking and integration with additional analytical methods is 

required, e.g. measurement of polymerase activity in vivo by reporter gene assays (Bussey 

et al., 2010), estimation of intracellular viral protein synthesis by Western blots or sequencing 

and mutational analysis of the non-coding regions of viral segments. Additional hints could 

also be obtained by the usage of plasmid based minireplicon systems for influenza A virus 
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(Pleschka et al., 1996). This exclusively plasmid driven system results in the efficient viral 

transcription and replication of the viral RNA-like reporter and allows the study of cis- and 

trans-acting signals involved in the transcription and replication of influenza virus RNAs, 

which was recently shown exemplarily for Mx proteins (Dittmann et al., 2008; Seitz et al., 

2010). Especially the establishment of the qPCR assay for the polymerase subunit segments 

could clarify if different replication characteristics of viral strains are due to different catalytic 

polymerase activities (Biswas and Nayak, 1994). Recently, Bussey et al. reported 

characterization studies, which indicate that the high polymerase activity and enhanced viral 

growth of the pandemic strain in mammalian cells is, in part, dependent on AA 271 of PB2 

(Bussey et al., 2010). Furthermore, this would allow to analyze the distinct operations of the 

polymerase complex, e.g. endonuclease cleavage, transcription, polyadenylation or 

replication are modulated by its interaction with vRNA(-), cRNA(+) or host cell factors. 

Eventually, this analytical techniques could be linked to proteomic approaches such as 

reported by Mayer et al. (Mayer et al., 2007). 

Moreover, a slightly modified RT-qPCR assay was established and tested successfully on 

estimation of influenza virus particle concentrations in cell culture supernatants. Results were 

compared to conventional HA assay data, which showed a significant correlation in the 

results of both methods. Therefore, the assay can be used for the detection, quantification 

and monitoring of influenza virus replication in mammalian cell culture. 

In conclusion, results from all parts of the presented work have elucidated the complex 

relationships between influenza viruses and the infected host cells, as well as the viral 

replication dynamics. Moreover, results have provided the basis for a more comprehensive 

understanding of the viral life cycle. Both approaches, proteomics and RT-qPCR, have 

started a new understanding of cell culture derived influenza virus vaccine production 

processes and can be used for studies on bioprocess engineering and systems biology of 

these processes. 
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Appendix 

A. Chemicals, equipment and consumables 

Table A-1: List of applied chemicals 

Name Supplier 
Acetic acid, glacial (CH3COOH), 99.8% Merck, Darmstadt, Germany 
Acetonitrile (CH3CN), LC-MS grade Riedel-de-Haën, Taufkirchen, Germany 
Acrylamide 30% AppliChem, Darmstadt, Germany 
Agarose NEEO Ultra Roth, Karlsruhe, Germany 
Ammonium persulfate (APS) ((NH4)2S2O8) GE Healthcare, München, Germany 
Ampicillin Merck, Darmstadt, Germany 
BactoTM Tryptone BD, Heidelberg, Germany 
BactoTM Yeast Extract BD, Heidelberg, Germany 
Bromophenole blue GE Healthcare, München, Germany 
BSA BioRad, München, Germany 
Bind-Silane Sigma-Aldrich, Taufkirchen, Germany 
Caso-Bouillon Fluka, Taufkirchen, Germany 
CHAPS AppliChem, Darmstadt, Germany 
Coomassie brilliant blue G-250 Merck, Darmstadt, Germany 
DeStreak rehydration solution GE Healthcare, München, Germany 
Digitonin Sigma-Aldrich, Taufkirchen, Germany 
Dimethylformamide ((CH3)2NC(O)H) Sigma-Aldrich, Taufkirchen, Germany 
Dipotassium hydrogenphosphate (K2HPO4) Merck, Darmstadt, Germany 
dNTP Set pH7  Roth, Karlsruhe, Germany 
DTT GE Healthcare, München, Germany 
EDTA Merck, Darmstadt, Germany 
Ethanol (C2H5OH), 99.8%, undenatured Roth, Karlsruhe, Germany 
FCS (Cat.-Nr. 3302-P250922) PAN, Aidenbach, Germany 
F12-Kaighns, nutrient mixture 1x (Cat-Nr. 21127022) Gibco, Karlsruhe, Germany 
Formamide (CH3NO) Roth, Karlsruhe, Germany 
Formic acid (HCOOH) Fluka, Taufkirchen, Germany 
Gentamycin Merck, Darmstadt, Germany 
GMEM without glutamine (Cat.-Nr. 22100-093) Sigma-Aldrich, Taufkirchen, Germany 
Glucose (Cat.-Nr. X997.3) Roth, Karlsruhe, Germany 
Glutamine (Cat.-Nr. G-3126) Sigma-Aldrich, Taufkirchen, Germany 
Glycerol (C3H5(OH)), 87% AppliChem, Darmstadt, Germany 
Glycine (NH2CH2COOH) AppliChem, Darmstadt, Germany 
HEPES (Cat.-Nr. HN77) Roth, Karlsruhe, Germany 
Hydrochloric acid (HCl) 1M Roth, Karlsruhe, Germany 
Immobiline dry cover fluid GE Healthcare, München, Germany 
IPTG Roth, Karlsruhe, Germany 
Iodacetamide (C2H4INO) AppliChem, Darmstadt, Germany 
Lab-M peptone (Cat.-Nr. MC001) Lab-M, Lancs, UK 
L-Lysin Sigma-Aldrich, Taufkirchen, Germany 
Magnesium chloride (MgCl2) Roth, Karlsruhe, Germany 
Magnesium sulfate (MgSO4) Fluka, Taufkirchen, Germany 
MEM eagle basal medium (Cat.-Nr. M2279) Sigma-Aldrich, Taufkirchen, Germany 
MEM-non-essential amino acids (Cat.-Nr.11140050) Gibco, Karlsruhe, Germany 
Methanol (CH3OH), 99.9% Roth, Karlsruhe, Germany 
MOPS, minimal medium Merck, Darmstadt, Germany 
O`GeneRuler DNA Ladder Mix  Fermentas, St. Leon-Rot, Germany 
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Ortho-Phosphoric acid (H3PO4), 85% AppliChem, Darmstadt, Germany 
Pharmalyte, broad range pH 3-10 GE Healthcare, München, Germany 
Potassium chloride (KCl) Merck, Darmstadt, Germany 
Potassium hydrogen phosphate (K2HPO4) Riedel-de-Haën, Taufkirchen, Germany 
Porcine trypsin, sequencing grade Promega, Madison, WI, USA 
Propidium iodide Sigma-Aldrich, Taufkirchen, Germany 
Random hexamer primer Promega, Madison, WI, USA 
RiboRuler High Range RNA Ladder Fermentas, St. Leon-Rot, Germany 
RNAse A Sigma-Aldrich, Taufkirchen, Germany 
RPMI basal medium (Cat.-Nr. 11875-093) Sigma-Aldrich, Taufkirchen, Germany 
SDS AppliChem, Darmstadt, Germany 
Sodium acetate (NaOAc) J.T. Baker, Deventer, Netherlands 
Sodium hydroxide (NaOH) Roth, Karlsruhe, Germany 
Sodium chloride (NaCl) Roth, Karlsruhe, Germany 
Sodium citrate (C6H7NaO7) Neolab Migge, Heidelberg, Germany 
Sodium dihydrogenphosphate (NaH2PO4) Fluka, Taufkirchen, Germany 
Sodium hydrogenphosphate (Na2HPO4) Merck, Darmstadt, Germany 
Sodium pyruvate (C3H3NaO3) (Cat.-Nr. P2256) Sigma-Aldrich, Taufkirchen, Germany 
Super Signal West Dura Extended Duration Substrate Thermo scientific, Waltham, MA, USA 
Sypro Ruby Genomic Solutions, Ann Arbor, USA 
TEMED GE Healthcare, München, Germany 
Thiourea (CH4N2S) Sigma-Aldrich, Taufkirchen, Germany 
Trifluoroacetic acid (CF3CO2H) Fluka, Taufkirchen, Germany 
TRIS-HCl AppliChem, Darmstadt, Germany 
TRIS AppliChem, Darmstadt, Germany 
Trypan blue Merck, Darmstadt, Germany 
Trypsin (2.5%, porcine) 0.5 mg/mL (Nr. 27250-018) Gibco, Karlsruhe, Germany 
Ultrapure water, LC-MS grade Riedel-de-Haën, Taufkirchen, Germany 
Urea (CH4N2O) GE Healthcare, München, Germany 
Water, DEPC-treated Roth, Karlsruhe, Germany 
X-Gal Roth, Karlsruhe, Germany 
Xylencyanol Sigma-Aldrich, Taufkirchen, Germany 

 

