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Abstract: Novel design algorithms for exponential stability of switched linear systems using
the left eigenstructure assignment approach by state feedback control are proposed in this
article. For given switching constraints in the state space Rn, a state feedback controller for
single-input switched systems is designed, based on the fact that closed loop system solutions
are enforced to converge towards the invariant hyperplane attractor in Rn, as defined by the
imposed common left eigenvector. The latter is appropriately constructed to guarantee the
simultaneous stabilization of all constituent linear sub-systems, and to avoid the intersection
of the switching manifolds with its invariant attractor set. For arbitrary switching, a set of
n linearly independent common left eigenvectors in Rn is selected, introducing n hyperplane
attractors, and n(n− 1) switching control hyperplane manifolds. The attrators are sequentially
“turned on”, in accordance with the switching event generated by the Filippov solutions upon
hitting the underlying control manifolds. Thereby, an additional state feedback control action
for a second input is designed, using the nonsmooth Lyapunov stability criteria to avoid sliding
modes and guarantee exponential stability for the Filippov solutions.

Keywords: Switched linear systems, nonsmooth analysis, Lyapunov function, generalized Lie
derivative, left eigenstructure assignment

1. INTRODUCTION

The study of the stability properties of switched systems in
general gives rise to a number of interesting and challeng-
ing mathematical problems [1]. A widely used approach
in the stability analysis for arbitrary switching signals
employs the concept of the common Lyapunov function
that decreases in time along the solutions of the underly-
ing dynamical system. It is a fact that the existence of
a common smooth Lyapunov function is necessary and
sufficient for the exponential stability of switched linear
systems under arbitrary switching signals. Different spe-
cific classes of smooth Lyapunov functions and related
converse theorems have been proposed in the literature,
including the common quadratic Lyapunov function. In
particular, non-quadratic or/and nonsmooth Lyapunov
functions have been appealing recently, see [2]. Lyapunov
based techniques have been predominant also in stabiliza-
tion of switched linear systems. For instance, the local
state feedback control problem for the composition of a
common quadratic Lyapunov function can be transformed
into a set of linear matrix inequalities, [3]. Additionally, a
time dependent control switching law between the modes
of a switching system is used in maintaining the Lyapunov
stability condition along the system solutions, see e.g. [4].

In this work, the concept of common left eigenvector
assignment is introduced as a tool for both analysis and
synthesis of switched linear systems. It turns out that
for all solutions of a switched linear system with sta-

ble constituents sharing a commomn left eigenvector w,
limt→∞ wTx(t) = 0. Hence, an important related issue
consists in the computation of a single proper eigenvector
in Rn which guarantees the simultaneous stability of all
linear constituents at hand. To this end, tools for con-
structing a suitable eigenvector that stabilizes a given
single linear system are pre-requisite, see [5, 6]. This is
thoroughly discussed in Section 2. Assuming that the
corresponding eigenvalue is stable, the system solutions
are ultimately attracted by the invariant hyperplane set
wTx = 0. The idea is then to construct an invariant at-
tractor by a proper selection of the left-eigenvector w, such
that the latter is disjoint (up to an ε-Ball) with the given
switching manifolds in the state-space. This is elaborated
in Section 3, where formally a related sufficient condition
for the stabilizability of single-input switched systems is
proposed. In Section 4, this approach is generalized for the
stabilization of two-input systems with arbitrary switching
signals. Here, a set of n independent left eigenvectors wi ∈
Rn, i ∈ {1, . . . , n} is required, imposing additional n(n−1)
switching control constraints in Rn. The stability of the
linear sub-systems is not mandatory here. The first input
is utilized to impose the underlying left eigenvector wi to
the closed loop of sub-systems, while the second one is
designed to guarantee the exponential stability of Filippov
solutions using the concept of the set-valued Lie-derivative
for the locally Lipschitz piecewise quadratic nonsmooth
Lyapunov function defined by V (x) = 1

2 max (wTi x)2.
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2. LEFT EIGENVECTOR ASSIGNMENT

Consider the general state space representation of an LTI
system with single input

