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The pro-inflammatory cytokines interleukin 1 (IL-1) and 6 (IL-6) are crucially involved in the

regulation of a multitude of physiological processes, in particular coordinating the immune

response upon bacterial infection and tissue injury. Both interleukins induce complex signalling

cascades and trigger the production of mitogenic, pro-proliferative, anti-apoptotic, chemotactic,

and pro-angiogenic factors thereby affecting the delicate balance between regeneration vs. invasive

growth, tumourigenesis and metastasis. Moreover, several links to insulin resistance have been

found within their associated signalling networks. Focusing on this from a systems biology

perspective, we introduce comprehensive large-scale network models of IL-1 and IL-6 signalling

which are based on a logical modelling approach and reflect the current biological knowledge.

Theoretical network analysis enabled us to uncover general topological features and to make

testable predictions on the stimulus-response behaviour of the networks. In this context,

non-intuitive network-wide species dependencies as well as structures of regulatory feedback

and feed-forward mechanisms could be characterised. By integrating high-throughput

phosphoproteomic data from primary human hepatocytes we optimised the model structures to

obtain models with high prediction accuracy for hepatocytes. Our model-based data analysis, for

instance, suggested model modifications regarding (i) Akt contribution to IL-1-stimulated p38

MAPK activation and (ii) insignificant p38 MAPK activation in response to IL-6. In light of the

presented results and in conjunction with the detailed model documentations, both models hold

great potential for theoretical studies and practical applications.

Introduction

The two pleiotropic factors of inflammatory response, inter-

leukin 1 (IL-1) and 6 (IL-6) are induced and expressed by a

wide range of cell types, including monocytes, endothelial

cells, and fibroblasts in response to, for example, endotoxic

stimulus exposure or stimulation with initiators of sequential

inflammatory cytokine release such as tumour necrosis factor

(TNF) and interferon (IFN) isoforms.1–5 Both interleukins

control hepatic acute-phase protein (APP) secretion6–10 during

innate immune response upon bacterial infection and tissue

injury, facilitating regeneration and wound healing. The

IL-1-induced release of potent immune attractors and/or chemo-

kines (e.g. CCL2 (MCP1), IL-8)11,12 triggers transmigration of

immunocompetent cells (e.g. activated macrophages, granulo-

cytes) to sites of inflammation. Moreover, IL-1 and IL-6 may

effect the delicate balance between regeneration vs. invasive

growth, tumourigenesis, and metastasis13,14 in conjunction with

hepatitis, ischemia, and cirrhosis15,16 by up-regulating the produc-

tion of mitogenic, pro-proliferative, anti-apoptotic, chemotactic,

and pro-angiogenic growth factors like HGF.17–19 Apart from

that, JNK and IKKb activation by IL-120–22 as well as SOCS

expression23,24 or SHP2 phosphatase25 and ERK kinase26 activi-

ties induced by IL-6 stimulation link these ligands to insulin

desensitisation and subsequent insulin resistance.

In this work, we introduce large-scale Boolean network models

of IL-1 and IL-6 signalling manually compiled from literature

and database knowledge. Comprehensive pathway diagrams

such as the IL-1 signalling map by Kracht et al.27,28 served as

starting points and valuable information sources for model

construction. The fact that both interleukins share common

signalling cascades and effectors (e.g. PI3K/Akt, MEK1/ERK,

SOCS1/3) prompted us to study their associated signal transduc-

tion networks in parallel. A qualitative (parameter-free) model-

ling approach previously applied to T cell receptor29 and EGFR/

ErbB signalling30 was adopted, providing the mathematical
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framework for the two ‘‘master models’’ represented here.

Subsequent network analysis aimed at the following three

major objectives: (i) examination of general IL-1/IL-6 network

properties, (ii) analysis of crosstalk strategies of both cytokines

as well as their influences on HGF- and insulin-induced

signalling pathways, and (iii) comparison of qualitative model

predictions with phosphoproteomic data from primary human

hepatocytes to delineate hepatocellular specifics within IL-1

and IL-6 signal propagation.

Each model comprises more than 70 nodes (e.g. scaffold

proteins, kinases, transcription factors) and 80 interactions.

The high number of species and reactions along with insuffi-

cient information on reaction kinetics and protein concentra-

tions impedes quantitative and time-resolved descriptions of

large-scale signalling networks by ordinary differential equations

(ODEs). Consequently, our models focus on the wiring diagrams

of as well as Boolean relationships in IL-1 and IL-6 signalling.

This representation not only suits to uncover major players and

interactions but also to reveal network-wide interdependencies.

Furthermore, it serves as an ‘‘executable pathway map’’ to

study stimulus-response (input–output) behaviours or to com-

pute minimal intervention sets (MIS)31 that enforce a predefined

cellular response.

The literature-derived network models presented here

capture the current state of biological knowledge concerning

IL-1 and IL-6 signalling pathways to an extent that has not been

described before, particularly regarding IL-6. We validated the

network structures by means of high-throughput experimental

data from primary human hepatocytes exposed to specific

ligand/intracellular kinase inhibitor combinations.32 Detected

discrepancies between data and ‘‘master model’’ predictions

were used for topological optimisation to obtain specific

models reflecting the hepatocellular phenotype.

Results

As a first step, we reconstructed two Boolean ‘‘master models’’

for IL-1 (model M1; Fig. 1) and IL-6 (model M2; Fig. 2) by

merging biological knowledge from various cell types as

provided by databases and scientific literature (see supplemen-

tary model documentations, ESIw). Both models are represen-

ted as logical interaction hypergraphs (LIHs, cf. ‘‘Methods/

Model set-up’’) allowing efficient visualisation and storage

of logical relationships.31 Excluding dummy variables and

reservoirs (cf. ‘‘Methods’’), M1 (M2) contains 97 (75) nodes

or species and 113 (84) interactions. 17 (15) nodes are inputs

to the model not regulated within the scope of the network

(e.g. ligands, receptor subunits, and regulatory phosphatases)

and therefore predefined by default values (see Tables S3.1

and S4.1, ESIw) during simulations. 12 (12) nodes represent

outputs, mainly depicting APPs, cytokines, and transcription

factors. Each interaction was additionally characterised by a

confidence level given in Tables S3.2 and S4.2 (ESIw) and

colour-coded in Fig. 1 and 2, denoting whether an effect has

already been shown (with respect to cited sources) for hepato-

cytes or for other cell types stimulated with IL-1 or IL-6. 11 (8)

interactions were integrated by means of incomplete truth table

(ITT) operators as physiological evidence for a clear distinc-

tion between AND or OR connections could not be derived

from the literature. Furthermore, we classified 21 (16) inter-

actions as secondary or ‘‘post-initial’’ events (e.g. interactions

closing feedback loops), therefore setting their respective

relevance parameter to t = 2 (see also ‘‘Methods/Model set-up’’).

The logical analysis represented here principally focused on

initial signal propagation scenarios and how they result in

transcriptional activity and/or gene expression. ‘‘t = 2’’

interactions indicate effects that do not influence the initial

systemic behaviour but may contribute to system dynamics

at later time points. Nevertheless, we kept those events in the

model, e.g. for studying the feedback structure of the net-

works, whereas excluded them when doing logical simulations.

Importantly, as described by Klamt et al.,30,31 a Boolean

model can be analysed either directly by using its logical

description or with respect to its underlying interaction graph

(IG), comprising no explicit logical statements and edges,

hence capturing nothing but influences. IGs are thus simpler

representations of signalling topologies, however, they facilitate

studies on important topological properties such as feedback

loops or interdependencies. Deriving the associated IG from a

logical model is trivial as long as the latter is given in LIH

representation (cf. ‘‘Methods’’). Accordingly, both IG and LIH

representation are used for model and data analysis described

below.

Model set-up and visualisation was realised with ProMoT,33–35

whereas qualitative analyses were performed using CellNet-

Analyzer (CNA)36,37 (see also ‘‘Methods/Model set-up’’).

Topological features revealed by interaction graph analysis

In order to analyse intrinsic topological properties (e.g. feed-

back loops and global species dependencies) independently of

any Boolean description, we first studied the directed inter-

action graphs31 uniquely underlying the logical modelsM1 (IL-1)

and M2 (IL-6) henceforth referred to as IG1 and IG2 res-

pectively (see also ‘‘Methods’’). Generally, IGs solely cover

pairwise positive or negative effects between species within a

network, irrespectively of the deterministic logic functions

chosen. Feedback loops (FLs) essentially affect system dyna-

mics, on the one hand amplifying input signals and inducing

multistationarity (both being relevant for cellular differen-

tiation and decision processes) if positive, whereas ensuring

cellular homoeostasis or re-sensitisation and possibly being

accompanied by oscillatory behaviour if negative.38–41 The

interaction graph associated to IL-1 (IL-6) signalling com-

prises 16515 (350) feedback loops, thereof 49.9% (39.1%)

negative. Fig. S1 (S2; see ESIw) illustrates the individual FL

participation of species involved in IL-1 (IL-6) signalling,

revealing, for instance, the Y-phosphorylated IL-6 receptor

complex, membrane-bound and phosphorylated Gab1 adaptor

proteins, and phosphatase SHP2 as ‘‘IL-6 feedback protagonists’’.