Table A-2: List of equipment 

Name Supplier 
Analyst QS software version 1.1 Applied Biosystems, Carlsbad, USA 
Balance PG5002-S, PG12001-S, AG204, PR9620-3 Mettler-Toledo, Giessen, Germany 
Biofuge Fresco, Strato, Nano, Primo Heraeus Instruments, Waltham, USA 
Bioprofile 100 plus Analyzer  Nova biomedical, Rödermark, G. 
Camera Easy 429K Herolab, Wiesloch, Germany 
Ceramic strip holders GE Healthcare, München, Germany 
Chemolumineszenz Imager CHEMOCAM INTAS, Göttingen, Germany 
Clean bench Herasafe Heraeus Instruments, Waltham, USA 
DeCyder software package (version 6.04.11) GE Healthcare, München, Germany 
Digital camera  Nikon, Düsseldorf, Germany 
Electrophoresis chamber Midi-B, Mini-D BioRad, München, Germany 
Ettan Dalt II system GE Healthcare, München, Germany 
Ettan spot picker GE Healthcare, München, Germany 
Gel analysis software EasyWin 32 V.3.01 Herolab, Wiesloch, Germany 
Gel Pro Analyzer Software Media Cybernetics, Bethesda, USA 
Incubator T6060 Heraeus Instruments, Waltham, USA 
IPGphor system GE Healthcare, München, Germany 
Laser Scanning Microscope 510  Carl Zeiss AG 
Magnetic stirrer VarioMag  Biosystem 
MASCOT version 2.2 Matrix Science 
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Micro pipettes (1, 10, 100, 200 µL and 1, 5 mL)  Eppendorf, Hamburg, Germany 
Micro pipettes (2, 10, 20, 100, 1000, 5000 µL) Gilson, Middleton, WI, USA 
Microtiter plate photometer Rainbow Spectro Tecan, Crailsheim, Germany 
Mini-Protean electrophoresis system BioRad, München, Germany 
nanoHPLC instrument of the 1100 Series Agilent, Waldbronn, Germany 
pH meter Inolab WTW, Kleinmachnow, Germany 
Pipettor Pipetus Hirschmann, Eberstadt, Germany 
PowerPac 300, Basic BioRad, München, Germany 
QSTAR XL (QqTOF) mass spectrometer Applied Biosystems, Carlsbad, USA 
Realtime-PCR-Cycler, iCycler iQ V.3.1.7050 BioRad, München, Germany 
Shaker KS-15 Edmund Bühler GmbH, Hechingen, G  
Shaker Polymax 1040 Heidolph, Schwabach, Germany 
Sonotrode SonoPuls Bandelin electronic, Berlin, Germany 
SpeedVac SPD121P Thermo Electron, Dreieich, Germany 
T3 Thermocycler Biometra, Goettingen, Germany 
Thermomixer Eppendorf, Hamburg, Germany 
Typhoon Variable Mode Imager 9400 GE Healthcare, München, Germany 
Ultracentrifuge Optima CE-80K Beckman Coulter, Krefeld, Germany 
Ultrapure Water Purification System Milli-Q  Millipore, Billerica, MA, USA 
UV Transluminator Gibco, Karlsruhe, Germany 
UV/VIS spectrometer photometer NanoDrop ND 1000  NanoDrop, Wilmington, USA 
Varioclav Certoclav, Traun, Germany 
Vi-Cell TM XR Cell Viability Analyzer Beckman Coulter, Krefeld, Germany 
Vortexer Reax Top Heidolph, Schwabach, Germany 
Wet-blot blotting system BioRad, München, Germany 

 

Table A-3: List of consumables 

Name Supplier 
Culture dish 50x20mm Greiner bio-one, Solingen, Germany 
Culture dish with vent 60, 94x16 mm Greiner bio-one, Solingen, Germany 
Falcon tubes (10 mL, 50 mL) Greiner bio-one, Solingen, Germany 
Microfuge tubes 1.5 mL Beckman Coulter, Krefeld, Germany 
Microtiter plates with 96-well format, Flat bottom Greiner bio-one, Solingen, Germany 
Microtiter plates with 96-well format, U bottom Greiner bio-one, Solingen, Germany 
Micropipettes tips (2, 10, 100, 200 μL)(1 mL, 5 mL), 
Art 10 reach low Retention, Safeguard, SR-L200F 

VWR, Darmstadt /PeqLab, Erlangen 
/Eppendorf, Hamburg/Rainin, Giessen; 
Germany 

Paper wicks GE Healthcare, München, Germany 
PCR thermo tubes 0.2 mL Peqlab, Erlangen, Germany 
PCR plates ThermoFast 96 Semiscired  Abgene, Epsom, UK 
PCR ultra clear cap strips 0.2 mL Abgene, Epsom, UK 
Pipettes Cellstar 1,2, 5, 10, 25, 50 mL Greiner bio-one, Solingen, Germany 
Porous Cellophane GE Healthcare, München, Germany 
PVDF membranes Millipore, Billerica, MA, USA 
Reaction tubes 0.5 mL, 1.5 mL, 2 mL Eppendorf, Hamburg/Corning, 

Wiesbaden/VWR, Darmstadt; Germany 
Sample application pieces Serva, Heidelberg, Germany 
Sterile filter Minisart 0.22 µm Sartorius BBI, Göttingen, Germany 
Sterile membrane filter 0.22 µm Nalgene nunc, Rochester, USA 
Syringe disposable 2 mL, 5 mL, 10 mL, 50 mL Greiner bio-one, Solingen, Germany 
T-flasks Cellstar 25, 75, 175 cm2 Greiner bio-one, Solingen, Germany 
PET roller bottles Greiner bio-one, Solingen, Germany 
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B. Cell culture material 

Cell culture media 

Table B-1: Media composition for cell growth or virus infection experiments of MDCK and Vero cells 

Compound 

GMEM 

Cell growth Infection 
GMEM powder 12.5 g/L 12.5 g/L 
Glucose 5.5 g/L 5.5 g/L 
NaHCO3 4.0 g/L 4.0 g/L 
Peptone 2 g/L 2 g/L 
FCS 10% - 
H2Oultrapure ad 1 L 

pH adjusted to 6.8 with HCl; sterile filtered (0.22 μm); storage at 4°C 

 

Table B-2: Media composition for cell growth or virus infection experiments of A549 cells 

Compound 
F12K MEM 

Cell growth Infection Cell growth Infection 
Glutamine 2 mM 2 mM 2 mM 2 mM 
FCS 10% - 10% - 
Peptone - 2 g/L - 2 g/L 
Basal medium  ad 1 L 

Compounds sterile filtered (0.22 μm); storage at 4°C 

 

Table B-3: Media composition for cell growth or virus infection experiments of NCI-N87 cells 

Compound 
RPMI-1640 MEM 

Cell growth Infection Cell growth Infection 
Glutamine 2 mM 2 mM 2 mM 2 mM 
HEPES 10 mM 10 mM - - 
Sodium pyruvate 1.0 mM 1.0 mM - - 
Glucose 4.5 g/L 4.5 g/L 4.5 g/L 4.5 g/L 
FCS 10% - 10% - 
Peptone - 2 g/L - 2 g/L 
Basal medium ad 1 L 

Compounds sterile filtered (0.22 μm); storage at 4°C 
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Table B-4: Media composition for cell growth or virus infection experiments of HepG2 cells 

Compound 
MEM RPMI-1640 

Cell growth Infection Cell growth Infection 
Glutamine 2 mM 2 mM 2 mM 2 mM 
Non-essential amino acids 10 mM 10 mM - - 
Sodium pyruvate 1.0 mM 1.0 mM - - 
Glucose 4.5 g/L 4.5 g/L 4.5 g/L 4.5 g/L 
FCS 10% - 10% - 
Peptone - 2 g/L - 2 g/L 
Basal medium ad 1 L 

Compounds sterile filtered (0.22 μm); storage at 4°C 

 

Cell lines 

Name Origin  Supplier Cat.- Nr. 

A549 human, lung epithelial  ATCC, Middlesex, UK CRL-185 

NCI-N87 human, gastric epithelial ATCC, Middlesex, UK CCC-185 

HepG2 human, hepatocellular epithelial DSMZ, Braunschweig, Germany ACC 180 

MDCK canine, kidney epithelial ECACC, Salisbury, UK 84121903 

Vero monkey, kidney epithelial ECACC, Salisbury, UK 88020401 
 WHO seed 

 

Virus Strains 

Name Abbreviation Supplier 

Human influenza virus A/PR/8/34 PR/8-NIBSC NIBSC, Hertfordshire, UK 
(H1N1); NIBSC Code: 06/114 

Human influenza virus A/ PR /8/34 PR/8-RKI RKI, Berlin, Germany 
(H1N1); RKI Code: 3138 

Human influenza virus A/ PR /8/34; PR/8-RKI-Vero RKI, Berlin, Germany 
RKI Code: 3138; adapted to Vero cells; (H1N1) 
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C. Material for nucleic acid quantification 

Enzymes 

Name Supplier 

Sph I NEB, Ipswich, MA, USA 

BamH I NEB, Ipswich, MA, USA 

Nde I NEB, Ipswich, MA, USA 

GoTaq Flexi DNA-Polymerase (Cat.-Nr. M8301) Promega, Madison, WI, USA 

Phusion High Fidelity DNA-Polymerase Finnzyme, Espoo, Finland 
(Cat.-Nr. F-530S) 

RNAse A (Cat.-Nr. 7156.1) Roth, Karlsruhe, Germany 

SuperScript II reverse transcriptase Invitogen, Carlsbad, CA, USA 
(Cat.-Nr. 18064022) 

ThermoScript reverse transcriptase Invitrogen, Carlsbad, CA, USA 
(Cat.-Nr. 12236-022) 

Kits 

Name Supplier 

Eurogentec qPCR Core Kit for SYBR Green I Eurogentec, Köln, Germany 
(Cat.-Nr. RT-SN10-05NR) 

NucleoSpin Plasmid Kit (Cat.-Nr. ) Macherey-Nagel, Düren, Germany 

NucleoSpin RNA II (Cat.-Nr. ) Macherey-Nagel, Düren, Germany 

pGEM-T-easy Vector Systems (Cat.-Nr. TM042) Promega, Madison, WI, USA 

QiaAmp Viral RNA Mini Kit (Cat.-Nr. 124116026) Qiagen, Hilden, Germany 

RiboMax Large Scale RNA Production System Promega, Madison, WI, USA 
(Cat.-Nr. 224313) 

TranscriptAid T7 High Yield Transcription Kit Fermentas, St. Leon-Rot, Germany 
(Cat.-Nr. K0441) 

Wizard SV Gel and PCR Clean Up System Promega, Madison, WI, USA 
(Cat.-Nr. A9281) 
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Plasmids 

pGEM-T Easy Vector System, Promega, Madison, WI, USA (Cat.-Nr. TM042) 

      

Figure C-1: Vector map pGEM-T Easy (Promega; Technical manual#TM042) 

 

Primer 

Modified primer from sequences described previously (Chan et al., 2006) were used for the 

production of synthetic viral RNA reference standards used during uniRT or full length PCR 

steps. Primer sets for qPCR were designed using the Lasergene Primer Select v7.0 software 

(DNASTAR, Madison, WI, USA). Primer sequences are shown in the following tables. 