ẋ = Ax+ bu, (1)
where x ∈ Rn and u ∈ R are the state and the control
input, respectively. Suppose we want to construct a state
feedback u = kTx which would assign a given left eigen-
vector w ∈ Rn and a corresponding eigenvalue λ0 ∈ R<0

to the closed loop system. Then, by simple computation

wT (A+ bkT ) = λ0w
T =⇒ kT = −w

T (A− λ0I)
bTw

. (2)

where bTw 6= 0 is assumed, and I stands for the unity ma-
trix of order n. The left eigenvector w appears nonlinearly
in the resulting closed loop system matrix

Acl =
(
I − bwT

bTw

)
A+ λ0

bwT

bTw
. (3)

A next natural problem arising from the closed loop
description in (3) consists in exploring the proper selec-
tion of w and λ0 such that Acl = A + bkT becomes a
Hurwitz matrix. Therefore, let p(λ) = det(λI −A) be the
characteristic polynomial of the open loop system

p(λ) = λn + a1λ
n−1 + . . .+ an, (4)

and q(λ) = det(λI −Acl) the characteristic polynomial of
the closed loop matrix (3)

q(λ) = λn + α1λ
n−1 + . . .+ αn. (5)

The relationship between the coefficients αi and ai, i =
1, . . . , n is given by the Bass-Gura formula, see [7]

α1 =a1 − kT b,
α2 =a2 − kTAb− a1k

T b,

α3 =a3 − kTA2b− a1k
TAb− a2k

T b,

and so forth. On the other hand,
det(λI −A− bkT ) =

= det(λI −A)det[I − (λI −A)−1bkT ]
= p(λ)

[
1− kT (λI −A)−1b

]
= p(λ)

[
1 +

wT (A− λ0I)(λI −A)−1b

bTw

]
= p(λ)

[
wT (λI −A− λ0I +A)(λI −A)−1b

bTw

]
= (λ− λ0)

bT adj(λI −AT )w
bTw

.

[Hint: For the above derivation steps the reader is referred
to Section 3.2 in [7].] The latter expression reveals the
fact that λ0 is an eigenvalue of Acl, while the rest n − 1
eigenvalues, being the roots of the polynomial

bT adj(λI −AT )w
bTw

= λn−1 + β1λ
n−2 . . .+ βn−1, (6)

are uniquely specified by the left eigenvector w. The
coefficients βi, i = 1, . . . , n−1 are computed by comparing
the coefficients of the following polynomial identity
λn + α1λ

n−1 . . .+ αn =
= (λ− λ0)(λn−1 + β1λ

n−2 . . .+ βn−1), (7)
yielding

βi =
bT (aiI + ai−1A+ . . .+Ai)Tw

bTw
. (8)

b

(a1 I + A)b

Fig. 1. Selection of the left eigenvector for n = 2. The
gray shaded area depicts the region of all stabilizing
common left eigenvectors w.

Example 1. Due to the nonlinear appearance of the eigen-
vector w in (8), applying the Routh-Hurwitz stability
criteria for the construction of w is, in general, tedious.
However, for n = 2 and n = 3, we can obtain simple
solutions with an insightful geometrical illustration. For
instance, for n = 2, from (8) it follows

β1 =
bT (a1I +A)Tw

bTw
> 0. (9)

This inequality is held if the inner-products of w with b
and (a1I + A)b share the same sign. Hence, the set of all
eigenvectors is defined by the shaded area in Figure 1. If
n = 3, we additionally need

β2 =
bT (a2I + a1A+A2)Tw

bTw
> 0. (10)

In the following we provide a systematic method for the
design of all stabilizing left eigenvectors w in (3). For the
sake of simplicity, consider first, the canonical controller
form representation of the system (1)

ẋ = Acx+ bcu, (11)
with

Ac =



0 1 0 . . . 0
0 0 1 . . . 0
.
.
.
0 0 0 . . . 1
−an −an−1 −an−2 . . . −a1

 , bc =



0
0
.
.
.
0
1

 .

