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1 Einleitung

Die Systembiologie ist eine junge Forschungsrichtung, die besonders in den letzten Jahren
einen rasanten Aufstieg erlebt hat (Stelling et all, 2001). Systembiologische Forschung zeich-
net sich durch interdisziplindre Ansétze aus den Bereichen Biologie/Medizin auf der einen
Seite und Mathematik und Ingenieurwissenschaften auf der anderen Seite aus. Diese For-
schung wird unterstiitzt durch Methoden aus den Informationswissenschaften, um die anfal-
lenden Datenmengen sinnvoll zu strukturieren und in Datenbanken zur Verfiigung zu stel-

len.

Die Zielsetzungen in der Systembiologie sind auf ein verbessertes Verstindnis der in einer le-
benden Zelle ablaufenden Prozesse ausgerichtet. Diese Prozesse lassen sich am besten durch
biochemische Reaktionsnetzwerke beschreiben. Diese umfassen unterschiedliche Reaktionsty-
pen wie enzymkatalysierte Reaktionen und Polymerisationsreaktionen. Im Gegensatz zu che-
mischen Reaktionsnetzwerken zeichnen sich die biochemischen Reaktionsnetzwerke durch eine
grofse Anzahl von Riickkopplungschleifen aus. Das bedeutet, dass Komponenten in vielfaltiger
Art und Weise miteinander interagieren, so dass das zeitliche Verhalten des Gesamtsystems
intuitiv schwer nachvollziehbar ist. Hier kommt das Hilfsmittel der mathematischen Model-
lierung zum Einsatz, das es erlaubt, die Vorgéinge in der einzelnen Zelle zu abstrahieren und

damit einer theoretischen Analyse zuginglich zu machen.

In der Systembiologie lassen sich nun zwei unterschiedliche und sich ergéinzende Ansétze finden,
die zu mathematischen Modellen fiihren. Im Bottom-up-Ansatz geht man von einem kleinen
Teilsystem aus, fiir welches biologisches Wissen aus der Literatur bekannt ist, das ausreicht, ein
mathematisches Modell aufzustellen. Wie in Abbildung [Tl links gezeigt, kann dieses Modell
dann durch experimentelle Daten verifiziert und anschliefend analysiert werden. Weiterhin
kann es mit anderen Teilmodellen zu einer groferen Einheit verschaltet werden. Im experi-
mentell orientierten Top-down-Ansatz liegt ein Gesamtbild der zelluliren Aktivitdt bspw. in
Form von ¢cDNA Array Daten vor (Abbildung [ rechts). Die Daten beschreiben also die

Gesamtheit aller in den Zellen gebildeten mRNA und machen daher eine Aussage iiber die
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Abbildung 1.1: Zwei Vorgehensweisen in der Systembiologie. Links: Bottom-up, rechts: Top-
down. In dieser Arbeit werden Methoden aus dem Bottom-up-Ansatz vorge-
stellt.

gesamte Transkriptionsaktivitdt der Zellen. Diese Daten werden mit geeigneten Tools analy-
siert und mit anderen Datentypen zu einem Gesamtbild der Zelle integriert. Basierend auf
verschiedenen Techniken lassen sich dann aus den Daten ebenfalls mathematische Modelle

ableiten.

Die vorliegende Arbeit stellt Methoden aus dem Bereich des Bottom-up-Ansatzes vor, die
Aspekte der Modellerstellung, Verifizierung, Analyse und Versuchsplanung umfassen. Da die
Modelle sehr umfangreich sind, erfolgt die Modellierung rechnergestiitzt, d.h., eine enstpre-
chende Software kommt zum Einsatz, die den Modellierer bei der Eingabe des Netzwerkes un-
terstiitzt und gleichzeitig Schnittstellen zu Simulationswerkzeugen bereitstellt (Ginkel et all,
2003; Hucka et all, 2003). Die Modellverfikation erfolgt in enger Zusammenarbeit mit bio-
logisch arbeitenden Gruppen, mit denen die Experimente gemeinsam geplant werden. Ziel-
setzung war in einem ersten Schritt zu zeigen, dass umfangreiche Modelle aufgestellt werden
konnen, die in der Lage sind, mit einem einzigen Satz von kinetischen Parametern eine Vielzahl
von experimentellen Bedingungen zu beschreiben (Kremling et all, 2003; Bettenbrock et all,
2006; [Kremling, 2007). Die Vorgehensweise zeigt, dass die abgebildeten Prozesse mit einer

hohen Giite der Modelle beschrieben werden konnen. Da im Prokaryontenbereich die ablau-
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fenden Prozesse dhnlich strukturiert sind, kann davon ausgegangen werden, dass die Modelle

als Grundlage einer Modellerstellung der ganzen Gruppe dienen kann.

In einem zweiten Schritt wurden dann Eigenschaften der Signalumwandlung und -verarbeitung
fiir ein ausgewdhltes System ndher untersucht (IKL&m.Ij.ng_&La.]J, |20.0_4.d) Bei Bakterien unter-
scheidet man zwischen der fiir einen spezifischen Reiz beobachteten Antwort (lokale Kontrolle)

und der bei einer allgemeinen Stimulation beobachteten Antwort (globale Kontrolle). Fiir das
hier betrachtete Teilnetzwerk der Kohlenhydrataufnahme stellt eine Hungersituation eine all-
gemeine Stimulation dar, was sich durch eine verinderte Wachstumsrate der Zellen bemerkbar

macht. Zur Analyse der Eigenschaften des Sensors und des Signalverarbeitungsweges wur-

de eine vereinfachte Modellstruktur verwendet und analysiert i , 2007, ).

