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Abstract Mathematical models ensuring a highly predictive power are of inestimable value
in systems biology. Their application ranges from investigations of basic processes in living
organisms up to model based drug design in the field of pharmacology. For this purpose
simulation results have to be consistent with the real process, i.e, suitable model parameters have
to be identified minimizing the difference between the model outcome and measurement data. In
this work graph based methods are used to figure out if conditions of parameter identifiability are
fulfilled. In combination with network centralities, the structural representation of the underlying
mathematical model provides a first guess of informative output configurations. As at least the
most influential parameters should be identifiable and to reduce the complexity of the parameter
identification process further a parameter ranking is done by Sobol’ indices. The calculation of
these indices goes along with a highly computational effort, hence monomial cubature rules are
used as an efficient approach of numerical integration. All methods are demonstrated for a well
known motif in signaling pathways, the MAP kinase cascade.

1. INTRODUCTION

Essentials in cell biology can be described and analyzed
using deterministic models. For this purpose expert knowl-
edge has to be converted into a suitable model structureM
determining which and how model components interact.
Even with a correct model structure, the identification of
related model parameters θ ∈ R

p can be a challenging task.
Especially in the field of biology one has to accomplish the
feat to determine a highly dimensional vector of unknown
model parameters θ from sparse data, i.e., only a small
subset of model states can be measured directly at a
limited number of time points tk.

Frequently, not all elements of the parameter vector θ can
be identified uniquely for the considered model by a given
measurement set due to a lack of structural identifiability.
Qualitative optimal experimental design aims at finding
an optimal input/output configuration of the system that
guarantees structural identifiability without the knowledge
of actual parameter values and real measurement data. To
figure out which parameters are theoretically identifiable
the identification problem may be reformulated as an
observability problem (Fey and Bullinger [2009]). Now
efficient methods of structural observability analysis can
be applied. A new idea proposed in this work is to combine
the structural representation of the model with network
centralities (Koschützki and Schreiber [2008]). It turns
out that this approach provides a first guess about highly
informative measurement sets.

In the next step the most sensitive parameters have to
be determined. A well known fact in systems biology is
the sloppiness of biochemical systems (Gutenkunst et al.
[2007]), i.e., only a small subset of parameters has a strong

impact on model behavior. Global sensitivities based on
Sobol’ indices may give information about these relevant
parameters. Traditionally, Sobol’ indices are computed
by costly Monte Carlo simulations. In contrast, efficient
methods of monomial cubature rules are applied in this
work. This reduces the computational effort considerably.

Another important factor to be taken into account is the
measurement noise as it results in uncertainties of the
identified parameters θ̂. To derive meaningful models these
uncertainties should be as small as possible. Consequently,
a reliable determination and if possible a reduction of
parameter uncertainties is fundamental in modeling. The
task of quantitative optimal experimental design is to find
experimental conditions that minimize the uncertainties in
the identified parameters. Also this objective requires that
structural identifiability can be ensured demonstrating the
relevance of an a priori identifiability analysis.

In the following, challenges of parameter identification are
discussed for the example of a MAP kinase model from
literature (Behar et al. [2007]).

2. BACKGROUNDS

2.1 Structural Identifiability

The objective of parameter identification is to find pa-
rameter values θ that achieve an acceptable consistency
between simulation results ys(tK) ∈ R

m and measurement
data yd(tK) ∈ R

m. For a given model structure M one has
to ensure that all parameters θ are in principle identifiable
by ideal input-output data, i.e., that the data are free of
noise and continuous in time.
For linear ordinary differential equation systems (ode’s)
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the identifiability test can be done by an integral transfor-
mation, e.g., Laplace transformation (Walter and Lecourtier
[1982]). However, the majority of processes in systems
biology are described by nonlinear ode systems, often of
the following from.