Let wc = [wc,1, . . . , wc,n−1, 1]T and λ0 be the desired left
eigenvector and its eigenvalue, respectively. Observe that
w.l.o.g. we can set wc,n = 1, to assure the mandatory
condition 1 = bTc wc 6= 0. It is an easy exercise to show now
that the state feedback u = kTc x [in accordance with (2)],
with kTc = −wTc (Ac−λ0I), leads to the closed loop system
matrix Ac,cl = Ac + bkTc given by

Ac,cl =
(
I − bcw

T
c

bTc wc

)
Ac + λ0

bcw
T
c

bTc wc
. (12)

[For convenience, with regard to the comparison with (14),
we keep here the term bTc wc = 1 in the denominator.],
that does not depend on the parameters a1, . . . , an of the
matrix Ac, as revealed by its explicit form

Ac,cl =


0 1 . . . 0
0 0 . . . 0
...
0 0 1

λ0wc,1 −wc,1 + λ0wc,2 . . . −wc,n−1 + λ0

 .
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Then, it follows
det(λI −Ac,cl) =

= λn + (wc,n−1 − λ0)λn−1 + . . .− λ0wc,1

= (λ− λ0)
(
λn−1 + wc,n−1λ

n−2 + . . .+ wc,2λ+ wc,1
)
.

Hence, with Λ = [1, λ, . . . , λn−1]T , the characteristic poly-
nomial of the closed loop can be written as

qc(λ) = (λ− λ0)ΛTwc. (13)
Each controllable system (1) can be converted into the

controller canonical form using the transformation T =
ΦcΦ−1

cc , where Φc and Φcc are the controllability matrices
of the original and of the transformed system, respectively.
Then, Ac = T−1AT and bc = T−1 b applies, and we get

T−1AclT =T−1AT − (T−1b)wTAT
bTw

+ λ0
(T−1b)wTT

bTw

=
(
I − bc(wTT )

bTc (TTw)

)
Ac + λ0

bc(wTT )
bTc (TTw)

. (14)

A comparison of this expression with (12), implies that
the condition T−1AclT = Ac,cl holds if wT = γ · wTc T−1,
where γ is any nonzero real scalar. This closes the proof
of the following statement.
Theorem 1. Let the single-input LTI system (1) be con-
trollable, and define T = ΦcΦ−1

cc . Assume λ0 < 0, and
consider any Hurwitz polynomial in the form (13). Then,
the closed loop matrix (3) is Hurwitz, if the left eigenvector
w is given by w = γ · (T−1)Twc, for some real nonzero γ,
and wc = [wc,1 . . . wc,n−1 1]T .

3. STATE-SPACE SWITCHING CONSTRAINTS

3.1 Stability analysis

Let A = {A1, ..., Am} be a collection of Hurwitz matrices
in Rn×n. In this section, we consider a switched linear
system defined as

ẋ(t) = Aδ(x)x(t), where δ : Rn → {1, . . . ,m} (15)
is a piecewise constant function, defining the active modes
ẋ(t) = Aαx(t), Aα ∈ A. The function δ can be associated
a switching constraint set

M = {x ∈ Rn; M (x) = 0} (16)
where M(x) = 0 represents a switching manifold between
two different modes in A. For a given switching function
δ(x), and a fixed initial condition x(0), the solution of the
switched system (15) is uniquely given by

x(t) = eAδk (t−tk) . . . eAδ1 (t2−t1)x(0), (17)
where t > tk > . . . > t1 > 0 refer to the switching times,
and δi = δ(x(ti)), i = 1, . . . , k.

Consider now the special case with all matrices in
Aα ∈ A, sharing a same left eigenvector w. Left-side
multiplication of equation (17) by wT implies

wTx(t) = eλ0,k(t−tk) . . . eλ0,1(t2−t1)wTx(0), (18)
where we use the fact that wT is a left eigenvector of
the matrix eAδi t, too. Hence, if all eigenvalues λ0,i, i =
1, . . . , k are stable, then

lim
t→∞

wTx(t) = 0,

and, consequently, all solutions of the switched system (15)
[independently of the initial value x(0)] converge to the
invariant set

X = {x ∈ Rn | wTx = 0}, (19)

as revealed by
x ∈ X ⇒ wT ẋ = λ0,iw

Tx = 0.
[Note that all solutions, starting from X at t = 0, remain
in X for all t > 0.] Moreover, according to equation (18)
for all t and for all i = 1, . . . , k

‖wTx‖ ≤ emax(λ0,i)t‖wTx(0)‖, (20)
implying that the solutions (17) converge to X exponen-
tially fast. In other words, X is an invariant attractor set.
Lemma 1. Consider the switched system (15), and sup-
pose that X and M, as defined by (19) and (16), respec-
tively, are disjoint in the sense that (X + εB)∩M = ∅ for
some ε > 0, where B represents a closed unit ball in Rn.
Then, if all matrices in A share a common left eigenvector
w, the system (15) is exponentially stable.

