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Abstract: Because of their use for distributed decision making, consensus algorithms have
attracted a lot of interest in recent years. Coordination between entities requires that they share
information over a network, and develop a consistent view regarding objectives and relevant
information on the environment, i.e., reach a consensus. In practice, communication topologies
may change over time, either as a consequence of disturbances or in an attempt to improve
performance. Max-consensus is a specific consensus algorithm, which is particularly important
in applications such as minimum time rendezvous and leader election. In this contribution,
we propose an approach to analyze max-consensus algorithms in time-variant communication
topologies, which is based on max-plus algebra. In this framework max-consensus algorithms
become piecewise linear and may be analyzed easily. The conditions needed to achieve max-
consensus and the convergence rate of the algorithm for different communication graphs are
studied. This contribution is an extension of the work in Monajemi Nejad et al. (2009), where
max-consensus was studied for time-invariant communication topologies.
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1. INTRODUCTION

Cooperation in a network occurs if its elements share infor-
mation over the (possibly time varying) network topology,
and develop a consistent view regarding objectives and
relevant information on the environment. To realize this,
two ingredients are necessary. The information state is a
network member’s local estimate of the relevant variables,
and the consensus algorithm describes how these local
estimates change through information exchange between
network members. A consensus is said to be reached if all
local information states coincide (Ren and Beard (2008)).

Various applications of distributed cooperative systems
have been reported in the literature (e.g., Ren and Beard
(2008), Roy et al. (2005), Wang et al. (2004), Gil et al.
(2008) and Feddema et al. (2002)). In some applica-
tions, such as minimum-time rendezvous or leader election
(Lynch (1996)), a special class of consensus algorithms
called max-consensus has to be used. In this case a consen-
sus is said to be achieved, if all the members in the network
have the same information state, which is required to be
the maximum of all initial information states.

The differential or difference equations describing max-
consensus algorithms are in general time-variant, since
communication topologies, modeled by directed graphs,
are often dynamic. For example, communication links

among nodes might be unreliable due to disturbances such
as imperfect sensors, communication dropout, and noisy
and unreliable communication links. For effective cooper-
ation, a team working in a network must be able to respond
to unanticipated situations or changes occurring in the
environment. Another important reason to analyze max-
consensus in dynamic communication topologies is the
possibility to optimize the communication performance,
e.g., with respect to energy consumption or convergence
rate. Max-consensus in a continuous time framework and
for the case of fixed communication topologies has been re-
cently proposed and studied in Cortés (2008) and Tahbaz-
Salehi and Jadbabaie (2006). Convergence conditions for a
number of consensus problems have been studied for var-
ious dynamic communication topologies (see, e.g. Olfati-
Saber and Murray (2004), Cao et al. (2008) and Moreau
(2005)).

In this contribution, we propose an approach to analyze
max-consensus algorithms which is based on max-plus
algebra (e.g., Baccelli et al. (2001), Heidergott et al. (2005)
and De Schutter and van den Boom (2008)). In this frame-
work max-consensus algorithms become linear (for con-
stant communication topologies) and can be represented as
a switched linear system (for time-varying communication
toplogies). In particular, we investigate conditions under
which max-consensus algorithms converge under switching
in communication topologies.



The paper is organized as follows: Section 2 summarizes
the necessary elements from graph theory and max-plus
algebra. Section 3 introduces the basic concepts of max-
consensus in a max-plus algebraic setting. Section 4 pro-
vides convergence conditions for so-called strong max-
consensus in switching topologies. Section 5 does the same
for so-called weak max-consensus. Finally some simulation
results and a conclusion are given in Section 6 and Section
7.

2. GRAPH THEORY AND MAX-PLUS ALGEBRA

In this section we collect a few basic facts on graphs and
max-plus algebra that are needed in the sequel.