With respect to IL-1 signalling, more than 80% of detected

FLs require the involvement of mitogen-activated kinases

TAK1, MEKK3, and p38, phosphatase MKP1, and IL-1

receptor antagonists. Negative feedback loops within signal-

ling networks are typically composed of a forward path and

a feedback (either a single edge or a path). Referring to our

models and as delineated subsequently, the former is in all cases

positive implying the latter to be negative. The most important
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negative feedbacks are: (i) activation of inhibitory phospha-

tases (IL-1: MKP1 vs. IL-6: SHP2), (ii) activation of kinases

(IL-1: p38/MK2) S/T-phosphorylating and thereby negatively

regulating essential scaffold proteins (IL-1: Hsp27, TAB) and

receptor subunits (IL-6: gp130), (iii) up-regulation of inhibi-

tory proteins (IL-1: IkBa vs. IL-6: SOCS1/3) and receptor

antagonists (IL-1: IL-1Ra), (iv) suppression of transcriptio-

nal activities (IL-1: HNF4a), due to elicitor (IL-1: ROS)

‘‘neutralisation’’ by up-regulated corresponding gene products

(IL-1: iNOS), and (v) species degradation (IL-1: TPL2),

inactivating downstream effectors (IL-1: ERK1/2). Most of the

detected positive feedback loops consist of negative forward

paths and subsequent negative feedbacks. Biologically speaking,

activated phosphatases (IL-1: MKP1 vs. IL-6: SHP2) may not

just counteract intracellular inhibitory kinase activities (e.g.

inhibitory p38 activity; cf. (ii)) but also the inhibitory effect of

SOCS1/3 and IL-1Ra, hence positively contributing to receptor

function (Fig. 3A and B).

With respect to IL-6 signalling, PI3K- as well as ERK-

dependent Gab1 membrane translocation and phosphorylation,

Fig. 1 Logical (master) model of IL-1 receptor signalling visualised in ProMoT. Signalling species are symbolised by rectangles and coloured

according to functional involvement: white (dark grey): inhibitory (positive regulatory) inputs/side effectors with default value 0 (1); grey: species/

outputs regulated by up-stream effectors; light green: species acting in both networks (IL-1 and IL-6) revealing systemic crosstalks; dark green:

species depicting links to insulin and HGF signalling. Reservoirs are described by black ellipses. Black arrows (red blunt-ended lines) indicate

activations (inhibitions) with colour shades (grey-black vs. orange-dark red) pointing to confidence levels (0.4–1.0). Secondary events (t = 2) are

displayed by dashed and dotted lines, on the one hand closing feedback loops (dashed), on the other hand seeming of minor initial relevance

(dotted). Diamonds tag ligands and model outputs, whereas circles (squares) indicate logical AND (ITT) operators. Triangles represent OR terms

contributing to complex AND connections. Again, symbol colours of aforementioned operators refer to confidence levels (see above). Dummy

species are hidden for reasons of clarity. For detailed descriptions see ‘‘Methods’’ and supplemental model documentations, ESI.w
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followed by indirect up-regulation of SHP2 phosphatase activity

and RasGAP release finally boosting ERK activity, uncovered

an additional, classical positive FL mechanism, made up of a

positive forward path and feedback (Fig. 3B, right). Therefore,

the latter strategy may be regarded as ‘‘autonomous’’, given

that no negative feedback is involved and might furthermore

explain the high percentage of positive FLs (60.9%) within the

IL-6 network. Removing the IL-1-regulated species MKP1 and

IL-1Ra (in IG1) or IL-6-induced SHP2 and membrane-bound

phospho-Gab1 (in IG2) would break all positive FLs.

The wealth of signalling species and interactions implies

complex signalling pathways where network-wide inter-

dependencies can hardly be interpreted intuitively. By way of

example, IG1 encompasses 24 372 paths (half of them negative)

leading from ligand IL-1b (input) to IL-8 expression (output).

When focusing on the initial response (i.e. neglecting secondary

‘‘t = 2’’ events), 1386 exclusively positive paths remained. By

checking out the existence of shortest positive or/and negative

directed paths42 between each pair of species, we could indivi-

dually specify the ‘‘triggering’’ effectors as activators or/and

inhibitors (see also ‘‘Methods’’). Revealed information on

network-wide interdependencies were visualised in dependency

matrices.31 The large number of ambivalent dependencies

(owing to nodes that act positively and negatively on certain

down-stream targets; cf. Fig. S3 and S5, ESIw) is significantly

reduced when excluding ‘‘late’’ edges closing feedback loops

(Fig. S4 and S6 (ESIw); dashed ‘‘t = 2’’ interactions in

Fig. 1 and 2 omitted). Residual ambivalences with respect

to IG1 result from: (i) involvement of normal (IL-1RI and

IRAK1) as well as catalytically aberrant enzyme isoforms

(IL-1RII and IRAK1c) in signal propagation, (ii) ABIN2,

alternatively supporting proteasomal TRAF6 and/or NEMO

degradation via A20, (iii) soluble receptor complex compo-

nents (sIL-1RAcP and sIL-1RI/II) blocking activation of

functional (IL-1RI) as well as non-functional (IL-1RII) recep-

tors, (iv) IL-6 and CCL2 up-regulation by activation of

transcription factors AP-1 and NF-kB while simultaneously

inhibiting required basal GSK3 activity, and (v) IL-1b de novo

synthesis by promoting precursor (pro-IL-1b) expression, how-
ever preventing their processing due to inhibition of NALP

inflammasomes. Similar effects in IG2 arise from: (i) SHP2, acting

as an essential adaptor protein but also negative-regulatory

phosphatase and (ii) opposing influences of transcription

factors STAT3 and C/EBPb on cell proliferation.

Studying the input–output behaviour of the logical models

Taking Boolean relationships between converging edges (or

influences) explicitly into account (cf. ‘‘Methods’’ and supple-

mentary model documentations, ESIw) we next focused on predic-

tions of the qualitative network response upon stimulation,

Fig. 2 Logical (master) model of IL-6 receptor signalling. See legend of Fig. 1 for further explanations.
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henceforth referred to as input–output (I/O) behaviour or I/O

response. Computationally, we turned our attention on the

logical steady state (LSS) that follows from the logical model

when prescribing external stimuli and/or systemic perturba-

tions. The LSS and thus I/O response of each species was

calculated by propagating the preassigned binary states of input

variables (ligands and ‘‘side effectors’’) in keeping with specified

logical functions (cf. ‘‘Methods’’ and Klamt et al.30,31). As

already mentioned, we concentrated on the initial cellular

response by excluding secondary ‘‘t = 2’’ events (see dashed/

dotted lines in Fig. 1 and 2). It should furthermore be under-

lined that a node’s LSS computed for a given scenario does not

depict when, but how the former responds to stimulation. The

respective time range required for establishing a certain steady-

state activation pattern may differ among signalling molecules

attributable to intracellular localisation and kinetic parameters.

We started with ‘‘t = 1’’ I/O response simulations in M1,

thereby assuming the presence of at least one IL-1 isoform, the

initial absence of SOCS proteins, and side effector states preset

by default values as indicated in Fig. S7, ESI.w The former

provided a uniquely computable I/O response for all species

except for iNOS (Fig. S7, ESIw). Due to pending scientific

clarification, preventing a clear distinction between AND or

OR connection of respective inputs regarding iNOS regulation,

the latter was modelled using an ITT gate (see ‘‘Methods’’). As

both (positively contributing) inputs differ with respect to their

logical states (HNF4a: 1/on vs. ROS: 0/off by default) a unique

I/O response for iNOS cannot be concluded. In contrast, the

other 10 ITT gates did not impede unique I/O response deter-

mination owing to some ‘‘key’’ upstream effectors (e.g. MYD88,

regulating IRAK1/4 and TAK1, contributing to p38, JNK, and

IKKb/ERK activation) that trigger the concurrent activation of

various signalling molecules via (coherent) feed-forward loops,

reflecting potential redundant pathways within the network.