Fiir ein zweites Beispielsystem — ein Zwei-Komponenten-System — wurde ebenfalls eine um-
fassende Analyse des erstellten mathematischen Modells durchgefiihrt. Mit den Ergebnissen

konnten zwei bisher noch nicht charakterisierte Riickkopplungsschleifen hinsichtlich ihrer kine-

tischen Eigenschaften analysiert werden (IKmm_Li_ug_et_a_]J, |2_01)_4£i; |S_a£z—_BQd.Li.g1Lez_&t_aJJ, |2_OD_4|,

In vielen Fillen reichen vorliegende experimentelle Daten nicht aus, um Modelle ausreichend

gut zu verifizieren. Daher konnen Parameter oft nur sehr ungenau, d.h., mit einer hohen Un-
sicherheit ermittelt werden. In anderen Féllen liegen Modellvarianten vor, die ein bestimmtes
Experiment gleich gut wiedergeben. In beiden Féllen ist es notwendig, ein neues Experiment
vorzuschlagen. In der vorliegenden Arbeit liegt der Schwerpunkt der Methodenentwicklung zu-
nichst auf der Planung neuer Experimente, wenn zwischen zwei Modellvarianten unterschieden

werden muf (lK.r_emli.u.g_&t_a.l], |20.0_4.A) Ausgehend von in der Literatur beschriebenen Ansét-

zen wird eine Methode vorgeschlagen, die sowohl Unsicherheiten der Messgrofen, als auch aus

dem vorliegenden Experiment ermittelte Parametervarianzen beriicksichtigt. Bei der Ermitt-
lung der Parametervarianzen zeigte sich, dass nichtlineare Effekte (Nichtlinearitit beziiglich
der Parameter) eine wichtige Rolle spielen. Da klassische Verfahren die Parametervarianzen
nur unzureichend abschétzen, kommt hier ein neuer Ansatz, basierend auf einer statistischen

Methode zum Einsatz, der wesentlich bessere Resultate liefert, als die klassische Vorgehens-
weise (I.]Qs.h.i_&t_a.l], |2.0.0.6.2],|H)

Methoden aus den Ingenieurwissenschaften eréffnen in der Systembiologie zahlreiche Mog-

lichkeiten, mathematische Modelle schnell und effizient zu erstellen, zu verifizieren und zu
analysieren. Die vorliegende Arbeit betrachtet dazu einige ausgewihlte Beispiele. Eine ausfiihr-

liche Darstellung von ingenieurwissenschaftlichen Methoden in der Systembiologie ist in einem
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Ubersichtsartikel zu finden (Kremling and Saez-Rodrigned, 2007).

Die Arbeit gliedert sich in drei Teile. In einem ersten Teil wird ein umfassendes Modell der

Kohlenhydrataufnahmesysteme fiir Escherichia coli vorgestellt und diskutiert. Im zweiten Teil
steht die Analyse eines speziellen Signalweges im Zentrum, der zeigt, dass eine bestimmte
Verschaltung im Netzwerk zu einem robusten Verhalten des Systems fiihrt. Im dritten Teil
stehen Methoden zur Versuchsplanung und zur Ermittlung von Parameterunsicherheiten im
Mittelpunkt.




2 Rechnergestiitzte Modellierung von
Kohlenhydrataufnahmesystemen bei

Escherichia coli

Das Bakterium Escherichia coli besitzt eine ganze Reihe von Transportsystemen, die es er-
lauben, Substrate aus dem Medium heraus aufzunehmen. Fiir die Klasse der Kohlenhydrate
umfassen diese Transportsysteme ein membranstindiges Protein, welches fiir die eigentliche
Aufnahme verantwortlich ist sowie weitere Proteine, die bei einigen Substraten fiir eine Mo-
difikation des Substrates, beispielsweise eine Phosphorylierung, sorgen (eine Ubersicht iiber
Transportsysteme ist in [Postma et all (1996) zu finden). Die Transportsysteme sind in der
Regel spezifisch und besitzen daher nur ein kleines Substratspektrum. Damit die Zelle nun
nicht alle Systeme vorhalten mufs, was 6konomisch betrachtet auch nicht sinnvoll wire, wer-
den diese Systeme erst bereitgestellt, wenn das betreffende Substrat im Medium vorliegt. Legt
man nun in einer Batch-Kultur ein Substrat vor, so stellt sich nach kurzer Zeit eine konstante
Wachstumsrate ein. Die Wachstumsrate fiir verschiedene Kohlenhydrate variiert sehr stark.
Dies bedeutet, dass die Zelle bestimmte Kohlenhydrate besser verwerten kann als andere.
Aus molekularbiologischen Untersuchungen ist nun bekannt, dass bei der Synthese fast aller
Kohlenhydrat-Transportsysteme neben einer spezifischen Kontrolle auch das Regulatorprote-
in Crp beteiligt ist. Es sorgt dafiir, dass die entsprechenden Proteine bei Bedarf exprimiert
werden. Da dieser Regulator bei der Genexpression einer grofsen Anzahl von Genen beteilig
ist, spricht man von einem globalen Regulator (Neidhardt et all, [1990). Die einzelnen Trans-
portsysteme sind hinsichtlich ihrer qualitativen Eigenschaften recht gut untersucht. Dies gilt
auch fiir die iibergeordnete Koordination der Transportsysteme. Es fehlt allerdings eine Be-

schreibung auf einer quantitativen Ebene.

Interessante Beobachtungen werden auch gemacht, wenn zwei Substrate als Mischung in
der Kultur vorgelegt werden. Fiir die Kombination der beiden Zucker Laktose und Gluko-

se wird beispielsweise beobachtet, dass die Aufnahme nicht gleichzeitig erfolgt, sondern zuerst
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die Glukose verstoffwechselt wird und erst nach fast vollstindigem Verbrauch die Laktose
aufgenommen wird. Das bedeutet, dass die einzelnen Systeme auch untereinander vernetzt

sind.

Von einer quantitativen Beschreibung der iibergeordneten Koordination der Transporter und
der Interaktionen zwischen den (lokalen) Transportern kann erwartet werden, dass sie zu ei-
nem besseren Verstindnis von zelluldren Regulationsprinzipien fiihren. Damit ergeben sich
zukiinftig neue Moglichkeiten, das Potential von Mikroorganismen, beispielsweise in der Bio-
technologie, effizienter zu nutzen als bisher. Im folgenden soll zunéchst ein umfangreiches
mathematisches Modell vorgestellt werden, welches Aufnahme und Stoffwechsel mehrerer Koh-
lenhydrate beschreibt und sowohl die Aktivitidtsregulation einzelner enzymkatalysierte Reak-
tionen als auch die Regulation der Genexpression der Enzyme umfakt (Kremling et all, 2003;
Bettenbrock et all, 2006). Zur Verifikation des Modells liegen eine ganze Reihe von Experimen-
ten vor, bei denen intra- und extrazelluliren Messgrofien erfasst wurden. Das Modell wurde
mit dem Modellierungswerkzeug PROMOT erstellt, das eine graphische Benutzeroberfldche be-
sitzt und es erlaubt, einzelne Teilmodelle auszuwihlen, zunéichst zu parametrieren und dann
mit anderen Teilmodellen zum Gesamtmodell zu verschalten (Ginkel et all, 2003). In einem
zweiten Schritt wurde ein vereinfachtes Modell herangezogen, um spezielle Eigenschaften der

Signaliibertragung zu analysieren (Kaptiel 3).