ċ(t) =N · r(c, θ) (1)

ys(t) = g(c, θ) (2)

The temporal evolution of species concentrations c(t) ∈ R
n

is determined by the stoichiometric matrix N ∈ R
n×v

and reaction rates r ∈ R
v. The reaction rates r are often

polynomial or rational functions of the concentrations c, if
mass action kinetics or Hill kinetics are used.
Moderately complex nonlinear ode systems can be handled
by methods of differential algebra (Saccomani [2004]) but
large scale systems still remain intractable. As an alterna-
tive for larger systems, a local method has been proposed
that only assigns a probability of non-identifiability (Se-
doglavic [2002]). To overcome the limitations in system size
the original ode system (Eq. 1) is restated in the following
way (Fey and Bullinger [2009]). The state vector c(t) is
extended by the rates r(t) and if existing by denominators
m(t) of Michaelis Menten or Hill kinetics, respectively.

ċe(t) = f(ce) (3)

ys(t) = g(ce) (4)

Now model parameters θ are implicitly given by the
knowledge of initial conditions of the extended ode system
(Eq. 3), i.e, if ce(0) = [c(0)T , r(0)T ,m(0)T ]T ∈ R

ne is
observable all parameters are in principle identifiable.

The proof of observability of nonlinear systems is usually
as complex as the proof of identifiability. But in the
latter case methods of structural observability analysis
become applicable, i.e., conditions that are necessary for
observability are checked. The structural analysis can be
applied on the basis of a directed graph (digraph) D(v, e)
with n different nodes vi representing the states of the
extended ode system (Eq. 3). The existence of an edge ei,j
from node vi to vj is determined by non-zero elements aj,i
of the adjacency matrix A∗. The ai,j element of A∗ is set

to 1 if the derivative ∂fi(ce)
∂cej

exists and to 0 if this is not

the case. In a similar way, an adjacency matrix C∗ of the
output function ys (Eq. 4) can be derived.
The extended system (Eq. 3) is called structural observable
(Reinschke [1988]) if the following two conditions are
fulfilled:

• All nodes indicating elements of the extended state
vector ce(t) are directly or indirectly connected to
nodes related to ys(t).

• s− rank[A∗;C∗] = ne.

Here s− rank represents the structural rank of a matrix.
Both conditions can be checked by highly efficient methods
of graph analysis, e.g, the algorithm of Shortest Path
(Dijkstra [1959]) determines the output connectivity of
every node vi to the output ys. Calculating the structural
rank of a matrix can be easily done by the Ford-Fulkerson
algorithm (Ford and Fulkerson [1956]).

2.2 Qualitative Optimal Design

If a system turns out to lack structural observability and
hence structural identifiability, there are two possible ways
to proceed. One possibility is to check how sensitive the
system is against the unidentifiable parameters. Very often
the behavior of a biological system is dominated by a tiny
subset of all model parameters. Then it may be sufficient,
if this subset of parameters can be identified, even if
some of the insensitive parameters cannot be determined
uniquely. The question of computing parameter sensitivi-
ties is treated in Section 2.3.
The second possibility is to look for other measured quan-
tities yd that ensure structural observability and identifia-
bility. In many cases several sets of measurements fulfilling
this condition will exist. Then the question comes up,
which set of measurements should actually be chosen. A
simple heuristic criterion that may help to answer this
question is presented in what follows.

Up to this point, the structural representation of the ode
system is only used for the discrete decision if a model
is identifiable or non-identifiable. In addition, the repre-
sentation of the internal information flow via the digraph
G(v, e) may provide a first guess about highly informative
measurement sets, as is discussed in the following. First
the situation is treated, that no real measurement data
nor guesses about parameter values are available. The idea
proposed here is to use network centralities to assess the
importance of every node in G(v, e). The “Status Index of
Katz” (Katz [1953]) is calculated (Eq. 5) for this purpose.

cK(i) =

∞
∑

k=1

ne
∑

j=1

αk(A∗k)ji (5)