 

Table C-1: Characteristics of primer sets for MDCK reference genes (Gropp et al., 2006) 

Target  Name Sequence (5’-3’) 
 
β-Actin 

β-Actin_for TCCCTGGAGAAGAGCTACGA 
β-Actin_rev CTTCTGCATCCTGTCAGCAA 

 
GAPDH 

GAPDH_for AACATCATCCCTGCTTCCAC 
GAPDH_rev GACCACCTGGTCCTCAGTGT 
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Table C-2: Characteristics of primer sets for universal reverse transcription (uniRT) or full length PCR steps (PCR) used for production of synthetic viral RNA 
reference standards of vRNA(-), cRNA(+), vmRNA(+) of viral segments 4 (HA), 6 (NA), 7 (M) and 8 (NS) 

Target Purpose Name Sense  Sequence (5’-3’) Position 
(nt) 

Product 
length (bp) 

All Full length uniRT primer Uni12(M)  AGCAAAAGCAGG 1-12  
Seg 4 
(HA) 

Standard PCR cRNA(+) S4-Stdfor + TAATAGCACTCACTATAGGGAGCAAAAGCAGGGGAA 1-16 1798 
 
1798 
 

S4-Stdrev AGTAGAAACAAGGGTGTTTT 1758-1778 
Standard PCR vRNA(-) S4+Stdfor - AGCAAAAGCAGGGGAA 1-16 

S4+Stdrev TAATAGCACTCACTATAGGGAGTAGAAACAAGGGTGTTTT 1758-1778 
Standard PCR vmRNA(+) S4mStdfor + TAATAGCACTCACTATAGGGAGCAAAAGCAGGGGAA 1-16 872 

 S4mStdrev TTTTTTTCCGGACCCAAAGCCTCTAC 853-872 
Seg 6 
(NA) 

Standard PCR cRNA(+) S6-Stdfor + TAATAGCACTCACTATAGGGAGCGAAAGCAGGAGT 1-15 1433 
 
1433 
 

S6-Stdrev AGTAGAAACAAGGAGTTTTTT 1393-1413 
Standard PCR vRNA(-) S6+Stdfor - AGCGAAAGCAGGAGT 1-15 

S6+Stdrev TAATAGCACTCACTATAGGGAGTAGAAACAAGGAGTTTTTT 1393-1413 
Standard PCR vmRNA(+) S6mStdfor + TAATAGCACTCACTATAGGGAGCGAAAGCAGGAGT 1-15 1327 

 S6mStdrev TTTTTTTTCACTATTCACGCCACAAAAAG 1305-1327 
Seg 7 
(M) 

Standard PCR cRNA(+) S7-Stdfor + TAATAGCACTCACTATAGGGAGCGAAAGCAGGTAG 1-15 1047 
 
1047 
 

S7-Stdrev AGTAGAAACAAGGTAGTTTTT 1007-1027 
Standard PCR vRNA(-) S7+Stdfor - AGCGAAAGCAGGTAG 1-15 

S7+Stdrev TAATAGCACTCACTATAGGGAGTAGAAACAAGGTAGTTTTT 1007-1027 
Standard PCR vmRNA(+) S7mStdfor + TAATAGCACTCACTATAGGGAGCGAAAGCAGGTAG 1-15 779 

 S7mStdrev TTTTTTTTGCGGCAATAGCGAGAGGAT 759-779 
Seg 8 
(NS) 

Standard PCR cRNA(+) S8-Stdfor + TAATAGCACTCACTATAGGGAGAAAAAGCAGGGTGACAAA 1-20 910 
 
910 
 

S8-Stdrev AGTAGAAACAAGGGTGTTTT 871-890 
Standard PCR vRNA(-) S8+Stdfor - AGAAAAAGCAGGGTGACAAA 1-20 

S8+Stdrev TAATAGCACTCACTATAGGGAGTAGAAACAAGGGTGTTTT 871-890 
Standard PCR vmRNA(+) S8mStdfor + TAATAGCACTCACTATAGGGAGAAAAAGCAGGGTGACAAA 1-20 698 

 S8mStdrev TTTTTTTCCCGCCATTTCTCGTTTCTG 678-698 
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Table C-3: Characteristics of primer sets for polarity-specific priming reverse transcription (pspRT) or quantitative real-time PCR steps (qPCR) used for 
quantification of vRNA(-), cRNA(+), vmRNA(+) of viral segments 4 (HA), 6 (NA), 7 (M) and 8 (NS) 

Target Purpose Name Sense  Sequence (5’-3’) Position  
(nt) 

Product 
length (bp) 

All pspRT primer vmRNA(+) Oligo-dT  TTTTTT12-18 1-6  
Seg 4 
(HA) 

pspRT primer cRNA(+) S4+RTrev + CCGGACCCAAAGCCTCTAC 853-872 872 
pspRT primer vRNA(-) S4-RTfor - ACAGCCACAACGGAAAACTATG 187-209 1591 
qPCR primer  S4qPCRfor  GGCCCAACCACAACACAACC 451-471 99 

 S4qPCRrev AGCCCTCCTTCTCCGTCAGC 530-550 
Seg 6 
(NA) 

pspRT primer cRNA(+) S6+ RTrev + TCACTATTCACGCCACAAAAAG 1305-1327 1327 
pspRT primer vRNA(-) S6- RTfor - TGCAACCAAAACATCATTACCT 165-186 1248 
qPCR primer S6qPCRfor  CCGCCATGGGTGTCTTTC 855-874 144 

 S6qPCRrev TCCCTTTACTCCGTTTGCTCCATC 975-999 
Seg 7 
(M) 

pspRT primer cRNA(+) S7+ RTrev + TGCGGCAATAGCGAGAGGAT 759-779 779 
pspRT primer vRNA(-) S7- RTfor - AGCCGAGATCGCACAGAGACTT 63-85 964 
qPCR primer S7qPCRfor  ATTTGCCTATGAGACCGATGCT 363-381 98 

 S7qPCRrev AGGATGGGGGCTGTGACC 439-461 
Seg 8 
(NS) 

pspRT primer cRNA(+) S8+ RTrev + CCCGCCATTTCTCGTTTCTG 678-698 698 
pspRT primer vRNA(-) S8- RTfor - GATAGTGGAGCGGATTCTGA 215-234 675 
qPCR primer S8qPCRfor  GATAGTGGAGCGGATTCTGA 215-234 154 

 S8qPCRrev GAGGGCCTGCCACTTTCT 352-369 
 

 

Table C-4: Characteristics of primer sets for determination of extracellular viral RNA in cell culture supernatant by RT-qPCR 

Target  Name Sequence (5’-3’) Position  (nt) Product 
length (bp) 

All Random hexamer NNNNNN   

Seg 7 (M) S7qPCRexfor CTTCTAACCGAGGTCGAAACG
 

32-54 147 
S7qPCRexrev GGATTGGTCTTGTCTTTAGCCA 159-179  
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D. Material for protein analysis  

Antibodies 

Antibody Antigen Supplier 

Anti-NS1 (Cat.-Nr. sc-17596) NS1 Santa Cruz Biotechnology, Santa Cruz, USA 

Anti-Mx1 Mx1 Georg Kochs (Uni Freiburg, Germany) 

Anti-actin (Cat.-Nr. sc-1616) Actin (I-29) Santa Cruz Biotechnology, Santa Cruz, USA 

Anti-ERK2 (Cat.-Nr. sc-153) ERK2 Santa Cruz Biotechnology, Santa Cruz, USA 

Peroxidase-conjugated donkey anti-rabbit Jackson ImmunoResearch, Suffolk, UK 
(Cat.-Nr. 711-001-003) 

Peroxidase-conjugated donkey anti-goat Jackson ImmunoResearch, Suffolk, UK 
(Cat.-Nr. 705-001-003) 

 

Fluorescent dyes 

Name Supplier 

CyDye DIGE Fluor, Cy2 minimal dye GE Healthcare, München, Germany 
(Cat.-Nr. 25-8008-60) 

CyDye DIGE Fluor, Cy3 minimal dye GE Healthcare, München, Germany 
(Cat.-Nr. 25-8008-61) 

CyDye DIGE Fluor, Cy5 minimal dye GE Healthcare, München, Germany 
(Cat.-Nr. 25-8008-62) 

 

IPG Strips 

Name Supplier 

Immobiline DryStrip pH 3-7, 24 cm GE Healthcare, München, Germany 
(Cat.-Nr. 17-6002-46) 

 

Immobiline DryStrip pH 3-11 NL, 24 cm GE Healthcare, München, Germany 
(Cat.-Nr. 17-6002-45) 
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E. Detailed protocol for the identification of proteins 

In-gel digestion for nanoHPLC-nanoESI-MS/MS 

After separation, protein spots were picked from 2-D DIGE gels utilizing an Ettan spot picker 

(GE-Healthcare). The proteins were digested enzymatically in-gel and identified by 

nanoHPLC-nanoESI-MS/MS. Therefore, the picked protein spots were washed by alternating 

incubation (i.e.: shaking at room temperature for 10 min) in 200 µL 25 mM NH4HCO3(aq) 

(Fluka Ultra-grade, Sigma-Aldrich, Taufkirchen, Germany) and 200 µL 50 mM NH4HCO3(aq) 

– acetonitrile (1:1), respectively. Water and acetonitrile used for protein identification were 

high-quality (Riedel-de-Haën Chromasolv LC-MS grade, Sigma-Aldrich, Taufkirchen, 

Germany). Both steps were repeated twice. A final washing step with 400 µL pure acetonitrile 

led to dehydration and shrinking of the protein spots. The washed protein spots were dried 

by centrifugal vacuum evaporation in a SpeedVac SPD121P (Thermo Electron, Dreieich, 

Germany) for 10 min at RT. The protein spots were pre-incubated each with 5-10 µL ice-cold 

protease solution (modified porcine trypsin: Sequencing Grade, Promega, Mannheim, 

Germany, at 0.02 µg/µL in 25 mM NH4HCO3(aq)) and stored at 4°C until they were re-

swollen. Digestion was performed overnight at 37°C. 

Sample preparation for nanoHPLC-nanoESI-MS/MS 

Digestion was stopped by adding 30 µL 1% v/v trifluoracetic acid (TFA; Fluka puriss p.a. 

eluent additive for LC-MS, Sigma-Aldrich) in water (TFA(aq)) and incubating the protein 

spots for 30 min by shaking at 37°C. The supernatant of this first extraction was removed 

and stored at 4°C. For a second peptide extraction step 30 µL 1% v/v TFA in 75% v/v H2O / 

25% v/v acetonitrile was added, a third extraction step was performed adding 30 µL 1% v/v 

TFA in 50% v/v H2O / 50% v/v acetonitrile. For both steps, the protein spots were incubated 

as described before and the corresponding supernatants were removed and pooled with the 

previous extract. In a next step, the peptide extraction pools were shock-frozen at -180°C (by 

dipping the microcentrifuge tubes into liquid nitrogen) and dried below 5 µL (not to dryness) 

by centrifugal lyophilization (SpeedVac SPD121P). The final sample volume of 10 µL was 

obtained by adding the appropriate amount of 0.1% v/v TFA(aq). These samples were used 

directly for nanoHPLC-nanoESI-MS/MS analysis or stored at -80°C until analysis.  