According to current knowledge,10,11,43 stimulation with IL-1

leads to IL-8 expression as well as SAA and LBP synthesis,

whereas IL-6 and CCL2 release is down-regulated by inhibitory

GSK3 serine phosphorylation. Strikingly, IL-1b secretion is

initially blocked due to inactive caspase-activating complexes,

so called NALP inflammasomes, catalysing the processing of

generated pro-IL-1b precursors but being suppressed by ERK in

response to IL-1 stimulation (Fig. S7, ESIw). Closing a negative

feedback loop by allowing negative-regulatory phosphatase

MKP1 to inhibit causative ERK activity would, however,

theoretically support post-initial IL-1b release, given sufficient

precursor amounts. Similar initial response (t = 1) analysis in

model M2 uncovered the anti-apoptotic and pro-proliferative

effects of IL-6 stimulation, typically associated with pro-

inflammatory cytokines (Fig. S8, ESIw). Assuming that IL-6

does not activate NF-kB, M2 furthermore predicts expression

of acute-phase proteins (e.g. CRP, a2M, gFBG) with exception

of SAA which requires the co-regulation by NF-kB illustrat-

ing potential IL-1/IL-6 crosstalk scenarios (Fig. S8, ESIw).
Moreover, both models provide evidences for links between

inflammation and cellular insulin resistance as well as tissue

regeneration and tumourigenesis, revealing (i) inhibitory IRS1

serine phosphorylation, SHP2-mediated IRS1 inhibition or IR

blocking by SOCS proteins, and (ii) hepatocyte growth factor

(HGF) precursor release and its uPA-regulated processing in

response to IL-1 or/and IL-6 (Fig. S7 and S8, ESIw).
Systemic failure modes might disturb cellular balance and

open the way for chronic inflammation and cell transforma-

tion. Using the concept of minimal intervention sets (MIS)31,37

we exemplarily identified support-minimal sets of species

perturbations (e.g. constitutive activations or knock-outs; see

also ‘‘Methods’’) that would provoke a specific cell response of

interest. Generally, all interactions were incorporated during

MIS computation, ensuring the results to be valid for primary

(t = 1) as well as late or secondary events (t = 2). By

calculating failure modes in M1 that would lead to permanent

IL-8 expression, we could, for instance, identify 56 MISs

enforcing uncontrolled, IL-1-induced or autonomous secretion

of pro-inflammatory IL-8. The latter would require at least three

co-existing (co-occurring) systemic faults within the network, in

any case involving constitutive TAK1 (or MEKK3) and NF-kB
activation. Under normal conditions, this seems very unlikely

given that mentioned effector activities are strictly down-

regulated by internal feedback loops via MK2 and IkBa or,

again pointing to crosstalk effects between IL-1 and IL-6, by

inhibitory SOCS proteins up-regulated by IL-6. MIS studies also

underlined the significance of TAK1 and/or ERK repression

Fig. 3 Basic concepts of positive feedback loops in A: IL-1 and B: IL-6

signalling (schematic). Arrows (blunt-ended lines) indicate activations

(inhibitions). Negative FLs being involved in positive feedback loops

(green line colour) are indicated by dashed lines. Further explanations

are given in the text. See model documentations (Tables S3.1 and S4.1,

ESIw) for full species names. Initial up-stream events associated to

ligand binding are depicted in grey. Green highlighting stresses the

analogous function of MKP1 and SHP2.
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through post-initial feedback mechanisms for IL-1b precursor

processing. Consequently, the coupling of IL-1-stimulated IL-1

de novo expression with negative feedback initiation prevents

autocrine loops while still enabling intercellular signal propaga-

tion. Referring to model M2, MIS computation analogously

revealed that unrestricted cell proliferation and viability in

response to IL-6 is prevented with onset of negative feedback

loops as SOCS expression and SHP2 phosphatase activity

induce cell cycle arrest. Accordingly, inactivation of SOCS

or of SHP2 represent failure modes with respect to permanent

pro-proliferative effects in response to IL-6 stimulation

(i.e. pro-proliferative = 1 for il6 � 1).

In the light of MIS analysis results, both modelled signalling

networks comprise intrinsic safety mechanisms in the form of

negative feedback loops counteracting potential, e.g. muta-

tional, alterations of effector activities and thereby supporting

systemic robustness.

Hepatocellular validation of the models by integrating

experimental data

Structural network analysis of the models provided insights

into general network properties of IL-1 and IL-6 signalling

and may, e.g. by MIS analysis, offer a platform for studying

pathophysiological behaviours and for identifying potential

drug targets. However, as these ‘‘master’’ models were cons-

tructed from literature data covering several cell types, they

are not implicitly applicable to hepatic conditions. In order to

uncover hepatocellular characteristics, we compared model

predictions to high-throughput experimental data assayed

in primary human hepatocytes for t = 0 and 30 min by

Alexopoulos et al.32 As introduced previously by Samaga

et al.,30 we (i) verified the interaction graphs by contrasting

raw data trends with corresponding dependency matrix predic-

tions and (ii) looked for logical misinterpretations uncovered

by inconsistencies between discretised data and network I/O

responses simulated according to experimental conditions

using the logical models. Detailed descriptions on experimental

data and analysis procedures are given in ‘‘Methods’’ and

Tables S1 and S2 (ESIw); raw data sets and transformed data

applied for IG1/M1 and IG2/M2 validation are visualised in

Fig. S9 and S10, ESI.w

Data analysis by means of interaction graphs

According to procedures explained in ‘‘Methods’’ and using

the readouts shown in Fig. S9.A and S10.A (ESIw) we first

verified the models for IL-1 and IL-6 signalling by focusing on

the underlying interaction graphs IG1 and IG2, respectively.

Given the measurement time range t = 0–30 min primarily

encompassing initial response events, we again excluded

‘‘t=2’’ interactions when calculating corresponding dependency

matrices.

As generally observed, measured trends in species phos-

phorylation in response to certain stimulus scenarios could

largely be mapped by suggested network topologies. Regard-

ing IG1 (IG2), 78% (80%) of calculated species dependencies

agreed with data trends: phosphorylation levels increased in

31% (30%) and decreased in 7% (9%) of the analysed cases

according to predictions; in 40% (41%) of all regarded cases

an effect was neither detected in the measurements nor expec-

ted with respect to pathway topologies. In 10% (9%) of all

cases a significantly increasing or decreasing phosphorylation

level was found experimentally though no effects had been

expected from topology. The remaining 12% (11%) of the

cases (cf. grey entries in Fig. 4 and 5) indicate model-predicted

positive or negative effects not significantly evident in experi-

mental readouts. Those ‘‘grey’’ cases may not represent a

model falsification as perturbation of the start node of a path

does not necessarily induce a significant effect on the activity

of the target (end) species, e.g. owing to saturation effects or

experimental assay detection limits. Fig. 4 and 5 depict consis-

tencies and discrepancies in detail. Conclusions with respect to

model modifications are discussed below.

Data analysis using the logical models

For verifying predictions of the Boolean models regarding the

initial IL-1- or IL-6-induced response behaviour, we converted

continuous raw data, individually assayed for a predefined

treatment scenario, into binary signal curves (mapping species

activation levels to 0/off or 1/on) and compared them to

simulated initial I/O responses in M1 and M2 with strict

respect to experimental settings (see ‘‘Methods’’ for further

descriptions). We again concentrated on initial post-receptor

events and further assumed ‘‘general case’’ cellular signal

propagations by omitting all ‘‘t = 2’’ interactions.

87% of all tested species activation levels regarding

IL-1-associated treatment scenarios could be successfully

reproduced by M1. The additional omission of inhibitor-

dissociation processes initiated through MEKK3 activation,

alternatively contributing to IkBa release from transcription

factor NF-kB (as proposed by Yao et al.44), increased model

consistency to 88% (Fig. 6). One might therefore conclude

that IkBa inhibition is, at least in initially responding primary

human hepatocytes, predominantly mediated through degra-

dation, whereas dissociation seems negligible.

Simulation of IL-6-induced signalling events in M2 revealed

82% conformance of model predictions and discretised experi-

mental data, leaving inconsistencies primarily attributable to

p70S6K activation (9%) integrated via ITT gate expression

and thus provoking indeterminable states (cf. yellow entries

in Fig. 7). Again, conclusions with respect to model modifica-

tions are discussed below.

Interpretation of discrepancies between model predictions and

measured data and hepatocellular model optimisation

The detected inconsistencies between experimental data and

model predictions regarding the initial cellular response upon

interleukin and/or inhibitor treatment of hepatocytes revealed

suitable starting points for optimisation and specification of

the introduced ‘‘master models’’ with respect to hepatocytic

characteristics. Referring to the delineated discrepancies con-

cerning predicted and measured responses (Fig. 4–7), the

following model modifications, starting with model M1, were

introduced to improve consistency.

