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Abstract: In this paper we study formation control of a network of communicating mobile
agents with double integrator dynamics. All agents run a consensus algorithm, several leader
agents are further subject to an external input. We put this problem in a control theoretical
framework and show that the controllability of the entire system via external control input
depends only on the controllability of the follower system through the leaders. We then
show necessary and sufficient conditions for the follower system to be controllable and relate
the obtained conditions to the existing results on topological properties of the follower
communication graph.
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1. INTRODUCTION

In a network of communicating mobile agents, it is of-
ten desirable that these agents autonomously reach an
agreement upon a state variable. The achieved value is
called consensus value and the network is said to achieve
consensus. During the last decade the problem of finding
consensus in networks and its applications have received
a lot of attention. The research is inspired by flocking
of birds and motivated by a wide variety of applications,
such as formation control of unmanned air and underwater
vehicles, mobile robots, satellites or sensor networks. The
consensus mechanisms for networks of identical agents are
well-known. For the single integrator consensus, that is,
the case where all agents have single integrator dynamics,
many consensus results and applications can be found in
Ren and Beard (2007), Olfati-Saber et al. (2007), Tanner
et al. (2007) and the references therein. Consensus algo-
rithms for agents with higher order integrator dynamics
have been studied for example in Ren and Atkins (2005)
and Ren et al. (2006).

Usually the desired consensus value is assumed to be the
average of the initial states of all agents. However, in some
applications it is preferable that the system converges to
a given reference value that is not available to all agents.
This value can be enforced on the system via one or several
leader agents controlled externally. Tanner (2004) has in-
troduced the leader-follower algorithm for single integrator
consensus networks and derived controllability criteria for
the single leader case. Rahmani et al. (2009) and Ji et al.
(2009) have related these criteria to topological properties
of the communication graph. This work has been continued
e. g. by Borsche and Attia (2010), where the authors
also show a statistical approach for choosing the optimal
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leader agent. Björkenstam et al. (2006) have suggested
a controller design for leader-follower systems. Ren and
Sorensen (2006) have presented a control architecture for
large scale leader-follower systems.

So far the research has focused on agents with single
integrator dynamics. In this contribution we would like to
extend the notion of leader-follower system to agents with
double integrator dynamics. Our work is motivated by the
fact that many real-life applications cannot be modelled
as single integrator systems. For example, some mobile
robots can be feedback linearised and then described as
having double integrator dynamics, which naturally leads
to an extended algorithm that enforces consensus on both
position and velocity of the agents.

We assume that the leader agents receive both information
from the consensus algorithm and an additional control
input. We use the consensus algorithm introduced in Ren
and Atkins (2005) and show that the consensus value can
be controlled through external input under the condition
that the followers are controllable by the leaders. We then
derive controllability conditions for the follower network
with double integrator dynamics and relate them to the
topological properties of the graph. We show that these
conditions are both necessary and sufficient and that they
depend only on the form of the communication topology.

This paper is organized as follows: In Section 2 we intro-
duce our notation, the system model and the consensus
algorithm used, as well as some basic notions on graph
theory. In Section 3 we formalise the notion of a leader-
follower-network for the double integrator consensus al-
gorithm. Section 4 contains the main result: In Section
4.1 we show that a neccessary and sufficient condition for
the network to be controllable is that the followers are
controllable by the leaders. In Section 4.2 we then derive
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conditions for the controllability of the follower network
and relate them to the existing results for leader-follower
networks with single integrator dynamics.

2. PRELIMINARIES

In this section we introduce our notation and the system
model. In order to make this paper self-contained we
further present some existing definitions and results in
algebraic graph theory and consensus. The results pro-
vided in Sections 2.3 and 2.4 are taken from the respective
literature.

2.1 Notation

Throughout this paper we write Im×m for the m × m
identity matrix and 1k×m and 0k×m for the one and zero
matrix of size k × m, respectively. If the dimension is
clear from the context, we simply write I, 1, 0. We write
lowercase latin letters for vectors. We write uppercase
letters for matrices. If A is a block matrix, then aij is the
(i, j)th entry of A and Ai,j is the (i, j)th block (matrix)
of A. The dimension of Ai,j will be generally clear from
the context. If we need to address the whole jth block row
(column) of a matrix, we use the notation Aj,: (A:,j). By
writing Aj we denote A to the power of j. We reserve n for
the number of agents in the formation, k for the number of
follower agents and m for the number of leaders. We write
rank(A) for the rank of matrix A.