2.1 Modell der Kohlenhydrataufnahme

Der Aufbau des Gesamtmodells zur Beschreibung der Kohlenhydrataufnahme ist den Ab-
bildungen 2] und zu entnehmen. Zentrales Element ist das bakterielle Phosphotrans-
ferase System (PTS), welches Sensor- und Transportfunktion gleichzeitig wahrnimmt (Ab-
bildung EZTl). Zum einen ist es fiir den Transport einer ganzen Reihe von Kohlenhydraten
verantwortlich, zum anderen sind die Proteine an Signaltransduktionswegen beteiligt. Dies
gilt fiir die Aktivierung des globalen Regulators Crp und fiir die Chemotaxis. Im Falle der
Glukoseaufnahme sind bei der Ubertragung der Phosphatgruppen die zwei allgemeinen PTS-
Proteine, EI und HPr sowie die Proteine EITA“"" (im folgenden EITA genannt) und PtsG
(EIICB) beteiligt. Die Proteine iibertragen Phosphatgruppen vom Metaboliten PEP auf den
Zucker. Das bedeutet, dass die Proteine in phosphorylierter oder nicht phosphorylierter Form

in der Zelle vorliegen. Allerdings verindert sich je nach Umgebungsbedingung auch die Ge-
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samtmengen der Proteine. Sie unterliegen ebenfalls der Kontrolle des globalen Regulators
Crp. Die Aktivierung von Crp erfolgt durch das Alarmon cAMP, ein Molekiil, welches aus
ATP durch die Adenylatzyklase (Cya) entsteht. Die Adenylatzyklase wird durch die phopho-
rylierte Form des PTS-Proteins EITA aktiviert und steht ebenfalls unter der Kontrolle von
Crp, was deutlich macht, dass es sich nicht um einen einfachen linearen Signalweg handelt,
sondern um eine komplexe Signaltransduktionseinheit, mit einer ganzen Reihe von Riickkopp-
lungsschleifen (Lengeler and Jahreid, 1996). Im Modell ist auch eine Regulation des Glukose-
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Abbildung 2.1: Ubergeordnete globale Signalverarbeitung und Regulation der Kohlenhydrat-
aufnahme. Das PTS iibt eine Sensorfunktion aus, die es erlaubt, den Fluss
durch die Glycolyse zu erfassen. Ein niedriger Fluss fiirht zu einer Aktivierung
des globalen Transkriptionsfaktors Crp. Dieser ist in die Genexpression einer

grofsen Anzahl von Genen involviert.

Transporters PtsG beriicksichtigt (Plumbridgd, 1998). Wie die meisten Transporter wird er
iiber das Regulationsprinzip der Induktion reguliert. Das bedeutet, dass bei Vorliegen von
Glukose im Medium durch einen autokatalytischen Prozess das Transportprotein erst gebil-
det wird. Allerdings unterscheidet sich die Regulation von PtsG von den bisher bekannten
Induktionsmustern dadurch, dass nicht ein Metabolit des Stoffwechsels fiir eine Deaktivie-
rung des Regulatorproteins sorgt, sondern eine Konformation des Transporters selbst mit dem

Regulator (Mlc) interagiert.

Abbildung macht deutlich, wie sich der Kreis, ausgehend vom Regulator Crp, wieder
schliefst. Die einzelnen Aufnahmesysteme werden individuell von einem Regulatorprotein re-
guliert, die Aktivitat des Regulators Crp wird dieser Regulation iiberlagert, wobei die Ver-

rechnung der Signale der verschiedenen Ebenen nach einem in der Literatur vorgeschlagenen
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Abbildung 2.2: Individuelle Stoffwechselwege der Kohlenhydrataufnahme. Die Elemente aus
Abbildung Pl sind im Block “Globales Regulationssystem” zusammengefafst.

Verfahren erfolgt (Kremling and Gilles, 2001)).

Die Modellerstellung erfolgt unter Betrachtung eines gemittelten Verhaltens der Zellpopula-
tion. Intrazellulire Komponenten konnen dann formal iiber folgende Differentialgleichungen

beschrieben werden:
¢ = Z%’j ri — WG, (2.1)
J

wobei ¢; die intrazelluldre Konzentration der Komponente darstellt, v;; stochiometrische Ko-
efffizienten sind, r; intrazellulire Raten und p die spezifische Wachstumsrate bedeuten. Die
spezifische Wachstumsrate reprisentiert einen Verdiinnungsterm, der beriicksichtigt, dass sich
bei der Zellteilung die Komponenten gleichméfig auf die beiden Tochterzellen verteilen. Fiir
die Substrate im Medium (Konzentration cg;), die in einem Reaktorsystem (Volumen Vj)
durch jeweils einen separaten Zufluss (Rate ¢/, Konzentration c¢%) zudosiert werden konnen,

ergeben sich dann folgende Gleichungen:

ési =4 <qz~ & - Dd CSZ') = D i e (22
k J
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wobei die Transportraten r;’ in die Zelle hinein oder aus der Zelle heraus beriicksichtigt wer-
den. Da diese in der Einheit [umol/gTM h]El angegeben sind, die Substrate aber in [g/[] ein-
gewogen werden, erfolgt noch eine Umrechung mit dem Molekulargewicht g; der Komponen-
te.