In (Eq. 5), j is an index over all ne nodes in the graph, k
stands for paths of length k. ((A∗)K)ji is nonzero if there
is a path of length k from node vj to vi. Hence, the status
index cK(i) assumes large values for a node vi that is linked
directly or indirectly to many other nodes. To guarantee
convergence of the infinite sum in (Eq. 5), a damping factor
α is introduced. The inverse of α has to be bigger than the
largest eigenvalue of A∗.
Evidently, nodes with high values cK(i), i.e., nodes that are
strongly connected, are good candidates for measurement
generation. If during the process of model refinement real
data yd and consequently first guesses of θ become avail-
able these information can be easily included by weighted
edges. The weight wij of an edge eij is correlated to

the sensitivities
∂fj(ce)
∂cei

and
∂gj(ce)
∂cei

, respectively. In this

way, the qualitative optimal experimental design is closely
linked to the quantitative optimal design, i.e., searching
for operation conditions that minimize parameter uncer-
tainties.

2.3 Global Sensitivity Analysis

Especially for models in systems biology, the influence of
different model parameters θ on the model output varies
strongly. On the one hand there are parameters θl ⊂ θ that
can be changed by magnitudes without influence on the
dynamic behavior and on the other hand a slight change
of certain parameters θh ⊂ θ leads to a strong output
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variation. Evidently the focus of parameter identification
should lie on the latter subset θh.

To detect the different influence of model parameters θ on
ys related parameter sensitivities have to be determined. If
the variation of θ is quite small and their values are almost
certainly known then the sensitivities can be determined
by a local method using the Fisher Information Matrix
(FIM) (Eq. 6).

FIM =

(

∂ys

∂θ

∣

∣

∣

∣

θ

)T
∂ys

∂θ

∣

∣

∣

∣

θ

(6)

Usually this is not the case and global methods taking
parameter uncertainties explicitly into account have to be
applied. These requirements are automatically fulfilled by
variance based approaches. Treating parameters θ and the
output ys as random variables one is interested to quantify
the amount of variance that each parameter θi contributes
to the variance of the output σ2(ys).
The ranking of a parameter θi is done by the amount
of output variance that would vanish, if this parameter
θi is assumed to be known. Formally, for every assumed
known parameter θi a conditional variance σ

−i

2(ys|θi) can

be determined. The subscript −i indicates that the vari-
ance is taken over all parameters other than θi. As the
hypothesis of a known parameter θi is misleading the

expected value of the conditional variance E
i

[

σ
−i

2(ys|θi)

]

has to be determined, where the subscript E
i
illustrates

that the expected value is only taken over the parameter θi.
Now, the output variance σ2(ys) can be separated (Saltelli
et al. [2005]) into the following two additive terms.

σ2(ys) = σ
i

2(E
−i
[ys|θi]) + E

i
[σ
−i

2(ys|θi)] (7)

The variance of the conditional expectation σ
i

2(E
−i
[ys|θi])

represents the contribution of parameter θi to the variance
σ2(ys) indicating the importance of this parameter. The
normalized expression (Eq. 8) is known as the first order
sensitivity index (Sobol’ [1993]) and shall be used in the
following for parameter sensitivity analysis.

Si =
σ
i

2(E
−i
[ys|θi])

σ2(ys)
(8)

Usually, the multidimensional integrals, i.e., determining
σ2(ys) or σ2(ys|θi), are evaluated by Monte Carlo meth-
ods. This is correlated with a highly computational effort.
To reduce computation cost and to avoid a random ex-
ploration of the parameter space R

p using Monte Carlo
methods (Sobol’ [2001]) monomial cubature rules are ap-
plied in this work. Samples θj of Rp and related weights
wj are chosen deterministically to represent the parameter
uncertainties (Eq. 9,10).

E[θ] = θ ≈
SP
∑

j

wjθj (9)

σ2(θ)≈
SP
∑

j

wj(θj − θ)(θj − θ)T (10)

Details of sample point selection can be found in (Mc-
Namee and Stenger [1967]) where a suite of exact mono-
mial rules is presented. Every sample θj is propagated

via the ode system (Eq. 1) to the output function yjs at
time point tk. The resulting set of output functions yjs(tk)
provides an approximation about the variance of ys(tk)
(Eq. 11,12).