Online pre-concentration and separation of peptides  

A set of capillary- and nanoHPLC instruments of the 1100 Series (Agilent, Waldbronn, 

Germany) connected in series, did allow fully automated online pre-concentration and 

separation of the tryptic digested samples. 8 µL of each sample were drawn by the cooled 

micro-HPLC autosampler (1100 Series microWPS; G1377A) and injected onto a C18-
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precolumn (300 µm ID * 5 mm packed with C18-PepMap, 100 Å pore size, 5 µm particle size, 

Dionex, Idstein, Germany, adapted to the Agilent 1100 System) for concentration to a 350 nL 

sample volume. This was done by stacking and desalting the peptides onto the pre-column 

at a flow rate of 10 µL/min 0.05% v/v TFA(aq), generated by the capillary-HPLC pump (1100 

Series CapPump; G1376A). These pre-concentrated digestion mixtures were eluted directly 

from the pre-column and separated onto a nano-column by switching the pre-column from 

capillary-HPLC flow into nanoHPLC flow (using the MicroValve 2/10; G1163A). A nanoHPLC 

pump (1100 Series NanoPump; G2226A), running at a column flow-rate of 300 nL/min, was 

used for gradient elution of the sample. NanoHPLC was performed on a C18-nano-column 

(75 µm ID * 150 mm packed with C18-PepMap, 100 Å pore size, 3 µm particle size, Dionex, 

adapted to the Agilent 1100 System). An elution gradient (solvent A: 0.1% v/v formic acid 

(FA; Fluka puriss p.a. eluent additive for LC-MS, Sigma-Aldrich) in 98% v/v H2O / 2% v/v 

acetonitrile versus solvent B: 0.1% v/v FA in 20% v/v H2O / 80% v/v acetonitrile) started at 

0% solvent B and increased to 50% solvent B within 30 min.  

Online acquisition of ESI-MS/MS peptide spectra 

Detection was carried out by online coupling nanoHPLC with nanoESI-MS/MS via start/stop 

trigger signals. MS and MS/MS spectra were recorded on a QSTAR XL (QqTOF) mass 

spectrometer (Applied Biosystems/MDS/Sciex, Darmstadt, Germany) equipped with an 

online nano-electrospray ion source (NanoSpray II Source) and upgraded with a heated 

interface. Peptides eluting from the nano-column were electrosprayed via an online 

electrospray needle (uncoated SilicaTips (OD 360 µm / ID 20 µm/Tip ID 10 µm), New 

Objective, Woburn, MA, USA) and were focused into the mass spectrometer. The following 

ESI parameters were used: Needle voltage 2.6 kV, ion source gas 12 psi, curtain gas 12 psi, 

interface temperature 140°C, declustering potential 60 V, focusing potential 220 V, 

declustering potential 15 V, collision gas 4 (dimensionless parameter setting). Utilizing 

Analyst QS software (version 1.1, Applied Biosystems/MDS/Sciex) full scan and product ion 

spectra were collected in an information dependent acquisition mode. IDA-mode settings 

included continuous cycles of one full TOF-MS scan from 385-1610 m/z (1s) plus three 

product ion scans from 150-1610 m/z (enhance all, 1s each). Precursor m/z values were 

selected from a peak list (ion charge state 2-4, ion cut-off >10 counts, exclusion of isotopes), 

generated automatically by Analyst QS from the previous TOF-MS scan during acquisition, 

starting with the most intense ion. The collision energy was set to rolling collision energies, 

dependent on the m/z value of the precursor ion. Furthermore, the data was collected in 

profile mode and dynamic exclusion was used for data acquisition with an exclusion duration 

of 90 s for former target ions and an exclusion mass width of ± 0.05 mmu.  
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Data processing and interpretation of ESI-MS/MS spectra 

For automatic database search of product-ion spectra of HPLC-ESI-MS/MS analysis, 

MASCOT (version 2.2, Matrix Science) was used to identify corresponding peptides. For all 

searches, algorithm screened actual NCBI non-redundant database were used. Search 

parameters: Species, mammals; tryptic digest with a max. of one missed cleavage; no fixed 

modification; variable modifications, oxidation of methionine (M) and carbamidomethylation 

(C) of cysteine; peptide masses were assumed to be monoisotopic; mass tolerance of 0.1 Da 

for the precursor ion and 0.07 Da for product ions. For final confirmation at least two product-

ion spectra of different peptides of each identified protein were verified. 
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F. Standard operating procedures (SOPs) 

Nr. Z/ 01: determination of the cell count 

1.0 Intention 

Determination of the total cell count and of the living cell count in a trypsinize cell culture or in 
a suspension culture (to calculate the density of the follow- up culture for example). The 
colourant trypan- blue can only penetrate in death cells. Living cells are uncoloured and are 
silhouetted against the blue- grey background. 
 
2.0 Materials 
- aliquot of a trypsinize culture or suspension culture  
- 1.5 mL- reaction tube, sterile 
- 15 mL Falcon, unsterile 
- microliter pipette (100 and 1000 µL) and tips 
- PBS  
- Trypan- blue solution 0,5%, filtrated; firm: Merck; order.Nr.: 1.11732.0025 attention toxic! 

Wear protection gloves! 
- Fuchs-Rosenthal-counting chamber (chamber depth 0.2 mm, 16 big quadrates per 

1 mm2, 16 small quadrates for each big quadrate 
- Microscope with  objective x10 (phase contrast) 
 
3.0 Methods 
3.1 Preperation of the trypan- blue solution 
- 18 g NaCl; firm: Merck; order.Nr.: 1.06400.5000 and 10 g trypan- blue; fill up with Milli-Q- 

water up to 1000mL and use a big fluted filter to filter the solution 
- working solution: 1:2- dilution of the stock solution with de- ionise water 
- trypan- blue is durable at 5-30°C; leftovers are hazardous waste and will be dispose by 

the chemical commissioner 
- trypan- blue is durable for ~6 month 
- the concentration of the colourant will be reduced after the creation of aggregates; in this 

case don’t use the solution anymore 
 
3.2 Preparation of the cells 
- stop the cells with FCS after trypsinization 
- take one sterile aliquot from the trypsinized culture or from the suspension culture (for 

example 1mL) and transfer it into a 15mL- Falcon tube 
 
3.3 Determination of the cell count 
- clear the surface of the counting chamber and the cover glass with 70% ethanol  
- breath on the counting chamber and apply the cover glass; maybe move the cover glass 

until you see (so called) Newton rings (‘rainbow’) 
- dilute the cell aliquot 1:10 with trypan blue solution (1 mL cell suspension + 9 mL trypan 

blue solution), mix it carefully 
- fill the counting chamber by using a 100 µL microliter pipette (put the pipette at the edge 

of the counting chamber; the capillary force suck the solution into the gap between 
chamber and cover glass 

- place the chamber under the microscope 
- count 5 quadrates of 16 (do not count cells on lines twice; cell cluster comply with 2 cells) 

and built the sum 
 example: see figure 
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- the determination is more exactly by using both counting chambers (over and under the 
stay) and build the arithmetic mean 

- cell concentration/mL = arithmetic mean of the sum x 104 

- total cell count = cell concentration/mL x volume of the cell suspension 

- % living cells = uncoloured (living) cells : (uncoloured cells + coloured cells) x 100 

- if cell count is too high use a dilution 1:100 (mix 100µL cell suspension, 900µL PBS, 9mL 
trypan blue solution in a 15mL Falcon- tube) and count the cells like description above  

- calculation: cell concentration/mL = arithmetic mean of the sum x 105 

- if you have to repeat the cell counting use a new sample preparation because trypan blue 
affect toxic and with rising incubation time the count of living cells will be reduced 

- dilution of the culture with growth medium until reaching the required density and volume 
(see work instruction Z/04) - if its necessary to freeze the cells (see work instruction Z/06) 

 
3.4. Example for determination of the cell count 
- 40 mL cell volume 
- mix 1mL of the cells with 9mL of the trypan blue solution 
- total cell count = 8.5 x 105  x 40 mL = 3.4 x 107    (cells in 40 mL volume) 
 

4.0 Storage 
- filtrated 0.5% trypan blue solution is durable ca. 6 month at room temperature; the 

solution could aggregate by overrun the durability 
 

Nr. G/ 21: ViCell XR counting device 

The Vi-Cell XR Cell Viability Analyzer is a video imaging system used to automatically 
analyze mammalian cells. It automates the trypan blue exclusion protocol, in which dead 
cells take up the dye while live cells do not, and provides data on % viability & cell counts. 
The Vi-Cell takes up the sample and delivers it to a flow cell and camera for imaging where 
differences in the grey scale between live & dead cells are determined by the software. 
 

1. Attention should be paid for: 
 Each person who will be using the Vi-Cell system must be trained by a briefed person 
 Do not use unfiltrated microcarrier suspension 
 Validated working range (cell type ‚MDCK 100’: 9.6*104-1.0*107 cells/mL, total cell count) 
 
2. Material: 
Original products from Beckman Coulter: 
Nr. 383260 Single Pack 250 measurements, reagents/ sample cups (~240 Euro) 
Nr. 383194 Quad Pack 1000 measurements (4x Single Pack; ~845 Euro) 
Nr.  sample cups (ViCell cups) 
 

Wash sample cups and use it several times. Reagent packs contain the different 
components or should be made by oneself: 
 Trypan blue solution: 0.4 w/v Trypan blue + 0.15 mol/L NaCl (use VE-Water) 
 Filtrate with paper filter followed by 0.45 µm filtration 

x   x 

 x   

    

x   x 
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 Desinfection solution:  Isopropanol (2-Propanol), 90%  
 Wash solution:  Beckman Coulter Clenz (Nr. 8448222, 5 L) 
 Buffer solution:  dH20 
 

Used reagent volume for 250 measurements: 
Trypan blue: about 110 mL; other reagents: about 220 mL 
 

Refill of reagents: 
If the reagent pack is empty, choose under menu ‘instrument’, ‘Replace reagent pack’ follow-
up the instructions steps. 
Do not use a new reagent pack, refill the old one with corresponding volume (110, 220 mL). 
Decant the waste bottle in a schott-flask, autoclave and dispose it into the trypan blue waste. 
 