Zur Beschreibung der kinetischen Raten fiir den Bereich des Stoffwechsels werden klassische
Ansétze in Form der Michaelis-Menten-Kinetik verwendet. Diese basieren auf der Annahme,
dass das Enzym in mehreren Konformationen vorliegt und einige dieser Konformationen zur
Produktbildung beitragen. Nimmt man an, dass die einzelnen Konformationen sich im Gleich-
gewicht befinden, ergibt sich ein algebraisches System von Gleichungen zur Bestimmung der
Reaktionsrate r. Werden in der Literatur keine Angaben iiber mdgliche Mechanismen ge-
funden, so wird die Michaelis-Menten-Kinetik in der einfachsten Form angenommen. Diese

lautet:
1

_ 2.3

r = keCRo

wobei k. die Produktbildungsgeschwindigkeitskonstante des Enzyms ist, cgg die Gesamten-
zymmenge, ¢ die Metabolitkonzentration und K,; der Halbsédttigungswert. Bei E. coli sind
eine ganze Reihe von Enzymen des Zentralstoffwechsels gut untersucht, so dass hier auf An-
sitze zuriickgegriffen werden konnte, die bereits experimentell (in wvitro) verfiziert sind und

damit eine gute Ausgangsbasis darstellen.

Aufwiandiger gestaltet sich die Ermittlung der Raten zur Beschreibung der Synthese der Enzy-
me. Der Prozess der Proteinsynthese besteht aus zwei gekoppelten Polymerisationsprozessen,
der Transkription (Abschreiben der auf der DNA gespreicherten Information in mRNA) und
der Translation (Umschreiben der mRNA). Formal lést sich folgender Ansatz formulieren, der
analog zu oben (Gleichung (Z3)) die Rate r proportional zur Anzahl der Genkopien cpy 4,

annimmt:

r = ksCDNAo U (24)

Die Expressionseffizienz 7 beriicksichtigt nun den Einfluss der Regulatorproteine, der RNA-
Polymerase und der Ribosomen. Eine ausfiihrliche Darstellung der Berechnungsméglichkeiten
fiir n ist in [Kremling (2007) 7zu finden. Im Modell sind im wesentlichen nur die Abhéngigkeiten
von den Regulatorproteinen und der RNA-Polymerase beriicksichtigt, da davon ausgegangen

wird, dass die Ribosomen keinen limitierenden Einfluss ausiiben. In diesem Fall ist 1 definiert

1eTM = g Trockenmasse
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als das Verhiltnis der mit RNA Polymerase belegten Promotoren cpp zur Gesamtzahl der zur

Verfiigung stehenden Promotoren cpya,:

C
n = —2_ (2.5)
CDNAq

Aufgrund der vielfdltigen Wechselwirkungen zwischen Regulatorproteinen, DNA-Bindestellen,
RNA-Polymerase und Promotor ergibt sich ein umfangreiches Reaktionssystem, welches analog
der Vorgehensweise bei der Ableitung von Enzymkinetiken in Gleichungen umgesetzt werden
muf. Da die Wechselwirkungen fiir diese Teilnetzwerke sehr schnell im Vergleich zu der Pro-
teinsynthese ablaufen, kann man davon ausgehen, dass in diesem Falle alle Reaktionen im

System im Gleichgewicht sind.

Die Berechnung der Genexpressionseffizienz soll an einem Beispiel illustriert werden (Abbil-
dung 23)). Die oben gezeigte Ebene des globalen Regulationssystems (Abbildung ZTI) be-
schreibt die Interaktion der RNA-Polymerase und des cAMP-Crp-Komplexes mit den Pro-
motorbindestellen. Die Ausginge dieser Einheit sind die Grofen K, und K, die die Anteile
der mit Polymerase allein und der mit Polymerase und dem cAMP-Crp-Komplex belegten
Bindestellen beschreiben. Auf der Ebene der individuellen Aufnahmesysteme (Regulonebene)
wird diese Information weiter verarbeitet. In einer fritheren Arbeit (Kremling and Gilles, 2001)
konnte gezeigt werden, dass die Informationsiibertragung als einseitig, d.h. riickwirkungsfrei

angenommen werden kann.

Die Regulonebene beschreibt im Falle der Glukoseaufnahme die Interaktion von Ml¢ (¢pz.) und
PtsG (cpis) mit der Operatorbindestelle (¢p,,...). Sobald extrazelluldre Glukose im Medium
vorliegt oder intrazelluldre Glukose vorhanden ist, bindet Mlc an den PtsG-Komplex, wie in der
Abbildung gezeigt. Damit kann Mlc nicht mehr an den Operator binden, und es kann zum Ab-
lesen der auf der DNA gespeicherten Information kommen. Betrachtet man die Regulonebene,

so ergibt sich folgende Erhaltungsgleichung fiir die DNA Bindestelle:

CDPtsG + CDPtsG + CMlC CDPtsG CMZC CDPtsG

2.6
KS Kss Kb Ksts ( )

CDpisco = CDpuc +
Beriicksichtigt werden die Signale aus der Modulonebene und die Anbindung von Mlc. Mlc
ist nun in verschiedenen Komplexen gebunden, die bei der Erhaltungsgleichung beriicksichtigt
werden miissen. Zu beachten ist, dass Mlc an die mit dem cAMP-Crp-Komplex belegte Bin-
destelle binden kann, jedoch nicht an die mit RNA-Polymerase belegte Bindestelle. Es ergibt

10
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> Kontroll- H Struktur—
RNA polymerase sequenz information
NN ARRE AN
ptsG

Komplexbildung

] Freie DNA + Mic
Freie DNA + RNA Polymerase Mic + freies PtsG (PtsG)

Freie DNA + cAMP.Crp

. Mic + PtsG + extraz. Glucose (Glc_ex)
Freie DNA + RNA polymerase + cAMP.Crp

Mlc + PtsG + Glucose

Abbildung 2.3: Modulon- und Regulonebene. Die Modulon-Ebene beschreibt die Interaktion
der DNA-Bindestellen mit dem globalen Regulator Crp. Die entsprechenden
Belegungsgrade (K, K,s) werden an die Regulonebene weitergeleitet. Die Re-
gulonebene beschreibt nun die Interaktionen des spezifischen Regulators Mlc
mit der Bindestelle und anderen beteiligten Proteinen (hier PtsG) und Effek-

toren (hier intra- und extrazelluldre Glukose).