2.2 Modelling

In this contribution we consider a group of n mobile
agents moving in a two- or three-dimensional space. We
assume that the individual agent’s dynamics is decoupled
along the different dimensions, i. e. that consensus in
each direction can be investigated as a one-dimensional
problem.

We denote the position of agent i as xi(t) ∈ R, i ∈
{1 . . . n}, t ∈ R+, its velocity as ẋi(t) and its acceler-
ation as ẍi(t). The positions (resp. velocities and accel-
erations) of all agents are collected in the vector x(t) =
(x1(t), x2(t), . . . , xn(t))T (resp. ẋ(t) and ẍ(t)). The agents
have double integrator dynamics, i. e. ẍ(t) = u(t), where
u(t) ∈ Rn is some control input. Please note that in the
following we will not explicitly state the time-dependence
for x and u. The agents move in a common reference frame
and can communicate their positions and velocities along
the same communication topology.

2.3 Algebraic Graph Theory

The high-level properties of a network can be modelled by
a communication graph G = (V,E). For further details on
graph theory see e. g. Godsil and Royle (2001). The set
of nodes is given by V = {v1, v2, . . . , vn} and corresponds
to the different agents and the set of edges E ⊂ V × V
represents the communication links between the units. An
edge εij in E between two nodes signifies that vi can
transmit information to vj . A graph is called undirected
if εij ∈ E ⇔ εji ∈ E, otherwise it is called directed. We
further require that the graphs do not have self-loops, i. e.

that there is no edge εii. The union of graphs G = G1∪G2

is defined for graphs G1 = (V,E1), G2 = (V,E2) on the
same set of nodes as G = (V,E1 ∪ E2). A path between
two nodes is a set of edges that connects these two nodes.
A graph is connected if there is a path between every two
nodes. If the graph is disconnected, then it has several
connected components.

A graph can be expressed in terms of an adjacency matrix
A(G), with the entries aij = 1 if an edge from vj to vi
exists and aij = 0 otherwise. The degree of a node is given
by d(vi) =

∑
j aij . Let D(G) = diag(d(vi)) be the degree

matrix. Then the graph Laplacian L(G) is given as

L(G) = D(G)−A(G). (1)

When clear, we will write L instead of L(G). If a graph is
undirected, L(G) and A(G) are symmetric.

2.4 Consensus Algorithm

A one-dimensional consensus algorithm for agents with
double integrator dynamics is given by(

ẋ
ẍ

)
=

(
0 I
−L −L

)(
x
ẋ

)
(2)

where L is the Laplacian of the communication graph of n
agents and I and 0 are the n×n identity and zero matrices.
As mentioned in Section 2.2, we assume that our system
is decoupled along the different dimensions and consider
the one-dimensional case.

This algorithm is very intuitive and was suggested in
Ren and Atkins (2005) for agents with double integrator
dynamics. We say that the algorithm achieves consensus
asymptotically if as t→∞ |xi−xj | → 0 and |ẋi− ẋj | → 0
for all i, j ∈ {1, . . . , n}. Ren and Atkins (2005) show that
for m ≤ 2, (2) always achieves consensus if L is the
Laplacian of a connected undirected graph.

We can now define the consensus based leader-follower
system.

3. HIGHER ORDER LEADER-FOLLOWER SYSTEM
MODEL

In this section we are considering a network of n agents
with double integrator dynamics running the consensus
algorithm (2). However, we now assume that there are
two different kinds of agents in the network: some that
strictly follow the consensus protocol and some that can
be controlled externally. We call the agents followers and
leaders, respectively. For the single integrator consensus
this approach has first been introduced by Tanner (2004).
As a first step, we would like to extend his approach to
higher order systems.

Let there be k follower and m leader agents in the network,
such that m+k = n, denoted by the indices f and l. Then
the graph Laplacian can be partitioned as

L =

(
Lf llf
lfl Ll

)
(3)

Here Lf and Ll are k× k and m×m symmetric matrices,
however they generally no longer have Laplacian matrix
properties. The matrix llf denotes the information flow
from leaders to followers, and the matrix lfl the informa-
tion flow from followers to leaders.
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Analogously we can rewrite the state vector as

x = (xf , ẋf , xl, ẋl)
T , (4)

where xf , ẋf ∈ Rk×1, xl, ẋl ∈ Rm×1. With this and the
partitioning (3) we can rewrite (2) as the following control
system

ẋ =

(
A B
C D

)
x+

(
0
F

)
v (5)

where

A =

(
0 I
−Lf −Lf

)
, (6)

B =

(
0 0
−llf −llf

)
, C =

(
0 0
−lfl −lfl

)
, (7)

D =

(
0 I
−Ll −Ll

)
, (8)

F =

(
0m×m

Im×m

)
. (9)

Note that A ∈ R2k×2k, B ∈ R2k×2m, C ∈ R2m×2k, and
D ∈ R2m×2m. We now consider a MIMO system where
leaders act as a controller for the followers of the system
and are themselves controlled by an external control input
v = (v1, . . . , vm) = f(xf , ẋf , xl, ẋl). The flow chart of this
system is shown in Fig. 1.
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Fig. 1. Flow chart of the double integrator leader-follower
control system.