3. Switch on and off: 
Switch on: 
• For switching on ViCell press power button at the back 
• Switch on computer and start Software ‘ViCELL XR 2.03’ 
Switch off: 
• Switch off software, afterwards switch off  computer 
• Switch off  ViCell 
 
4. Running a sample: 
Preparation of the cell suspension: 
• Sample volume: min. 0.5 mL, max. 1.5 mL per sample cup 
• Concentration range (manufacturer specifications):  1.0 *104 – 1.0 *107 cells/mL 
• Dilute samples with > 1.0 *107 cells/mL  
• Samples with carrier must be filtrated (<100µm)(e.g. Partec Celltrics 100 µm, Nr. 04-0042-

2318); Becton Dickinson Bioscience Discovery Labware, Cell strainer, 70 µm, Nr. 352235) 
 

1. Put sample only in original sample cup. 
2. Place sample cup in next available carousel position. 
3. Log in sample on the computer by clicking on the Log in sample button:  

a. Select cup position on carousel 
b. Enter your Sample ID (the software is smart and will increment multiple samples) 
c. Choose a Cell type (*first time choose default) 
d. Select a dilution factor 
e. Click OK or Next sample to enter additional sample data (*once start the continue to 

enter samples, so it saves time to start the queue first) 
4. From the navigation menu, choose Autosampler queue to see samples in queue. 
5. From this screen, you can also edit/remove samples in queue while a run is in progress. 
6. Click on Start queue to begin sample analysis. Once the run begins, sample will 

disappear from the queue and you will only see it on the main screen. The bottom of the 
screen will tell exactly what the instrument is doing (i.e. mixing trypan blue, loading flow 
cell, etc) and right side displays the run data (i.e. image #,% viable, cell count). 
Measuring time about 3 min. 

7. storage location (excel sheet): local or at the network 
c:\daten\ViCell\Excell\ 
h:\bio\daten\vicellxr\Excell\ 

 
5. Measurement of infectious samples: 
Pay attention to the following specifics: 
 Before measuring, frame and waste bottle 
 Fill virus sample in sample cups only under the hood 
 After measurement: put sample cups of the frame and waste bottle in virus waste and 

desinfect the frame 



 

   161 

Nr. A/02 Bioprofile 

Version: 1.0 (07.04.2010) Author:  Verena Lohr 

Determination of basic extracellular metabolites 
1.0 Intention 

With the help of the Bioprofile concentrations of extracellular metabolites, e.g. ammonia, 
glucose, lactate, glutamine or glutamate could be measured in cell culture supernatants. 
 
2.0 Materials 
- Centrifuge Multi-spin PCV-3000, Grant Instruments (N1.07) 
- Centrifuge Biofuge primo R, Heraeus (N1.06) 
- Heating block (N1.06 ) Vortex (N1.07) 
- BioProfile lOOPlus (N1.07) 
- 1000 JlL- pipette  
- Standards for di lution series for BioProfile ( -80°C Freezer) 

• Glucose in PBS                                          
• Glu, Gln, Lac, Amm in GMEM (GMEM without Glc, Sigma #G5154) 

 
3.0 Methods 
3.1 Sample preperation 
1.6 mL sample volume is needed; microcarrier, cell impurities should be removed via 
centrifugation. 
 

Adherend cells 
Supernatants of adherend cells cultered in microtiter plates, t-flasks or rollerbottles could be 
directly used. Adherend cells on micro carrier: supernatants should be centrifuged (5000xg, 
5 min) before use. 
 
Suspension cells 
Centrifuge cell supsension 1000 x g 1min and use the supernatant for measurement. Heat 
sample from infection experiments (mock, growth and infection phase for comparability) at 
80°C for 3 min (accounting for virus inactivation & glutamate degradation). In case of 
infection series samples should be stored at -80°C and measured in parallel. 
 
3.2 Sample measurement 
The instruction manual G_22  for  BioProfile  lOOPlus should be read before usage and 
persons should  trained by a briefed person. 
 

Before measurment 
Check under „Status“ the fill level of reagent pack (full = 350 samples, 2 weeks usability 
after insertion). Check under „Status“ the flow rate (flow rate <  3.5 sec). 
“C” behind the respective metabolite means calibrated and “NC” not calibrated. If “NC” 
occurs than contact a responsible person (Clandia Best, Ilona Behrendt and Verena Lohr). 
 
Measurement 
Thaw the samples and standard dilution series of all metabolites on ice for 6h or at RT for 1-
2h. Vortex the samples and standards. Fill the auosampler in following order: 

1. Glucose standards, randomized 
2. Other standards, randomized 
3. Samples randomized 

Randomization is necessary due to systemic errors and drift in measurements. Only single 
assay run is needed, due validation of single run. Per sample 3€ and 3 min is needed. 
After sample measurement the 6 standards should be measured another time per hand. 
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After measurement 
Order of the sample should be noted carefully and validated concentration range should be 
compared. Higher concentrations should be diluted 1:2 or 1:3 with PBS, vortexed and 
measured again. 
 

3.3 Analysis 
Raw data should be writen in excel file due to fading of the thermo paper print outs. The 
respective BioProfile files are archived in BPT-folder under H:/bpt/usp/Labor/ 
Bioprofile_calibration_curves/201O/Quartal_1 (respective year and quarter). 
Enter the two values of the standards.  A mean value is builded and automatically put in a 
diagram. The equation of the calibration curve is directly transmitted. Only parameters of 
square function should be transfered by hand.  
Measured values could be writen in other tabs. Under “Documentation” the date, person 
parameters of the service pack (expiry date, Lot number). 
 
4.0 Explanatory notes 
Effect of pH on measurement 

Even pH have an influence on measurements. Therefore, thawed samples should not be 
allowed to stand in the auto sampler to long due to CO2 gasing. Critical samples should be 
measured by hand or in shorter sequences or the pH must be checked afterwards 
(significant changes of >1). 
 
Repeated measurements 
Samples of one experiment should be measured in parallel and re-measuring should be 
avoided. 
 
Effect of salts on measurement 
Effects of salt concentration on measurements were till now only tested in GMEM. Other 
media were not tested and could have other effects than GMEM which should be taken into 
account when used. 
The following table should give hints on effects of different salts and concentrations on 
measurements with the bioprofile. 
Notice that with addition of 20mM NaHC03 in PBS glutamate could be detetected 
(increasing glutamate concentration with increasing NaHC03 concentration  till 200 rnM) 
neither no glutamate is added in PBS. 
 
Salt 
 

Conc. [mM] 
 

Influence on 
 

Influence with increasing salt conc.? 
 NaCl 50-250 mM Glucose Decrease clearly 

NaCl 50-250 mM Osmolality Decrease clearly 
NaHC03 20-200 mM Glucose Decrease clearly 
NaHC03 20-200 mM Glutamate Increase clearly 
NaHC03 
NaHC03 
Mg2S04 

20-200 mM 
20-200 mM 
0.5-I0 mM 

pH 
Osmolality 
Glucose 

Increase  
Increase clearly  
Decease 

CaCl2 
CaCl2 

0.5-I0 mM 
0.5-10 mM 

Glucose 
Glutamate 

Decease  
Decease 

KCl 0.5-I0 mM Glucose Decease 
KCl 0.5-10 mM Ammonia Increase 
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Nr. V/05 HA-Assay 

Version: 2.2 (20.01.2011) Author:  Verena Lohr 

Hemagglutination assay (HA assay) 
This SOP is based on the SOP written by Bernd Kalbfuß, Version 2.1 (04.12.2006) 

1. Introduction 

The HA assay is used to detect influenza virus particles (infectious and non-infectious). 
Influenza viruses carry the protein hemagglutinin (HA) on their surface which binds to 
specific glycosylation patterns on proteins which are located on the outer membrane of a cell. 
Thus, virus particles bin to cells and by using erythrocytes as cell system, influenza virus 
particles can cross-link erythrocytes with each other. This agglutination of erythrocytes can 
be observed in wells of a round bottom well plate as agglutinated erythrocytes sediment like 
a carpet at the bottom of the well instead of a point-like sedimentation.  

By titrating the virus containing sample, one can determine a critical concentration of the 
sample at which this switch in sedimentation behaviour occurs. The negative logarithm of this 
dilution has been defined as the logarithmic HA titer (or simply log-titer) and is a measure for 
the concentration of influenza virus particles in the sample. The inverse of the dilution has 
been termed HA activity with units HAU/100 µL and is also supposed to be proportional to 
the number of virions in the sample. 

 

There are two ways in which one can analyze the HA assay (procedure of pipetting is the 
same for both methods): 

i) a classical analysis in which the experimenter visually evaluates the HA titer 
ii) a photometric analysis which uses an automated procedure in order to minimize 

subjectivity and which includes an additional dilution step that increases sensitivity and 
reduces the error of the method   

 
2. Material 

 Protective clothing: lab coat, protective gloves (Nitrile) 
 Centrifuge (e.g. Primo R, Hera, N1.06) 
 Sterile kryotubes 
 Influenza virus samples (active or chemically inactivated) 
 Internal HA standard (= control which is an chemically inactivated influenza virus sample 

with defined HA titer, stored at -80°C in N1.11, produced as described in SOP HA assay 
from Bernd Kalbfuß, Version 2.1 (04.12.2006)) 

 Erythrocyte suspension (conc. approximately 2.0x107 erythrocytes/mL, stored at 4 °C in 
N1.06, produced as described in SOP V/07 from Claudia Best (07.06.2007)) 

 Unsterile phosphate buffered saline, PBS (stored in N1.06, produced as described in 
SOP M/01 from Claudia Best (26.09.2007)) 

 Unsterile transparent 96well round bottom microtiter plates (stored in N1.06, e.g. Greiner 
Bio-One, Cat.No. 650101) + transparent disposable lids (stored in N1.06, e.g. Greiner 
Bio-One, Cat.No. 656101) 

 100 µL micropipette + disposable tips 
 8x100 µL or 8x300 µL multichannel micropipette + disposable tips 
 Electronic 8x1200 µL multichannel pipette + 1250 µL disposable tips 
 2 reservoirs for multichannel micropipette (PBS, erythrocyte suspension) 
 Plate photometer (e.g. Tecan spectra, Tecan Instruments, N1.07) 
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3. Sample preparation 

Infected cell culture with cells and without microcarrier should be filled directly into sterile 
kryotubes or other sterile tubes and centrifuged at 300 x g for 5 min at 4 °C. If cells can not 
be settled at this g force, choose an appropriate centrifugation setting. After the 
centrifugation step transfer the supernatant into a new sterile kryotube and freeze at -80 °C. 