� Positive-regulatory influence of IKKb on Akt activity: the

yet missing but experimentally evident positive-regulatory

influence of IKKb on Akt activity (cf. Fig. 4 column 1; line 5
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and 15 (1;5/15) and column 1; line 5 (1;5) in Fig. 5) was

integrated indirectly by assuming ERK1/2-mediated p90RSK

activation, subsequent p90RSK- or directly ERK-regulated

Raptor (- mTORC1) activation,45,46 mTORC1-mediated

p70S6K activation,23,47 and up-regulation of catalytic Rictor

(- mTORC2) activity by p70S6K,48,49 the former being

directly involved in Akt activation.50 We therefore expanded

the IL-1-associated signalling network by three additional

species—mTORC1, p70S6K, and p90RSK—the latter two

seeming verifiably active upon IL-1 stimulation of primary

human hepatocytes.32

� Positive influence of JNK on MEK1 and ERK activity: to

reproduce the positive influence of JNK on MEK1 and ERK

activity (see (8;18/19) and (2;19) in Fig. 4 and (2;14) in Fig. 6),

we contemplate an alternative, redundant and IKKb-independent
(cf. (8;12) in Fig. 6) MEK1 activation mechanism via JNK

more significantly contributing to (apparently weak) ERK

than to MEK1 activation (see (8;14) in Fig. 6), though yet

Fig. 4 Comparison of interaction graph-based predictions and measured responses for various stimulus-response experiments with IL-1a in

primary hepatocytes. Measured effects on species activation levels for t = 30 min caused by different treatment scenarios (ligand and/or inhibitor)

in primary human hepatocytes (data published by Alexopoulos et al.32) were compared to predicted species dependencies within IG1 subject to

primary events. Each row represents the comparison of two experimental treatment scenarios (S1 and S2) to qualify corresponding effects

on network species (readouts) listed in the columns. Row labels are as follows: green (red) font colour indicates cytokine (inhibitor) application in

both scenarios S1 and S2. Up (down) arrows attached to species with black font colour mark cytokine (inhibitor) application in scenario S1,

implicating no cytokine or inhibitor addition in S2. For example, row 9 depicts the results when comparing S1 (IL-1a ligand + MEK1 inhibitor)

with S2 (IL-1a ligand), therefore showing effects of an increasing MEK1 inhibitor level in the presence of IL-1a on the readouts in the columns.

Matrix elements indicate structural (in-)consistencies according to the given colour legend. See ‘‘Methods’’ and Fig. S9.A (ESIw) for further

information and raw data. Negative states: gsk3, ikba (see ‘‘Methods’’).
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lacking any biochemical confirmation. Generally, modifications

concerning IL-1-induced ERK activation are stated under

reserve, given measured ERK phosphorylation levels close to

or even beneath technical detection limits (see Fig. S9.A, ESIw),
partially impeding the falsification of already integrated inter-

actions (cf. (2; grey elements) in Fig. 4). A positive link between

JNK and MEK1/ERK activity would furthermore explain the

at least basally significant up-regulation of Akt by JNK (see

(1;18) in Fig. 4). Nevertheless and with respect to inconsis-

tencies apparent without additional IL-1 application (cf. row 18

in Fig. 4), unspecificity of the applied JNK inhibitor (Table S2,

ESIw) might qualify all given statements concerning additional

JNK involvement.

� Positive-regulatory influence of Akt on p38 MAPK activ-

ity: given the above mentioned suggestions for integration of an

‘IKKb - Akt’ and ‘JNK - ERK1/2’ (thus indirect ‘JNK -

Akt’) interdependence, the additional introduction of an alter-

native positive-regulatory influence of Akt on p38 MAPK

activity seems to be a convenient, though not yet documented

way to simultaneously cover the respective JNK, IKKb, and
PI3K involvement (see (9;13/15/19) in Fig. 4 and (9;14) in

Fig. 6). However, we suggest this with reservations, given the

abundance of discrepancies related to IL-1-induced p38 MAPK

regulation (cf. column 9 in Fig. 4), which might also point

to systematic uncertainties owing to marginal signal strengths

(Fig. S9.A, ESIw). Apart from that, cellular stress effects medi-

ated by p38 MAPK cannot be ruled out.

� Positive influence of p70S6K and basal effects of IKKb
on phospho-Hsp27-S78: IKKb appears to basally repress

Hsp27-S78 phosphorylation (see (4;14) in Fig. 4)—an effect

that might get superimposed upon IL-1 stimulation (cf. (4;15)

in Fig. 4) due to positive-regulatory p38/MK2 onset51 (corre-

lation already integrated) or alternative, direct p70S6K contribu-

tion. The latter, being activated in primary human hepatocytes

in response to IL-1,32 has been shown to act as a potential

Hsp27-S78 kinase in vivo.52 Introducing an additional

‘p70S6K - Hsp27-pS’ link would further facilitate the repro-

duction of p38-independent phospho-Hsp27-S78, apparent

despite p38 knock-down (see (4;10) in Fig. 6). Referring

to the logical inconsistency highlighted by (4;12) in Fig. 6,

one should note that IL-1 induces similar signal strengths for

t = 30 min concerning Hsp27-S78 phosphorylation regardless

of IKKb-inhibitor application (cf. Fig. S9.A (ESIw), right).
However, inhibitor-associated loss of suggested basal repres-

sion dramatically increases the phosphorylation level for t= 0

min, hence lowering the activating ‘‘net-effect’’ caused by

ligand add-on (see Fig. S9.A (ESIw), right) eventually used

for verification of logical implementations but not detectable

by the predefined parameter set in this special case (see (4;12)

in Fig. S12, ESIw). Due to ambivalences occurring when

additionally integrating inhibitory basal IKKb effects on

Hsp27-pS (Fig. 8), the latter were excluded during IG1 optimi-

sation, though maintaining the topological discrepancy (cf. (4;14)

in Fig. S11, ESIw).
� GSK3 inhibition: as the observed IL-1-induced effects on

GSK3-S9 phosphorylation (irrespective of inhibitor applica-

tion) range close to threshold parameters (see ‘‘Methods’’)

and are therefore not detected in the course of discretisation

(see (3;8) in Fig. 6), we do not speculate on alternative or

cooperative inhibitory GSK3 regulation mechanisms. None-

theless, studies by Ding et al.53 focusing on IGF-1- and

HBX-stimulated HepG2 or HepB3 cells, unveiled a positive-

regulatory influence of ERK-dependent p90RSK activity on

phospho-S GSK3, generally seeming more relevant in vivo

than a respective p70S6K contribution.54 Given that both

kinases, p90RSK and p70S6K, seem to be up-regulated in

response to IL-1 (see above), mentioned effects should be kept

in mind.

Fig. 5 Comparison of interaction graph-based predictions and measured responses for various stimulus-response experiments with IL-6 in

primary hepatocytes. See Fig. 4 for further explanations and colour legend. Predictions were made using IG2 subject to primary events. Respective

raw data are given in Fig. S10.A (ESIw). Negative state: gsk3 (cf. ‘‘Methods’’).
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Structural modifications covering the described interdepen-

dencies and summarised in Fig. 8 increased logical consistency

in M1 to 89% (Fig. S12, ESIw). Topological contradictions
with respect to IG1 underlying IL-1 signalling were reduced

to 3% (from 10%), though raising the percentage of experi-

mentally insignificant effects (grey entries) to 25% (from 12%)

and thereby lessening exact agreements to 72% (from 78%;

Fig. S11, ESIw). However, one should contemplate that, owing

to parallel pathways and saturation effects, signal transduction

along a positive path may not obligatorily lead to significant

up-regulation of its target species and is therefore not explicitly

quantifiable during measurements. This aspect might explain

the higher number of grey entries regarding the ‘‘optimised’’

IL-1 signalling network. Nonetheless, handling such marginal

cases a priori seems to be of secondary importance compared

to reducing the number of definitely falsified predictions

Fig. 7 Comparison of measured responses and predictions from the logical IL-6 model for various stimulus-response experiments with IL-6 in

primary hepatocytes. See Fig. 6 for further explanations and colour legend. Analysis was performed using the discretised activation levels depicted

in Fig. S10.B (ESIw) and model M2 subject to primary events. Yellow matrix elements outline model inconsistencies related to used ITT gate

expressions, the latter causing indeterminable states during simulation. Negative state: gsk3. Respective raw data are given in Fig. S10.A (ESIw).

Fig. 6 Comparison of measured responses and predictions from the logical IL-1 model for various stimulus-response experiments with IL-1a in

primary hepatocytes. Discretised activation levels (raw data assayed in primary human hepatocytes; cf. Alexopoulos et al.,32 Fig. S9.B (ESIw), and
‘‘Methods’’) for t = 30 min were checked against respective logical I/O responses computed using model M1 subject to primary events. Each row

refers to a particular treatment scenario (A + B) indicated on the left hand side. Respective readouts are given in the columns. Matrix elements

outline accordances or discrepancies between measured and predicted responses in keeping with colour legend. See text and ‘‘Methods’’ for further

information. Negative states: gsk3, ikba. Abbreviations: NO-LIG: no ligand/negative control; NO-INHIB: no inhibitor. Respective raw data are

given in Fig. S9.A (ESIw).
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(red/orange entries in Fig. 4–7). Remaining discrepancies

(Fig. S12, ESIw) may give rise to additional clarifications

concerning the roles of PI3K or GSK3 in IL-1-induced ERK

or p38 MAPK activation, respectively (cf. (2;13) and (9;17)

in Fig. S11, ESIw), and considerations on a possible, basally

relevant positive effect of endogenous PI3K on IRS1-S phos-

phorylation (see (6;12) in Fig. S11, ESIw) in hepatocytes.