One of the main challenges of the leader-follower setup is
to determine agents that can act as leaders. Clearly, only
such agents qualify as leaders that can make the system
controllable. For agents with single integrator dynamics
it is generally assumed that xl = u can be taken to be
a continuous, but otherwise free control input (Tanner
(2004), Björkenstam et al. (2006)), which leads to a
problem that only depends on the controllability of (A,B).
This is no longer possible with agents that have double
integrator dynamics, since we must bear in mind that the
leaders are constrained by their own dynamics and cannot
move freely in space. Therefore we must instead study
whether the whole network with the given dynamics is
controllable through a free control input ẍl = ü = v. The
dependence between the leader and the follower dynamics
is illustrated in Fig. 1. We show that with the choice of F
as in (9) v is, indeed, sufficient in order to control the
system under the condition that (A,B) is controllable.
This result is presented in Section 4.1. In Section 4.2 we

further derive topological conditions for the controllability
of the follower system, i. e. of (A,B) and relate them to
the single integrator case.

4. MAIN RESULT

We will now show under which conditions the leader-
follower network of agents that run a consensus protocol
can be controlled through the leaders.

4.1 Controllability Via External Input

Denote the system matrix by

∆ =

(
A B
C D

)
(10)

and the input matrix by

Γ =

(
0
F

)
. (11)

where the matrices are given by (6)-(9). With the current
choice of F the system (D,F ) is always controllable. It is
particularly independent of the form of Ll.

We obtain the following result for the controllability of
the leader-follower system (∆,Γ). Note that we define
controllability in the usual sense, i. e. we say that the
system is controllable if for any initial state there exists
a (free) control input that transfers the initial state to any
final state in finite time.

Lemma 1. System (∆,Γ) is controllable if and only if
(A,B) is controllable.

Proof . In order to prove Lemma 1 we will use the Hautus
test. Remember that system (∆,Γ) is controllable through
v if and only if

rank(C(s)) = 2n ∀s ∈ C, (12)

where

C(s) =

(
sI −A −B 0
−C sI −D F

)
(13)

i. e. if the rows of (13) are linearly independent. We see
directly that if (A,B) is not controllable, then (13) will be
rank deficient for some s. Hence follows the necessity.

For sufficiency we must study the structure of (13). With
the matrices (6)-(9) we obtain

C(s) =



sI −I 0 0 0
Lf Lf + sI llf llf 0
0 0 sI −I 0
lfl lfl Ll Ll + sI I


 . (14)

We see directly that the rows in the last block row
are linearly independent of all the other rows. It thus
remains to show that for any s ∈ C and any vector
w = (w1, w2, w3) ∈ C1×2n

w

(
sI −I 0 0
Lf Lf + sI llf llf
0 0 sI −I

)
= 0 (15)

implies w = 0. Writing (15) as a set of linear equations we
obtain

w1s+ w2Lf = 0 (16)

−w1 + w2(Lf + sI) = 0 (17)
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w2llf + w3s = 0 (18)

w2llf − w3 = 0. (19)

For all s 6= −1, (18) and (19) imply w3 = 0. Clearly,
(w1, w2, 0)C(s) = 0 if and only if

(w1 w2) ( sI −A B ) = 0. (20)

The latter imples (w1, w2) = 0 as (A,B) is controllable.

For s = −1, (16) and (17) become

−w1 + w2Lf = 0 (21)

−w1 + w2Lf − w2 = 0. (22)

Therefore w2 = 0, w1 = 0, and, because of (19), w3 = 0.

�

4.2 Controllability of the Follower System

Having shown that the leader-follower system with double
integrator dynamics is controllable if and only if (A,B) is
controllable, we now derive controllability conditions for
the follower system. Recall that (A,B) is controllable if
and only if rank(D) = 2k, where

D =
[
B AB A2B . . . A2k−1B

]
(23)

is the controllability matrix. Obviously(
A,B =

(
0 0
−llf −llf

))
(24)

is controllable if and only if(
A, b =

(
0
−llf

))
(25)

is controllable.