E[ys(tk)] = ys(tk) ≈

SP
∑

j

wjyjs(tk) (11)

σ2(ys(tk))≈

SP
∑

j

wj(yjs(tk)− ys(tk))(y
j
s(tk)− ys(tk))

T(12)

The overall number of samples SP is correlated to the
precision of the used monomials. Here rules are applied
using a number of SP = 2p2 + 1 for determining σ2(ys)
and SP = 2(p− 1)2 + 1 for σ2(ys|θi), respectively. The
computational effort is quadratically related to the dimen-
sion of the unknown parameters θ, if necessary the effort
could be reduced further using monomials of lower degree,
e.g., SP = 2p+ 1 for the unconditional output variance.

3. CASE STUDY

The capability of living cells to react on external stim-
uli by an appropriate response is essential in changing
environments. Hence, signaling pathways sensing external
stimuli, converting them into an intracellular signal that
generates a response are of high interest in systems biology.
Especially, as a malfunction of these pathways can cause
a number of diseases a better understanding of underlying
processes can lead to novel treatment methods.
Mathematical modeling and model analysis can play a
part in contributing improvements in this field of biology.
Consequently, there is a strong need for highly predictive
models, i.e, the model must be able to describe the real
process quite well even under conditions that were not
part of a former parameter identification process.
As shown in the previous section the parameter identifi-
ability is a prerequisite to fulfill these requirements. The
presented methods are demonstrated for a quite common
signaling motif, namely the mitogene activated protein
kinase (MAP kinase) (Behar et al. [2007]). In general, the
MAP kinase pathways mediates diverse processes ranging
from gene transcription right up to programmed cell death.
The cascade consists of three enzymes that are activated
sequentially allowing a variety of response patterns. Under
the assumption that the pool of each individual enzyme is
constant over the time, the related ode system consists of 3
ode’s for the activated enzymes (Eq. 13-15) and comprises
14 unknown model parameters, i.e., θ ∈ R

14.

˙KKK∗ =

k1 · u · (1−KKK∗)

k1m+ (1−KKK∗)
−

v2 ·KKK∗

k2m+KKK∗
−

k5 ·K∗ ·KKK∗

k5m+KKK∗

(13)

˙KK∗ =
k3 ·KKK∗ · (1−KK∗)

k3m+ (1−KK∗)
−

v4 ·KK∗

k4m+KK∗
(14)

K̇∗ =
k6 ·KK∗ · (1−K∗)

k6m+ (1−K∗)
−

v7 ·K∗

k7m+K∗
(15)

Only rate expressions ri of mass action and Michaelis
Menten kinetics are applied. Consequently, a reformulation
into a parameter free ode system by extending the state
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vector is possible (Eq. 3). The resulting system provides
the basis of the structural observability analysis.

In a first step the dedicated adjacency matrix A∗ is
determined leading to the digraph G(v, e) (Fig. 1). As
mentioned the digraph has to be sufficiently connected as
a condition for structural identifiability. From every node
vi there must exist a path to nodes that are measurement
candidates. Here, the three activated enzymes are assumed
to be theoretically measurable. In Table 2 path lengths
from every node vi to nodes vj related to one of the
potential outputs ys are written down. Only finite paths
can be found in the first three lines of Table 2, i.e, the first
condition of structural identifiability is fulfilled.
Now the second condition, the full structural rank, has to
be proved. As already the adjacency matrix A∗ provides
a full structural rank every output configuration ensures
structural identifiability.
As practical identifiability requires structural identifiabil-
ity the result can be verified using the FIM (Eq. 6). Model
parameters θ are practically identifiable if the FIM has
a full rank (Walter and Pronzato [1997]). The FIM is
evaluated at parameter values given by literature (Behar
et al. [2007]). Furthermore, almost perfect measurement
data are assumed, i.e, very low measurement noise and
a high number of measurement data points. All three
measurement candidates provide an appropriate FIM, con-
firming the previous result that is only based on the model
structure.
The reformulation of the original model (Eq. 1) to a
system of an extended state vector (Eq. 3) enables not only
the proof of structural identifiability it also provides the
detection of further interesting measurement candidates.
For the MAP kinase model the information about single
rates ri seems to be sufficient to guarantee parameter
identifiability, e.g., the output connectivity of r1 is shown
in the 4th line of Table 2.

