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Abstract: In previous work we have shown how (max,+)-algebra can be used to model
cyclically operated high-throughput screening systems. In this paper the system is modeled
in a two-dimensional dioid M ax

in [[γ, δ]]. A controller is determined using residuation theory.
The resulting control guarantees just-in-time operation of the plant. A small example is used
to demonstrate the approach to model and control HTS systems. To apply the determined
controller, it is rewritten in terms of counter -functions. A simulation of the system with and
without controller is given and results are discussed.
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1. INTRODUCTION

In recent years high-throughput screening (HTS) has be-
come an important technology to quickly test thousands of
biochemical substances. Especially in the pharmaceutical
industries, HTS is used for a first screening in the process
of drug discovery, to reduce the almost unlimited number
of possible combinations of active ingredients to a reason-
able number of compounds, on which further screening
methods are applied.

In general, high-throughput screening plants are fully au-
tomated systems containing a fixed set of devices per-
forming liquid handling, storage, reading, plate handling,
and incubation steps. All operations which have to be
conducted to analyze one set of substances are combined
in a batch. A set of substances consists of up to 1536
compounds which are aggregated on one microplate. Ad-
ditional microplates may be included in a batch to con-
vey reagents or waste material. To compare the screening
results of different compound sets, the single batch time
scheme, i.e., the sequence and the timing of activities for
one batch, needs to be identical for all batches. Thus, it is
desired to run HTS plants in a cyclic manner.

A method to determine globally optimal schedules for
cyclic systems, such as HTS systems, has been intro-
duced by Mayer and Raisch (2004). This approach is
based on discrete-event systems modeling. The optimiza-
tion problem results in a mixed integer non-linear program
(MINLP), which can be transformed into a mixed integer
linear program (MILP). This transformation significantly
decreases the complexity of the problem but it is guar-
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anteed that a globally optimal solution of the original
scheduling problem is retained. However, the process of
solving MILPs is still computationally too expensive to be
carried out online. Therefore, the globally optimal solution
is determined off-line resulting in a static schedule. Of
course static schedules do not perform well when devia-
tions from the predetermined cyclic scheme occur during
runtime (Murray and Anderson, 1996).

However, using the result from the optimization process,
i.e., the information on the globally optimal solution for
the scheduling problem, it is possible to determine a model
of the HTS system in a (max,+)-algebraic setting (Brun-
sch and Raisch, 2009b). This approach has been extended
to HTS systems containing multi-capacity resources, i.e.,
resources that can handle more than one activity at the
same time (Brunsch and Raisch, 2009a).

In this paper, a feedback controller is computed based
on a M ax

in [[γ, δ]]-model of the HTS system. To apply the
determined controller to a real system, e.g., in a PLC, it is
easier to rewrite it in a (min,+)-setting. The advantage of
a controller description in (min,+)-algebra is its counter
characteristic, i.e., the events that have occurred up to
a specific time are counted. Thus, it is dependent on
time which can then be sampled by the PLC. If any
deviations from the predetermined cyclic scheme occur
during runtime the controller generates possible actions
to return as fast as possible to the optimal schedule and
thus ensures its continuous operation.

This paper is structured as follows. Section 2 briefly de-
scribes the mathematical theories used in our approach.
The modeling process of high-throughput screening sys-
tems is outlined in Section 3. An illustrative example
is introduced to explain the modeling process in detail.



In Section 4 the feedback control scheme introduced by
Lhommeau et al. (2002) is adapted to the requirements of
HTS systems. The calculated controller for our example
is applied to the model and a simulation is presented in
Section 5. Conclusions are given in Section 6.

2. MATHEMATICAL BACKGROUND

2.1 Dioids

A dioid is an idempotent semiring, i.e. an algebraic struc-
ture (D,⊕,⊗) containing two binary operations ⊕ and
⊗ defined on D (Baccelli et al., 2001).The addition ⊕ of
the dioid is associative, commutative, and idempotent, i.e.,
a⊕a = a, ∀a ∈ D. The multiplication ⊗ is associative but
not necessarily commutative. Multiplication is left- and
right-distributive with respect to ⊕. The neutral elements
of ⊕ and ⊗ are denoted by ε and e, respectively.

As in standard algebra, addition and multiplication are not
restricted to scalar elements. For matrices A,B ∈ Dn×m
and C ∈ Dm×l addition and multiplication are defined by

[A⊕B]ji = [A]ji ⊕ [B]ji

[A⊗ C]ji =

m⊕
k=1

([A]jk ⊗ [C]ki) .