sich:
CptsG CMic CprtsG CMic CGle CGleey
CMico = ChMic
Mico e a Ky * K, (KG’lc * KGlcex>
CMic CDpys 1
G4 2.7
e ( n Kss) | (2.7

wobei a und die K; Wechselwirkungsparameter sind. Summiert man nun alle Konformationen

fiir PtsG auf, erhélt man:

o CptsG CMic CptsG CMic CGle CGleey
CpisGo = Cpisg + +
a Ky K, Kaie Kaice,

+CPtSG CGle (1 i CP~EHA) i CpPtsG CGlces <1 4 CPNEHA)
Kaie Kpgrra KGlcez Kpgrra

CptsG CP~EIIA
SRSl L (2.8)
Kpogrra

Bei dieser Gleichung ist beriicksichtigt, dass PtsG sowohl mit extrazelluldrer als auch mit
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intrazelluldrer Glukose sowie mit EITA interagiert.

Tabelle 211 gibt einen Uberblick iiber die Anzahl der Zustandsgrofen, der Reaktionsraten und

die Anzahl der kinetischen Parameter fiir das Gesamtmodell.

Tabelle 2.1: Ubersicht Funktionseinheiten (FE). Neben den 6 Zuckern werden in der Fliis-
sigphase die Biomasse, Acetat sowie extrazellulires cAMP bilanziert (DA:
Differential-Algebra System; Dgl.: Differentialgleichungen). Parameter, die nicht

geschiitzt werden konnten, besitzen nur eine sehr geringe Sensitivitiit.

Name FE Parameter Gleichungen

Gesamt | Geschétzt | Gesamt | Typ
Crp Modulon 28 12 14 | DA
PTS 22 10 11 | DA
Glukose Transport 9 6 Dgl.
Sukrose Transport 18 3 Dgl.
Laktose Transport 13 8 DA
Glyzerin Transport 14 7 5 | Dgl.
Galactose Transport 22 4 10 | DA
Glc 6-Phosphat Transport 10 4 DA
Katabole Reaktionen 45 7 8 | Dgl.
Fliissigphase 9 | Dgl.

2.2 Modellverifikation

Die Bestimmung der kinetischen Parameter erfolgt durch einen Vergleich von Messdaten mit
den simulierten Modellausgidngen. Dabei wird im Ingenieurbereich oft eine Eingangsfunktion
(beispielsweise Sprung, Impuls oder PRBS (Pseudo Random Binary Signal)) auf das Sys-
tem aufgegeben und die Systemantwort vermessen. Im Falle von PRBS Signalen erfordert
das Experiment allerdings eine lange Messzeit, was fiir zelluldre Systeme immer mit grofen

Schwierigkeiten verbunden ist (unzureichende Sterilitdt der Anlage, zufillige Mutation bei der
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Zellteilung, Erzeugung von Stressbedingungen, die nicht im Modell vorgesehen sind). Aus die-
sem Grund wurde bei der vorliegenden Arbeit ein anderer Ansatz gewéhlt. Die Anregung des

Systems erfolgte durch Einstellen von vier Einflussgrofen:

i) Vorkultur. Die E. coli-Bakterien werden vor Beginn des eigentlichen Experimentes in
einem Schiittelkolben angezogen. Die Auswahl der Vorkultur hat eine Auswirkung auf
die Menge des spezifischen Transporters, der dann in der Regel bereits in hoher Konzen-

tration in der Zelle vorliegt.

ii) Hauptkultur. Zu Beginn des eigentlichen Experimentes werden ein oder zwei Kohlen-
hydrate im Medium vorgelegt. Durch Vergleich mit Experimenten mit Einzelsubstraten
kann analysiert werden, ob im Falle von zwei Substraten die beiden Transportsysteme

miteinander in Wechselwirkung stehen.

iii) Stammvariante/Mutantenstimme. Durch Vergleich und Analyse des Verhaltens von Stamm-

varianten wird iiberpriift, ob Regelkreisstrukturen oder Stoffwechselwege im Modell aus-
reichend gut abgebildet werden. Die verwendeten Stidmme sind alle isogen, was bedeutet,

dass sie ausgehend vom gleichen Wildtyp konstruiert sind.

iv) Prozeffiihrung. Die meisten Experimente wurden im Batch-Betrieb durchgefiihrt. Durch

Zufiitterung von Substraten kann das Zeitfenster mit niedrigen Substratkonzentrationen
verlingert werden. Eine besondere Variante stellt das “Disturbed”-Batch-Experiment dar.
Hier wird die Kultur mit einem Hauptsubstrat bis in die exponentielle Phase hinein an-
gezogen. Dann wird ein zweites Substrat pulsférmig dazugegeben. Wird eine Kultur aus
der Ruhelage durch einen Substratpuls ausgelenkt, wird das Experiment als Pulsexperi-

ment bezeichnet.

Tabelle stellt die gesamte Datenbasis zusammen. Insgesamt stehen 18 Experimente zur
Verfligung. Messtechnisch erfasst wurden sowohl extra- als auch intrazellulire Grofsen. Fiir
eine ausfiihrliche Beschreibung der Messmethodik wird auf [Bettenbrock et all (2006) verwie-
sen. Die Schitzung der kinetischen Parameter erfolgte iterativ, da es nicht sinnvoll erschien
und auch technisch nicht durchfiirbar war, die Parameter durch Vorgabe aller Experimen-
te mit einer einzigen Optimierungsrechnung zu bestimmen. Iterativ bedeutet, dass fiir eine
Gruppe von Experimenten Parameter geschitzt und dann, bei einer weiteren Optimierung
einer zweiten Gruppe von Experimenten, konstant gehalten werden. So sind alle Experimen-

te, bei den Laktose im Medium vorgelegen hat, zusammengefafst und die entsprechenden
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Tabelle 2.2: Ubersicht Datenbasis.

