
Distributed State Estimation for Hybrid

and Discrete Event Systems Using

l-Complete Approximations ⋆

Jörg Raisch ∗,∗∗∗ Thomas Moor ∗∗ Naim Bajcinca ∗∗∗

Stephanie Geist ∗ Vladislav Nenchev ∗

∗ Fachgebiet Regelungssysteme, Technische Universität Berlin,
Einsteinufer 17, 10587 Berlin, Germany (e-mail:

raisch@control.tu-berlin.de).
∗∗ Lehrstuhl für Regelungstechnik, Universität Erlangen-Nürnberg,

Cauerstr. 7, 91058 Erlangen, Germany (e-mail:
thomas.moor@rt.eei.uni-erlangen.de)

∗∗∗ Max-Planck-Institut für Dynamik komplexer technischer Systeme,
Sandtorstr. 1, 39108 Magdeburg, Germany

Abstract: The topic of this paper is distributed state estimation for time-invariant systems with
finite input and output spaces. We assume that the system under investigation can be realised
by a hybrid I/S/O-machine, where some of the discrete states may also represent failure modes.
Our approach is based on previous work, e.g., Moor and Raisch (1999); Moor et al. (2002), where
l-complete approximations were proposed as discrete event abstractions for hybrid dynamical
systems. In particular, it has been shown that l-complete approximations can be used to provide
set-valued estimates for the unknown system state. Estimates are conservative in the sense that
the true state can be guaranteed to be contained in the set-valued estimate. In this contribution,
we show that for a class of hybrid systems the same estimate can be obtained via a distributed, or
decentralised, approach involving several less complex approximations, which are run in parallel.
For a larger class of systems, it can be shown that this approach provides an outer approximation
of the estimate provided by a monolithic l-complete estimator. The proposed procedure implies
significant computational savings during estimator synthesis, with an only modest increase in
on-line effort. The latter is a result of “assembling” the global estimate from the available local
estimates. The resulting computational trade-off is explicitly discussed.

Keywords: Hybrid systems, discrete event systems, approximations, abstractions, behaviours,
state estimation.

1. INTRODUCTION

In a series of previous papers, e.g., Moor and Raisch
(1999); Moor et al. (2002), l-complete approximation has
been suggested as a discrete event abstraction for a cer-
tain class of hybrid systems. This approach is based on
Willems’ behavioural systems theory, e.g., Willems (1989,
1991). For the purpose of controller design, two proper-
ties of l-complete approximation are important: (i) the
behaviour (loosely speaking the set of external signals
that is compatible with the system dynamics) of the ap-
proximation is guaranteed to contain the behaviour of
the underlying hybrid system; (ii) for systems with finite
external signal space, l-complete approximations can be
realised by finite state machines. It can be shown (Moor
and Raisch (1999)) that a particular intuitive realisation
is past induced, i.e., at any instant of time, the state of the
approximating automaton is uniquely determined by the
past of the external signal. A straightforward modification
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turns this realisation into a set-valued estimator: each of
the (finitely many) estimator states can be associated with
a subset of the state space of the underlying hybrid system,
and the subset associated with the current estimator state
is guaranteed to contain the current state of the underlying
hybrid system.

If some of the discrete states in the hybrid system model
represent failure modes, the proposed distributed state
estimation approach is also applicable for fault detection
purposes.

It is a well-known fact that approximation accuracy is
monotone in the parameter l ∈ N. Correspondingly, the
set-valued state estimates can be expected to “shrink”
(and therefore to provide tighter bounds for the true state)
if l is increased. However, complexity of the resulting ap-
proximation automaton is exponential in l. This, in prac-
tice, often prevents the synthesis and use of a sufficiently
accurate approximation. For control purposes, a number
of extensions have been explored as possible antidotes,
including modular (Moor et al. (2001)) and hierarchical
control (Raisch and Moor (2005)). The present paper



investigates how the complexity problem can be handled
in an estimation context. It explores for a specific class of
hybrid dynamical systems how a distributed approach can
reduce complexity while maintaining estimation accuracy.
It involves several l-complete approximations, each de-
signed for a projection of the external signal space into an
appropriate subspace, running in parallel and combining
their local estimates to provide the desired global estimate.
For a more general class of hybrid systems, the distributed
estimate can still be shown to be an outer approximation
of the set-valued estimate provided by a monolithic l-
complete approximation.

