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Abstract: Escherichia coli produces acetate as the major by-product when grown in a batch
culture medium of glucose under aerobic conditions. The secreted acetate can be used as an
additional substrate for cell growth leading to a mixed-substrate growth pattern of diauxic
growth. However the acetate formed can limit growth of the organism if found in high amounts
in the culture medium and such a scenario necessitates the study of the growth of micro-
organisms on mixed substrates. Dynamic flux balance analysis has turned out to be a promising
tool in capturing such scenarios of growth on mixed substrates. In this study we carry out
a dynamic flux balance analysis study of the growth of Escherichia coli in a batch culture
medium of glucose and acetate where the organism encounters the presence of mixed substrates.
Additionally we have used a detailed metabolic network to describe the process of metabolism
in the organism Escherichia coli. DFBA combined with such detailed metabolic networks can
open up possibilities of preventing such harmful growth scenarios for biotechnologically useful
micro-organisms.

Keywords: Dynamic flux balance analysis, mixed substrates, dynamic optimization, bilevel,
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1. INTRODUCTION

Industrial bioreactors, operated in batch mode, are com-
monly used to produce biotechnologically useful products.
These reactors carry out processes involving the growth of
micro-organisms on a complex media which may contain
several sources of essential substrates. Therefore the design
of bioreactors entail the need for studies of the growth
of micro-organisms on mixed substrates (Narang et al.
(1997)).

Escherichia coli is the most widely used bacterium for the
production of the biotechnologically interesting metabo-
lites e.g., recombinant proteins and amino acids (Choi
et al. (2006)). Our study presently focuses on the growth
of E. coli on a medium containing only two substrates
although observations of growth on media containing more
than two substrates have been made (Doshi and Venkatesh
(1998)).

Under aerobic conditions of growth on glucose, E. coli
produces acetate as the major byproduct. The secreted
acetate can serve as an additional carbon source for utiliza-
tion by the bacteria. However, high acetate accumulation
in the medium can be detrimental for cell growth (Lin
et al. (2006)) which implicates the necessity for a study of
the growth of E. coli on these two substrates.

Bacteria grown in a batch culture medium of two growth
limiting substrates can exhibit several substrate con-
sumption patterns such as diauxic growth, simultaneous
consumption, and bistable growth (Narang and Pilyu-
gin (2007)). The growth of E. coli on glucose and ac-
etate exhibits the mixed-substrate growth pattern of di-
auxic growth. Diauxic growth has been mathematically
modeled and studied earlier using various approaches
such as flux balance analysis (FBA) (Varma and Palsson
(1994)), cybernetic modeling (Ramakrishna et al. (1996)),
kinetic modeling (Xu et al. (1999), Guardia and Calvo
(2001), Bettenbrock et al. (2006)), static optimization-
based dynamic flux balance analysis (DFBA), and dy-
namic optimization-based dynamic flux balance analysis
(Mahadevan et al. (2002)). Amongst all, the dynamic
optimization-based DFBA approach appears to be a lot
more promising (Hjersted and Henson (2006), Hjersted
and Henson (2009)) and hence this approach has been
undertaken for our present study (from now on, DFBA
would imply the dynamic optimization-based DFBA).

The earlier description of the mixed-substrate growth
pattern of E. coli on glucose and acetate, using DFBA
(Mahadevan et al. (2002)), involved the usage of a sim-
plified metabolic network consisting of only 4 metabolites
and 4 fluxes. Usage of such simplified networks do not
provide any detailed understanding of the intracellular flux
distributions nor can any regulation be easily incorporated

11th International Symposium on
Computer Applications in Biotechnology
Leuven, Belgium, July 7-9, 2010

978-3-902661-70-8/10/$20.00 © 2010 IFAC 401 10.3182/20100707-3-BE-2012.0059



into the network for accurate growth pattern descriptions.
However these hurdles can be overcome by the usage of
a more detailed (i.e., with lesser lumping of reactions)
metabolic network in such studies. Hence the objective of
this study is to use a more detailed metabolic network of
E. coli to describe its mixed-substrate growth pattern on
glucose and acetate using DFBA.