2.1 Graph Theory

Information exchange between nodes in a network is mod-
eled by means of directed or undirected graphs. A directed
graph G is a pair (N , E), where N = {1, · · · , n} is a finite
nonempty node set and E ⊆ N×N is a set of ordered pairs
of nodes, called edges. Additionally, in weighted graphs
each edge is equipped with a weight. An edge may connect
a node to itself (self loop). Existence of an edge (j, i) ∈ E
denotes that node i can obtain information from node j.
If (j, i) is an edge in a directed graph, node j is called a
predecessor of node i. Ji is the set of predecessor nodes of
node i, i.e., Ji = {j ∈ N|(j, i) ∈ E}. A path is a sequence
of nodes (i1, · · · , ip), p > 1, such that ij is a predecessor
of ij+1, j = 1, · · · , p − 1. An elementary path is a path in
which no node appears more than once. A directed graph
is said to be strongly connected if there is a path from any
node to any other node in the graph, and it is called weakly
connected if the graph obtained by adding an edge (i, j) for
every existing edge (j, i) in the original graph is strongly
connected. A rooted directed tree is a directed graph in
which every node has exactly one predecessor node, called
parent, except for one node, called the root, which has no
parent and from which there is a directed path to every
other node. (N1, E1) is a subgraph of (N , E), if N1 ⊆ N
and E1 is a set of edges (j, i) from E , such that i, j ∈ N1.

The union graph
⋃
i

Gi of the directed graphs Gi (N , Ei) is

the graph (N , E∪), where

E∪ :=
⋃
i

Ei. (1)

The intersection graph
⋂
i

Gi of the directed graphs Gi
(N , Ei) is the graph (N , E∩), where

E∩ :=
⋂
i

Ei. (2)

More details on graph theory can be found in, e.g., Diestel
(2005), Baccelli et al. (2001).

2.2 Max-Plus Algebra

Max-plus algebra, e.g., Baccelli et al. (2001), Heidergott
et al. (2005) and De Schutter and van den Boom (2008),

represents a powerful tool for simulation and analysis of a
class of timed cyclic discrete-event systems and allows for
a compact representation of weighted graphs.

Max-plus algebra consists of two binary operations, ⊕ and
⊗, on the set Rmax := R ∪ {−∞}. The operations are
defined as follows:

a⊕ b :=max(a, b), (3)

a⊗ b := a+ b. (4)
The neutral element of max-plus addition ⊕ is −∞,
denoted as ε. The neutral element of multiplication ⊗ is
0, denoted as e. The elements ε and e are also referred to
as the zero and one element of max-plus algebra. Similar
to conventional algebra, associativity, commutativity, and
distributivity of multiplication over addition also hold for
the max-plus algebra. Both operations can be extended to
matrices in a straightforward way. For A,B ∈ Rm×nmax ,

(A⊕B)ij := aij ⊕ bij , i = 1, · · · ,m, j = 1, · · · , n .
For A ∈ Rm×nmax , B ∈ Rn×qmax ,

(A⊗B)ij :=
n⊕
k=1

(aik ⊗ bkj) = max
k

(aik + bkj),

i = 1, · · · ,m, j = 1, · · · , q.
Note that, as in conventional algebra, the multiplication
symbol ⊗ is often omitted.

In the sequel, we also need matrices of zero elements,
denoted by N , and of one elements, denoted by E. The
identity matrix I is a square matrix with

(I)ij :=
{

e for i = j
ε else.

For any matrix A ∈ Rn×nmax , its precedence graph G(A) is
defined in the following way: it has n nodes, denoted by
1, · · · , n, and (j, i) is an edge if and only if aij 6= ε. In this
case aij is the weight of edge (j, i). Then

• A path in G(A) is a sequence of p > 1 nodes, denoted
by ρ := i1, . . . , ip, such that aik+1ik 6= ε, k =
1, . . . , p− 1.

• The weight of a path ρ denoted by |ρ|w is defined as
|ρ|w :=

∑p−1
k=1 aik+1ik and its corresponding length as

|ρ|l := p− 1.
• The length of the shortest path from node i to node
j is denoted by |i, j|min.

• (Ak)ij represents the maximal weight of all paths of
length k from node j to node i, where

Ak := A⊗A⊗ . . .⊗A︸ ︷︷ ︸
(k−1)-times multiplication

, k ≥ 1

and A0 = I.