Distributed state estimation for discrete event systems has
been recognised as an important topic for quite some time,
and a number of different approaches have been suggested
to cover a variety of scenarios. Examples are Fabre et al.
(2000); Xu and Kumar (2009); Jiroveanu et al. (2008).

This paper is organised as follows. In Section 2, we recall
some basic concepts from Willems’ behavioural systems
theory. In Section 3, we summarize previous work on
(strongest) l-complete approximations for hybrid systems.
In Section 4, we briefly describe how an instantaneously
observable realisation of such an approximation can serve
as a set-valued estimator for the state of the underlying
hybrid system. In Section 5, we address the distributed
case. In particular, we investigate the case where the
(finite) external signal space is the product of an input
and an output space, and where each local estimator can
only “see” the projection of the output signal into an
appropriate subspace.

We use the following notation: capital letters denote signal
spaces, e.g., X, U , Y , and W represent the state space,
the input and output spaces, and the external signal space,
respectively. We work in discrete time, hence signals, which
are denoted by minor letters, are sequences of symbols
from the appropriate signal space, e.g., w : N0 → W
represents the external signal. The restriction of a signal
to an in interval [τ, t], τ, t ∈ N0, τ ≤ t, is denoted by
·
∣

∣

[τ,t]
, e.g. w

∣

∣

[τ,t]
= w(τ), . . . w(t). If appropriate, specific

instances of a (restricted) signal are characterised by ·̄,
e.g., w̄

∣

∣

[0,t]
= 〈ω0, . . . ωt〉, with ωi ∈ W .

2. SYSTEMS AND REALISATIONS

Consider the hybrid state machine

P = (X,W, δ,X0), (1)

where
X = R

n × D , |D| = m < ∞ (2)

is the hybrid state space, W is the finite external signal
space, i.e., |W | < ∞, δ ⊂ X × W × X is the transition
relation, and X0 ⊆ X is the set of initial states. Clearly by
setting m = 1, we recover a purely continuous state space,
while n = 0 makes P a finite state machine.

The full behaviour induced by P is defined as (see Willems
(1991))

Bs := {(w, x)| (x(t), w(t), x(t + 1)) ∈ δ

∀ t ∈ N0, x(0) ∈ X0}, (3)

where x ∈ XN0 is a sequence of states (i.e., a state signal),
and w ∈ W N0 is a sequence of symbols from W (i.e., an

external signal). Hence the induced full behaviour consists
of all pairs of state and external signals that are compatible
with the state machine P .

B :=PW Bs (4)

:= {w| ∃x : (w, x) ∈ Bs} (5)

is the canonical projection of Bs onto the external external
signal set and is referred to as the external behaviour
induced by P . Following Willems (1989), we call

Σs := (N0,W,X,Bs) (6)

Σ := (N0,W,B) (7)

the (state space) system induced by P , and we say that P
is a realisation of Σ, denoted by P ∼= Σ.

Definition 1. See Willems (1991). A system Σ = (N0, W, B)
is said to be time invariant if σB ⊆ B, where σ is the
backward shift operator, i.e., σw(t) = w(t + 1) for all
t ∈ N0.

Note that a sufficient (though not necessary) condition for
Σ to be time-invariant is that the initial conditions in a
realisation P ∼= Σ are not restricted, i.e., P = (X,W, δ,X).

Definition 2. See Willems (1991). Let l ∈ N. A time
invariant dynamical system Σ′ = (N0, W, B

′) is said to
be l-complete if

w ∈ B
′ ⇐⇒ (σtw)

∣

∣

[0,l]
∈ B

′
∣

∣

[0,l]
∀ t ∈ N0 , (8)

where ·
∣

∣

[0,l]
denotes the restriction of a signal to the

interval [0, l].

3. L-COMPLETE APPROXIMATIONS

3.1 The Concept of l-Complete Approximation

We now recall the notion of (strongest) l-complete ap-
proximation, which was introduced in Moor and Raisch
(1999). Roughly speaking, this is a system evolving on the
same time axis N0 and within the same signal space W as
the original system, and with the smallest l-complete be-
haviour that covers the “original” behaviour B. Formally,
this can be written as:

Definition 3. See Moor and Raisch (1999). Let Σ =
(N0, W, B) and Σl = (N0, W, Bl) be time invariant dy-
namical systems, with l ∈ N. Σl is said to be a strongest
l-complete approximation induced by Σ if the following
conditions hold:

(i) Bl ⊇ B, Bl is l-complete.
(ii) B

′
l ⊇ B, B

′
l is l-complete =⇒ B

′
l ⊇ Bl .