2. METABOLIC NETWORK

Growth of an organism is the production of its biomass
from certain extracellular metabolites (substrates) through
a process called as metabolism which involves a metabolic
network of several reactions and intracellular metabolites.
A metabolic network is usually represented mathemat-
ically by a stoichiometric matrix S. We have used a
metabolic network of E. coli constructed out of 113 reac-
tions and 76 metabolites (Covert and Palsson (2002)) and
hence in our study the matrix S would have a dimension
of 76 x 113 (number of metabolites x number of reactions).

3. DYNAMIC FLUX BALANCE ANALYSIS

DFBA rests on the belief that an organism would grow
by optimizing, in some constrained manner, the usage of
the resources available to it. Hence the growth pattern
description by the DFBA approach would involve the
formulation and solution of an optimization problem com-
posed of a dynamic flux balance model describing growth,
some metabolic constraints and an objective. A dynamic
flux balance model is set up by combining the dynamic
mass balances on the key extracellular metabolites and the
dynamic mass balances on the intracellular metabolites of
the metabolic network.

3.1 Dynamic Mass Balances - Extracellular Metabolites

The key extracellular metabolites in the present study
include glucose, acetate and biomass. Dynamic mass bal-
ances of these metabolites are given as

dG(t)

dt
= SGv(t)X(t) (1)

dA(t)

dt
= SAv(t)X(t) (2)

dX(t)

dt
= µ(t)X(t) (3)

where SG and SA are the rows of the stoichiometric matrix
associated with glucose and acetate respectively, t is time
(hours), G(t) is the glucose concentration (mM), A(t)
is the acetate concentration (mM), X(t) is the biomass
concentration (gDW/l), v(t) is a vector of flux variables
(mmolgDW−1hr−1) that quantify the rates of the reac-
tions in the metabolic network, and µ(t) is the growth
rate (hr−1).

Oxygen can also be considered as a key extracellular
metabolite and its dynamic mass balance could be in-
cluded in the model (Mahadevan et al. (2002)). Since
the study is focussed only on the aerobic batch growth
pattern it would be ensured that the oxygen concentration
is always maintained at the desired level ensuring no mass
transfer limitations on the oxygen uptake flux.

3.2 Dynamic Mass Balances - Intracellular metabolites

A concised form of the dynamic mass balances of the
intracellular metabolites can be given as

dx(t)

dt
= Sv(t) (4)

where x(t) is a vector of concentrations of the intracellular
metabolites (mmolgDW−1), and S is the stoichiometric
matrix.

The intracellular metabolites are assumed to equilibriate
very rapidly to extracellular perturbations. This implies
that the Pseudo-Steady-State Assumption (PSSA), which
states that the concentration of a chemical compound is
constant over a stipulated time frame, can be applied on
them. Equation (4) then becomes (the steady-state mass
balances)

Sv(t) = 0 (5)

3.3 Metabolic Constraints

Metabolic constraints in the study of growth patterns arise
in the form of bounds or uptake kinetic equations. The
flux variables can be subjected to tight upper and/or lower
bounds (called as flux capacity constraints). Flux variables
associated with irreversible reactions have a zero lower
bound or zero upper bound. Enzymatic reactions associ-
ated with known non-expressed genes have their flux vari-
ables constrained to a zero lower and zero upper bound.
The concentration variables are naturally subjected to a
zero lower bound.

The substrate uptake rate equations connect the intra-
cellular steady-state mass balances and the extracellular
dynamic mass balances. For glucose, a maximum allowable
uptake rate (or flux) was defined using the Michaelis-
Menten kinetics as in (6) and a maximum value for the
uptake rate (or flux) of oxygen was defined as in (7).