3. PROBLEM SETUP

The following example from Monajemi Nejad et al. (2009)
illustrates the concept of max-consensus. A group of agents
is assigned to meet as early as possible at a particular
place. Each agent needs a certain minimum time to get
to the meeting place. This means that the only possibility



to achieve an agreement on the minimal feasible meeting
time is to take the largest value of all the agents’ minimum
times. A possible centralized solution to this problem could
be a simultaneous communication between all agents in
the group, to arrange a time when the group will meet.
For this purpose the time of this communication should be
known to the group. Thus, the centralized approach does
not help to solve the problem. A distributed approach to
the problem would be for each agent to communicate, one
at a time, with a subset of the group. An update of his
current estimate of the meeting time may be performed
by taking the maximum of this estimate and that of the
contacted agents. The question to be answerded in this pa-
per is: under which conditions does this strategy guarantee
that all group members’ estimates regarding the meeting
time will converge? For the case that the communication
topology is fixed, the conditions and results are given
in Monajemi Nejad et al. (2009). In the following, we
investigate the case where the communication topology
may vary over time.

Note that time-varying communication topologies also
cover the case of asynchronous communication, where the
information exchange between neighbors is determined by
individual graphs. Furthermore, we consider the discrete-
time case, where communication instants may either be
defined by a clock or by the occurrence of external events.

The scenario described above can be formally stated as
follows:

• The set of graph members is denoted by N =
{1, · · · , n}.
• Information between graph members can be ex-

changed at discrete instants of time, tk, k = 0, 1, 2, · · ·.
• The communication topology at time tk is modeled

by a directed graph Gk = (N , Ek), where (j, i) ∈
Ek, j, i ∈ N , means that node (graph member) i
receives information from node (graph member) j.
The weights of all edges are equal to e. Furthermore,
(i, i) ∈ Ek ∀i ∈ N .
• As n is finite, and all edges have weight e, there

only exists a finite number of possible communication
graphs, i.e. Gk ∈ {G(1), · · · ,G(nm)} ∀k.
• The information state of agent i at time tk is denoted

by xi(k) and it is updated via the max-consensus
algorithm

xi(k + 1) = max
j∈Ji,k

{xj(k)}, i = 1 · · ·n, (5)

where Ji,k is the set of predecessor nodes of node i in
the graph Gk, i.e. Ji,k := {j | (j, i) ∈ Ek}.

Definition 3.1. (Max-Consensus). For a given sequence of
graphs, Gk, k = 0, 1, · · ·, a vector of initial states x0 :=
(x1(0), · · · , xn(0))T ∈ Rn, and the consensus algorithm
(5), max-consensus is said to be achieved, if ∃K ∈ N0

such that

xi(k) = xj(k) (6)

= max{x1(0), · · · , xn(0)}, ∀k ≥ K, ∀i, j ∈ N .
If (6) holds for all x0 ∈ Rn, strong max-consensus is
achieved. If (6) only holds for a subset of initial states,
X0 ⊆ Rn, weak max-consensus is achieved.

Clearly, strong max-consensus is a property of the se-
quence of graphs Gk, k = 0, 1, · · · only, whereas weak max-
consensus depends on the graph sequence and x0.

In a max-plus framework, (5) becomes a switched linear
system. To see this, we associate a matrix A(l) to each
graph G(l), l ∈ {1, · · · , nm}, such that G(l) is the precedence
graph of A(l). We can then write (5) as

xi(k + 1) =
⊕
j∈Ji,k

(xj(k)), i = 1, · · · , n, (7)

or, equivalently,

x(k + 1) = Ak ⊗ x(k), (8)

where x(k) = (x1(k), · · · , xn(k))T is the vector of infor-
mation states and Ak ∈ {A(1), · · · , A(nm)} is a matrix in
Rn×nmax associated with the graph Gk.

Recursive application of (8) to x0 provides

x(k) =Ak−1 ⊗Ak−2 ⊗ · · · ⊗A0 ⊗ x0. (9)

We will investigate conditions which

• guarantee strong (weak) max-consensus for a specific
sequence of graphs Gk, or, correspondingly, for a given
sequence of matrices Ak, k = 0, 1, 2, · · ·.
• guarantee strong (weak) max-consensus for an arbi-

trary sequence Gk orAk, withAk ∈ {A(1), · · · , A(nm)},
k = 0, 1, 2, · · ·.

Before we do this, let us briefly summarize results from
Monajemi Nejad et al. (2009) for the case of a fixed
communication topology. There, the sequence Gk k =
0, 1, · · · reduces to a single (constant) graph G = (N , E).
In Monajemi Nejad et al. (2009), we have shown, that
in this case strong max-consensus is achieved if and only
if G is strongly connected. Then, the required number of
communication instants is the maximum of the shortest
path lengths between any pair of nodes in G, i.e., n − 1
in the worst case. Weak max-consensus is achieved if and
only if there exist rooted directed trees in G which span
N \N1 and have roots in N1, where N1 ⊆ N is the set of
nodes with maximal initial information state. The required
number of communication instants to achieve consensus is
then

max
i∈N\N1

( min
j∈N1
{|j, i|min}).