Proposition 1. (Moor and Raisch (1999)) Let Σ = (N0,W,
B) be a time invariant dynamical system. Choose an
arbitrary l ∈ N. Then, the strongest l-complete approxi-
mation induced by Σ, denoted by Σl = (N0, W, Bl), exists
uniquely, and Bl is given by:

Bl = {w| w ∈ W N0 , (σtw)
∣

∣

[0,l]
∈ B

∣

∣

[0,l]
∀ t ∈ N0}. (9)

Note that, as W is finite, B
∣

∣

[0,l]
is finite. Therefore, the

strongest l-complete approximation can be realised by a
finite state machine. Following Willems (1989), we can
construct a suitable realisation by memorising the l most



recent external symbols. As our time axis is N0, we have to
make provisions for the “start-up” phase, where less than
l external symbols are available. This is formalised in the
following proposition.

Proposition 2. (Moor et al. (2002)) Let Σ = (N0, W, B)
be a time invariant system. Let

Zl := {ω⋆}
⋃

1≤r≤l

W r, Z0 = {ω⋆} , (10)

where ω⋆ 6∈ W is a new “dummy” symbol meaning “no
external signal present so far”. Let

δl :=
⋃

0≤r≤l

δr
l ⊆ Zl × W × Zl , (11)

where

δ0
l := {(ω⋆, ω0, ω0)| 〈ω0〉 ∈ B

∣

∣

[0,0]
} , (12)

δr
l := {(〈ω0, . . . ωr−1〉, ωr, 〈ω0, . . . ωr〉) |

〈ω0, . . . ωr〉 ∈ B
∣

∣

[0,r]
} , 1 ≤ r < l , (13)

δl
l := {(〈ω0, . . . ωl−1〉, ωl, 〈ω1, . . . ωl〉) |

〈ω0, . . . ωl〉 ∈ B
∣

∣

[0,l]
} . (14)

Then Pl := (Zl, W, δl, Z0) is a realisation of the strongest
l-complete approximation Σl of Σ.

To set up this realisation, we apparently have to decide
whether strings 〈ω0, . . . ωr〉 ∈ W r+1 are elements of the
set B

∣

∣

[0,r]
, r ≤ l. This question will be answered in the

next section for systems with a well defined input/output
structure.

3.2 l-Complete Approximations in an Input/Output Setting

Definition 4. The hybrid state machine P = (X,W, δ,X0)
is called an I/S/O-machine, if

(i) W = U × Y ,
(ii) for every ξ ∈ X and µ ∈ U there uniquely exist ν ∈ Y

and ξ′ ∈ X such that (ξ, (µ, ν), ξ′) ∈ δ.

In this case, U and Y are called the input and output
space, respectively.

Clearly, item (ii) implies the existence of maps f : X ×
U → X and g : X × U → Y such that

δ = {(ξ, (µ, ν), ξ′)| ξ′ = f(ξ, µ), ν = g(ξ, µ)} . (15)

As before, P induces a system Σ = (N0, U × Y,B),
with B ⊆ (U × Y )N0 and a state space system Σs =
(N0, U ×Y,X,Bs), with Bs ⊆ (U ×Y ×X)N0 . In Willems’
terminology, Σ is an I/O-system, while Σs represents an
I/S/O-system.

Following Moor et al. (2002), we can now define the set of
all states of an I/S/O-machine P = (X,U × Y, δ,X) that
are compatible with a given string (ū, ȳ)

∣

∣

[0,r]
of input and

output symbols:

X ((ū, ȳ)
∣

∣

[0,r]
) :=

{ξ| ∃ (u, y, x) ∈ Bs : x(r) = ξ, (u, y)
∣

∣

[0,r]
= (ū, ȳ)

∣

∣

[0,r]
} .

(16)

In particular, the string (ū, ȳ)
∣

∣

[0,r]
occurs in the external

behaviour if and only if the corresponding set of compati-
ble state is non-empty, i.e.,

(ū, ȳ)
∣

∣

[0,r]
∈ B

∣

∣

[0,r]
⇐⇒ X ((ū, ȳ)

∣

∣

[0,r]
) 6= ∅ ,

and the finite state realisation Pl of Σl can therefore be
derived by computing the sets X ((ū, ȳ)

∣

∣

[0,r]
). Note that,

in general, Pl will not be an I/S/O-machine.