SGv(t) ≤
10 ∗ G(t)

Km + G(t)
(6)

SO2v(t) ≤ 15 (7)

where Km is the saturation constant (0.015 mM, (Mahade-
van et al. (2002)).

3.4 Objective Function

Instantaneous objective functions have an upper hand over
terminal time objective functions when it comes to the
accurate description of growth patterns (Mahadevan et al.
(2002)) and hence our chosen objective functions would be
of the instantaneous formulation.

The formulated optimization problem turns out to be a
dynamic optimization problem (8) with the state variables
vector C(t) and the flux variables vector v(t) as the deci-
sion variables and φ(C(t), v(t)) as the objective function.
It is to be noted that the growth rate µ(t) has been
included as a growth (or biomass) flux variable (Varma and
Palsson (1994) in the vector v(t) and all the extracellular
metabolite concentration variables are represented by the
vector of state variables C(t).
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max
C(t),v(t)

φ(C(t), v(t)) (8)

s.t. extracellular mass balances (eqns 1 − 3)

intracellular mass balances (eqn 5)

maximal uptake rate equations (eqns 6 − 7)

vL
≤ v(t) ≤ vU , C(t) ≥ 0, t0 ≤ t ≤ tf

4. BILEVEL DYNAMIC OPTIMIZATION

The above formulated dynamic optimization problem
could be solved, if a solution exists, to obtain an optimal
solution which may or may not represent the true physiol-
ogy of the cell. During the process of the consumption
of a substrate, the cell directs the incoming substrate
fluxes towards satisfying some cellular objective inter-
nally. Mathematically this implies that the flux variables
are subjected to a seperate optimization problem: linear
programming (LP) problem or nonlinear programmming
(NLP) problem, whatever be the chosen objective function
φ(C(t), v(t)). The consideration of this seperate optimiza-
tion problem leads to a smaller feasible region within which
the optimal solution of the original problem (8) could
lie and this brings us closer to the predicability of the
true physiological behaviour of the cell. Such optimization
problems (9) involving the flux variables are seen in FBA
(Varma and Palsson (1994)) where LP is usually used to
obtain the optimal solution.

max
v(t)

cT v(t) (9)

s.t. Sv(t) = 0

where the objective function, cT v(t), is a linear combina-
tion of the flux variables.

So we see that the intracellular mass balances in (8) would
have to be replaced by the optimization problem (9) to get
the physiologically meaningful optimal solutions thereby
giving rise to the bilevel dynamic optimization problem
(10). The optimization problem (9) is usually called as the
lower-level problem or the inner LP while the optimization
problem (8), excluding the intracellular mass balances, is
called as the upper-level problem (Colson et al. (2007)).

max
C(t),v(t)

φ(C(t), v(t)) (10)

s.t. extracellular mass balances (eqns 1 − 3)

maximal uptake rate equations (eqns 6 − 7)

vL
≤ v(t) ≤ vU , C(t) ≥ 0, t0 ≤ t ≤ tf

max
v(t)

cT v(t)

s.t. Sv(t) = 0

4.1 Choice of Objective Functions

Though several attempts previously have been made to
elucidate the best inner cellular objective (Schuetz et al.
(2007), Ow et al. (2009)), maximization of growth rate has
been realised to be better, as an inner cellular objective, in
the description of growth on mixed substrates (Meadows
et al. (2010)).

Maximizing the extracellular biomass concentration is cho-
sen as the objective function in the upper-level problem.
This ensures that the overall objective of the DFBA would
be to maximize the growth of the organism and the correct
description of the growth pattern of the organism would
be obtained.

4.2 Connecting Constraints

From the general formulation of a bilevel programming
problem (Colson et al. (2007)), it can be seen that the
state variables in the vector C(t) are called as the upper-
level variables and that the flux variables in the vector v(t)
are called as the lower-level variables.