The feedback from K∗ to KKK∗ has a strong im-
pact to parameter identification. A deactivation of this
feedback changes the structural identifiability fundamen-
tally. As indicated by the 5th and 6th line of Table
2 the loss of information coupling from K∗ to KKK∗

leads to infinite path lengths when measuring K∗ or
KK∗. The states ce,nO = [K∗,m5,m6, r8, r9, r10] are not
output connected by KK∗, i.e., the related parameters
θnI = [k6, k6m, v7, k7m]T are not identifiable. In a similar
way the number of non identifiable parameters increases
to θnI = [k3, k3m, k4, v4, k6, k6m, v7, k7m]T when mea-
suring only KKK∗. At least K∗ has to be included into
the measurement set to ensure structural identifiability.

As shown for the original MAP kinase model, measure-
ment data of only one of the activated enzymes are suffi-
cient for parameter identifiability. For the real parameter
estimation process not only the identifiability is of interest
but also the information content of measurements. To de-
rive meaningful models with low parameter uncertainties
highly informative measurement data are needed. Usually,
the assessment of the information content is only available
after running first experiments providing real measure-
ment data.
Here, the three potential outputs, KKK∗, KK∗, and K∗,
are ranked using the “Katz status index” (Tab. 1). Based

r4

r5

r6r7

r1

r2

r3

r8

r9

m5 m4

m7

m6

m1

m3

m2

KK∗

K∗

KKK∗

r10

Figure 1. Digraph G(v, e)

ys cK

KKK∗ 1.00
KK∗ 0.93
K∗ 0.89

Table 1. Normalized Katz status index cK

on graph analysis KKK∗ is rated as the most informative
one followed by KK∗ and K∗, respectively. Conclusions
about measurement candidates can be drawn before any
experimental data yd or estimates of model parameters θ
are given.

As sensitivities, e.g.
∂fj(ce)
∂cei

and
∂gj(ce)
∂cei

, are not considered

at this stage, graph based result may provide only a first
guess of highly informative outputs. Nevertheless, this
approach is a good starting point for the parameter identi-
fication process and can be easily extended by qualitative
information during the framework of model refinement.
The FIM in combination with the Cramer Rao inequality
(Eq. 16) is used in the following to determine the covari-

ance matrix of estimated parameters θ̂ (Kay [1993]).

σ2(θ̂) ≈ FIM−1 (16)

Under the assumption of very low measurement noise and

a high number of data samples, σ2(θ̂) is calculated for all
three potential outputs. Naturally, the stimulus u of the
MAP kinase model, which enters (Eq. 13), has a strong
impact on the dynamic behavior. The trace of the param-
eter covariance matrix is shown in (Fig. 2) for different
values of u.
As indicated by the “Katz Status index” KKK∗ provides
the most informative measurement data, i.e., the trace

of σ2(θ̂) is the smallest one at u=0.25. Whereas, data
generated by K∗ leads to the most uncertain parameters.
In addition, the predictive power of MAP kinase model
can be further improved focusing only on the most im-
portant parameters. Due to the sloppiness of biological
systems [Gutenkunst et al. [2007]] the 14 unknown model
parameters θ can be grouped into important θh and less
important θl parameter subsets, respectively, using Sobol’
indices, as described in Section 2.3. To determining the
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output variance σ2(ys) that is caused by the 14 parameters
a overall number of 2 · 142 + 1 = 393 simulation runs have
to be done. As shown, for every first order sensitivity index
Si the expected value of the related conditional variance
(Eq. 12) has to be calculated. This increases the total
number of function evaluations to 1017 for every index
Si, whereas it is still less computational cumbersome than
other sample based methods. Usually, several thousand
samples have to be evaluated by Monte Carlo methods.