Powers are defined by ai = a ⊗ ai−1 with a0 = e. As in
conventional algebra, ⊗ is often omitted in equations.

Due to the idempotency property, a partial order relation
can be defined for dioids by a � b ⇔ a ⊕ b = b, i.e., the
sum of the elements a and b is the least upper bound of a
and b.

An idempotent semiring is said to be complete if it is
closed for infinite sums and if ⊗ distributes over infinite
sums. The implicit equation x = ax ⊕ b defined over a
complete idempotent semiring (D,⊕,⊗) admits x = a∗b,
with a∗ :=

⊕
i=N0

ai, as the least solution. Some useful
properties of the star operator in idempotent semirings
are the following:

a∗(ba∗)∗ = (a⊕ b)∗ = (a∗b)∗a∗

(ab)∗a = a(ba)∗.
(1)

Two of the most commonly used idempotent semirings
are (max,+)- and (min,+)-algebra. In (max,+)-algebra,
the addition is defined by the standard max operator, i.e.,
a ⊕ b := max(a, b), and multiplication of two elements is
defined by the standard addition of these elements, i.e.,
a ⊗ b := a + b. These operations are defined on the set
Zmax := Z ∪ {−∞} and the neutral elements for addition
and multiplication are ε = −∞ and e = 0, respectively.

Similarly, (min,+)-algebra is defined on the set Zmin :=
Z ∪ {+∞}, and addition and multiplication are defined
by a ⊕ b := min(a, b) and a ⊗ b := a + b. The neutral
elements are ε = +∞ and e = 0. (max,+)- and (min,+)-
algebra defined on the sets Zmax := Zmax ∪ {+∞} and
Zmin := Zmin ∪ {−∞} constitute complete dioids.

The dioid considered in this paper is denoted M ax
in [[γ, δ]]

(Baccelli et al., 2001). It is defined as the quotient dioid of
B[[γ, δ]], the set of formal power series in two variables (γ, δ)

with Boolean coefficients B = {ε, e} and with exponents
in Z with respect to the equivalence relation xRy ⇔
γ∗(δ−1)∗x = γ∗(δ−1)∗y. In addition to the conventional
sum and product of series, the following rules apply for
the dioid M ax

in [[γ, δ]]:

γkδt ⊕ γlδt = γmin(k,l)δt

γkδt ⊕ γkδτ = γkδmax(t,τ).

The neutral elements for addition and multiplication of
M ax
in [[γ, δ]] are ε = γ+∞δ−∞ and e = γ0δ0. The dioid is

complete with top element T = γ−∞δ+∞.

This algebraic structure is very efficient to model syn-
chronization graphs, a subclass of timed Petri-nets which
can be used to model deterministic discrete-event systems
subject to synchronization phenomena. More precisely, the
dynamical behavior of a synchronization graph can be
described by a linear model in M ax

in [[γ, δ]] (Baccelli et al.,
2001). The information of the monomial γkδt ∈ M ax

in [[γ, δ]]
in terms of synchronization graphs may be interpreted as:
the k-th event occurs at the latest at time t or at time t at
least k events have occurred (Cottenceau et al., 1999).

2.2 Trajectories in Discrete-Event Systems

Naturally, cyclic discrete-event systems evolve in a peri-
odic manner. Periodic series in the dioid M ax

in [[γ, δ]] are
usually represented in the form s = p ⊕ q ⊗ r∗. In such
series, the term p is a polynomial referring to a transient
phase, e.g., a start-up of the system. The term q is then a
polynomial which represents the periodical behavior, i.e.,
the pattern which will be repeated with a periodicity given
by r = γνδτ . Then the ratio ν/τ is the throughput of the
series, i.e., an event occurs ν times every τ time units, once
the periodic regime is reached.
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Fig. 1. Graphical representation of the trajectory s = e⊕
γδ3 ⊕ γ4δ4 ⊕

(
γ5δ5 ⊕ γ7δ6

)
(γ4δ3)∗.

For example, consider the series s ∈ M ax
in [[γ, δ]]:

s = e⊕ γδ3 ⊕ γ4δ4︸ ︷︷ ︸
p

⊕
(
γ5δ5 ⊕ γ7δ6

)︸ ︷︷ ︸
q

(γ4δ3)∗︸ ︷︷ ︸
r∗

.