The extracellular mass balances and the maximal uptake
rate equations in the bilevel dynamic optimization problem
(10) form a set of upper-level constraints which involve
both the upper-level and lower-level variables (Colson
et al. (2007)). Such constraints are called connecting
constraints. The shifting of constraints from one level to
the other could lead to different optimal solutions and one
should take care during such a shifting process (Mersha
and Dempe (2006)).

5. MATHEMATICAL PROGRAM WITH
COMPLIMENTARITY CONDITIONS

The bilevel dynamic optimization problem can be refor-
mulated into a single-level dynamic optimization prob-
lem by replacing the lower-level problem with its first-
order optimality conditions or otherwise known as the
Karush-Kuhn-Tucker (KKT) conditions (Raghunathan
et al. (2003), Colson et al. (2007), Yang et al. (2008)). This
gives rise to a mathematical program with complimentar-
ity conditions (MPCCs) (Baumrucker et al. (2008)).

MPCCs are found to violate the linear independence
constraint qualification (LICQ) and the Mangasarian-
Fromovitz constraint qualification (MFCA) leading to
non-unique and unbounded constraint multipliers. This
may prove to be an obstacle in the search for an optimal
solution to the MPCC. This can be circumvented by
reformulating the MPCC through any of the methods
mentioned in Baumrucker et al. (2008). For our study,
we have chosen the Reg(ǫ) MPCC reformulation which
involves the relaxation of the complimentarity conditions
with a positive relaxation parameter ǫ. The solution of
the MPCC is then obtained by solving a series of relaxed
solutions as ǫ approaches to 0.

5.1 Bilevel To Reformulated MPCC - General Formulation

In this subsection, we will show how a generally formulated
bilevel problem is converted to a reformulated MPCC
before it is solved. Let us consider the following general
formulation of a bilevel DFBA problem (where v(t) ∈ nv,
g: Rnv → R

nc , nc is the number of inequality constraints
in the inner-level problem and nv is the number of flux
variables)

min
C(t),v(t)

φ(C(t), v(t)) (11)

s.t. G(C(t), v(t)) ≤ 0
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min
v(t)

f(v(t))

s.t. g(v(t)) ≥ 0

The inner-level problem in equation (11) (involving the
objective function f(v(t))) is replaced by its first order
optimality conditions to generate the following single-level
problem or the MPCC

min
C(t),v(t),λ

φ(C(t), v(t)) (12)

s.t. G(C(t), v(t)) ≤ 0

g(v(t)) ≥ 0

λi ≥ 0, i = 1, ..., nc

λi gi(v(t)) = 0, i = 1, ..., nc

∇v(t)(f(v(t)) −

nc∑

i=1

λi gi(v(t))) = 0

The complimentarity conditions (13) are reformulated us-
ing the Reg(ǫ) MPCC reformulation to the set of equations
given in (14).

λi gi(v(t)) = 0, i = 1, ..., nc (13)

λi gi(v(t)) ≤ ǫ, i = 1, ..., nc (14)

The reformulated complimentarity conditions (14) are
then substituted into the MPCC (12) to generate the
following reformulated MPCC

min
C(t),v(t),λ

φ(C(t), v(t)) (15)

s.t. G(C(t), v(t)) ≤ 0

g(v(t)) ≥ 0

λi ≥ 0, i = 1, ..., nc

λi gi(v(t)) ≤ ǫ, i = 1, ..., nc

∇v(t)(f(v(t)) −

nc∑

i=1

λi gi(v(t))) = 0

The final solution of the MPCC (12) is obtained by solving
a series of reformulated MPCCs where ǫ is varied from a
low value to finally 0.

6. DYNAMIC OPTIMIZATION PROBLEM
SOLUTION

Each of the series of reformulated MPCCs is solved using
the simultaneous approach. In this approach, the state and
the flux variables are discretized in time using orthogonal
collocation on finite elements. This discretization along
with other considerations transforms the dynamic opti-
mization problem into an NLP problem which is finally
solved to get the desired optimal time profiles of the state
and flux variables. A detailed description of the simulta-
neous approach can be found in Biegler et al. (2002).