 

4. Assay procedure 

It is absolutely necessary to pipet exactly in this assay!! 

Active samples have to be handled under S2 work bench! For handling outside the safety 
hood (e.g. when scanning the microtiter plate with the spectrometer), keep disinfectant or 
citric acid ready in case of accidental spillage! 

4.1 Classical method 

The titration of influenza virus by the classical method is based on the method described by 
Mahy and Kangro [1]. 

1. Pre-dilute samples which are known to be highly concentrated in PBS (all samples which 
have a HA activity above 3.0 log HA units/100 µL should be diluted). Typically, a 1:10 
pre-dilution is sufficient. Samples from cell culture normally do not require this pre-
dilution. However, this has to be decided from the assay performer. 

2. Fill the wells of column 2-12 with 100 µL PBS each. Wells B, D, F and H of column 1and 
2 are filled with 29.3 µL PBS. 

3. Perform the following steps with a 100 µL pipette under S2 work bench! Don’t spray 
disinfectant onto reservoirs and microtiter plates. 
The wells 1 and 2 of row A are filled with 100 µL of internal HA standard. Beneath these, 
a pre-dilution of internal HA standard is prepared by adding 70.7 µL of HA standard to 
wells 1 and 2 of row B. These 4 wells are prepared accordingly for the samples in rows 3 
to 8. This means that on each plate 3 samples can be prepared. If there are more 
samples, an additional plate is necessary. Standard is necessary on every second plate.  

Pipetting scheme for pipetting internal HA standard and samples onto microtiter plate 
 1 2 3 

A 100 µL HA standard 100 µL HA standard … 

B 70.7 µL HA standard 

29.3 µL PBS 

70.7 µL HA standard 

29.3 µL PBS 

... 

C 100 µL sample 1 100 µL sample 1 … 

D 70.7 µL sample 1 

29.3 µL PBS 

70.7 µL sample 1 

29.3 µL PBS 

… 

E ... ... … 

  

4. Mix column 2 three times with a multichannel pipette and transfer 100 µL of column 2 to 
column 3. Empty the pipette tips completely once before the transfer. Mix again three 
times and continue the serial dilution until the end of the plate (column 12). The 
remaining 100 µL should be disposed. Each well has to be filled with 100 µL after 
finishing these steps. Add 100 µL of erythrocyte suspension into each well by using an 
electronic multichannel pipette. Mix the suspension well before you start! Start pipetting 
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at the column with the highest dilution (column 12. For each plate new tips have to be 
used! 

5. Each well which has been pipetted faulty should be marked as the values from these 
wells need to be eliminated during assay evaluation! 

6. Incubate the plates for at least 3 hours under the work bench. If the assay is not 
analyzable, incubation must be prolonged (over night if necessary). 

7. Evaluate the results visually. Therefore, mark every well which shows a perfect 
erythrocyte dot with a (●) and each imperfect dot with a (○). Record your findings by 
taking the document “AB-HA_Testauswertung_3.pdf”. The last dilution with an imperfect 
dot is the end point of the titration and is expressed as log HA units per test volume (100 
µL). The inverse of this dilution gives the HA activity [HAU/100 µL]. 

8. Compare the measured titer of the internal standard with its nominal titer. The difference 
(nominal-measured) has to be added to the titer of each sample. If two or more standards 
were analyzed (e.g. because 3 plates were assayed) use the mean difference. If the 
measured titer of internal standard is more than 0.3 log HAU/100 µL different from its 
nominal titer, re-do the whole assay! 

9. After evaluation of the titer microtiter plates scan them (see section 4.1) or dispose them 
into S2 waste!! 

 

Scheme for determination of HA titers in micro titer plate (example shows HA titers 
from 1.2-2.1 log HA units/100 µL in double determination) 
 

 

Overview on dilutions and resulting HA titers (log HA units/100 µL) 
 1 2 3 4 5 6 7 8 9 10 11 12 

Dilution 1:1 1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256 1:512 1:1024 1:2048 

HA titer  

(100 µL sample) 
0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 

HA titer  

(70.7 µL sample)  
0.1
5 0.45 0.75 1.05 1.35 1.65 1.95 2.25 2.55 2.85 3.15 3.45 

 

 



 

   166 

4.1.1 Points to consider 

 The detection limit of this assay is 0.15 log HAU/100 µL. This corresponds to 
approximately 2.0x107 virions/mL; assuming that the number of erythrocytes is 
proportional to the number of virus particles (each virus particle binds to one erythrocyte). 

 The assay has been validated with a standard deviation of +- 0.03 log HAU/100 µL which 
is the dilution error. 

 The confidence interval for HA activity was determined to be +15/-13 % (with a 
confidence level of 95 %). 

 The validation has been made for the assay procedure which is described here. If you 
change singular steps in your procedure, be aware that validation is not valid then. 

 Before you start with serious analyses, train yourself in pipetting accurately and precisely, 
e.g. by measuring standard samples several times. 

 HA activity may suffer depending on sample treatment and storage conditions. Thus, do 
not freeze a measured sample and re-thaw it. Probably, HA titer has then been changed. 

 

4.2 Photometric analysis 

In order to minimize subjectivity (dependence on the experimenter), the titration result is 
evaluated photometrically using an automated procedure. However, this evaluation is 
restricted to samples with titer >1.0 log HAU/100 µL. Otherwise, sample titers have to be 
evaluated with the classical method. 

4.2.1 Measurement of extinction 

1. Perform all steps which are described for the classical method. 
2. Cover microtiter plates containing active virus samples with an appropriate lid. 
3. Make sure that Tecan photometer is switched on. Open the software “iControl” and 

choose “HA protocol” from the list of used protocols. The settings should be defined as 
follows: Messfilter 700 nm, Referenzfilter none, 10 Blitze, Temperatur 0.0 °C, 
Schüttelmodus none. (Changes can be made by clicking on button “Messparameter 
definieren”, but should not be done for standard HA protocol.) 

4. After having inserted the plate into the reader, click the button “Messung starten”. You will 
be asked for a file name first and to put your plate onto the tray afterwards. The 
measurement will be carried out immediately afterwards. 
It is of utmost importance to remove either the lid before scanning and to remove any 
condensed water from the bottom of a microtiter plate before scanning!! 

5. Save extinction data as Excel-file in the folder “/bpt/data/Tecan/HA_assay/2010/…” using 
the file name pattern “<Number>-<Date>_<Experimenter>.xls (e.g. 145_10-03-31_CB). If 
more than one plate will be measured, let the excel file from the first plate open. Then, 
the results from the following plate will be saved as a new sheet in this file. You have to 
rename the sheets after your measurement in order to document which sheet belongs to 
which plate. 

6. Repeat step 4 and 5 for each plate of the assay run.  
 

4.2.2 Evaluation of HA titers 

A data evaluation template (Excel-file) has been prepared. The evaluation procedure is 
described in the following. You have to enable macros for the sheet to work properly! 

7. Open the data evaluation template (“/bpt//Labor/HA_neu/Data_Evaluation_ 
Template.xls”) and save a copy in the appropriate folder 
(/bpt/usp/Labor/HA_neu/data/2010/...). 
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8. Import your extinction data. Therefore, copy all values and paste them into data-sheet. 
Delete extinction values of all wells that suffered from erroneous pipetting! As long as 
affected wells are not within the zone of transition, the assay result may be unaffected. 

9. Adjust the sample names and dilutions in the “Report” sheet. Fill all empty header fields 
and transfer the remarks from the run protocol. Specify the internal standard used and 
the position of the internal standard (normally, position 1 and 9). If only one standard was 
measured, specify the same position twice. 

10. Click “Evaluate” to start HA titer evaluation.  
11. Check difference between nominal titer of the standard and the evaluated titer. Re-do the 

assay if both values differ more than 0.3 log HAU/100 µL. 
12. Check all fitted curves in the “Evaluation” sheet. If fitting of extinction values has not been 

made by a sigmoidal curve, then re-analyze the sample. Be careful, if this maybe is due 
to a low titer of the sample. Then take titers evaluated by the classical method. 

 

 

Evaluation of the transition point by a Boltzmann function. Left: correct fitting, right: 
erroneous fitting which would lead to high titer evaluation if curve is not checked and 
rejected 
 

13. Compare the evaluated titers with the results obtained by the classical method. The 
discrepancy should be less than 0.3 log HAU/100 µL. 

14. Save the document and make at least one hardcopy of the “Report” and “Evaluation” 
sheets. Documents are collected in a folder located in N1.07 and N0.13.       

 

5. Sample storage 

If samples are kept at below -70 °C, they can be stored up to five years without loss of HA 
activity. Anyway, this holds true for samples which have been prepared as described in this 
document (see sample preparation). After this period, it cannot be guaranteed that measured 
HA activities resemble the original values.  

 
 
[1] Mahy B.W.J., Kangro H.O. "Virology Methods Manual": Academic Press Limited, 

1996. 

 

 

0.1

0.2

0.3

0.4

0.5

0.0 1.0 2.0 3.0 4.0

-log d

Ex
t7

00
 / 

O
.D

.

 

0.1

0.2

0.3

0.4

0.0 1.0 2.0 3.0 4.0

-log d

Ex
t7

00
 / 



 

   168 

Nr. V/08 TCID50-Assay 

Version: 2.0 (23.03.2010) Author:  Verena Lohr 

Active virus titration- TCID50 assay 

1. Introduction 

Determination of virus concentration of which 50% of adherent cells are infected. 