Proof: Referring to the conditions of the theorem, all
solutions of the underlying switched system enter the set
(X + εB) in a finite time. Since no switching takes place
thereafter, the system (15) reduces to a linear system of
the form ẋ = Aαx for some Aα ∈ A, which is, by definition,
exponentially stable. This completes the proof. 2

This lemma is introduced primarily for design purposes in
the next section, but it can be utilized for stability test,
as well, as illustrated by the next example.
Example 2. It is a fact that no common quadratic Lya-
punov function exists for (15) if there exist matrices Rα =
RTα satisfying

∑m
α=1(ATαRα+RαAα) > 0, see [1]. Consider

the example taken from [3], with slightly modified matrices
Aα and Rα, α ∈ {1, 2}

A1 =

(−1 0 0
0 −1 −1
0 1 −1

)
A2 =

(−3 0 0
0 −1 −10
0 0.1 −1

)

R1 =

(−1 0 0
0 0.299 0.704
0 0.704 2.470

)
R2 =

(−1 0 0
0 0.212 −0.553
0 −0.553 1.971

)
.

Note that these matrices satisfy the latter inequality,
hence, no statement about the stability of the system
based on the concept of common quadratic Lyapunov
function can be made here. However, with M = {x ∈
R;x2

2+x2
3−ax2

1+1 = 0, a ∈ R>0}, the underlying switched
system is exponentially stable since (i) w = [1, 0, 0]T is
a left common eigenvector for both individuals A1 and
A2, (ii) A1 and A2 are Hurwitz, and (iii) (X + εB) ∩
M = ∅ for 0 ≤ ε < min(1, 1/

√
a) and the invariant set

X = {x ∈ R;x1 = 0}.

3.2 Control design

Consider a single input switched system
ẋ(t) = Aδx(t) + bδu(t), (21)

with δ = δ(x) defined as in the previous section, [for
notation simplicity, we drop here its explicit dependency
on x], and
Aδ ∈ A = {A1, . . . , Am}, bδ ∈ B = {b1, . . . , bm}. (22)
Consider exponential stabilization of (21) by means of

a local state feedback controller u = kTδ x. In our control
strategy, kδ is requried to impose the same common left
eigenvector w and a corresponding eigenvalue λ0 to all
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Wc

W

W1

Wm(TT
m)−1

(TT

1
)−1

Fig. 2. Selection of a proper common left eigenvector in
accordance with the conditions (i)-(ii) of Theorem 2.

closed loop matrices Acl,α = Aα + bαk
T
α , α ∈ {1, . . . ,m}.

To this end, use (2) and a w such that bTαw 6= 0, bα ∈ B
kTδ = −w

T (Aδ − λ0I)
bTδ w

. (23)

Note that kδ is itself a switching control gain, taking
the values in K = {k1, . . . , km}, where kα = kδ for
δ(x) = α ∈ {1, . . . ,m}. The critical point here consists,
however, in the appropriate design of w, such that (21) is
stabilized by u = kTδ x. The following theorem, which is a
direct consequence of Lemma 1, provides a corresponding
design roadmap.
Theorem 2. If w ∈ R and λ0 < 0 exist, such that
(i) wTA1 = . . . = wTAm = λ0w

T ,
(ii) Acl,α = Aα + bαk

T
α are Hurwitz for α ∈ {1, . . . ,m},

with kα ∈ K, and
(iii) (X + εB) ∩M = ∅ for some ε > 0, where X = {x ∈

Rn; wTx = 0}
then the switched system (21) is globally exponentially
stabilizable by the feedback law u = kTδ x, with kδ given
by (23).