The graphical representation of this series is given in
Fig. 1. Note that in B[[γ, δ]], the monomial γkδτ is rep-
resented as the point (k, τ) in the event-time-domain.
Because we work in M ax

in [[γ, δ]], this monomial is identified
with all points in the south-east cone of (k, τ) (shaded area
in Fig. 1).



2.3 Residuation Theory

An isotone, or order preserving, mapping f from one
partially ordered set S to another partially ordered set T is
a mapping that satisfies a � b ⇒ f(a) � f(b), ∀a, b ∈ S.
It is called residuated if there exists a unique mapping
f# : T → S such that f ◦ f# � IdT and f# ◦ f � IdS ,
where IdT and IdS refer to the identity functions on
T and S, respectively (Blyth and Janowitz, 1972). If f
is residuated, f# is called the residual of f . It can be
shown that f#(y) is the least upper bound of the subset
{x | f(x) � y}.
Two of the most frequently used isotone mappings are the
left and right multiplication over a complete dioid, i.e.,
La : x 7→ a ⊗ x and Ra : x 7→ x ⊗ a. Both mappings are
residuated and their residuals are denoted by L#

a (x) = a◦\x
and R#

a = x◦/a, respectively.

3. MODELING OF HTS SYSTEMS

Depending on the specific operations the user wants to run
on a set of compounds, one can determine certain require-
ments for the single batch time scheme. It consists of µ
activities, which are executed on % resources. Each activity
is therefore assigned to a specific resource Ji ∈ {1, . . . , %}.
While activity i is executed, the assigned resource Ji is
said to be occupied. In general, it is possible that one
batch occupies two (or more) resources at the same time.
For example, this is the case when a microplate is moved
from one resource to another one. During the transfer both
resources are occupied by the same batch concurrently. It
may also be possible that a batch consists of more than one
microplate (e.g., there are additional microplates carrying
reagents) and the set of microplates of a single batch may
occupy different resources at the same time.

The minimal requirements for the single batch time scheme
can be modeled with synchronization graphs. For better
understanding we introduce a simple example of an HTS
operation. This example consists of three activities which
are executed on two different resources. The first activity
is the filling of some biochemical substance A into the
wells of a microplate. This activity is executed on the
resource Pipettor. After that, the microplate is moved to a
storage and has to stay there for at least seven time units.
Since we assume the storage to be of infinite capacity, this
resource is not explicitly modeled. Once the waiting time
has elapsed, the microplate enters the resource Pipettor
again. At the same time a second microplate, carrying
a biochemical substance B, is moved by a Robot to the
Pipettor as well. There, substance B is moved to the
microplate carrying substance A. For real HTS systems
further activities, such as incubation steps or reading
operations, would be executed on the compound AB.
However, for simplicity reasons, we restrict our example
to the three activities act1, act2, and act3, executed on
the two resources Pipettor and Robot.

According to our desired operation, we define a synchro-
nization graph, which is shown in Fig. 2. In this graph
the timing information is given by the numbers attached
to the places. Note that these numbers denote minimal
required times, i.e., every activity must be delayed at least
by the time given but may be delayed even further. The

resulting degrees of freedom can be used to obtain an
optimal schedule for the operation of the HTS plant.
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Fig. 2. Single batch time scheme.

In the Petri-net graph in Fig. 2 the dashed boxes indicate
the three different activities. While activities act1 and act2
are executed on Pipettor, activity act3 occupies Robot.
It can be clearly seen how act3 and the start of act2
are synchronized. In the (max,+)-algebraic setting x(k)
denotes the earliest possible time instant of the occurrence
of transition x. Thus, the event evolution point of view
is considered, i.e., the state variables are dater functions
which link event number k to and occurrence date x(k).
In the (min,+)-algebraic setting, the time domain is
considered, i.e., the state variables considered are counter
functions, counting the number of events x(t) that have
occurred up to time t.

Often, schedules are graphically represented by so called
Gantt charts. The Gantt chart of the shortest single batch
time scheme of our example is illustrated in Fig. 3.
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Fig. 3. Gantt chart of a single batch.