As shown in Moor et al. (2002), the sets of compatible
states can be characterized by the following iteration:

X ((ū, ȳ)
∣

∣

[0,0]
) = g−1

ū(0)(ȳ(0)) , (17)

X ((ū, ȳ)
∣

∣

[0,r+1]
) = f(X ((ū, ȳ)

∣

∣

[0,r]
), ū(r))

∩ g−1
ū(r+1)(ȳ(r + 1)) , (18)

where g−1
µ , µ ∈ U , denotes the inverse image of g(·, µ),

i. e. g−1
µ (ν) := {ξ| g(ξ, µ) = ν}.

The computational techniques required to perform the
above iteration depend on the particular class of hybrid
state machine P at hand, and, in general, build on a
reachability analysis to establish images under f . This
topic has been discussed intensively in the literature,
for linear hybrid automata e.g. by Henzinger (1996),
for switched linear systems e.g. by Chutinan and Krogh
(1998), and for non-linear continuous dynamics by, e.g.,
Reißig (2009).

4. SET-VALUED STATE ESTIMATION

As pointed out in Moor and Raisch (1999), the realisation
Pl defined in Proposition 2 is past-induced, i.e., its present
state zl(t) ∈ Zl is uniquely determined by the past of the
external signal, (u, y)

∣

∣

[0,t−1]
, t ∈ N. We now introduce a

slightly modified state machine by defining

P̃l := (Z̃l, U × Y, δ̃l, Z̃0) , (19)

with

Z̃l :=
⋃

1≤r≤l

(U × Y )r, (20)

Z̃l,0 := U × Y, (21)

δ̃l :=
⋃

1≤r≤l

δ̃r
l ⊆ Z̃l × (U × Y ) × Z̃l , (22)

where

δ̃r
l := {(〈(µ0, ν0) . . . (µr−1, νr−1)〉, (µr, νr), 〈(µ0, ν0), . . .

. . . (µr, νr)〉) | 〈(µ0, ν0), . . . (µr, νr)〉 ∈ B
∣

∣

[0,r]
} ,

1 ≤ r < l ,

δ̃l
l := {(〈(µ0, ν0) . . . (µl−1, νl−1)〉, (µl, νl), 〈(µ1, ν1), . . .

. . . (µl, νl)〉) | 〈(µ0, ν0), . . . (µl, νl)〉 ∈ B
∣

∣

[0,l]
}.

Proposition 3. The state machines Pl and P̃l induce the
same external behaviour, i.e., P̃l is also a realisation of
the strongest l-complete approximation Σl. Moreover, let
Bl,s and B̃l,s denote the full behaviours induced by Pl

and P̃l, respectively. Then (u, y, zl) ∈ Bl,s if and only if

(u, y, z̃l) ∈ B̃l,s and z̃l = σzl .



Proof. The first part of the proof is a trivial extension of
the proof in Moor et al. (2002). To show the second part,

consider the temporal evolution of the states of Pl and P̃l

for an external signal (ū, ȳ). By construction, this is given
by

zl(t) =







ω⋆ if t = 0
(ū, ȳ)

∣

∣

[0,t−1]
if 0 < t ≤ l

(ū, ȳ)
∣

∣

[t−l,t−1]
if t ≥ l

(23)

and

z̃l(t) =

{

(ū, ȳ)
∣

∣

[0,t]
if 0 < t < l

(ū, ȳ)
∣

∣

[t−l+1,t]
if t ≥ l,

(24)

respectively. Clearly, ∀t ∈ N, z̃l(t) = zl(t + 1), i.e., z̃ = σz.

It is now straightforward to see that the realisation P̃l

can serve as a current state estimator for the system
Σs

∼= P (Figure 1): the I/S/O-system Σs = (N0, U ×
Y,X,Bs) is driven by the input signal u and responds

with an output y. Both signals serve as input for P̃l. By
construction, its current state z̃l(t) is uniquely determined
by the present and the past of the external signal, i.e.,
(u, y)

∣

∣

[0,t]
. Moreover, because of (20), each element of the

state set Z̃l is a string of pairs of input and output symbols
and can therefore be uniquely associated with a set (16).
This is the desired set-valued estimate for the current state
of the system Σs.