4. STRONG MAX-CONSENSUS IN SWITCHING
TOPOLOGIES

Let S be the set of all sequences of matrices from the
set A = {A(1), · · · , A(nm)}. Recall that A(l) ∈ Rn×nmax ,
such that G(l) = (N , E(l)) is the precedence graph of A(l),
l = 1, · · · , nm. This implies that all diagonal elements of
A(l) are equal to e, and that all off-diagonal elements are
either ε or e (as (i, i) ∈ E(l) ∀i ∈ N and all edges have
weight e).



4.1 Strong Max-Consensus in Switching Topologies for
Specific Switching Sequences

Theorem 4.1. Let Ak, k = 0, 1, 2, · · ·, be a sequence of
matrices with Ak = A(lk). A necessary and sufficient
condition for strong max-consensus is that

A(lk−1) ⊗A(lk−2) ⊗ · · · ⊗A(l1) ⊗A(l0) = E, (10)
for some k ∈ N.
Proof 1. (10) implies x(k) = E ⊗ x0, i.e.,

xi(k) =
⊕

j=1,···,n
(xj(0))

= max{x1(0), · · · , xn(0)}, i = 1, · · · , n.
Furthermore, because of the special form of the matrices
A(l), (10) implies that ∀q > k

A(lq−1) ⊗ · · · ⊗A(lk−1) ⊗ · · · ⊗A(l0) = E,

hence

xi(q) = max{x1(0), · · · , xn(0)}, i = 1, · · · , n.
Necessity can be shown as follows: if A(lk−1) ⊗ A(lk−2) ⊗
· · · ⊗ A(l1) ⊗ A(l0) 6= E ∀k, then (∀k) ∃p, q ∈ N s.t.
(A(lk−1) ⊗ A(lk−2) ⊗ · · · ⊗ A(l1) ⊗ A(l0))pq = ε, i.e., xp(k)
does not depend on xq(0). Hence, if xq(0) is the maximum
element of x0, max-consensus is not achieved. 2

In the following, we will also need a number of technical
results.
Lemma 4.1. Let G′ = (N ′, E ′) be a subgraph of a strongly
connected graph G = (N , E), with N ′ ⊂ N . Then there
exists at least one edge (i, j) ∈ E with i ∈ N ′ and j ∈ N \
N ′.
Proof 2. The proof can be easily shown by contradiction.
2

Lemma 4.2. Consider the matrices A,B ∈ Rn×nmax and
the corresponding precedence graphs GA = (N , EA) and
GB = (N , EB). Let (i, i) ∈ EA and (i, i) ∈ EB ∀i ∈ N , and
let all edges have weight e, i.e., the diagonal elements of A
and B are all equal to e, while the off-diagonal elements
are either e or ε. Then, all edges of GA and GB are also
edges of the precedence graph GA⊗B = (N , EA⊗B) of the
matrix A⊗B, i.e.

EA⊗B ⊇ EA ∪ EB.
Proof 3.

(A⊗B)ij =
n⊕
k=1

(aik ⊗ bkj)

= · · · ⊕ (aii ⊗ bij)⊕ · · · ⊕ (aij ⊗ bjj)⊕ · · ·
= · · · ⊕ bij ⊕ · · · ⊕ aij ⊕ · · ·

Consequently, (A⊗B)ij = ε is only possible if both aij = ε
and bij = ε. Hence, if either GA or GB has an edge (j, i),
this will also be an edge of GA⊗B . 2

Lemma 4.3. Consider a matrix A ∈ Rn×nmax and the corre-
sponding precedence graph GA = (N , E). Let (i, i) ∈ E
∀i ∈ N , and let all edges have weight e, i.e., the diagonal
elements of A are all equal to e, while the off-diagonal

elements are either e or ε. GA is strongly connected if and
only if Ak = E ∀k ≥ n− 1.
Proof 4. See Monajemi Nejad et al. (2009). 2