After the single batch time scheme has been defined by
the user, a globally optimal schedule for the processing of
a large number of batches can be determined (Mayer and
Raisch, 2004). Additional information can be included in
the optimization process, e.g., capacity of each resource,
minimal time duration between two activities executed on
the same resource, etc. For our example, each resource
has a capacity of one, i.e., every resource can execute
only one activity at a time, and between the release
event of one activity and the start event of the following
activity executed on the same resource a time of at least
one time unit has to elapse. Using all this information
the optimization algorithm determines a globally optimal
schedule which is given as a Gantt chart in Fig. 4.

Note that in the optimal schedule the delay between
act1 and act2 of a single batch has been increased when
compared to the shortest single batch time scheme, i.e.,
in the optimal schedule of our example a total of ten
time units elapse between these two activities (instead
of the required minimum of seven time units). Thus,
the throughput of the overall system, i.e., the number of
batches processed per time unit, is increased by increasing
the execution time of a single batch.
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Fig. 4. Gantt chart of the globally optimal schedule.

Clearly, one can see how activities of different cycles,
i.e., batches, are nested in the globally optimal schedule.
More precisely, activities of the (k − 1)-st and (k + 1)-st
batch are scheduled on Pipettor in between the execution
of activities act1 and act2 of the k-th batch. Also the
additional requirement of at least one time unit between
the execution of two activities on the same resource is
included in the optimal schedule.

To determine a controller for the system, we first have to
include the information obtained from the optimization
process in our model given in Fig. 2. The extended
synchronization graph is illustrated in Fig. 5.
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Fig. 5. Extended synchronization graph of the globally
optimal schedule with additional input and output
events

In this graph, each activity’s release event is connected
with its start event. The connecting place has a delay of
one time unit and contains one token. This means that
each activity in a batch can start at the earliest one time
unit after the same activity of the previous batch has
ended. Furthermore, a connection is introduced between
the release event of act2, i.e., x4, and the start event of
act1, i.e., x1. This connection represents the repetitive
nature of the determined optimal cyclic behavior. The cor-
responding place contains two tokens due to the sequence
of the optimized schedule, i.e., after act2 of the (k − 2)-
nd batch ends, act1 of the k-th batch starts. Similarly, a
connection is added between the release event of act1 and
the start event of act2. The new place, however, contains
a negative token, represented as a white circle, indicating
that the second activity of the k-th batch starts after the
first activity of the (k+1)-st batch has been finished. This
can be interpreted as acausality with respect to the cyclic
index k. Regarding time, however, the system is of course
causal.

Additionally, input- and output events are introduced.
Generally, one can delay the start events of every activity
of the HTS system, i.e., every start event is directly
connected to (at least one) control input. The output of
HTS systems is defined to be the release event of the last
activity of a batch (comp. Fig. 5).

The dependencies between events in the synchronization
graph can be written as M ax

in [[γ, δ]]-algebraic equations.
According to Fig. 5, the dependencies for event x1 of the
k-th batch are

x1(k) = max (1 + x2(k − 1), 1 + x4(k − 2), u1(k)) ,

which can be rewritten in M ax
in [[γ, δ]]-algebra

x1(γδ) = γδx2(γδ)⊕ γ2δx4(γδ)⊕ u1(γδ).

Similarly, the dependencies of all other events, i.e., x2 to
x7, and the output event y can be determined. In general,
this information can also be summarized in matrix form

x(γδ) = A(γδ)⊗ x(γδ)⊕B(γδ)⊗ u(γδ),

y(γδ) = C(γδ)⊗ x(γδ)
(2)

with A ∈ M ax
in [[γ, δ]]

n×n
, B ∈ M ax

in [[γ, δ]]
n×π

, and C ∈
M ax
in [[γ, δ]]

m×n
. The vectors x ∈ M ax

in [[γ, δ]]
n×1

, u ∈
M ax
in [[γ, δ]]

π
, and y ∈ M ax

in [[γ, δ]]
m

represent the trajecto-
ries of the system’s internal state, its input and output,
respectively. For our example, we get

A =



ε γδ ε γ2δ ε ε ε
δ3 ε ε ε ε ε ε
ε δ7 ⊕ γ−1δ ε γδ ε δ ε
ε ε δ4 ε ε ε ε
ε ε ε ε ε ε γδ
ε ε ε ε δ ε ε
ε ε δ ε ε e ε



B =



e ε ε
ε ε ε
ε e ε
ε ε ε
ε ε e
ε ε ε
ε ε ε

 and C = [ ε ε ε e ε ε ε ] .