A basic approach for constructing a proper common
left eigenvector w up to a scaling factor γ 6= 0, such
that the conditions (i)-(ii) of this theorem are fulfilled, is
schematically depicted in Figure 2. Let Wc be the space of
all wc ∈ Rn that fulfill (13), for all eigenvalues λ1, . . . , λn−1

that lie in the open left half of the complex plane, and
define Wα = (TTα )−1Wc = {(TTα )−1wc;wc ∈ Wc}, α ∈
{1, . . . ,m}. Then, any vector w from W = W1 ∩ . . . ∩
Wm, such that bTαw 6= 0 holds for every α, fulfills (i)-
(ii) in Theorem 2. Furthermore, in order to guarantee the
exponential stability of the closed loop of (21) [referring to
the condition (iii) of the theorem], one has to pick up such
a vector w ∈W that guarantees the disjunction condition
(X + εB) ∩M = ∅.

4. ARBITRARY SWITCHING CONSTRAINTS

We start the section by recalling some definitions and
results which are used in the sequel. For more details, the
reader is referred to [8, 9].

4.1 Preliminaries

A differential inclusion is defined by
ẋ ∈ F (x), (24)

where F : G → P(Rn) is a set-valued map, G is an open
subset of Rn, and P(Rn) represents the power set of Rn.
Differential inclusions are instrumental for the analysis of
discontinuous and uncertain systems. Diverse concepts for
the solutions of differential inclusions exist. In particular,

we consider here the Filippov solutions, which arise by
approximating a discontinuous vector field X : G → Rn in
ẋ = X(x) by the Filippov set-valued map defined by

F (x) := ∩δ>0 ∩µ(S)=0 co{X(B(x, δ) \ S)}, (25)
where co denotes convex closure, µ denotes the Lebesgue
measure, S is the set of measured zero points, and
B(x, δ) ⊂ Rn is a ball with center at x ∈ Rn and radius δ.

The generalized gradient of a locally Lipschitz function
V : Rn → R at the point x ∈ Ω denoted by ∂V (x) is
defined as

∂V (x):=co
{

lim
i→∞

∇V (xi);xi → x, xi /∈ Ω ∪ S
}
, (26)

where “co” stands for the convex hull, and Ω represents
a manifold in Rn, where the gradient ∇V (x) is disconti-
nouos. The set-valued Lie derivative of the latter function
V (x) with respect to a set valued map F denoted by
L̃FV (x), is defined as

L̃FV (x)=
{
a ∈ R;∃ν∈F (x), ζT ν = a,∀ζ∈∂V (x)

}
. (27)

If F is convex and compact, then, for all x ∈ Rn, L̃FV (x)
is a closed and bounded interval in R, possibly empty. If
V is continously differentiable at x then

L̃FV (x) = {(∇V (x))T ν; ν ∈ F (x)}. (28)
Recall that the usefulness of the concept of the Lie deriva-
tives stems from the fact that it enables us to study
the evolution of the function V along the solutions of a
differential inclusion ẋ ∈ F (x), without the explicit need
for the solution of the latter. The following theorem implies
the stability of Filippov solutions to the differential inclu-
sion (24) for the nonsmooth locally Lipschitz Lyapunov
function V = V (x), see [8, 9].
Theorem 3. Consider the Filippov set valued map F : G →
P(Rn) and a corresponding differential inclusion ẋ ∈ F (x).
Let x = 0 be the only equilibrium of the differential
inclusion. Then, x = 0 is a globally asymptotically stable
equilibrium of ẋ ∈ F (x), if a function V : Rn → R exists,
such that
(i) V is locally Lipschitz and regular on Rn,

(ii) V (0) = 0 and V (x) > 0 for each x ∈ Rn\{0}, and
(iii) max L̃FV (x) < 0 for each x ∈ Rn.

4.2 Control design

Consider a switching linear system with two inputs
ẋ = Aσx(t) + b1,σu1(t) + b2,σu2(t), (29)

where σ : R≥0 → {1, . . . ,m} is an arbitrary time-
dependent piecewise continuous switching function, and
Aσ ∈ A = {A1, ..., Am}, bk,σ ∈ Bk = {bk,1, ..., bk,m},

for k = 1, 2. Note that the switching function σ infers a
larger class of switched systems in comparison with the
state-dependent function δ in the previous section.