Vorkultur | Hauptkultur Stammvariante Prozeffiihrung
1. | Glukose Glukose, Laktose Wildstamm Batch
2. | Laktose Glukose, Laktose Wildstamm Batch
3. | Laktose Laktose Wildstamm Batch
4. | Glyzerin | Laktose Wildstamm Batch
5. | Laktose Galaktose, Laktose Wildstamm Batch
6. | Laktose Laktose, Puls: Glukose | Wildstamm “Disturbed”-Batch
7. | Glukose Glyzerin, Puls: Glukose | Wildstamm “Disturbed”-Batch
8. | Glukose Glukose, Laktose Glk Mutante Batch
9. | Glukose Glukose, Glyzerin Wildstamm Batch
10. | Glyzerin | Glukose Wildstamm Batch
11. | Glyzerin | Glyzerin Wildstamm Batch
12. | Glukose Glukose, Glyzerin Mlec Mutante Batch
13. | Glyzerin | Glyzerin Mlc Mutante Batch
14. | Glukose Glukose, Laktose Mlc Mutante Batch
15. | Glukose Glukose, Laktose Lacl Mutante Batch
16. | Laktose Glukose, Laktose PtsG Mutante Batch
17. | Sukrose Sukrose Sucrose™ Stamm | Pulsexperiment
18. | Glukose Glukose Wildstamm Kontin. Kultur

Parameter geschitzt worden. Zu Beginn jeder Optimierung wird, wie an anderer Stelle be-
schrieben (Posten and Munack, 11990), eine Vorauswahl an Parametern ermittelt, die fiir die
Experimente eine hohe Sensitivitit aufweisen. Durch diese Vorgehensweise konnte die Anzahl
der relevanten Parameter stark eingeschriankt werden. Insgesamt konnte rund ein Drittel der
kinetischen Parameter mit Hilfe der Simulationsumgebung DIVA (Mangold et all, 2000) aus

den Experimenten geschitzt werden.

Zur Vorstellung der Ergebnisse soll nur auf zwei Experimente eingegangen werden (eine de-
taillierte Darstellung findet sich im Supplement der Publikation Bettenbrock et all (2006)).
Abbildung B4 zeigt den Verlauf verschiedener Grofen bei Wachstum auf Glukose und Glyze-
rin. In Plot A ist der Verlauf von Biomasse und Glukose zu sehen. Es sind zwei unterschiedliche

Wachstumsphasen zu erkennen, wobei die Umschaltung auf Glyzerin erst nach Verbrauch der
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Abbildung 2.4: Verlauf von Zustandsgrofen fiir ein Diauxie-Experiment der Mlc-Mutante mit
Glukose und Glyzerin. Glukose und Biomasse (Plot A), EITA (Plot B), Glyzerin
(Plot C), extrazelluldres cAMP (Plot D), intrazellulidres cAMP (Plot E). PtsG
(Plot F), Siehe auch Text.

Glukose erfolgte (Plot C). Zielsetzung bei dieser Versuchsreihe war die Analyse der Genex-
pression des Glukosetransporters PtsG unter verschiedenen Bedingungen. Plot F zeigt den
Verlauf von PtsG fiir das Diauxie-Experiment, sowie fiir ein Experiment mit dem Wildtyp
und fiir ein Experiment, bei dem keine Glukose im Medium vorlag. Wie oben bereits ge-
zeigt, erfolgt die Regulation des Transporters durch eine komplexe Interaktion zwischen dem
Regulator Mlc und den DNA-Bindestellen. Das Experiment brachte Aufschlufs iiber drei cha-

rakteristische Merkmale der Genexpression dieses Proteins, die ausreichend gut abgebildet
wurden:

e Das Basallevel (Plot F, strichpunktiert, Experiment '«") von PtsG wurde gebildet, wenn

keine Glukose im Medium vorlag. Beim gezeigten Versuch wurde Glyzerin vorgelegt und
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das Basalniveau gemessen.

e Regulation durch Mlc (Plot F, gestrichelt, Experiment 'x’): Geht die Glukose bei dem
Diauxieexperiment aus, sorgt die Regulation durch Mlec dafiir, dass keine Neusynthese

an Protein mehr stattfindet. Das Protein wird dann durch Wachstum ausgediinnt.

e Einfluss des Transkriptionsfaktors Crp (Plot F, durchgezogen, Experiment 'o’): Wird eine
Mlc-Mutante beim gleichen Diauxieexperiment eingesetzt, so macht sich die Mutation
nur in der zweiten Wachstumsphase auf Glyzerin bemerkbar. Durch das Fehlen des
Regulators kommt es durch den Einfluss von Crp zu einer verstirkten Neusynthese des

Proteins.

Beim zweiten Experiment wird ein Batch-Versuch mit Glyzerin gestartet. In der exponentiel-
len Phase (Stunde 4) wird Glukose pulsformig dazugegeben und der Verlauf der Messgrifen
verfolgt. Das Experiment dient dazu, die Glukoseaufnahme zu beschreiben, wenn das System
sehr schnell ausgelenkt wird. In einer der ersten Modellvarianten wurde angenommen, dass die
beiden allgemeinen PTS-Proteine HPr und EI in konstanter Konzentration vorliegen. Aus der
Literatur war bekannt, dass EI und HPr zwar der Kontrolle durch Crp und Mlc unterliegen,
allerdings wurde festgestellt, dass der Bereich der Konzentrationen unter verschiedenen Bedin-
gungen nur kleinen Schwankungen aufweist. Abbildung vergleicht einige Modellvarianten
beziiglich der Glukoseaufnahme (Plot B). Simuliert wurde mit (i) konstanter Proteinkonzen-
tration fiir die Proteine PtsG, EI und HPr, (ii) konstanter Proteinkonzentration fiir PtsG
und variabler Proteinkonzentration fiir EI und HPr, (iii) variabler Proteinkonzentration fiir
PtsG und konstanter Proteinkonzentration fiir EI und HPr sowie (iv) variabler Proteinkon-
zentration fiir die Proteine PtsG, EI und HPr. Eine gute Anpassung der Messdaten (aller 18
Experimente) ist nur moglich, wenn die Regulation durch Crp und Mle auch fiir HPr und EI
beriicksichtigt wird (Fall (iv)). Alle anderen Modellvarianten zeigten eine zu schnelle Aufnah-
me der Glukose. Plot E zeigt den zeitlichen Verlauf von PtsG und HPr, Plot F den Verlauf
von EI. Die Verldufe machen deutlich, dass sich die Proteinkonzentrationen nur geringfiigig
dndern, aber diese Anderungen einen starken Einfluss auf den Verlauf der Glukoseaufnahme
haben.
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Abbildung 2.5: Verlauf von Zustandsgrofen fiir ein “Disturbed”-Batch-Experiment. Experi-
mentelle Daten sind mit Symbolen dargestellt. Die Kultur wéchst zunéchst
auf Glyzerin. In der exponentiellen Phase wird Glukose gepulst und die Sys-
temantwort beobachtet. Gezeigt ist der Verlauf von Glyzerin und Biomasse
(Plot A); Plot B zeigt den Verlauf von Glukose fiir Simulationsrechnungen
mit verschiedenen Modellvarianten (siehe Text); EIIA (Plot C), in Plot D
wird EITA nochmal aufgeschliisselt nach verschiedenen Konformationen ge-
zeigt. Durchgezogen ist freies EIIA, gestrichelt ist EITA mit GlpK komplexiert.
PtsG (durchgezogen) und HPr (Plot E) und EI (Plot F).
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2.3 Implementierung in ProMoT