To quantify the overall improvement of the model we

introduce two simple error scores. The absolute error score

(Eabs) represents the total number of wrong predictions, i.e.

the number of red/orange entries in Fig. 4 (wrong interaction-

graph based predictions) plus those in Fig. 6 (wrong predictions

from the logical model). The relative error score (Erel) results

from the absolute error score divided by the total number

of predictions made. Regarding the original model M1, we

get EM1
abs = 30 and EM1

rel = 10.8% (with 277 predictions from

Fig. 4 and 6). With respect to network modifications shown in

Fig. 8, the optimised model M1 yields error scores of EM1opt
abs =

18 and EM1opt
rel = 6.5% (Fig. S11 and S12, ESIw) reflecting a

40% error reduction. These scores also enabled us to quantify

the relative contribution (or evidence) of the introduced network

changes. Taking the optimised model as a basis, we individually

removed each modificationm, recomputed EM1opt�m
abs and defined

the increases in the number of wrong predictions, i.e. the

difference dm = EM1opt�m
abs � EM1opt

abs , as the evidence level of

modification m. The evidence levels of all modifications in M1

are shown as (edge) weights in Fig. 8. For example, one can see

that modifications related to p90RSK, mTORC1, and p70S6K

had the strongest impact on model improvement. The intro-

duced edge from the reservoir variable ‘mtor’ to ‘mtorc2’ did

not affect the error score. However, ‘mtor’ was nonetheless

included to have a biologically reasonable description consis-

tent to that used within the IL-6 network.

Corrective modifications referring to IL-6 signalling (repre-

sented by model M2) were realised as follows.

� IL-6-induced p38 MAPK activation seems negligible in

hepatocytes, given indistinguishable effects of ligand application

on phosphoproteomic signal strength (see (6;1–6) in Fig. 5 and

(6;7–12) in Fig. 7; and Fig. S10.A (ESIw) depicting p38 MAPK

activation below detection limit (grey background)). Never-

theless, it has to be clarified how insignificantly up-regulated

p38 MAPK positively (though likely redundantly; cf. respective

entries in Fig. 7) contributes to ERK activation and inhibitory

GSK3-S phosphorylation (see (2;10) and (3;9/10) in Fig. 5) upon

IL-6 stimulation.

� ERK up-regulates p70S6K via mTORC1 activation/no

Akt involved: as already used to optimise the IL-1 signalling

network (see above), we imported the scenario (hitherto

undocumented for hepatocytes) delineated by Carriere et al.

whereupon ERK targets and phosphorylates the mTOR scaffold-

ing protein Raptor (- mTORC1) on several serine residues

either directly46 or via p90RSK activation,45 boosting its activity.

Fig. 8 Network modifications referring to initial IL-1 receptor signalling in primary human hepatocytes. See Fig. 1 and ‘‘Methods’’ for further

information on symbols etc. Species and interactions not directly affected as well as confidence levels are not depicted for reasons of clarity. Faint

components are adopted from master model representation with dashed arrows outlining up-stream activation events (see Fig. 1). Newly

introduced effectors and reactions are coloured intensely. Interactions seeming negligible with respect to initial cellular response according to our

data analysis results are crossed out. Numbers at new/to be removed edges show the respective interaction’s level of evidence, i.e. the numerical

increase of wrong predictions (red/orange entries) in Fig. S11 and S12 (ESIw) when removing the modification from the optimised network (see text

for further explanations).
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Documented p90RSK activation by primary human hepato-

cytes in response to IL-632 may support this hypothesis. Accord-

ing to statements by Kim23 and Shi et al.,47 mTORC1 might

subsequently mediate p70S6K-S phosphorylation, highlighting

an Akt-independent activation mechanism. Re-emerging discre-

pancies regarding p70S6K regulation (see (7;8/11) in Fig. S14,

ESIw) seem rather attributable to yet missing, alternative

MEK1/mTORC1-independent pathways than to Akt exclusion,

given a possible Akt involvement by mTOR de-repression as

reviewed by Hay and Sonenberg 55—an effect that would again

support mTORC1 activation and therefore MEK1/mTORC1-

mediated p70S6K up-regulation. A positive-regulatory link

between p70S6K and mTORC2 (as adopted for hepatocellular

IL-1 signalling; see above and Fig. 8) in response to IL-6 has

not yet been taken into account, owing to non-existent hints

from data analysis concerning the associated positive influence

of mTORC1 on Akt activity (cf. (1;14) in Fig. S13, ESIw).
� IRS1-S phosphorylation by ERK vs. PKCd: missing

positive-regulatory influences of PI3K on ERK activity and

subsequent ERK-catalysed IRS1-S636/639 phosphorylation

(see (2;12) and (4;11/12) in Fig. 5) could be ascribed to the

signal amplifying and Gab1-associated positive feedback loop

(see above) described by Eulenfeld and Schaper.56 Referring

to studies in IL-6-treated HepG2 cells by Kim et al.,23 another

ERK-mediated IRS1-S phosphorylation scenario, supposing

p70S6K as the predominant executing kinase could be initially

ruled out, given no significant impact of mTORC1 inhibi-

tion on phospho-IRS1-S636/639, though on p70S6K activity

(cf. (4;13/14) and (7;13/14) in Fig. 5). Furthermore, MEK1

knock-down leading to reduced ERK activity seems sufficient

to block inhibitory IRS1-S phosphorylation upon IL-6 treat-

ment (see (4;8) in Fig. 7), hence revealing respective PKCd
influences to be secondary.

� p70S6K contributes to inhibitory GSK3-S phosphoryla-

tion: though challenged in vivo by Stambolic and Woodgett54

and ruled out regarding initial IL-1 signalling (see above),

the integration of additional p70S6K-catalysed (apart from

Akt-mediated) GSK3-S phosphorylation upon IL-6 treatment

removed MEK1- and mTORC1-associated inconsistencies

concerning GSK3 inhibition (see (3;7/8/14) in Fig. 5 and (3;8/11)

in Fig. 7) and might thus, also with respect to stronger ERK

activation in response to IL-6 than to IL-1 (cf. Fig. S9.A and

S10.A (ESIw), left), be relevant for hepatocytic IL-6 signalling.

Taking these changes (visualised in Fig. 9) into account, we

could increase the accuracy of the logical model M2 from 82%

to 98%, getting residual discrepancies in just 2% of simulated

scenarios attributable to pending add-ons concerning p70S6K

regulation (Fig. S14, ESIw). Topological accordance with

respect to IG2 increased to 84% (originally 80%), leaving

8% (11%) experimentally indiscernible effects (grey matrix

elements) and 8% (9%) mismatches (Fig. S13, ESIw), the latter
(i) stressing the relevance for initial integration of Gab1-mediated

positive-regulatory feedback events demonstrated by Eulenfeld

and Schaper56 (see respective entries of row 11 and 12 in Fig. S13,

ESIw), (ii) pointing to need for clarification regarding the role

of p38 MAPK in IL-6 signalling (cf. respective entries of row 9

and 10 in Fig. S13, ESIw), and (iii) highlighting alternative,

IL-6-induced ERK activation strategies somehow comprising

mTORC1 and GSK3 (see (2;14/16) in Fig. S13, ESIw).
Similarly as for M1, we quantified the overall improve-

ments of model M2 by the error scores introduced above.

The absolute number of errors decreased from EM2
abs = 27 to

EM2opt
abs = 12 and relatively from EM2

rel = 12,9% to EM2opt
rel =

5.7% (cf. Fig. 5 and 7 vs. Fig. S13 and S14, ESIw). Thus, the
inaccuracy of the model was reduced by more than 50%. The

individual evidence levels of the modifications (Fig. 9; for

definition see above) indicate that, analogously to the IL-1

network, the introduced pathway from p90RSK via mTORC1

to p70S6K had the strongest effect on model improvement.

Regarding stated model modifications, it should be pointed

out that many regulatory events, though a priori regarded

directly, may also reflect indirect effects transduced via several

Fig. 9 Network modifications referring to initial IL-6 receptor signalling in primary human hepatocytes. See Fig. 8 and 2 for further explanations.

So far unresolved mechanisms concerning IL-6-induced p70S6K activation are indicated by a question mark.
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effectors and frequently additive mechanisms (e.g. de-repression

vs. catalytic activation) finally causing the observed ‘‘overall

effects’’.