Note that as an immediate consequence of the construction
of the state estimator P̃l, we have

x(t) ∈ X (z̃l(t)) ∀t ∈ N0, ∀l ∈ N (25)

and
X (z̃l+1(t)) ⊆ X (z̃l(t)) ∀l ∈ N . (26)

Hence, estimation is conservative in the sense that the
estimate is guaranteed to contain the unknown state,
and estimation accuracy is monotone in the parameter
l. Unfortunately, increasing l does not only refine the
estimate, but complexity (e.g., |Z̃l|) grows exponentially
with l. This is the motivation for investigating distributed
estimation schemes in the next section.

P̃l

y(t) ∈ Y

Σs = (N0, U × Y, X, Bs)

z̃l(t) X (z̃l(t)) ⊂ X

u(t) ∈ U

Fig. 1. Set-valued state estimation.

5. DISTRIBUTED STATE ESTIMATION

In the following, we assume that the output space can be
decomposed as

Y = Y (1) × . . . × Y (N) , (27)

hence |Y | =
∏N

i=1 |Y
(i)|. Furthermore, we assume that the

map fµ : X → X defined by fµ(ξ) := f(ξ, µ) is injective

for all µ ∈ U . Note that is the case, e.g., when the system
under investigation arises from sampling a switched locally
Lipschitz-continuous autonomous vector field.

Let P(i) denote the projection from Y into Y (i) and, with
slight abuse of notation, also from Y N0 into (Y (i))N0 . We
now design local estimators that can only “see” the input
u and the projection y(i) := P(i)y, i = 1, . . . N , with the
aim to recover the “global” estimate X (z̃l(t)) via the local
estimators (see Fig. 2).

Σs = (N0, U × Y, X, Bs)

u(t) ∈ U

P̃
(1)
l

X (z̃
(1)
l (t)) ⊂ X

X (z̃
(N)
l (t)) ⊂ X

y(N)(t) ∈ Y (N)

y(1)(t) ∈ Y (1)

P̃
(N)
l

z̃
(1)
l (t)

z̃
(N)
l (t)

Fig. 2. Distributed set-valued state estimation.

The synthesis of each local estimator P̃
(i)
l is based on the

I/S/O-machine

P (i) := (X,U × Y (i), δ(i),X) , (28)

where the transition relation δ(i) is defined by

(ξ, (µ, ν(i)), ξ′) ∈ δ(i) ⇐⇒ ξ′ = f(ξ, µ) ∧ ν(i) = P(i)g(ξ, µ) ,

and f, g are the transition and output functions defining
the transition relation of the I/S/O-machine P = (X,U ×
Y, δ,X).

As discussed in the previous sections, each P (i) in-
duces a time-invariant system Σ(i) = (N0, U × Y (i),B(i))

with unique strongest l-complete approximation Σ
(i)
l =

(N0, U × Y (i),B
(i)
l ). Using the same procedure as in Sec-

tion 4, we now set up realisations P̃
(i)
l

∼= Σ
(i)
l , i = 1, . . . N ,

and, as before, associate set-valued estimates with each

element of the local estimator state sets Z̃
(i)
l .

Theorem 1. Consider a hybrid I/S/O-machine P = (X,U×
Y, δ), with (ξ, (µ, ν), ξ′) ∈ δ iff ξ′ = f(ξ, µ) and ν = g(ξ, µ),
where fµ(ξ) := f(ξ, µ) is injective for all µ ∈ U . Assume
that the output space can be decomposed as in (27). Then,

N
⋂

i=1

X (z̃
(i)
l (t)) = X (z̃l(t)) ∀t ∈ N0 , (29)

where z̃
(i)
l (t) is the state of P̃

(i)
l at time t, and X (z̃

(i)
l (t))

is the associated set-valued estimate. Hence, the estimate
provided by the monolithic estimator P̃l can be exactly



recovered by intersecting the local estimates provided by

the machines P̃
(i)
l , i = 1, . . . , N .

Proof. Let ȳ be the output response of system Σs =
(N0, U × Y,X,Bs) to an input signal ū. Then,

z̃
(i)
l (t) =

{

(ū,P(i)ȳ)
∣

∣

[0,t]
if 0 < t < l

(ū,P(i)ȳ)
∣

∣

[t−l+1,t]
if t ≥ l,

(30)

while z̃l(t) is given by (24). Therefore

X (z̃
(i)
l (t)) =

{

X ((ū,P(i)ȳ)
∣

∣

[0,t]
) if 0 < t < l

X ((ū,P(i)ȳ)
∣

∣

[t−l+1,t]
) if t ≥ l.