Consider the following control Lyapunov function

V (x) =
1
2

max(wTi x)2, i ∈ {1, . . . , n}, (30)

where wi, i ∈ {1, . . . , n}, are any linearly independent
vectors in Rn, and bT1,αwi 6= 0, for all α ∈ {1, . . . ,m}. It is
obvious that this function is locally Lipschitz and regular.
Also, it is positive for x 6= 0, and V (x) = 0 ⇒ x = 0.
Therefore, the function V (x) fulfills the conditions (i) and
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(ii) of Theorem 3. Moreover, it is differentiable almost
everywhere, but on the hyperplane manifolds
Xij={x∈Rn; (wi−wj)Tx = 0 ∨ (wi+wj)Tx = 0}, (31)

where (wTi x)2 = (wTj x)2 = max{(wTk x)2, k = 1, . . . , n}.
The objective of our control problem consists in designing
the appropriate controllers for the inputs u1 and u2, such
that the control Lyapunov function in (30) fulfills the last
condition (iii) in Theorem 3 along the Filippov solutions
of the underlying closed loop system.

To this end, consider the set given by
Ωi = {x ∈ Rn; (wTi x)2 ≥ (wTj x)2, j = 1, . . . , n},

and define the control u1 = kT1,σix for x ∈ Ωi, such that
the closed loop

Acl,σi = Aσ + b1,σk
T
1,σi + b2,σk

T
2,σi,

is assigned the left eigenvector wi. According to (2)

kT1,σi = −w
T
i (Aσ + b2,σk

T
2,σi − λ0I)

bT1,σwi
. (32)

The resulting closed loop system matrix then reads
Acl,σi = Ãσi + b̃σik

T
2,σi, (33)

where

Ãσi =

(
I − b1,σw

T
i

bT1,σwi

)
Aσ + λ0

b1,σw
T
i

bT1,σwi
,

b̃σi =

(
I − b1,σw

T
i

bT1,σwi

)
b2,σ.

In our setting, the closed loop (33) experiences a switch-
ing in the following situations:
(s1) The independent switching signal σ = σ(t) causes

an internal switching in the open loop system matrix
Aσ ∈ A in (29). Then, k1,σi is updated using (32).
This will be referred to as autonomous switching.

(s2) A solution of ẋ = Acl,σix(t) for some fixed x(0), falls
down onto a hyperplane Xji = Ωj ∩Ωi at some point
ξ. Then, k2,σi has to be updated according to the
rules to be shortly conceived. Moreover, if the solution
enters the set Ωi from Ωj , j 6= i, k1,σj switches to
k1,σi, in accordance with (32). Notice that Xji is a
switching manifold imposed by the control.

With reference to these switching conditions, we intro-
duce now the Filippov set valued map for the differential
inclusion ẋ ∈ F (x) that governs the Filippov solutions of
the closed loop system ẋ = Acl,σix(t) as

F (x)=

{
m∑
α=1

n∑
i=1

γαiAcl,αix; γαi ≥ 0,
m∑
α=1

n∑
i=1

γαi=1

}
(34)

where Acl,αi = Acl,σi if σ(t) = α ∈ {1, . . . ,m}. If for some
t > 0, no autonomous switching happens (that is, σ is
continuous at the time instant t), then for x ∈ Ωi, it follows

F (x) = Acl,αix. (35)
[Since F (x) is a singleton, we drop the braces.] If Acl,αi

switches to Acl,βj due to the condition in (s1) or (s2),
where α, β ∈ {1, . . . ,m} and i, j ∈ {1, . . . , n}, then

F (x) = {(γαiAcl,αi + γβjAcl,βj)x;
γαi + γβj = 1, γαi, γβj ≥ 0} , (36)

whereby all other γ-parameters in (34) are naught. Note
that, while the Filippov set-valued map, referring to an au-
tonomous switching event, involves always two constituent

modes, in the general case, a switching control manifold
may call for additional ones. For instance, in the switching
control manifold Xjik = Ωj ∩ Ωi ∩ Ωk, three active modes
are involved.