Let us first recall the necessary and sufficient conditions
for controllability of (Lf , llf ) found by Tanner (2004):

Lemma 2. (Tanner (2004)). System (Lf , llf ) is control-
lable if and only if all eigenvalues of Lf are distinct and
llf is not orthogonal to the eigenvectors of Lf .

These conditions have been formulated for one leader, i. e.
for the case when llf is a vector. We present the following
extension of Lemma 2 to the leader-follower system with
m leaders and k followers and double integrator dynamics.

Lemma 3. Consider a system of m leader and k follower
agents, where m + k = n is the number of agents in the
network. Let Lf , llf be the partitioning of the Laplacian
L as in (3) and let the matrices A, B of the multi-
agent system be given by (6)-(7). Let p ≤ m be the
number of linearly independent columns of llf . The system
(A,B) is controllable if and only if no eigenvector of Lf is
simultaneously orthogonal to all columns of llf , and Lf has
at most p identical eigenvalues. Particularly, the system
(A,B) is controllable with one leader if and only if llf is
not orthogonal to any eigenvector of Lf and all eigenvalues
of Lf are distinct.

Proof . To prove Lemma 3 we will again use the Hautus
test.

We know that (A,B) is controllable if and only if (A, b)
is controllable, where b = (01×k,−lTlf )T . We obtain the
following rank condition:

rank(C̃(s)) = 2k ∀s ∈ C (26)

where
C̃(s) = ( sI −A b ) (27)

if and only if (A, b) is controllable. Inserting A and b, we
obtain

C̃(s) =

(
sI −I 0
Lf sI + Lf −llf

)
. (28)

Since −Lf is a symmetric matrix, we can make use of the
transformation to diagonal form, −Lf = UV UT , where
U is the orthonormal matrix of all the eigenvectors of
−Lf and V = diag(−λi), the diagonal matrix of the real
eigenvalues of Lf . Then we obtain

C̃(s) =

(
U 0
0 U

)(
sUT −UT 0
V UT (sI + V )UT UT llf

)

︸ ︷︷ ︸
C̄

. (29)

Clearly, C̃(s) has full rank if and only if C̄(s) has full rank.
Consider a vector w = (w1, w2), w ∈ C1×2k. C̄(s) has full
rank if and only if for any s ∈ C

wC̄(s) = 0 (30)

implies that w = 0. Writing (30) as a set of linear equations
we obtain

(w1s+ w2V )UT = 0 (31)

(−w1 + w2(sI + V ))UT = 0 (32)

w2U
T llf = 0 (33)

and (A, b) is controllable if and only if (31)-(33) has no
nontrivial solution. We will now show that the conditions
postulated in the Lemma are both sufficient and necessary
for (31)-(33) to have w = 0 as the only solution.

(sufficiency) Since UT is an orthonormal matrix it is
invertible. Therefore we can equivalently write (31) and
(32) as

w1s+ w2V = 0 (34)
−w1 + w2(sI + V ) = 0. (35)

Combining (34) and (35) we obtain

w2

(
V + V s+ Is2

)
︸ ︷︷ ︸

Z(s)

= 0 (36)

Therefore it must hold that either w2 = 0, Z(s) = 0 or
w2 ⊥ Z(s), where

Z(s) = diag
(
vi + vis+ s2 = 0

)
. (37)

We see directly that Z(s) 6= 0 ∀s ∈ C if at least two entries
of V are distinct. If w2 = 0 then with (34) we obtain w = 0,
which is the trivial solution. Consider now the condition
that w2 ⊥ Z(s). Since Z(s) is diagonal, the orthogonality
condition can be satisfied if and only if at least one entry
of Z(s) is zero.

Assume that all entries of V are distinct. Then for any
i ∈ {1, . . . , k} there is an si such that vi + visi + s2

i = 0,
i. e. the ith diagonal entry of Z(si) is zero. On the other
hand we see directly that the other diagonal entries of
Z(si) are nonzero. I. e. w2Z(si) = 0 if and only if w2 =
(0, . . . , 0, αi, 0, . . . , 0) with αi ∈ C in the ith place. With
this (33) becomes

(0 . . . 0 αi 0 . . . 0)UT llf = 0 (38)

which is satisfied if and only if the ith row of UT llf
is zero. Therefore if all entries of V are distinct, (A, b)
is controllable if and only if no eigenvector of Lf is
simultaneously orthogonal to all columns of llf .