(31)

The proof is by induction. Clearly,

N
⋂

i=1

X (z̃
(i)
l (0)) =

N
⋂

i=1

{

ξ ∈ X | P(i)g(ξ, ū(0)) = ȳ(i)(0)
}

=

{

ξ ∈ X |
N
∧

i=1

(

P(i)g(ξ, ū(0)) = ȳ(i)(0)
)

}

= {ξ ∈ X | g(ξ, ū(0)) = ȳ(0)}

=X (z̃l(0)) ,

i.e., (29) holds for t = 0. Now assume that (29) holds for
some t ≥ 0. Then, for t < l − 1, we can write

N
⋂

i=1

X (z̃
(i)
l (t + 1)) =

N
⋂

i=1

X (((ū,P(i)ȳ)
∣

∣

[0,t+1]
))

=

N
⋂

i=1

(

f(X ((ū,P(i)ȳ)
∣

∣

[0,t]
), ū(t)) ∩

{ξ | P(i)g(ξ, ū(t + 1)) = ȳ(i)(t + 1)}
)

=
N
⋂

i=1

f(X (z̃
(i)
l (t)), ū(t))

N
⋂

i=1

{ξ | P(i)g(ξ, ū(t + 1)) = ȳ(i)(t + 1)} .

Because fū(t)(·) = f(·, ū(t)) is injective for all ū(t) ∈ U ,
we have

N
⋂

i=1

f(X (z̃
(i)
l (t)), ū(t)) = f

((

∩N
i=1X (z̃

(i)
l (t))

)

, ū(t)
)

(32)

= f (X (z̃l(t)), ū(t))

= f
(

X ((ū, ȳ)
∣

∣

[0,t]
, ū(t)

)

.

Furthermore,

N
⋂

i=1

{ξ | P(i)g(ξ, ū(t + 1)) = ȳ(i)(t + 1)}

=

{

ξ ∈ X |
N
∧

i=1

(

P(i)g(ξ, ū(t + 1)) = ȳ(i)(t + 1)
)

}

= {ξ | g(ξ, ū(t + 1)) = ȳ(t + 1)}

= g−1
ū(t+1)(ȳ(t + 1)) , (33)

and therefore

N
⋂

i=1

X (z̃
(i)
l (t + 1)) = f

(

X ((ū, ȳ)
∣

∣

[0,t]
, ū(t)

)

∩ g−1
ū(t+1)(ȳ(t + 1))

=X ((ū, ȳ)
∣

∣

[0,t+1]
)

=X (z̃l(t + 1)) .

The proof for t ≥ l − 1 requires only slight modifications,
but is given for completeness. In this case,

N
⋂

i=1

X (z̃
(i)
l (t + 1)) =

N
⋂

i=1

X (((ū,P(i)ȳ)
∣

∣

[t−l+2,t+1]
))

=

N
⋂

i=1

(

f(X ((ū,P(i)ȳ)
∣

∣

[t−l+2,t]
), ū(t)) ∩

{ξ | P(i)g(ξ, ū(t + 1)) = ȳ(i)(t + 1)}
)

=

N
⋂

i=1

f(X ((ū,P(i)ȳ)
∣

∣

[t−l+2,t]
), ū(t))

N
⋂

i=1

{ξ | P(i)g(ξ, ū(t + 1)) = ȳ(i)(t + 1)} .

As fū(t)(·) = f(·, ū(t)) is injective for all ū(t) ∈ U , we have

N
⋂

i=1

f(X ((ū,P(i)ȳ)
∣

∣

[t−l+2,t]
), ū(t))

= f
((

∩N
i=1X ((ū,P(i)ȳ)

∣

∣

[t−l+2,t]
)
)

, ū(t)
)

(34)

= f
(

X ((ū, ȳ)
∣

∣

[t−l+2,t]
), ū(t)

)

.

Because of (33), we get

N
⋂

i=1

X (z̃
(i)
l (t + 1)) = f

(

X ((ū, ȳ)
∣

∣

[t−l+2,t]
, ū(t)

)

∩ g−1
ū(t+1)(ȳ(t + 1))

=X ((ū, ȳ)
∣

∣

[t−l+2,t+1]
)

=X (z̃l(t + 1)) .