2. Material 
2.1. Cell culture and virus propagation 
- 4-8 days old confluent MDCK cells in cell culture flasks (T175 or RB) 
- Sterile PBS (SOP Nr. M/01) 
- Trypsin 10000BAEE/mL in Milli-Q water, filtrated (trypsin, sigma, T-7409), store at -70°C 
- Cell culture media (GMEM + 1% Lab-M-Pepton + 10% FCS) SOP Nr. M/04 
- VVM (GMEM + 1% Lab-M-Pepton) SOP Nr. M/04 
- Gentamycin 10 mg / mL (Invitrogen, 11130-036) store at room temperature 
- 96-well plate 400µl volume with flat bottom and cap (Cellstar, Greiner bio-one, 655180) 
- Reaction tubes 1.5 mL, sterile for dilution series 
- Sterile pipettes, pippetor, 100µl pipette 
- Electronic one-chanel pipette, 10 0µl (Eppendorf) 
- Electronic multichannel pipette, 1mL (Eppendorf) 
- Pipette tips, 100µl (Plastibrand, sterile); Pipette tips, 1250µl (Eppendorf, sterile) 
- Multipette with combitips 10mL (Eppendorf, combitips plus biopure) 
- 1 sterile Schott-flasks (250, 500mL); 4 pipette trays, sterile; 2 small lab trays, sterile 
- Security advcice labels, biohazard 
 
2.2. Fixation and staining 
- 80% acetone solution in water (acetone, p.a.) 
- primary antibody according to the virus tested 

e.g. Equine Influenza A anti-goat, final bleed, goat 613, nano Tools (1:100 diluted PBS) 
 Influenza Anti A/Wisconsin/67/2005 H3N2  (HA Serum sheep) (NIBSC) 
 Influenza Anti A/Wisconsin/67/2005 H3N2  (HA Serum sheep) (NIBSC) 
 Influenza Anti A/PR/8/34 H1N1  (HA Serum sheep) (NIBSC) 

- PBS sterile (SOP Nr. M/01) 
- Confluent grown cell culture (T75, RB) 
- Secondary antibody (Invitrogen, A-11015) 
- 100 µL 8-Chanel-Pipette. Pipette tips 
- Lab tray, 3 pipette trays, aceton waste vessel 

3. Assay procedure 
3.1 Cell culture and virus propagation 
A) Cell culture 
- wash three-times confluent grown MDCK cells in cell culture flasks with PBS, trypsinize 

with corresponding amount of trypsin (1 mg/mL) 20 min 37°C, stop with cell culture media 
(SOP Nr. Z/04) 

- Mix cell culture media with gentamycin (100 mL with 1 mL gentamycin) 
- Dilute trypsinized cells with cell culture media to 4-5* 105 Zellen / mL (SOP Nr. Z/01, G/21) 
- For one cell culture plate 10 mL cell suspension is needed 
- Pipette with 8-channel pipette 100 µl cell suspension to each well 
- Incubate cells 1-2 d at 37°C, 5% CO2 (after microscopical evaluation the cells should be 

confluent at this stage, otherwise the experiment has to be stopped) 
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B) Preperation of virus dilution 
- Add trypsin and gentamycin to VMM (100 mL + 20 µl Trypsin + 1mL gentamycin) (100 

mL is needed for about 10 dilution series) 
- Pipette 900 µl VMM in 8-9 reaction tubes (corresponding to dilution step) 
- Set up virus dilution to the following scheme in reaction tubes: pipette 100 µl of sample or 

standard in reaction tube, pipette up an down five-times for mixing, pipette 100 µl with a 
new tip in the next reaction tube, continue till the end 

 

  Sample VMM 

Standard 

  

 

    

         150 µL    15 0µL   15 0µL   150 µL   ..... 
 

 
 

C) Virus propagation 
- Wash cell culture plates two-times with 100 µl PBS with 8-channel pipette (emptying 

wash solution in lab tray) 
- Pipette 100 µl virus solution to the 8 wells of the cell culture plate with highest dilution step 
- Pipette only 100 µl VMM (with trypsin and gentamycin)per well  to row 1, 2, 11 and 12 

(Negativ control, boundary effects could be avoided) 
- Dilution steps: HA above 2.7: 103 – 1010 

HA between 2.1-2.7 (standard seed virus for fermentation): 101 – 108 
HA under 2.1: 100 – 107 

 

 

 

 

 

 

- incubate plates with a security advice 1d 37°C, 5% CO2   
 

D) Trypsin addition  
- Put trypsin and genatmycin to the virus (100 ml + 40 µl trypsin + 1 mL genatymcin) 
- Pipette 100 µl to each well (to avoid contamination: pipett from right to left, starting with 

lowest dilution step) 
- Incubate virus plate additionally 1d 37°C, 5% CO2   

 

100 101 102 103 104 105 106 107 108 

 1 2 3 4 5 6 7 8 9 10 11 12 

A VVM VVM 101 102 103 104 105 106 107 108 VMM 
 

VMM 
 

B VMM 
 

VMM 
 101 102 103 104 105 106 107 108 VMM 

 
VMM 

 

C VMM 
 

VMM 
 101 102 103 104 105 106 107 108 VMM 

 
VMM 

 

D VMM 
 

VMM 
 101 102 103 104 105 106 107 108 VMM 

 
VMM 

 

E VMM 
 

VMM 
 101 102 103 104 105 106 107 108 VMM 

 
VMM 

 

F VMM 
 

VMM 
 101 102 103 104 105 106 107 108 VMM 

 
VMM 

 

G VMM 
 

VMM 
 101 102 103 104 105 106 107 108 VMM 

 
VMM 

 

H VMM 
 

VMM 
 101 102 103 104 105 106 107 108 VMM 

 
VMM 
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3.2 Fixation and staining 
A) Preperation of primary antibody 
- Primary antibody of equine influenza A goat serum is a polyclonal antibody against 

equine influenza but also against cell components, therefore antibodies against cell 
components has to be absorpt otherwise they overlap fluorescence of virus antibody  

- wash three-times 1-2 d old confluent cell culture flasks with PBS 
- Put 1 mL of diluted primary antibody to T25 and 3 mL to T75-flask incubate 30 min 37°C 
- Cleaned primary antibody should be stored at -20°C 
 

B) Fixation 
- Decant virus supernatant into a lab tray with 2% glacial acid under the hood and clean it 

up S2 and virus-compatible 
- Pipette 100 µl cold acetone to each well (acetone had to be cooled on not in a fridge) 
- Incubate cell culture plates 30 min on Eis for fixation → virus is now inactivated → 

additional steps could be done outside the hood 
- Wash cell culture plates two-times with PBS (collect and clean it seperately) 

 

C) Staining 
- Dilute cleaned primary antibody of equine influenza A goat serum 1:100 with PBS 
- Dilute the rest of the primary antibody 1:200 
- Pipette 50 µl of primary antibody to each well (with 8-chanel pipette) and incubate 60 min 

37°C 
- Afterwards wash two-times with PBS 
- Dilute secondary-antibody 1:500 with PBS 
- Pipett 5 0µl of secondary-antibody dilution to each well and incubate 60 min 37°C 
- Wash two-times with PBS, afterwards put 100µl PBS to each well 
 

4.0 Anaylsis and calculation 

- Analysis is done with a fluorescence microscope 
- Each well with fluorescent cells (this means with virus) is positive counted (1), each well 

without fluorescent cells is negaitv (0) and noted in the worksheet 
- Calculation is done with the equation of Spearmann and Kärber : 

 

            cumulativ 100 % 
(log virions 100%) + (0.5) -  _____________________________________        = log virions / 100 µL 

             Number of tests (per diltion) 
   

 
Example: 

0: no virus, negative well; 1: virus, positive well 
 
 
 
 

 1 2 3 4 5 6 7 8 9 10 11 12 
A 0 0 1 1 1 1 1 1 1 0 0 0 
B 0 0 1 1 1 1 1 1 1 0 0 0 
C 0 0 1 1 1 1 1 1 0 0 0 0 
D 0 0 1 1 1 1 1 1 0 0 0 0 
E 0 0 1 1 1 1 1 1 0 0 0 0 
F 0 0 1 1 1 1 1 1 1 0 0 0 
G 0 0 1 1 1 1 1 0 0 0 0 0 
H 0 0 1 1 1 1 1 1 1 0 0 0 
             
 0 0 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 0 0 
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Dilution step Number positive wells / 
total amount wells 

Number positive wells 
cumulativ 

10-5 8 / 8 19 
10-6 7 / 8 11 
10-7 4 / 8 4 
10-8 0 / 8 0 

 
Model calculation:                 
(-5)  + 0.5  - 19/8  =   - 6.875 = y ; 106,875+1 virions / mL = 7.58 x 107 virions/mL 
 
5.0 Determination of reference value 
 
For each prepared standard a two-time six-fold determination by two persons have to be 
done. By this procedure the mean value of the standard is determined, which acts as a 
reference value. 
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G. Statistical analysis – normal distribution test after David 
Table G-1: Normal distribution critical values after David (David et al., 1954) 