Sensitivity of model predictions with respect to discretisation

parameters

To compare quantitative measurements with discrete predic-

tions from our models we had to discretise the experimental

data via four thresholds (one for detecting significant signal

changes; three for distinguishing active from inactive states;

see ‘‘Methods’’). To estimate the sensitivity of the obtained

results (i.e. the agreements and discrepancies in Fig. 4–7) with

respect to the relevant discretisation parameters, we computed

the relative number of (colour) changes in Fig. 4–7 resulting

when (a) decreasing and (b) increasing all thresholds by 10%

(note that the detection limit p3 = 500, representing a device-

dependent parameter, was not changed). For IL-1, 6.5%

(5.8%) of the entries in Fig. 4 and 6 changed colour with

threshold decrease (increase); concerning IL-6 we got 8.1%

(6.1%) colour changes in Fig. 5 and 7. This reflects a reason-

able robustness of the results which is further supported by

the fact that most changes concern green-to-grey or grey-to-

green transitions in Fig. 4 and 5 (only few of the critical

red/orange entries would disappear or newly appear). How-

ever, some discretised data points might range close to the edge

between significant/non-significant effects or active/inactive

states, respectively.

Relative network coverage with respect to perturbations and

readouts

A final issue to be discussed in conjunction with the network-

based data analysis is the coverage of the two networks with

respect to (i) perturbations (i.e. how many nodes are affected

by the inhibitors/cytokines) and (ii) readouts (i.e. how many

nodes are directly or indirectly measured by the readouts). In

order to quantify these two types of coverage, we computed

for each node n (separately for each model) how many of the

used stimuli (IL-1/IL-6) and inhibitors (mek1i, p38i, pi3ki,

mtorci, gsk3i, ikkbi, jnki; cf. Tables S1 and S2, ESIw) had an

influence on it (this number is denoted by sn) and how many of

the readouts are affected by it (and do thus at least partially

reflect the state of n; this number is denoted by rn). Hence,

sn quantifies controllability and rn observability of node n. One

cytokine and 6 inhibitors were used for perturbing the IL-1

network with its 97 nodes giving a maximal value of 7 for sn
whereas the maximal number for rn is 9 (total number of readouts).

Fig. S15.A and S16.A (ESIw) depict sn and rn for each node in the

IL-1 network for the primary (‘‘t = 1’’) events and Fig. 10

shows the resulting distributions of sn and rn. For 16 of the

network’s inputs we obviously got sn = 0 except for the

stimulus IL-1a itself. For the other species, at least one stimulus

reaches each node and some nodes are affected by five, six or

Fig. 10 Experimental coverage of modelled IL-1 receptor signalling.

A: Number of network species affected by each of the applied

cytokine/inhibitor treatments (stimulus). B: Distribution of numbers

of perturbations affecting IL-1 signalling species. C: Number of

network species affecting phosphoproteomic readouts. D: Distribution

of numbers of readouts affected by IL-1 signalling species. Corres-

ponding dependency matrices are shown in Fig. S15.A and S16.A

(ESIw). (Total number of IL-1-associated species: 97.)

Fig. 11 Experimental coverage of modelled IL-6 receptor signalling.

A: Number of network species affected by each of the applied

cytokine/inhibitor treatments (stimulus). B: Distribution of numbers

of perturbations affecting IL-6 signalling species. C: Number of net-

work species affecting phosphoproteomic readouts. D: Distribution of

numbers of readouts affected by species in the IL-6 signalling network.

Corresponding dependency matrices are shown in Fig. S15.B and

S16.B (ESIw). (Total number of IL-6-associated species: 75.)
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even all seven stimuli. As expected, IL-1a influences the largest

set of species (>70) followed by the inhibitors ‘ikkbi’ (41) and

‘p38i’ (30). In contrast, ‘gski’ affects the state of only three

nodes as it is at ‘‘the bottom’’ of the network. Regarding the

observability levels (rn), we see a reduced coverage compared to

the perturbations. For 39 nodes no path connecting them with

any of the readouts exists. These species include in particular

transcription factors or ‘‘event nodes’’ (such as proliferation

or degradation of certain proteins) whose activity cannot be

reflected by the readouts (see Fig. 1). On the other hand,

7 nodes influence all 9 readouts and are thus well reflected in

the set of measurements. Concerning the readouts one sees

that ‘akt’ and ‘gsk3’ are influenced by the smallest set of

nodes (13 and 14, respectively) whereas the measurements of

‘irs1_ps’ (37), ‘ikba’ (35), and ‘erk12’ (34) are affected by a

large number of species.

The IL-6 network with its 75 nodes was perturbed by one

cytokine and five inhibitors implying a maximal value of 6

for sn whereas the maximum for rn (number of readouts) is 8.

Coverage analysis results with respect to early signalling events

are similar to those for IL-1 (see Fig. 11 and Fig. S15.B and

S16.B, ESIw). Except for the input nodes, all species are

directly or indirectly perturbed at least by the cytokine IL-6

and more than 50% of all nodes can be additionally affected

by one or more inhibitors. ‘pi3ki’ (20), ‘mtorci’ (19) and

‘mek1i’ (18) affect the largest number of nodes. Regarding

the observability coverage we see again that a considerable

number of (mainly output) species does not influence the

readouts. Their state can therefore not be captured by the

measurements. As 8 nodes affect all readouts, their state is well

reflected by the data. Measurements focusing on p70S6K and

GSK3 therefore appear to be most efficient for achieving a

high coverage of the IL-6 signalling network as they are

influenced by 28 and 24 nodes, respectively.

Generally, this type of coverage analysis seems useful to

examine the extent to which applied perturbation experiments

together with the available readouts are representative (i) for

the behaviour of the entire network and (ii) with respect to

certain species. In addition, it helps to identify most effective

perturbations and readouts.

Conclusion

By assembling current scientific knowledge on IL-1 and IL-6

signalling derived from various cell types, we reconstructed

two network models summarising IL-1- and IL-6-induced

signalling cascades. To the best of our knowledge, this has

not been conducted before at this scale. The logical approach

used for model set-up enabled us to convert simple relation

schemes to executable models. Though limited in reflecting

kinetic aspects, those Boolean representations are capable of

providing general and qualitative insights into global aspects

of signal propagation avoiding the need for detailed informa-

tion on kinetic mechanisms and parameters usually required

for quantitative (e.g. ODE-based) modelling. Topological

analysis revealed non-intuitive species interdependencies and

feedback structures e.g. demonstrating SHP2 and MKP1 to

be substantially involved in both negative and positive feed-

back loops. Qualitative I/O simulations revealing the initial

cell response upon ligand binding as well as the computation

of failure modes highlighted potential insulin-desensitising

effects and positive-regulatory contributions to HGF expres-

sion of both interleukins. This corroborates pathophysiologi-

cal links to insulin resistance and tumourigenesis in case

of chronic inflammation. Additionally, negative-regulatory

mechanisms, relevant for systemic ‘‘calming down’’ and stabili-

sation, seem to trigger IL-1-induced, though initially blocked

de novo IL-1 release due to suppression of inhibitory kinase

activities (e.g. inhibition of ERK by MKP1). Hence, negative

feedback loops impede autocrine effects but enable paracrine,

intercellular signal propagation indispensable for inflammatory

effector cell recruitment. Apart from that and as being a matter of

conjecture, visualised IL-1/IL-6 crosstalk-strategies (e.g. MK2-

regulated IL-6 receptor turnover or SOCS-mediated inhibition

of positive-regulatory TRAF6 ubiquitination) indicate mutual

and probably post-initial mechanisms to attenuate and thus

control the action of the respective inflammatory ‘‘fellow

player’’. The presented models fitted phosphoproteomic data

describing the initial response of primary human hepatocytes32

on interleukin treatment relatively well. Nevertheless, we could

also reveal some effects apparently specific to hepatocytes,

such as insignificant p38 MAPK activation but a markedly

involvement of the Gab1-mediated positive feedback loop

studied by Eulenfeld and Schaper56 during initial response to

IL-6 to name just a few. Moreover, subsequent hepatocellular

model specification suggested the integration of ERK-mediated

p90RSK activation and associated influences on mTORC1 and

p70S6K activity similarly induced by both ligands. In addition,

model verification pointed to hitherto undescribed IL-1-induced

positive regulation of p38 MAPK by Akt.

Taking the two structurally validated network models of IL-1

and IL-6 receptor signalling in hepatocytes presented here as a

basis, we plan to merge both networks in terms of crosstalk

scenarios and coinciding effectors (e.g.MAPKs, PI3K/Akt) and

direct our attention to further model falsification focusing

on cyclic, hence internally regulated and post-initial cellular

response. In order to do so, the explicit consideration of time

and signal strength will be necessary. ODEfy57,58 should in this

context be mentioned as a convenient approach for transform-

ing a given logical model into a corresponding set of qualitative

ODEs.57,58 The resulting dynamic model allows for ODE-based

simulations though with respect to and thus still reflecting

the logical relationships encoded in the Boolean model. Time-

resolved data may be used to identify required parameter sets

(which are significantly smaller than those for mechanistic

ODE models) completing the construction of the dynamic

model which then facilitates studies on essential properties of

the transient and quantitative behaviour of signalling cascades.

Our network models might therefore mark a suitable starting

point for set-up and analysis of ODE-based models.