Remark: Note that the above proof relies crucially on
the fact that fµ(·) = f(·, µ) is injective for all µ ∈ U . This
implies that f(A,µ) ∩ f(B,µ) = f(A ∩B,µ) for arbitrary
A,B ⊆ X, µ ∈ U . For non-injective maps fµ, we still have
f(A,µ) ∩ f(B,µ) ⊇ f(A ∩ B,µ) for arbitrary A,B ⊆ X,
µ ∈ U . This guarantees a weaker version of (29), stated in
the following theorem.

Theorem 2. Consider a hybrid I/S/O-machine P = (X,U×
Y, δ), with (ξ, (µ, ν), ξ′) ∈ δ iff ξ′ = f(ξ, µ) and ν = g(ξ, µ).
Assume that the output space can be decomposed as in
(27). Then,

N
⋂

i=1

X (z̃
(i)
l (t)) ⊇ X (z̃l(t)) ∀t ∈ N0 , (35)

where z̃
(i)
l (t) is the state of P̃

(i)
l , i = 1, . . . N , at time

t, and X (z̃
(i)
l (t)) is the associated set-valued estimate.

Hence, intersecting the local estimates provides an outer



approximation of X (z̃l(t)) and is therefore guaranteed to
contain the “true” state x(t).

Proof. If fµ(·) = f(·, µ) is not injective, the “=” signs
in (32) and (34) have to be replaced by “⊇” signs. The
claimed result then follows immediately.

We close with a brief discussion regarding possible reduc-
tions in complexity when replacing a monolithic l-complete
estimator by the distributed scheme outlined above. In the
monolithic case, the cardinality of the estimator state set
is of the following order:

|Z̃l|∼ |U |l|Y |l

∼ |U |l

(

N
∏

i=1

|Y (i)|

)l

.

If |Y (i)| ≤ pmax, i = 1, . . . , N ,

|Z̃l| ∼ |U |lplN
max ,

i.e., the order of |Z̃l| is exponential in the number of
components, N , of the output space Y . In contrast, the
order of the cardinality of the state sets of the local

estimators P̃
(i)
l is

|Z̃
(i)
l | ∼ |U |l|Y (i)|l, i = 1, . . . , N .

Hence, the overall number of estimator states in our
distributed scheme is

ΣN
i=1|Z̃

(i)
l | ∼ N |U |lpl

max,

i.e., complexity in the distributed case is linear in N .
Hence, especially for large N , we may expect a very
significant reduction in complexity when replacing the
monolithic by a distributed estimation scheme. A similar
argument applies to the computational effort needed to
synthesise the monolithic estimator when compared to
the distributed case. Note, however, that the reduction in
estimator complexity comes at a price. Namely, the local
estimators P̃ (i) have to intersect their set-valued estimates
on-line to provide the desired global estimate. The cost for
this of course depends on the precise nature of the sets

X (z̃
(i)
l (t)). For the well-known example of switched linear

systems, these sets have the form of polytopes in R
n, and

the intersection operation can be efficiently implemented.

6. CONCLUSION

We have suggested a distributed set-valued estimation
scheme for time-invariant dynamic systems that can be
realised by hybrid I/S/O-machines with finite input and
output spaces. The approach is based on the concept of
l-complete approximations, e.g., Moor and Raisch (1999);
Moor et al. (2002). For a suitable decomposition of the
output space, we have proposed to replace the monolithic
l-complete estimator by a set of “smaller” estimators run-
ning in parallel. Each of these local estimators is a real-
isation of an l-complete approximation of the projection
of the system behaviour onto the appropriate component
of the output space. We have shown that, in general, the
resulting global estimate is an outer approximation of the
estimation set provided by the monolithic estimator and
therefore can be guaranteed to contain the actual system
state. For a special case, characterised by an invertibility

property of the transition function, we can show that
the distributed approach exactly recovers the monolithic
estimate. Such an invertibility assumption is of course re-
strictive, but holds for important classes of hybrid systems.
An example are switched locally Lipschitz-continuous au-
tonomous vector fields with finite input and output spaces.
We have outlined that the distributed approach potentially
implies a considerable reduction in estimator complexity.
A further advantage of the suggested distributed approach,
which still needs to be explored in detail, is a considerable
increase in flexibility: in the monolithic case, estimation
accuracy can only be improved “globally” by increasing
the parameter l, which considerably increases complexity.
In the distributed case, estimation accuracy can also be
improved locally.
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