We will now investigate whether, given the set A = {A(1),
· · · , A(nm)} or, equivalently, the set {G(1), · · · ,G(nm)}, we
can find a sequence Ak, k = 0, 1, · · ·, of matrices from A
such that (10) holds.
Theorem 4.2. There exists a sequence Ak, k = 0, 1, · · ·,
Ak ∈ A such that (10) holds if and only if

nm⋃
i=1

G(i) is a

strongly connected graph.
Proof 5. Sufficiency can be shown by contradiction. If
there exists no sequence such that (10) holds, then (A(1)⊗
· · ·⊗A(nm))k 6= E, ∀k. Then, according to Lemma 4.3 the
precedence graph of the matrix A(1)⊗ · · ·⊗A(nm) is not a
strongly connected graph. Since according to Lemma 4.2

E(A(1)⊗···⊗A(nm)) ⊇ EA(1) ∪ · · · ∪ EA(nm) ,

nm⋃
i=1

G(i) cannot be strongly connected.

Necessity can also be demonstrated by contradiction.
Assuming that the union graph is not strongly connected,
it has to be shown, that there exists no k such that (10)

holds. Since
nm⋃
i=1

G(i) is not strongly connected,
k−1⋃
i=0

Gi ∀k
is not strongly connected, for all k and all sequences Gi,
i = 0, 1, 2, · · ·, where Gi ∈ {G(1), · · · ,G(nm)}. As

k−1⋃
i=0

Gi is

the precedence graph of
⊕k−1

i=0 Ai, Lemma 4.3 implies

(
k−1⊕
i=0

Ai)ζ 6= E, ∀ζ.

Let us choose ζ = k − 1. Then, there exist i and j such
that

((
k−1⊕
i=0

Ai)k−1
ij = (Ak−1 ⊕Ak−2 ⊕ · · · ⊕A0)k−1

ij

= (Ak−1)k−1
ij ⊕ · · · ⊕ (A0)k−1

ij ⊕ · · ·
⊕(Ak−1 ⊗Ak−2 ⊗ · · · ⊗A0)ij = ε.

This implies (Ak−1 ⊗Ak−2 ⊗ · · · ⊗A0)ij = ε, i.e., Ak−1 ⊗
Ak−2 ⊗ · · · ⊗A0 6= E, and therefore (10) does not hold. 2

Theorem 4.2 presents a useful criterion to determine,
whether in general it is possible to achieve max-consensus
for some given graphs describing a switching communica-
tion topology.

4.2 Strong Max-Consensus in Switching Topologies for
Arbitrary Switching Sequences

In many cases the switching between communication
topologies is not controllable, and a switch to another
topology is caused by changes in the environment. Theo-
rem 4.3 investigates the necessary and sufficient conditions
for the communication topology graphs to achieve strong
max-consensus for an arbitrary switching sequence.



Theorem 4.3. Strong max-consensus is achieved for an ar-
bitrary sequence Ak, k = 0, 1, · · ·, Ak ∈ {A(1), · · · , A(nm)}
if and only if the precedence graphs G(l) of A(l), l =
1, · · · , nm, are all strongly connected. Then, consensus will
be achieved within at most n− 1 communication instants.
Proof 6. Necessity is obvious from Monajemi Nejad et al.
(2009), as the time-invariant scenario Ak = A(l), k =
0, 1, · · ·, l ∈ {1, · · · , nm} is a special case.

Sufficiency is shown as follows. (9) implies:

x(n− 1) = An−2 ⊗An−3 ⊗ · · · ⊗A0 ⊗ x0,

with Ak ∈ {A(1), · · · , A(nm)} ∀k = {0, · · · , n− 2}.
If

A = An−2 ⊗An−3 ⊗ · · · ⊗A0 = E, (11)
max-consensus is achieved.

To show this, consider

(A)ij = (An−2 ⊗An−3 ⊗ · · · ⊗A0)ij

=
n⊕
k=1

((An−2)ik ⊗ (
n⊕

m=1

((An−2)km ⊗ (· · ·

⊗(
n⊕
p=1

((A2)lp ⊗ (
n⊕
q=1

((A1)pq ⊗ (A0)qj)))).

Now we have to show that (A)ij = e ∀i, j, i.e., all
multiplicative terms in the equation above are equal to
e.

∀j ∃q such that (A0)qj 6= ε, since according to Lemma 4.1
in G′0 = ({j}, E ′0) ⊂ G0 there exists at least one node q 6= j
such that (A0)qj = e.