Having introduced the Filippov set valued map, in the
following, we elaborate different scenarios separately, and
investigate for each, the condition (iii) in Theorem 3 for
the resulting set-valued Lie derivative L̃FV (x).
Scenario (a): If no switching occurs at some x ∈ Ωi,
according to the definition (30) the function V (x) is
continously differentiable at x. According to (28), the
set valued Lie derivative is singleton, and the underlying
condition (iii) is satisfied since

max L̃FV (x) = λ0 max(wTi x)2 < 0. (37)
Scenario (b): Consider the autonomous switching con-
dition, as defined in (s1). Then, the closed loop matrix
Acl,αi switches to Acl,βi, and the Filippov set valued map
is given by (36), with j = i. The function V (x) is again
continously differentiable at x ∈ Ωi, and referring to (28),
the set valued Lie derivative reads

L̃FV (x) = {(wTi x)wTi (γαiAcl,αi + γβiAcl,βi)x} (38)
= λ0(wTi x)2,

where we make use of wTi Acl,αi = wTi Acl,βi = λ0w
T
i .

Hence, (iii) holds.
Scenario (c): Consider the switching scenario, as defined
in (s2), at some ξ ∈ Xji. [For the sake of simplicity, we
confine the discussion to switching control manifolds Xji of
dimension n−1.] Then, Acl,αj switches to Acl,αi, while the
function V (x) is now nonsmooth at x = ξ. The generalized
gradient of V at ξ is given by
∂V (ξ) =

{
(wTi ξ)(µαjw

T
j ± µαiwTi );

µαj + µαi = 1, µαj , µαi ≥ 0}, (39)
whereas, the Filippov set valued map reads

F (ξ) = {(γαjAcl,αj + γαiAcl,αi)ξ;
γαj + γαi = 1, γαj , γαi ≥ 0} . (40)

The idea now consists in avoiding the sliding modes, as
they may cause diverging Filippov solutions. Therefore,
we will design a state feedback u2 = kT2,σiξ, such that the
resulting set valued Lie derivative at ξ ∈ Xji is empty, or,
equivalently, such that max(L̃FV (ξ)) = −∞. As a conse-
quence, the Filippov solutions leave the switching manifold
Xji immediately upon hitting it. According to (27), a set
valued Lie derivative is empty if with ν = (γαjAcl,αj +
γαiAcl,αi)ξ ∈ F (ξ) no γαj and γαi in (40) exist, such that
ζT ν = const holds, for any vector ζ = (wTi ξ)(µαjw

T
j ∓

µαiw
T
i ) ∈ ∂V (ξ) in (39). A related necessary and sufficient

condition which guarantees this situation is found to be
(wTi ξ)(w

T
j ∓ wTi )(γαjAcl,αj + γσiAcl,αi)ξ 6= 0. (41)

The latter inequality is satisfied if and only if
ξTATcl,αj(wj ∓ wi)× (wTj ∓ wTi )Acl,αiξ > 0. (42)

For the sake of simplicity, consider only the negative signs
in the above expression. Substituting Acl,αi from (33)
[with σ = α] into the latter equation, and introducing
f(x) = xTATcl,αj(wj − wi)(wj − wi)T Ãαix and g(x)T =
xTATcl,αj(wj−wi)(wj−wi)T b̃αixT , we obtain the following
equivalent condition

f(ξ) + g(ξ)T k2,αi > 0. (43)
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The decision parameter k2,αi chosen in accordance with

kT2,αi = l
| f(ξ) | g(ξ)T

‖g(ξ)‖2 , l > 1 and 0 6= ξ ∈ Xji, (44)

guarantees the inequality (43) and, therefore, the condition
(iii) in Theorem 3, too.
Scenario (d): Consider the final scenario, when both
(s1) and (s2) occur simultaneously. Then, Acl,βj switches
to Acl,αi, while the function V (x) is now nonsmooth at
x = ξ ∈ Xji. Similar lines of argument as in Scenario (c)
lead to the conclusion that the condition (iii) of Theorem
3 holds again.