Using the star operator in dioids, (2) can be rewritten as

x = A∗Bu

y = CA∗B︸ ︷︷ ︸
G

u, (3)

where G is a matrix representing the input/output relation
of the system. The elements of matrix G are periodic series
in the dioid M ax

in [[γ, δ]].

4. CONTROL OF HTS SYSTEMS

As mentioned before, control for HTS systems refers to the
start events of the system’s activities. Note that control is
restricted to delaying the occurrence of these events, i.e.,
the firing of the corresponding transitions.

The model equations are given in (2). We can apply a state
feedback (comp. Fig. 6)

u = Fx⊕ v. (4)

Clearly, the closed loop equations are

x = (A⊕BF )x⊕Bv
= (A⊕BF )

∗
Bv

(5)

y = Cx

= C (A⊕BF )
∗
Bv

(6)
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Fig. 6. Control Structure.

Using standard properties of the star operator in idempo-
tent semirings (1), (6) is equivalent to

y = CA∗B(FA∗B)∗︸ ︷︷ ︸
H

v. (7)

Therefore, H ∈ (M ax
in [[γ, δ]])

m×π
can be seen as the transfer

matrix describing the input-output relation of the con-
trolled system.

The aim of control is to delay the start of activities as
long as possible without affecting the throughput of the
system. Recall, due to the off-line optimization, the system
is designed to achieve the highest throughput possible. In
other words, all activities in the closed loop are required
to start just-in-time to maintain the optimal throughput
of the system (Lhommeau et al., 2002). Furthermore, it is
desired to operate the system in a strictly cyclic manner
at all times, including start-up and shut-down procedures,
i.e., the time schemes of all batches need to be identical to
compare the results of the biochemical reactions. Formally,
the greatest F has to be determined such that

CA∗B(FA∗B)∗v � CA∗Bv ∀v
which is equivalent to

CA∗B(FA∗B)∗ � CA∗B. (8)

Applying residuation theory provides

(FA∗B)∗ � (CA∗B)◦\(CA∗B). (9)

Using a standard property of left division in complete
idempotent semirings, i.e., a◦\a = (a◦\a)∗, (9) can be
rewritten

(FA∗B)∗ � ((CA∗B)◦\(CA∗B))
∗
, (10)

which is equivalent to

(FA∗B) � (CA∗B)◦\(CA∗B). (11)

Thus, a controller F is feasible for the considered system,
if

F � (CA∗B)◦\(CA∗B)◦/(A∗B), (12)

and the desired greatest controller

F = (CA∗B)◦\(CA∗B)◦/(A∗B), (13)

leads to equality in (9).

For our example, there are seven events, including three
start events which can be delayed. Hence, the controller F
is a 3×7-matrix in M ax

in [[γ, δ]]. The optimal (greatest) F has
been determined using existing software for manipulating
periodic series (Hardouin et al., 2001):

FT =



(γδ9)∗ δ13(γδ9)∗ δ11(γδ9)∗

γδ6(γδ9)∗ δ10(γδ9)∗ δ8(γδ9)∗

γ2δ5(γδ9)∗ (γδ9)∗ γδ7(γδ9)∗

γ2δ(γδ9)∗ γδ5(γδ9)∗ γδ3(γδ9)∗

γ2δ7(γδ9)∗ δ2(γδ9)∗ (γδ9)∗

γ2δ6(γδ9)∗ δ(γδ9)∗ γδ8(γδ9)∗

γ2δ4(γδ9)∗ γδ8(γδ9)∗ γδ6(γδ9)∗


(14)

The resulting transfer matrix H for the example is

H =CA∗B(FA∗B)∗

=
[
δ17(γδ9)∗ δ4(γδ9)∗ δ6(γδ9)∗

]
. (15)

Note that every element in F as well as in H contains r∗ =
(γδ9)∗. This represents the throughput of the system: Once
the periodic behavior has been reached (after a transient
start-up procedure) every event occurs once every 9 time
units. Thus, one batch will be released every 9 time units.