According to Lemma 4.1 in G′1 = ({j, q}, E ′1) ⊂ G1 there
exists at least one node p 6= q 6= j such that either
(A1)pq = e or (A1)pj = e. Then, recalling the special
structure of the matrices Ai, ((A1)⊗ (A0))pj = e.

After n−1 instants of communication, according to Lemma
4.1 and because of strong connectivity of Gn−2, considering
G′n−2 = ({ j, q, · · · , k︸ ︷︷ ︸

n− 1 nodes

}, E ′n−2) ⊂ Gn−2 there exists at

least one edge from the only remaining node in N \
{j, q, p, · · · , k} to a node {j, q, p, · · · , k}, i.e. (An−2⊗An−3⊗
· · · ⊗A0)ij = e ∀i, j ∈ N . 2

The following statement about the required number of
communication instants can be shown using similar ar-
guments.

Consider the set G(1), · · · ,G(nm), where all G(i) are strongly
connected. From Monajemi Nejad et al. (2009), we know
that for the time-invariant case, Gk = G(l), the required
number of communication instants, ml, is the maximum
of the shortest path lengths between any pair of nodes in
G(l). In the switching topology case, the required number
of communication instants, m is

min
l=1,···,mn

(ml) ≤ m ≤ max
l=1,···,mn

(ml). (12)

In summary, we have shown that strong max-consensus
is achieved for an arbitrary switching sequence if and

only if each graph is strongly connected. Furthermore, the
required number of communication instants is bounded by
(12), and is n− 1, in the worst case.

5. WEAK MAX-CONSENSUS IN SWITCHING
TOPOLOGIES

We now consider the case of weak max-consensus as
defined in Section 3. Not surprisingly, it will turn out that
conditions are weaker for this case.

5.1 Weak Max-Consensus in Switching Topologies for
Specific Switching Sequences

Theorem 5.1. Let Ak, k = 0, 1, 2, · · ·, be a sequence of
matrices with Ak = A(lk). Denote the maximum of all
initial information states by x̂0, i.e.,

x̂0 := max
i=1,···,n

{xi(0)}

and partition the index set N = {1, · · · , n} by:

N1 := {i|xi(0) = x̂0},
N2 :=N \N1.

Then, a necessary and sufficient condition for max-
consensus is that:

(∃k ∈ N) (∀i ∈ N2) (∃m ∈ N1) : (A)im = e, (13)

where A := A(lk−1) ⊗ · · · ⊗Al0 .
Proof 7. To show sufficiency, recall that according to
Lemma 4.2, (13) implies

(Alq−1 ⊗ · · · ⊗A)im = e, ∀q > k.

We then have ∀i ∈ N2, ∀q > k

xi(q) =
⊕
j∈N1

(Alq−1 ⊗ · · · ⊗A)ij ⊗ xj(0)︸ ︷︷ ︸
x̂0⊕

j∈N2

(Alq−1 ⊗ · · · ⊗A)ij ⊗ xj(0)

= x̂0.

We also trivially have
xi(q) = x̂0 ∀i ∈ N1,∀q ≥ 0.

To show necessity, assume that (13) does not hold, i.e.,
(∀k ∈ N) (∃i ∈ N2) (∀m ∈ N1) : (A)im = ε.

This implies that there exists a node i in N2 such that,
∀k, xi(k) does not depend on x̂0, hence consensus is not
achieved. 2

Theorem 5.2 investigates whether, given the setA = {A(1),
· · · , A(nm)}, or, equivalently, the set {G(1), · · · ,G(nm)}, we
can find a sequence Ak, k = 0, 1, · · ·, of matrices from A
such that (13) holds.
Theorem 5.2. There exists a sequence Ak, k = 0, 1, · · ·,
Ak ∈ A such that (13) holds if and only if there exist

subgraphs GTi
:= (NTi

, ETi
), of the union graph

nm⋃
i=1

G(i),

such that the GTi are rooted directed trees with roots in
N1 and ∪iNTi ⊇ N2.