Hence, we conclude that the function V (x) in (30) with
state feedback design using (32) and (44) satisfies the
conditions in Theorem 3 under all conceivable switching
situations. Moreover, following the discussion hitherto,
V̇ (x) = 2λ0V (x), almost everywhere, implying

V (x) = V0e
2λ0t, (45)

where V0 = V (x(0)). In addition, for any t > 0 and some
0 < M ≤ λmin(

∑n
i=1 wiw

T
i )

M‖x‖2 ≤
n∑
i=1

(wTi x)2 ≤ n max(wTi x)2 = 2nV0e
2λ0t,

which brings us to the following main result.
Theorem 4. The controlled switched system (29) with
arbitrary switching and feedback control design using (32)
and (44) is globally exponentially stable.

Finally, it is important to note that for this control scheme,
the closed loop stability of the individual subsystems is not
mandatory for the stability of the switched system.

Example 3: Consider the system with arbitrary switching
between the two-input linear subsystems

A1 =

(−1 2 3
−3 4 2

2 4 5

)
, A2 =

(−1 2 1
−1 4 2

2 4 3

)
with the corresponding input vectors as defined in (29)

b1,1 =

( 1
1.8
2

)
, b2,1 =

( 1
0.8
1

)
, b1,2 =

(2
1
1

)
, b2,2 =

( 1
−2
1

)
.

Note that both subsystems A1 and A2 are unstable,
with the eigenvalues located at −1.72, 2.89, 6.83 and
−0.81, 0.39, 6.42, respectively. Consider the three indepen-
dent eigenvectors w1 = [1, 0, 0]T , w2 = [0, 1, 0]T , and
w3 = [0, 0, 1]T , representing the left eigenvectors in our
design procedure, with the associated eigenvalue λ0 = −2.
Let an initial condition x(0) ∈ R3 be given, such that
V (x(0)) = 1

2 (wT2 x(0))2. Further, let the closed loop be
in the Acl,12 mode, i.e. it is assigned the left eigenvec-
tor w2. The corresponding vector k2,12 is initialized at
zero, i.e. k2,12 = [0, 0, 0]T . As a consequence, the corre-
sponding vector k1,12, computed from (32), reads k1,12 =
[1.67,−3.33,−1.11]T .

According to the elaborations in this section, the Lya-
punov function V (x) = 1

2 (wT2 x)2 is a strictly decreas-
ing function in time, until an autonomous or switching
control event occurs. Suppose a switching control action
occurs upon hitting the boundary manifold at a point
ξ ∈ {x; (wT2 − wT1 )x = 0} ⊆ X21. Referring to (43), the
following terms can be computed at such a switching point

f(ξ) =ξT
( 1.87 −0.27 2.27

1.87 −0.27 2.27
5.29 −0.76 6.42

)
ξ,

and
gT (ξ) = [0.67, 0.67, 1.89] (ξξT ).

The corresponding updates for the controllers k2,11 and
k1,11 are computed using (44) and (32), respectively. Note
that the Lyapunov function now switches to V = 1

2 (wT1 x)2.
Now consider an autonomous switching event, e.g. from

A1 to A2. The closed loop left eigenvector w1 need not be
updated due to this switching event. Therefore, k2,21 =
k2,11 remains unchanged. However, in accordance with
(32), k1,11 switches to k1,21 = [−0.5 −1 −0.5]T −0.5k2,21.
The control action is updated by following similar rules
upon any further autonomous or switching control event.

5. CONCLUSION

Two scenarios for exponential stabilization of linear
switching control systems based on a left eigenstructure
assignment have been investigated. In the first scenario, we
propose a sufficient stabilizability condition for the class of
the single-input systems with fixed switching constraints
in the state space. Therefore, a single left eigenvector is
appropriately constructed to guarantee the simultaneous
stabilization of all linear sub-systems, while avoiding the
intersection of its corresponding invariant hyperplane with
the given switching manifolds in the state space. In the sec-
ond scenario, the stabilizability of two-input systems under
arbitrary switching signals is considered. Therefore, for ar-
bitrary n linearly independent vectors in Rn, a nonsmooth
common quadratic Lyapunov function is proposed, and a
feedback control is designed to guarantee the exponential
stability of the Filippov solutions. Thereby, the controller
is appropriately parametrized to avoid the sliding modes,
while the stability of the constituent sub-systems has not
been mandatory.
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