The mentioned model transformation narrows the gap

between discrete and dynamic modelling frameworks, but, at

the same time, model complexity will rise in turn requiring

more detailed, at least semi-quantitative information on reac-

tion kinetics. Accordingly, detection of functionally coupled

species, forming so called equivalence classes introduced by

Samaga et al.30 and delineating regulatory motifs should be con-

sidered for adequate model reduction. Keeping time-consuming
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literature researches associated to manual model set-up in

mind, one should also contemplate software approaches auto-

mating Boolean model reconstruction and optimisation (e.g.

CellNetOptimizer59) via direct database access and incorpora-

tion of high-throughput data.

One important step in our future work is the integration of

the IL-1 and IL-6 network models. Herein we focused on

highlighting the mutual up- and down-regulation of IL-1 and

IL-6 signalling owing to transcriptional regulation and regu-

latory kinase/phosphatase onset but did not yet consider direct

crosstalks. In principle, one could easily merge the two network

models and tag common nodes. However, difficulties arise when

formulating the Boolean functions for common nodes where

IL-1- and IL-6-induced pathways converge. This type of infor-

mation is rarely available severely hampering the construction of

such an integrated logical model. Only the combined experi-

mental perturbation of the IL-1 and the IL-6 network would

allow for identification of respective logical relationships.

Methods

Model set-up

Extensive literature and database (NCBI/PubMed, UniProtKB/

Swiss-Prot, PhosphoSitePlus) research provided the ‘‘status quo’’

regarding IL-1 and IL-6 signalling, irrespectively of a certain cell

type, ensuring a biological starting point for setting up the logical

master models. In this context, especially the comprehensive IL-1

pathway map developed by Kracht et al.27,28 served as a helpful

overview.

Well-suited for formalisation, visualisation, and subsequent

qualitative analysis of signal transduction networks, usually

structured into input (encompassing e.g. cytokines, growth

factors), intermediate (e.g. kinases, phosphatases, scaffold

proteins) and output layer (e.g. transcription factors, gene

products), the Boolean networks studied within this work are

represented as logical interaction hypergraphs (LIHs) previously

introduced and utilised by Klamt et al.30,31,37 Accordingly, each

signalling species is denoted by a logical, herein solely binary,

state variable defining its discrete level of activation (0/off =

inactive or absent vs. 1/on = active or present). Associated

interspecific logical relationships are encoded by Boolean func-

tions exclusively using the logical operators AND (�), OR (+),

and NOT (!) and complying with the sum-of-products (SOP)

notation.31,60 Within the models, each interaction/activation

event is expressed by means of AND-connected (potentially

negated) nodes (=species) triggering the event (activation of a

species) to be described. Hence, having several start nodes, they

represent hyperarcs in LIH representation.We keep on referring

to hyperarcs (or reactions/interactions) even if a reaction’s set of

start nodes comprises only one species (equivalent to a simple

arc in graphs). For effectors that might be influenced/activated

by various distinct events, i.e. by several hyperarcs (AND terms),

the latter are OR-connected and individually visualised bymultiple

hyperarcs pointing into the corresponding node. Considering the

scope of our model, certain signalling molecules serve as inputs

or side effectors, not being regulated by any network species. They

are therefore predefined by default values, reflecting basal acti-

vities, endogenous occurrences, catalytic indispensabilities, and

inhibitory functions. A special node type called reservoir serves to

link post-translationally modified proteins (e.g. ubiquitinated

scaffold proteins) to a common pool, enabling us to functionally

affect all subtypes by simply influencing the reservoir.

Examples supposed to clarify the LIH formalism as well as

its visualisation in Fig. 1 and 2 are listed in Table 1.

Occasionally, it is convenient to introduce accessory

‘‘dummy species’’, denoted by triangles in Fig. 1 and 2, to

express a logical relationship more efficiently (cf. line 6 in

Table 1).

In cases where an interaction could neither be fully approxi-

mated by using an AND nor an OR expression due to insuffi-

cient or inconsistent biological information we applied an

incomplete truth table (ITT) operator31 pointing at the ‘‘logical

overlap’’ of AND and OR operations (cf. line 7 in Table 1).

Affected species are activated/inactivated (1/0), if and only if all

positively influencing effectors are active/inactive (1/0), whereas

all negated input species are inactive/active (0/1). For all other

cases, the species’ state remains undefined.

Relevance and confidence level

Moreover, interactions are individually characterised by a

relevance level t, enabling the discrimination between primary

(t = 1) and secondary (t = 2) events (hence marking an

interaction to be relevant for the initial network response or

not). Primary events are considered to be active/available

during the initial cell response including gene expression,

whereas secondary events cover interactions (i) post-initially

closing feedback loops, (ii) initiating negative-regulatory

events that require the prior onset of species to be inhibited,

or (iii) being less relevant for the activation level of the target

species or outlining influences of catalytically aberrant enzyme

isoforms, respectively.

Removing secondary interactions with relevance level ‘‘t= 2’’

prior to computations enables us to focus on primary events

during simulations. Where required, the decoupling of secondary

‘‘t= 2’’ events from preceding AND gates (t= 1) is realised by

introduction of ‘‘timescale dummy species’’. These additional

nodes are not explicitly displayed in LIH representation but

italicised in corresponding SOP notation (cf. line 8 in Table 1).

According to Samaga et al.30 nodes within a feedback loop

having the shortest distance to the input layer are regarded as

associated initialisation points (z). Therefore, interactions

closing the cycle in node z are assigned t = 2.

Interactions are furthermore labelled (Table 2) by a confidence

level c, indicating the extent to which quoted citations under-

pin the respective effect in hepatocytes (cf. Fig. 1 and 2 and

Tables S3.2 and S4.2 (ESIw) of model documentations).

Complex AND gates were subjectively estimated with respect

to the individual confidence levels of interactions involved.

Model implementation was performed with ProMoT,33–35

providing the framework for model construction and visualisa-

tion subsequently exportable to CellNetAnalyzer (CNA)36,37

for model analysis as explained below. Generated results were

in turn re-imported to and graphically represented in ProMoT.

Mentioned software tools are freely available (for academic use)

on the following web sites:

ProMoT: http://www.mpi-magdeburg.mpg.de/projects/promot/

CNA: http://www.mpi-magdeburg.mpg.de/projects/cna/cna.html
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For detailed descriptions regarding the model configuration

(species, interactions, parameters) and related references see

supplementary model documentations (Tables S3.1–4.2, ESIw).

Topological analysis based on interaction graphs

By splitting all hyperarcs (AND connections) having more

than one start node into simple arcs, we deduced the respective

(signed and directed) interaction graphs (IGs)31 underlying the

logical models introduced here. Edges, entering an AND

connection in their negated form, are labelled by a negative,

otherwise by a positive sign. Arising duplicate arcs of the

same sign were removed to prevent redundancies. As shown by

Samaga et al.,30 IG analysis suits to studying topological

network properties, facilitating for instance the characterisa-

tion of feedback loops as well as identification of global species

interdependencies. The latter can be stored and visualised in

dependency matrices D.31

Logical network analysis: input–output behaviour and minimal

intervention sets

Using the logical models, we simulated the qualitative input–

output (I/O) behaviour of the signalling networks in response

to cytokine and/or inhibitor stimulation. In practice, input

signals are propagated along the logical links (=hyperarcs),

which is equivalent to computing the network’s logical

steady state (LSS) as described previously.30,31 Although

influencing cellular responsiveness and behaviour at longer

time scales, internal feedback loops may generally impede

LSS determination as described by Samaga et al.30 We there-

fore focused on the initial network response and excluded

secondary reactions (t = 2, see above), usually leading to an

acyclic network.

Another useful technique applicable to logical models are

minimal intervention sets (MIS).31 They are composed of

suitable species modifications or exogenous interventions (e.g.

constitutive activation or inhibition/knock-out) that enforce a

predefined cellular response (e.g. gene expression pattern or

phenotype) preferably of pharmacological interest. Restric-

tions regarding default values, relevance levels etc. can but

do not have to be taken into account. A detailed description on

the algorithm of MIS computation was given elsewhere.61

In this work, the MIS approach was applied to search for

Table 1 Examples illustrating the logical integration of biological relations and constraints

Biological statement Logical description
Visualisation in
Fig. 1 and 2

Species a autonomously activates/positively regulates species b a = b

Species a inhibits/negatively regulates species b !a = b

Species a AND b cooperatively activate/positively regulate
species c (hyperarc)

a � b = c

Species c gets activated/positively regulated, if species a
AND NOT b (e.g. inhibitor) function cooperatively

a � !b = c

Species a OR (b AND c) redundantly/alternatively activate/
positively regulate species d

a = d
b � c = d

Species a cooperates with species b OR c to activate species d a � b + a � c = d (SOP)
) b + c = dum_b_or_c_d
) a � dum_b_or_c_d = d

a AND/OR b effect c in some way a * b = c

Species a AND b cooperatively activate/positively regulate
species c, subsequently counteracted/inhibited by species c

a � b � !c = c (t = 1) equals a � b � !tdum_c_c = c (t = 1),
whereas c = tdum_c_c (t = 2)

Table 2 Confidence levels and assignment criteria

Primary human hepatocytes,
human hepatoma cell lines Other cell types

Stimulus
IL-1/IL-6 1.0 0.8
Other 0.6 0.4
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central regulatory mechanisms impeding uncontrolled cytokine

expression, cell proliferation, and viability.