7. DFBA : MIXED-SUBSTRATE GROWTH PATTERN

A dynamic flux balance analysis was carried out to de-
scribe the mixed-substrate growth pattern exhibited by E.

coli when it is grown in a batch culture medium of glucose
and acetate. The experimental data provided in (Varma
and Palsson (1994)) was used for the validating the model
predictions.

7.1 Batch Culture Medium - Initial Concentrations

The in silico batch culture medium was assumed to
contain glucose at a concentration of 10.4 mM and acetate
at a concentration of 0.3 mM (Covert and Palsson (2002)).
The initial biomass concentration was assumed to be 0.003
g/L (Covert and Palsson (2002)). The in silico cells were
also assumed to be already adapted to the provided in
silico batch culture medium.

7.2 Dynamic Optimization Problem Formulation

The batch culture growth was simulated for a total time
period of 10 hours starting with an initial time of 0 hours.
The considered time period was split into 100 elements
of finite length for the dynamic optimization problem
formulation.

The state and the flux profiles were approximated using
three and two collocation points respectively. A further
assumption introduced was that the flux profile could be
represented by a piecewise constant polynomial (constant
over each finite element).

The formulated single level dynamic optimization problem
was then solved using the MATLAB and GAMS program-
ming environments with the help of an interfacing software
to connect these two environments.

7.3 Metabolic Constraints

The glucose uptake flux was bounded to a maximum value
of 10.5 mmolgDW−1hr−1 while a maximum flux value
of 2.5 mmolgDW−1hr−1 was enforced for the uptake of
acetate.

7.4 Acetate production and consumption

Using DFBA, we were able to simulate the mixed-
substrate growth pattern of diauxic growth exhibited by
Escherichia coli when grown in a batch culture medium
of glucose and actetate. Fig. 1 shows the time profiles
of the predicted concentrations of the key extracellular
metabolites. The time profiles of the fluxes associated with
these metabolites are shown in Fig. 2.

The simulation was able to capture the initial production
of acetate and its later consumption by the organism.
It seems that the consumption of acetate provided only
for the maintenance requirements and growth during this
phase was negligible. Once glucose is consumed, the or-
ganism encounters a nutrient-limiting condition. This may
trigger a stress signal and the choice of maximizing growth
may not be the best objective function to describe the
behaviour of the organism during this period. However in
total the simulated profiles show a good agreement with
the experimental data.
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Fig. 1. Predicted concentration-time profiles of the key
metabolites (experimental data represented by square
boxes)
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Fig. 2. Predicted flux-time profiles associated with the key
metabolites

8. CONCLUSION

Dynamic flux balance analysis presents itself as a powerful
tool to describe the dynamics associated with microbial
growth. In our study, the mixed-substrate growth pattern
of Escherichia coli on glucose and acetate in a batch
culture was predicted reasonably good. Choice of such
large metabolic networks for DFBA studies of growth
patterns gives a better description of the dynamics of
the intracellular fluxes. This helps us to understand the
interactions between the different pathways of the network
and the effect of environmental conditions on them. The
intracellular flux profiles however would have to be verified
to ensure that the dynamic behaviour of the entire intra-
cellular network has been correctly captured by DFBA.
Due to lack of experimental data, we could not carry out
this verification.

Although the present study has been restricted to the
presence of only two substrates, the use of DFBA can be
extended to the growth pattern studies of organisms in
a complex medium containing more than two substrates.
Also a study on the determination of the best inner cellular
objective function could be carried out on a DFBA scale.

DFBA can also admit experimental data in the outer
objective function (minimizing the errors between model
predictions and experimental observations) which carves
out a new way for the incorporation of experimental data
to obtain better model predictions.
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