A controller for a real HTS system may be implemented
on a PLC, which works with a specific sample time. Thus,
for the implementation of a controller, a representation
in terms of counters, counting the number of every event
that has occurred until the current sampling instant, would
be easier to handle. The equation ũ(γδ) = γnδd ⊗ x̃(γδ)
in M ax

in [[γ, δ]] can be interpreted in standard algebra as
ũ(t) = n + x̃(t − d), where ũ(t) and x̃(t) are counters.
The latter can be easily realized in a PLC. Indeed, for a

signal ũ(γδ) = (p ⊕ qr∗) ⊗ x̃(γδ), with p =
⊕Np

i=1 γ
niδdi ,

q =
⊕Nq

j=1 γ
njδdj , r = γνδτ we can obtain counter ũ(t) in

the following manner in (min,+)-algebra

ξ(t) = ν ⊗ ξ(t− τ)⊕

 Nq⊕
j=1

nj ⊗ x̃(t− dj)


ũ(t) =

Np⊕
i=1

ni ⊗ x̃(t− di)⊕ ξ(t),

(16)

where the operator ⊕ is the usual min, and ⊗ is +.

If we consider the computation of the first control-input
u1 for our example, it can be determined (comp. (4)) by

u1(γδ) =

n⊕
l=1

F1,lxl(γδ)⊕ v1(γδ),

where n is the number of state variables x in the system,
i.e., n = 7. Using the controller given in (14), this equation
results in

u1(γδ) =(γδ9)∗x1 ⊕ γδ6(γδ9)∗x2 ⊕
u1,3(γδ)︷ ︸︸ ︷

γ2δ5(γδ9)∗x3⊕
⊕ γ2δ(γδ9)∗x4 ⊕ γ2δ7(γδ9)∗x5⊕
⊕ γ2δ6(γδ9)∗x6 ⊕ γ2δ4(γδ9)∗x7 ⊕ v1.

Note that the coefficients of xi are of the form p⊕qr∗ with
p = ε. As an example, consider the third term of the sum,
i.e., u1,3(γδ) = γ2δ5(γδ9)∗x3(γδ). Using (16), this can be
written as a counter in terms of (min,+)-algebra

ξ3(t) =1⊗ ξ3(t− 9)⊕ 2⊗ x3(t− 5)

u1,3(t) =ε⊕ ξ3(t),

which is equivalent to

u1,3(t) = min (1 + ξ3(t− 9), 2 + x3(t− 5))
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Fig. 7. Gantt chart of the simulated system without controller (upper part) and with controller (lower part). The
individual batches are indicated by different colors.

in standard algebra. Similarly, all other terms in u1(γδ)
can be transformed into counter-functions in (min,+)-
algebra, which can then be easily implemented in a PLC.

5. SIMULATION OF THE SYSTEM

The described HTS example and the determined controller
has been implemented in C-language. The simulation
scenario considered includes the processing of a total of
five batches. The defined restrictions of the process are as
given above. Namely, it is desired to obtain a strictly cyclic
behavior where every single batch has an identical time
scheme. Furthermore, the system shall operate by means
of the just-in-time criterion, starting activities as late
as possible without interfering with the pre-determined
optimal throughput. The Gantt chart of the simulated
system with and without controller is given in Fig. 7.

In this figure it can be seen that the total time to process
five batches is 47 time units for the uncontrolled system
and 53 time units for the controlled process. However,
even though the overall time increases by implementing
control, it can also be clearly seen that while the controlled
system follows a strictly cyclic pattern the uncontrolled
system does not. Therefore, given that all batches need
to be identical to compare the results of the biochemical
reactions, the first and last batch may not generate useful
data for the uncontrolled system. It is important to note
that the throughput ν/τ of the periodical part of the
uncontrolled case is identical to the throughput of the
controlled case. Additionally, it can clearly be seen that
the activity executed on Robot starts earlier than necessary
when no controller is implemented. Applying a controller,
however, will minimize the execution time of this activity
by starting this activity just-in-time. It can be argued
that the just-in-time execution of closed loop activities
contribute to a fast recovery of the optimal schedule after
disturbances in the form of delays occur.

6. CONCLUSION

This paper addresses the design of feedback control for
high-throughput screening systems. It has been shown how
a controller can be derived from a M ax

in [[γ, δ]]-algebraic
representation of HTS systems using residuation theory.
In a last step, the control has been rewritten in a (min,+)-
setting to simplify its implementation in a PLC. The

resulting feedback delays the start of activities as long as
possible without influencing the throughput of the system,
which is optimal in the just-in-time context. Recall that
the presented example has been chosen deliberately simple
for illustration purposes. Much larger examples from HTS
have been successfully solved in exactly the same manner.
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