Experimental data

We used high-throughput experimental data on primary human

hepatocytes published by Alexopoulos et al.,32 generated using

multiplexed bead-based ELISA type of assays (xMAP Technology

by Luminex, Austin/Texas), and checked for passage-to-passage,

preparation-to-preparation, and donor-to-donor variability. The

open access MATLAB-based software DataRail62,63 was utilised

for data management and visualisation. In brief and with regard to

species depicted by our models, the phosphorylation state of 11

intracellular signalling molecules was assayed at t= 0 and 30 min

(relative to cytokine addition) upon cell treatment with IL-1a or

IL-6 in combination with either none or one of 7 small molecule

kinase inhibitors (note that inhibitors were added 30 min prior to

cytokine application). For further information on experimental

procedures, cytokine and inhibitor concentrations, and data pro-

cessing see Alexopoulos et al.32 and Tables S1 and S2 (ESIw). The
selected data sets applied for validating the IL-1 and IL-6 model

are shown in Fig. S9.A and S10.A (ESIw).

Data analysis using interaction graphs

As delineated by Samaga et al.,30 we systematically compared

measured changes of a protein’s (p) phosphorylation state (xp)

assayed at t= 30 min due to differing treatment scenarios (e.g.

S1 = ligand (l) vs. S2 = ‘‘add nothing’’ or S1 = ligand (l) +

inhibitor (i) vs. S2 = inhibitor (i)) with respective IG-derived

predictions deduced from entries of the corresponding depen-

dency matrix (see ‘‘Topological analysis based on interaction

graphs’’). For this purpose, we focused on the ratio xp(S1)/x
p(S2),

quantifying the alteration of species phosphorylation caused by

the given stimulus scenarios. For example, in case of an increasing

signal owing to ligand application (xp(S1) > xp(S2), i.e. x
p(S1)/

xp(S2) > 1), one would expect the existence of at least one direct

(edge) or indirect (path) positive regulatory influence of species l

on species p (l - p). Assuming structural consistence within the

associated IG, the respective entry of the dependency matrix Dl,p

(row l, column p) should point to an activating or ambivalent

influence. On the other hand, an increase (decrease) in species

phosphorylation while applying an inhibitor against associated

upstream effectors, suggests the presence of at least one negative

(positive) influence path from the inhibited protein (i) to p (i- p).

Thus, inhibitory effects could be treated analogously, considering

row i and column p of the dependency matrix. Differences in

signal strengths between S1 and S2 were taken as significant if

the larger signal exceeded the smaller one by at least 50 per cent at

t = 30 min, meaning:

xp(S1)/x
p(S2) Z 1.5 (signal increase in S1)

or

xp(S1)/x
p(S2) r 1/1.5 (signal decrease in S1) for t = 30 min.

Effects appearing beneath or close to technical detection limit

(xp r 500) were neglected. Moreover, we preassigned ‘‘negative

states’’ to signalling species whose activity is negatively regu-

lated by phosphorylation events (such as GSK3) and inverted

related dependency matrix elements accordingly. In consequence,

influences like the inhibition of a ‘‘negative’’ species p by ligand l

( ) as initially depicted by Dl,p would than be qualified as

positive regulatory events with respect to the measured inhibitory

phosphorylation.

Data analysis based on logical models

In strict accordance with experimental conditions, we further-

more compared measured data (activating vs. inhibitory species

phosphorylation) with simulated binary model predictions con-

cerning a species’ level of activation. The network’s I/O behaviour

was calculated as described above. Accordingly, default values

(see also ‘‘Model set-up’’) and other initial values reflecting the

presence/absence of ligands and/or inhibitors as prescribed by the

experimental set-up were fixed.

Inconsistencies between data and modelled I/O behaviour

may point to errors in the network structure. Following

Samaga et al.,30 raw data were discretised to binary values

prior to analysis ensuring their comparability with simulated

Boolean states. An effector (p) was considered ‘‘active or on’’,

if its phosphorylation status assayed at t = 30 min and caused

by a certain stimulus scenario S (xpS(t)) exceeded each of the

following thresholds (based on Samaga et al.30 with t0 refer-

ring to t = 0 min and max(xp) denoting the maximum signal

level detected for a species p with respect to all stimulus

scenarios):

xpS(t)/x
p
S(t0) Z 1.5 = p1. . . relative significance (signal

increase by at least 50% demanded),

xpS(t)/max(xp) Z 0.15 = p2. . . absolute significance (at least

15% of the maximum level with respect to all measured

stimulus scenarios have to be reached), and

xpS(t) Z 500 = p3. . . lower detection limit.

Otherwise, the species was set to ‘‘inactive or off’’. Concern-

ing negative regulatory phosphorylation events and associated

‘‘negative states’’ (cf. ‘‘Data analysis using interaction graphs’’),

signals were discretised vice versa, saying xpS(t) = 0 if all

conditions specified above are true and xpS(t) = 1 elsewise.

In principle, the parameters defined above are regarded identical

for all signalling molecules studied here, proposing an analytical

starting point in want of reference values. Discretised data sets

are shown in Fig. S9.B and S10.B, ESI.w

Abbreviations (in bold) and molecule names

A20 zinc finger protein A20

ABIN2 A20-binding inhibitor of NF-kB 2

Akt protein kinase B (PKB)

AP-1 activator protein 1

APP acute-phase protein

C/EBP CCAAT/enhancer binding protein

CaMK II/IV Ca2+/calmodulin (CaM)-dependent protein

kinase II/IV

CCL2 chemokine (C-C-motif) ligand 2

CNA CellNetAnalyzer

CRP C-reactive protein

EGFR/ErbB epidermal growth factor receptor

ERK extracellular signal-regulated kinase

FL feedback loop

Gab1 Grb2 (growth-factor-receptor-binding protein 2)-

associated binder-1
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gp130 glycoprotein 130

GSK3 glycogen synthase kinase 3

HGF hepatocyte growth factor

HNF4a hepatocyte nuclear factor 4 a
Hsp27 heat shock protein 27

I/O input–output

IFN interferon

IG interaction graph

IKKb IkB kinase b
IL-1 interleukin 1

IL-1Ra IL-1 receptor antagonist

IL-1RII interleukin 1 receptor (IL-1R), type II

IL-6 interleukin 6

IL-8 interleukin 8

iNOS inducible nitric oxide synthase

IR insulin receptor

IRAK IL-1R-associated kinase

IRS1 insulin receptor substrate 1

ITT incomplete truth table

IkBa inhibitor of nuclear factor (NF) kB a
JNK c-Jun N-terminal kinase

LBP LPS (lipopolysaccharide) binding protein

LIH logical interaction hypergraph

LSS logical steady state

MAPK mitogen-activated protein kinase

MEK mitogen-activated ERK kinase

MEKK3 MAPK/ERK kinase kinase 3

MIS minimal intervention set

MK2 MAPK-activated protein kinase 2

MKP1 MAPK phosphatase 1

mTOR(C) mammalian target of rapamycin (complex)

MYD88 myeloid differentiation primary response gene 88

NEMO NF-kB essential modulator

NF-kB nuclear factor kB
ODE ordinary differential equation

p38 p38-mitogen activated protein kinase (MAPK)

p70S6K ribosomal protein S6 kinase, 70 kDa

p90RSK ribosomal protein S6 kinase, 90 kDa

PI3K phosphatidylinositol 30-kinase

PKCd protein kinase C d
RasGAP Ras (v-Ha-ras Harvey rat sarcoma viral onco-

gene homolog) GTPase activating protein

ROS reactive oxygen species

S serine

SAA serum amyloid A

SHP2 SH2 domain-containing protein tyrosine

phosphatase 2

sIL-1RAcP soluble IL-1R accessory protein

sIL-1RI/II soluble IL-1R, type I/II

SOCS suppressor of cytokine signalling

SOP sum of products

STAT signal transducer and activator of transcription

T threonine

TAB TGF (transforming growth factor) b-activated
kinase (TAK)-binding protein

TAK1 TGFb-activated kinase 1

TNF tumour necrosis factor

TPL2 proto-oncogene serine/threonine protein kinase

encoded by the tumour progression locus 2 (tpl2)

TRAF6 TNF receptor-associated factor 6

uPA urokinase-type plasminogen activator

Y tyrosine

a2M a2-macroglobulin

gFBG g-fibrinogen
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