Proof 8. The proof is omitted for the sake of brevity, but
can be developed similarly to the proof of Theorem 4.2
and is based on the results from Monajemi Nejad et al.
(2009). 2

Example 5.1. Consider the graphs in Figure 1. Let us
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Figure 1. Communication graphs for Example 5.1.

assume that N1 = {1, 2}, i.e., x1(0) = x2(0) = x̂0. The
condition from Theorem 5.2 is that the union graph of
these three graphs (Figure 2) contains rooted directed
trees GTi := (NTi , ETi) with roots in N1 and ∪iNTi ⊇ N2.
Obviously, in the union graph (Figure 2) there exists such a

4 5

6

1 2

3

G∪
Figure 2. Union graph for Example 5.1.

tree with node 2 as the root and paths to all other nodes in
N2 (Figure 3). Hence, a suitable sequence G(li), i = 0, 1, · · ·,

4 5

6

2

3

G∪
Figure 3. Rooted directed tree in the union graph of Figure 2.

or, equivalently, A(li), i = 0, 1, · · · exists. Consider, e.g.
Ak = A(1) for k = 0, 3, 6, · · ·, Ak = A(2) for k = 1, 4, 7, · · ·,
and Ak = A(3) for k = 2, 5, 8, · · ·. Then,

x(9) = A8 ⊗ · · · ⊗A2 ⊗A0 ⊗ x0

=


x1(0)⊕ x2(0)⊕ x3(0)⊕ x4(0)⊕ x5(0)⊕ x6(0)

x2(0)
x2(0)⊕ x3(0)⊕ x4(0)⊕ x5(0)⊕ x6(0)

x2(0)⊕ x4(0)⊕ x5(0)
x2(0)⊕ x4(0)⊕ x5(0)

x2(0)⊕ x4(0)⊕ x5(0)⊕ x6(0)

 .

5.2 Weak Max-Consensus in Switching Topologies for
Arbitrary Switching Sequences

Theorem 5.3 investigates now these necessary and suf-
ficient conditions for achieving weak max-consensus for
arbitrary switching sequences.
Theorem 5.3. Weak max-consensus is achieved for any
sequence Ak, k = 0, 1, · · ·, Ak ∈ {A(1), · · · , A(nm)} if and
only if there exist subgraphs GTi

:= (NTi
, ETi

), of each
graph G(i) i ∈ {1, · · · , nm}, such that the GTi

are rooted
directed trees with roots in N1 and ∪iNTi

⊇ N2.

The maximum number of required communication instants
to achieve consensus is given by:

max
l:A(l)∈Ak, k=0,1,···

(max
i∈N2

( min
m∈N1

{|m, i|G(l),min})),

where |m, i|G(l),min denotes the length of the shortest path
from node m to node i in graph G(l).
Proof 9. Omitted for the sake of brevity, but can be
developed in the same way as the proof of Theorem 4.3,
using the results given for the case of fixed communication
topologies (see Monajemi Nejad et al. (2009)). 2

Example 5.2. Consider the graphs in Figure 4. Assume
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Figure 4. Communication graphs for Example 5.2

that x1(0) = x2(0) = x̂0, i.e., N1 = {1, 2}. The neces-
sary and sufficient condition given in Theorem 5.3 holds.
Thus, a max-consensus will be achieved, and the maximal
number of communication instants is

max
l:A(l)∈Ak, k=0,1,···

(max
i∈N2

( min
m∈N1

{|m, i|G(l),min})) = 3.

Consider, e.g., a sequence Ak, k = 0, 1, · · ·, defined as
follows:

Ak = A(1) for k = 0, 2, · · ·, and Ak = A(2) for k = 1, 3, · · ·.
Then, we get in max-plus algebra



x(2) = A2 ⊗A1 ⊗ x0

=


x1(0)
x2(0)

x1(0)⊕ x3(0)
x1(0)⊕ x2(0)⊕ x4(0)

x2(0)⊕ x5(0)
x2(0)⊕ x4(0)⊕ x6(0)

 =


x̂0

x̂0

x̂0

x̂0

x̂0

x̂0

 .

Clearly it means that under the given assumption the
state of a switched max-plus system consisting of A1 and
A2 converges to x̂0, i.e., consensus is achieved after two
communication instants.

According to Theorem 5.3 the maximum required in-
stances of communication is in the worst case 3. In max-
plus algebra one can easily check, that

x(3) = A3 ⊗A1 ⊗A3 ⊗ x0 = X̂0.

Similar to the case of strong max-consensus, the following
statement about the required number of communication
instants can be shown.