PROMOT (Ginkel et all, 2003; Kremling et _al), 2004d) ist ein objektorientiertes, gleichungs-
basiertes Modellierungswerkzeug. Es kann kontinuierliche und gemischt kontinuierlich-ereig-
nisdiskrete Modelle fiir die Simulationsumgebung DI1VA erstellen. Die Modelle werden dabei
aus einer abstrakten symbolischen Reprisentation im Modellierungswerkzeug in Unterpro-
gramme iiberfiihrt, wodurch eine sehr effiziente Simulation ermdéglicht wird. Basierend auf der
Netzwerktheorie (Gilled, [1998) werden strukturelle und verhaltensbeschreibende Modellbau-
steine unterschieden. Strukturell wird das Gesamtmodell in Module unterteilt, die bestimm-
ten biologischen Einheiten auf verschiedenen Ebenen des Gesamtsystems zugeordnet werden.
Entsprechend dem Konzept werden auf der untersten Ebene molekularbiologische Spezies und
Reaktionen beschrieben. Hoher strukturierte Funktionseinheiten wie Stoffwechselwege, Signal-
transduktionswege oder auch Bioreaktoren werden dann durch Module représentiert, die sich
aus mehreren Teilmodellen zusammensetzen. Das lokale Verhalten eines Moduls wird durch
Variablen, algebraische Gleichungen und gew6hnliche Differentialgleichungen beschrieben. Das
Gesamtgleichungssystem kann im allgemeinen Fall ein differentialalgebraisches System sein.
Einige Variablen der Module werden Schnittstellen zugeordnet und stehen damit zur Verkniip-

fung mit anderen Modulen zur Verfiigung.

Modellbausteine in PROMOT sind in einer objektorientierten Klassenhierarchie mit multipler
Vererbung organisiert. Dieses Konzept aus der Informatik wurde aufgegriffen, um komplexe
Bibliotheken von Modellbausteinen flexibel gestalten und besser organisieren zu kénnen. Fiir
systembiologische Projekte wurde eine Bibliothek von Modulen erstellt, die sowohl elemen-
tare Modellelemente wie Stoffspeicher und Stoffwandler aber auch wiederholt vorkommende
Funktionseinheiten zur Beschreibung der Genexpression und der Signaltransduktion umfassen.
Die Module in PROMOT besitzen standardisierte Terminals, die eine universelle Verkniipfung
der Bausteine ermoglichen. Die Terminals reprisentieren dabei Signale (Konzentrationen oder
Konzentrationsverhéltnisse) oder Stofffliisse (bidirektionaler Austausch einer Konzentration
und einer Flussrate). Benutzer konnen neue Module mit Hilfe eines graphischen Editors oder
textuell in der “Model Definition Language” (MDL) von PROMOT eingeben. Im graphischen
Editor konnen Module aus der geladenen Modellbibliothek durch “Drag'n Drop” aggregiert
und miteinander verbunden werden. Die Modelliersprache erlaubt es, spezielle eigene Glei-
chungsmodelle in elementaren Modulen zu implementieren. Dabei kann der Modellierer auf
abstrakte Superklassen aus der Modellbibliothek zuriickgreifen. Die Modelliersprache MDL ist
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eine deklarative, objektorientierte Sprache, die eine Beschreibung der Modellelemente enthilt.
Sie wird vom Modellierungswerkzeug gelesen und geschrieben und auch als Datenformat zur
Speicherung der Modellbibliotheken genutzt.

Alle oben vorgestlleten Funktionseinheiten des Modells sind in PROMOT implementiert und
getestet worden. Damit steht das gesamte Modell auf der graphischen Benutzeroberfliche
zur Verfiigung. Abbildung zeigt links den Browser, der die Auswahl der Modellbausteine
erlaubt. Rechts ist beispielhaft fiir Stoffwechselwege die Funktionseinheit zur Beschreibung der
Laktoseaufnahme gezeigt.
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Abbildung 2.6: Zwei Bildschirmabziige aus PROMOT. Links der “Modellbrowser”, der die Aus-
wahl der Modellbausteine erlaubt, rechts der Stoffwechselweg des Laktoseab-
baus.
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Zelluldre Systeme zeichnen sich auf der einen Seite durch eine grofe Flexibilitit beziiglich der
Umgebungsbedingungen aus, auf der anderen Seite zeigen sie sich auch duferst robust, wenn sie
durch Mutationen verdndert werden. Verantwortlich fiir dieses Verhalten ist ein Netzwerk von
globalen und spezifischen Transkriptionsfaktoren, die entsprechende Stoffwechselwege an- oder
abschalten kénnen. Wie der Name schon andeutet, reagieren spezifische Regulatoren, wenn sich
bspw. eine bestimmte Néhrstoffquelle im Medium befindet oder Spurenelemente aufgenommen
werden miissen. Globale Regulatoren werden aktiv, wenn eine allgemeinere Situation, bspw. ein
Mangel an Kohlenhydraten vorliegt. In dieser Situation, die dann “Hunger” signalisiert, miissen
eine ganze Reihe von Stoffwechselwegen angepasst werden, um die neue Situation zu meistern.
Es ist daher nicht verwunderlich, wenn diese wichtigen Funktionen in der Zelle besonders

abgesichert sind, damit sie unter allen Bedingungen auch funktionieren.