(necessity)We will now show that if (A, b) is controllable
and rank(llf ) = p, then V must not have more than p
identical eigenvalues. This will be done by contradiction.
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Fig. 2. A path graph. The formation is controllable
through agent 4.

If (A, b) is controllable, then it holds that the only so-
lution to (31)-(33) is w = 0. First let two entries of
V be the same. WOLG let vi = vj for some i 6= j.
Then we see directly that there is an sj such that two
rows of Z(sj) are identically zero and we obtain w2 =
(0, . . . , 0, αi, 0, . . . , 0, αj , 0, . . . , 0) with αi, αj ∈ C. With
this (33) becomes

(0 . . . 0 αi 0 . . . 0 αj 0 . . . 0)UT llf = 0. (39)

If p = 1, i. e. llf has only one linearly independent
column, then we can always find some αi, αj such that
(39) is satisfied, which is a contradiction to the assumption
that w = 0 is the only solution. On the other hand, if
llf has 1 < p ≤ k linearly independent colunms, then
rank(UT llf ) = p and (39) does not have a nontrivial
solution.

Now let p ≥ 2, i. e. llf has p linearly independent colunms.
Since U has full rank, rank(UT llf ) = rank(llf ) = p,
1 ≤ p ≤ k. Rewriting (33) as

w2 ⊥ UT llf , (40)

we see that (40) can be satisfied by a w2 6= 0 if and only
if w2 has at least p + 1 degrees of freedom. As w2 must
also satisfy (36) for some sj ∈ C, this means that Z(s)
has at least p+ 1 zero diagonal entries for some sj . This is
possible only if V has at least p+ 1 identical eigenvalues.
Therefore if (A, b) is controllable and llf has p linearly
independent columns, then V must not have more than p
identical eigenvalues. �

Remark 1. For a slightly different problem formulation,
the necessity of Lemma 3 has been stated independently
in Jiang et al. (2009) without proof.

We have therefore shown that controllability of the double
order leader-follower network depends only on the topol-
ogy of the communication graph. This particularly means
that the topological conditions found in Rahmani et al.
(2009), Ji et al. (2009) and Borsche and Attia (2010)
for single leader systems can be applied to systems with
double integrator dynamics.

Example 1. Consider the path graph with four agents
shown in Fig. 2. The Laplacian of the graph is given by

L =




1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1


 (41)

Choosing agent 4 as the leader and agents 1-3 as the
followers we obtain

Lf =

(
1 −1 0
−1 2 −1
0 −1 2

)
llf =

(
0
0
−1

)
(42)

The controllability matrix of this system is then given by

D =




0 0 0 1 −3 5
0 0 1 −3 6 −9
0 1 −2 3 −4 5
0 0 1 −3 5 −5
0 1 −3 6 −9 9
1 −2 3 −4 5 −5




(43)

which has full rank.

This corresponds with the result of Tanner (2004) that a
path graph is always controllable in the single integrator
case.

Example 2. Consider the complete graph with four agents
shown in Fig. 3. The Laplacian of this graph is given by

L =




3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3


 . (44)

Choosing agent 4 as the leader and agents 1-3 as the
followers we obtain

Lf =

(
3 −1 −1
−1 3 −1
−1 −1 3

)
llf =

(−1
−1
−1

)
. (45)

The eigenvalues of Lf are given by {1, 4, 4}, i. e. Lf is
not controllable with one leader according to 3. Indeed we
obtain

D =




0 −1 1 0 −1 1
0 −1 1 0 −1 1
0 −1 1 0 −1 1
−1 1 0 −1 1 0
−1 1 0 −1 1 0
−1 1 0 −1 1 0




(46)

which has rank 2. We further see that choosing two leaders
does not make the system controllable, as rank(llf ) = 1
for any choice. This corresponds with the result of Tanner
(2004) that the complete graph is uncontrollable by less
than k − 1 leaders in the single integrator case.

5. CONCLUSION

In this paper we have introduced the multi-agent leader-
follower system with double integrator dynamics. We have
shown that the necessary and sufficient conditions for
a group of followers to be controllable by a group of
leaders are the same as for agents with single integrator
dynamics. This particularly means that all conditions on
the communication topology that have been formulated
for agents with single integrator dynamics apply to agents
with double integrator dynamics as well. We have further-
more shown that the consensus value of the formation can
be controlled via the leaders independently of the fact

1

4

2 3

Fig. 3. A complete graph. The formation is uncontrollable
with less than three leaders.
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that the movement of the leaders is restricted by their
dynamics.
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