A relative standard deviation of 10% of the literature
parameter values is assumed leading to results shown in
(Fig. 3(a) - 3(c)). Here, sensitivity indices Si relative to
every activated enzyme at different time points are given.
Obviously, the most important parameters are θh =
[k1, k12, k3, k6]T . These parameters have to be determined
as precisely as possible whereas the left 10 parameters θl
can be fixed to literature values reducing the complexity
of the parameter identification process dramatically.

4. CONCLUSION

Here, a quite efficient framework is given to study neces-
sary conditions of parameter identifiability. Based on an
extended state vector, a digraph is generated making al-
gorithms of graph analysis applicable. If the reformulated
system provides a full structural rank and all states are
output connected, all model parameters are structurally
identifiable. In addition, network centralities provide a
first guess of highly informative output candidates at a
point where no measurement data or guesses about model
parameters are available. If alternatively, no suitable out-
put configuration, ensuring structural identifiability for all
parameters, can be determined, a concentration of the
most important model parameters is suggested.
The importance of parameters is calculated by a variance
based sensitivity analysis. To reduce the computational
burden of evaluating highly dimensional integrals numeri-
cally, monomial cubature rules of precision 5 are applied.
In general, focusing on an important parameter subspace
is quite beneficial to the identification process, i.e., the
quality of the estimated parameters can be improved.
If the uncertainties of identified parameters are still to
high, more informative measurement data have to be gen-
erated using methods of quantitative optimal design. The
quantification of these parameter uncertainties is usually
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(b) First order sensitivity indices related to KK∗
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(c) First order sensitivity indices related to K∗

Figure 3. First order sensitivity indices of all model pa-
rameters for the three activated enzymes at different
time points tk are shown.

done by the Fisher information matrix (FIM). As this
method implies a linear relation of measurement data
and model parameters the FIM is of limited value for a
broad class of mathematical models, as even the simplest
of ordinary differential equations result in a non-linear
problem for parameter identification. So in most cases,
sample based approaches seem to be more reliable for
uncertainty quantification. Promising candidates of this
type, which rely on the Sigma Point method (Julier and
Uhlmann [1996]), have been introduced recently (Heine
et al. [2008], Schenkendorf et al. [2009]).

ACKNOWLEDGEMENTS

Financial support from the German Federal Ministry of
Education and Research (BMBF) under Grant 0315505B
is gratefully acknowledged.

REFERENCES

M. Behar, N. Hao, H. G. Dohlman, and T. C. Elston.
Mathematical and computational analysis of adaptation
via feedback inhibition in signal transduction pathways.
Biophysical Journal, 93:806–821, August 2007.

E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, pages 269–271, 1959.

D. Fey and E. Bullinger. A dissipative approach to the
identification of biochemical reaction networks. 15th
IFAC Symposium on System Identification, Saint Malo,
France, 2009.

L. R. Ford and D. R. Fulkerson. Maximal flow through a
network. Canadian Journal of Mathematics, 1956.

R. N. Gutenkunst, J. J. Waterfall, F. P. Casey, K. S.
Brown, C. R. Myers, and J. P. Sethna. Universally
sloppy parameter senstitivies in systems biology models.
PLoS Computational Biology, 3:1871–1878, 2007.

T. Heine, M. Kawohl, and R. King. Derivative-free optimal
experimental design. Chemical Engineering Science, 63:
4873–4880, 2008.

S. J. Julier and J. K. Uhlmann. A general method for
approximating nonlinear transformations of probability
distributions. Technical report, Dept. of Engineering
Science, University of Oxford, 1996.

L. Katz. A new status index derived from sociometric
analysis. Psychometrika, 18(1), 1953.

S. M. Kay. Fundamentals of Statistical Signal Processing:
Estimation Theory. Prentice Hall PTR, 1993.
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