Sample size 
n 

Lower bound Upper bound 
Level of significance α 

0.005 0.01 0.025 0.05 0.10 0.10 0.05 0.025 0.01 0.005 
3 1.735 1.737 1.745 1.758 1.782 1.997 1.999 2.000 2.000 2.000 
4 1.83 1.87 1.93 1.98 2.04 2.409 2.429 2.439 2.445 2.447 
5 1.98 2.02 2.09 2.15 2.22 2.712 2.753 2.782 2.803 2.813 
6 2.11 2.15 2.22 2.28 2.37 2.949 3.012 3.056 3.095 3.115 
7 2.22 2.26 2.33 2.40 2.49 3.143 3.222 3.282 3.338 3.369 
8 2.31 2.35 2.43 2.50 2.59 3.308 3.399 3.471 3.543 3.585 
9 2.39 2.44 2.51 2.59 2.68 3.449 3.552 3.634 3.720 3.772 
10 2.46 2.51 2.59 2.67 2.76 3.57 3.685 3.777 3.875 3.935 
11 2.53 2.58 2.66 2.74 2.84 3.68 3.80 3.903 4.012 4.079 
12 2.59 2.64 2.72 2.80 2.90 3.78 3.91 4.02 4.134 4.208 
13 2.64 2.70 2.78 2.86 2.96 3.87 4.00 4.12 4.244 4.325 
14 2.70 2.75 2.83 2.92 3.02 .95 4.09 4.21 4.34 4.431 
15 2.74 2.80 2.88 2.97 3.07 4.02 4.17 4.29 4.44 4.53 
16 2.79 2.84 2.93 3.01 3.12 4.09 4.24 4.37 4.52 4.62 
17 2.83 2.88 2.97 3.06 3.17 4.15 4.31 4.44 4.60 4.70 
18 2.87 2.92 3.01 3.10 3.21 4.21 4.37 4.51 4.67 4.78 
19 2.90 2.96 3.05 3.14 3.25 4.27 4.43 4.57 4.74 4.85 
20 2.94 2.99 3.09 3.18 3.29 4.32 4.49 4.63 4.80 4.91 
25 3.09 3.15 3.24 3.34 3.45 4.53 4.71 4.87 5.06 5.19 
30 3.21 3.27 3.37 3.47 3.59 4.70 4.89 5.06 5.26 5.40 
35 3.32 3.38 3.48 3.58 3.70 4.84 5.04 5.21 5.42 5.57 
40 3.41 3.47 3.57 3.67 3.79 4.96 5.16 5.34 5.56 5.71 
45 3.49 3.55 3.66 3.75 3.88 5.06 5.26 5.45 5.67 5.83 
50 3.56 3.62 3.73 3.83 3.95 5.14 5.35 5.54 5.77 5.93 
55 3.62 3.69 3.80 3.90 4.02 5.22 5.43 5.63 5.86 6.02 
60 3.68 3.75 3.86 3.96 4.08 5.29 5.51 5.70 5.94 6.10 
65 3.74 3.80 3.91 4.01 4.14 5.35 5.57 5.77 6.01 6.17 
70 3.79 3.85 3.96 4.06 4.19 5.41 5.63 5.83 6.07 6.24 
75 3.83 3.90 4.01 4.11 4.24 5.46 5.68 5.88 6.13 6.30 
80 3.88 3.94 4.05 4.16 4.28 5.51 5.73 5.93 6.18 6.35 
85 3.92 3.99 4.09 4.20 4.33 5.56 5.78 5.98 6.23 6.40 
90 3.96 4.02 4.13 4.24 4.36 5.60 5.82 6.03 6.27 6.45 
95 3.99 4.06 4.17 4.27 4.40 5.64 5.86 6.07 6.32 6.49 

100 4.03 4.10 4.21 4.31 4.44 5.68 5.90 6.11 6.36 6.53 
150 4.32 4.38 4.48 4.59 4.72 5.96 6.18 6.39 6.64 6.82 
200 4.53 4.59 4.68 4.78 4.90 6.15 6.39 6.60 6.84 7.01 
500 5.06 5.13 5.25 5.37 5.49 6.72 6.94 7.15 7.42 7.60 
1000 5.50 5.57 5.68 5.79 5.92 7.11 7.33 7.54 7.80 7.99 
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H. Detailed raw-data of viral RNA time course experiments  
Table H-1: Raw data of Cq, viral RNA molecule number and HA titer of segment 4 (HA) 

hpi 

[h] 

vRNA(-) cRNA(+) vmRNA(+) Log HA 

[Units/100 µL] Cq Molecule/cell Cq Molecule/cell Cq Molecule/cell 
0 20.12 86.8 31.23 0.1 28.81 0.2 0.0 
0.5 20.92 50.5 30.53 0.2 28.35 0.3 0.0 
1 22.25 20.56 29.32 0.2 26.51 1.0 0.0 
1.5 22.83 13.9 27.55 0.2 24.98 2.8 0.0 
2 22.31 19.7 24.59 0.4 21.76 22.9 0.0 
2.5 22.15 22.0 22.99 14.6 20.28 60.7 0.0 
3 21.32 38.5 21.70 9.2 19.10 132.3 0.0 
3.5 20.84 53.3 20.79 53.5 18.18 241.9 0.0 
4 18.07 347.0 18.05 102.8 15.21 1715.0 0.0 
5 15.84 1567.3 16.34 3963.0 14.78 2266.5 0.0 
6 16.35 1110.2 16.77 2385.9 15.52 1395.2 0.0 
7 14.11 5048.7 15.66 4142.8 14.08 3602.2 0.6 
8 16.79 824.5 17.83 1144.0 15.98 1028.2 0.6 
9 14.37 4234.7 16.57 2568.1 14.68 2431.5 1.2 
10 14.31 4410.1 16.06 3336.2 14.84 2183.5 1.2 
11 14.68 3433.9 16.56 3164.7 15.15 1780.2 1.8 
12 14.14 4947.3 16.15 3250.7 14.32 3075.4 2.1 
24 14.90 2959.3 18.89 293.7 16.62 677.5 2.7 
 

Table H-2: Raw data of Cq, viral RNA molecule number and HA titer of segment 6 (NA) 

hpi 

[h] 

vRNA(-) cRNA(+) mRNA(+) Log HA 

[Units/100 µL] Cq Molecule/cell Cq Molecule/cell Cq Molecule/cell 
0 16.63 59.0 22.80 0.7 23.40 1.3 0.0 
0.5 17.20 40.6 22.83 0 22.17 2.8 0.0 
1 18.77 14.4 22.03 0 21.53 4.3 0.0 
1.5 19.03 12.1 21.63 0 20.93 6.3 0.0 
2 19.37 9.7 20.33 0.5 20.07 11.1 0.0 
2.5 18.03 23.4 18.90 0 18.27 35.7 0.0 
3 17.43 34.8 17.33 13.0 16.90 86.8 0.0 
3.5 16.70 56.4 16.50 25.6 16.00 155.8 0.0 
4 14.37 263.1 14.00 440.6 13.80 651.7 0.0 
5 11.67 1562.1 12.17 1680.9 11.80 2393.3 0.0 
6 12.20 1098.7 12.90 1073.6 12.70 1332.8 0.0 
7 10.17 4202.5 11.57 3230.4 11.43 3037.9 0.6 
8 12.40 962.9 13.60 628.5 13.43 827.2 0.6 
9 9.90 5010.9 11.80 2747.2 11.70 2554.1 1.2 
10 9.87 5122.3 11.87 1667.8 11.27 3385.7 1.2 
11 10.23 4021.7 12.30 1600.9 12.00 2101.3 1.8 
12 9.80 5352.7 12.13 1830.9 11.83 2341.9 2.1 
24 9.87 5122.3 12.77 1343.9 12.73 1304.2 2.7 
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Table H-3: Raw data of Cq, viral RNA molecule number and HA titer of segment 7 (M) 

hpi 

[h] 

vRNA(-) cRNA(+) vmRNA(+) Log HA 

[Units/100 µL] Cq Molecule/cell Cq Molecule/cell Cq Molecule/cell 
0 20.03 53.5 28.68 0.1 29.20 0.1 0.0 
0.5 20.30 45.0 27.76 0.1 28.46 0.2 0.0 
1 21.49 20.8 26.92 0.4 28.53 0.2 0.0 
1.5 21.28 23.8 24.6 1.7 26.62 0.8 0.0 
2 21.67 18.4 24.27 1.1 25.35 2.0 0.0 
2.5 21.99 15.0 21.83 8.9 23.95 5.3 0.0 
3 21.25 24.3 21.00 12.6 22.89 11.0 0.0 
3.5 20.46 40.6 19.36 39.3 21.68 25.2 0.0 
4 17.83 225.4 16.99 111.3 18.94 164.9 0.0 
5 15.28 1186.9 12.16 1815.1 14.48 3533.0 0.0 
6 15.58 978.1 12.90 1111.7 15.11 2291.7 0.0 
7 13.33 4253.6 11.54 2098.1 13.78 5741.5 0.6 
8 14.74 1691.8 13.23 640.1 15.21 2139.5 0.6 
9 14.60 1857.6 11.76 1374.9 13.85 5446.9 1.2 
10 13.88 2964.8 11.47 2153.4 13.71 5996.9 1.2 
11 13.52 3757.8 11.84 2011.7 14.14 4483.3 1.8 
12 13.61 3535.8 11.56 1333.0 13.62 6379.4 2.1 
24 13.61 3535.8 12.33 855.9 14.32 3952.7 2.7 
 

Table H-4: Raw data of Cq, viral RNA molecule number and HA titer of segment 8 (NS) 

hpi 

[h] 

vRNA(-) cRNA(+) vmRNA(+) Log HA 

[Units/100 µL] Cq Molecule/cell Cq Molecule/cell Cq Molecule/cell 
0 18.07 63.1 26.70 0.16 27.73 0.1 0.0 
0.5 18.43 49.7 22.83 1.10 22.73 1.7 0.0 
1 19.70 21.7 21.80 1.95 21.63 3.6 0.0 
1.5 20.60 12.1 20.87 3.83 20.77 6.6 0.0 
2 19.80 20.4 19.27 10.08 19.13 20.2 0.0 
2.5 18.40 50.8 16.70 55.46 16.63 113.1 0.0 
3 17.53 89.3 15.70 25.49 15.20 303.4 0.0 
3.5 17.10 118.5 14.47 199.19 14.33 551.1 0.0 
4 15.00 466.4 12.37 27.47 11.83 3083.1 0.0 
5 13.17 1542.0 10.97 747.15 10.63 7045.6 0.0 
6 13.70 1089.0 11.77 1025.66 11.63 3538.5 0.0 
7 11.67 4102.3 10.93 1238.99 10.70 6729.4 0.6 
8 13.77 1042.6 13.37 17.21 12.83 1548.4 0.6 
9 11.70 4014.1 11.33 624.98 11.00 5473.3 1.2 
10 11.63 4192.5 11.37 1194.83 11.20 4769.0 1.2 
11 12.07 3160.2 12.07 431.53 11.73 3303.0 1.8 
12 11.70 4014.1 11.97 202.02 11.53 3790.7 2.1 
24 12.00 3300.6 14.20 187.33 13.97 709.4 2.7 
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