Consider the set G(1), · · · ,G(nm), where the conditions in
Theorem 5.3 hold for all G(i) . From Monajemi Nejad et al.
(2009), we know that for the time-invariant case, Gk = G(l),
the required number of communication instants, ml, is
given by

max
i∈N2

( min
j∈N1
{|j, i|G(l),min}).

In the switching topology case, the required number of
communication instants, m is

min
l=1,···,mn

(ml) ≤ m ≤ max
l=1,···,mn

(ml). (14)

In summary we have shown under which conditions weak
max-consensus is achieved. Obviously, the conditions are
more restricted if the switching sequence is arbitrary (The-
orem 5.3). On the other hand, being able to choose freely
a switching sequence relaxes the conditions. Theorem 5.2
give a useful criterion for the existence of a feasible switch-
ing sequence, such that max-consensus is achievable.

6. EXAMPLES AND SIMULATION RESULTS

In the sequel some simulation results are given for both
strong and weak max-consensus. As a motivating example
we consider the following scenario: a network of four agent
is supposed to meet at a minimum time at a particular
place. The agents should agree on the minimal feasi-
ble time via communication at discrete instants of time.
The following simulations demonstrate under which con-
ditions on communication topology graphs max-consensus
is achieved.

6.1 Strong Max-Consensus:

Assume that the set of feasible communication graphs
is given by {G(1),G(2),G(3)} (Figure 5). The sequence of
communication topology is given by Gk ∈ {G(1),G(2),G(3)},
k = 0, 1, · · ·. Obviously,

3⋃
i=1

G(i) is strongly connected.

Hence, a suitable sequence, e.g., Ak = A(1) for k = 0, 3, · · ·,

1 2 1 2

1 2

4 3 4 3

4 3

G(1) G(2)

G(3)

Figure 5. Communication graphs for simulation in Section 6.1.

Ak = A(2) for k = 1, 4, · · ·, and Ak = A(1) for k = 2, 5, · · ·
max-consensus can be achieved.

x(1) = A0 ⊗ x0 =

 x1(0)
x1(0)⊕ x2(0)

x3(0)
x3(0)⊕ x4(0)


...

x(3) = A2 ⊗A1 ⊗A0 ⊗ x0 =

 x1(0)⊕ x3(0)⊕ x4(0)
x1(0)⊕ x2(0)

x1(0)⊕ x2(0)⊕ x3(0)
x3(0)⊕ x4(0)


...

x(k) = E ⊗ x0 =

 x1(0)⊕ · · · ⊕ x4(0)
x1(0)⊕ · · · ⊕ x4(0)
x1(0)⊕ · · · ⊕ x4(0)
x1(0)⊕ · · · ⊕ x4(0)

 , ∀k ≥ 6.

In Figure 6 simulation results are given for an initial
vectors of information state xo = (1, 2, 3, 4)T . For this
vector, as for every other vector x0 ∈ Rn, max-consensus
is achieved after maximal 6 communication instants.
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Figure 6. Simulation results for x0

6.2 Weak Max-Consensus:

Assume that the feasible topologies are given by the graphs
in Figure 1 from example 5.1. The condition in Theorem
5.2 holds if N1 = {2}. In the following, the simulation
results for two initial vectors of information states are
depicted in Figure 7 and Figure 8.



Figure 7 presents the simulation results for x0 = (1, 2, 3, 4, 5,
6)T , where the necessary and sufficient conditions of The-
orem 5.2 are violated. Obviously, the information states of
the agents do not converge to the maximum value.
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Figure 7. Simulation results for x0

For an initial vector x′0 = (2, 6, 3, 1, 4, 5)T max-consensus
is achieved as illustrated in Figure 8.
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Figure 8. Simulation results for x′0

7. CONCLUSIONS

A main ingredient in any distributed cooperative control
system is an efficient consensus mechanism. In this paper,
we have investigated max-consensus problems in switching
communication topologies, where one aims at determining
the maximal value of all agents’ initial information states
through time-variant local communication.

We have proposed to use max-plus algebra to analyze
max-consensus algorithms. In this framework, we obtain
a switched linear system representation of the investi-
gated consensus algorithm. We have studied convergence
conditions for both strong and weak max-consensus for
time-variant communication topologies. Note that this ap-
proach can also be used to study min-consensus problems
– one then seeks the maximum of −x0.
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