In den letzten Jahren hat die Analyse von Robustheitseigenschaften einen breiten Raum in
den Publikationen zur Systembiologie eingenommen (Barkai and Leibler, [1997; Stelling et all,
2004). Das Paradebeispiel fiir strukturelle Robustheit ist die bakterielle Chemotaxis. Bakteri-
en wie Fscherichia coli bewegen sich dabei in zwei Bewegungsformen, “Taumeln” und “Lauf”.
Interessant ist, dass sich die Zellen bei einem Reiz zunéchst fast nur in der “Lauf”-Bewegung
auf den Lockstoff zubewegen, nach einiger Zeit allerdings wieder zum urspriinglichen Bewe-
gungsmuster zuriickkehren. Das bedeutet, dass das Signal, das die Bewegung ausldst, zu einer
adaptiven Antwort der Zelle fiihrt: Die Zelle reagiert auf das Signal und kehrt dann wieder zum
Ausgangswert zuriick. Untersuchungen haben gezeigt, dass sich Mutationen, also das gezielte
Einbringen oder Entfernen von bestimmten Genen nicht auf die Genauigkeit der Adaption des
Systems auswirkt, sondern nur die Zeitkonstanten der Systemantwort verdndern (Alon et all,
1999). Eine molekularbiologische Analyse hat dann gezeigt, dass eine integrale Riickfiihrung
dafiir sorgt, dass das System immer zur Ausgangslage zuriickkehrt, selbst bei einer 10-fachen
Erhéhung eines Regulatorproteins (Alon et all,[1999). Neben diesen Analysen zur strukturellen
Robustheit wird in vielen Publikationen auch der Einfluss von kinetischen Parametern unter-

sucht, um das dynamische Verhalten des Systems zu charakterisieren. Bei vielen Systemen
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machen sich Verdnderungen von Parametern kaum bemerkbar, die Systeme werden als robust
bezeichnet. Bei einigen Systemen stellt man jedoch fest, dass sich das dynamische Verhalten
stark verdndert, wenn die Parameter variiert werden.Das zeigt sich besonders bei multistabi-
len Systemen, bei denen bei der Parametervariation ein kritischer Punkt (Bifurkationspunkt)

iiberschritten wird.

Der globale Transkriptionsfaktor Crp wurde oben bereits eingefiihrt. Er ist bei der Initiation
der Transkription bei einer Vielzahl von Genen des katabolen Stoffwechsels beteiligt. Die Ak-
tivierung des Transkriptionsfaktors hingt vom Phosphorylierungsgrad der Komponente EITA
des PTS ab. Experimentelle Untersuchungen am MPI Magdeburg haben nun gezeigt, dass sich
ein Zusammenhang zwischen der Wachstumsrate von E. coli und dem Phosphorylierungsgrad
von EITA ergibt. Der Zusammenhang kann in Form einer Kennlinie aufgetragen werden: bei
hohen Wachstumsraten ist der Phosphorylierungsgrad niedrig, bei niedrigen Wachstumsraten
ist er hoch. Die folgenden Ausfiihrungen sollen den Zusammenhang mit einem mathemati-
schen Modell beschreiben, wobei gezeigt wird, dass hier eine strukturelle Robustheit vorliegt:
Verdnderungen der Parameter oder der Modellstruktur haben nur einen geringen Einfluss auf

das Systemverhalten.

3.1 Struktureigenschaften des Netzwerkes

Der Zusammenhang zwischen der spezifischen Wachstumsrate p und dem Phosphorylierungs-
grad von EITA soll durch Betrachtung eines vereinfachten Stoffwechselschemas, wie in Abbil-
dung Bl gezeigt, deutlich werden. Im Fall, dass das PTS nicht aktiv ist, wie bei Wachstum
auf Laktose, Glyzerin oder Glukose-6-Phosphat, muf die Rate der reversiblen PTS Reaktion
rprs in Abbildung Bl gleich Null sein. Die Rate rprg fakt dabei alle Reaktionen des PTS
ausgehend von PEP bis zu EITA zusammen. Nimmt man eine reversible Reaktion zweiter
Ordnung fiir rprg an, ergibt sich eine Beziehung zwischen dem PEP /Pyruvat Verhéltnis und

dem Phosphorylierungsgrad der Komponente EITA:

CPEP

_ CPruv
Ceriap = CEIIAg Kppg + CEEE (3-1)
CProu

21



3 Analyse globaler Regulationsnetzwerke
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Abbildung 3.1: A: Vereinfachtes Stoffwechselschema. Die PTS-Proteine werden nur durch die
Komponente EITA représentiert. Reaktionen der Glykolyse sind zusammenge-
fakt, da der Abfluss in die Biosynthese nur marginal ist. Wachstumsabhén-
gige Terme der Enzymmengen der Glykolyse sind beriicksichtigt (Symbol pu).
B Im Feedforward-Loop (in A aus Griinden der Ubersichtlichkeit nicht einge-
zeichnet) wird die Pyruvatkinase r,,, durch einen Metaboliten der Glykolyse

aktiviert.

Im Falle eines aktiven PTS ist die Aufnahmerate des Zuckers 7, ., gleich der Rate durch
das PTS und man erhilt:

cpEp __ Tup/pts
. . CEIIA, CPrv kpts (3 2)
FEII . .
Kprs + c;’ff

Beide Gleichungen zeigen einen dhnlichen Aufbau, der zentral fiir die weiteren Betrachtungen
ist: Um den fiir hohe Wachstumsraten und damit hohe Aufnahmeraten experimentell beob-
achteten niedrigen Phosphorylierungsgrad zu erreichen, muf das PEP /Pyruvat-Verhéltnis mit
steigender Wachstumsrate kleiner werden (Abbildung B2, Plot A). Fragt man sich nun, wie
PEP und Pyruvat, iiber der Wachstumsrate aufgetragen, verlaufen miissen, um das gewiinschte
Verhiltnis zu realisieren, so ergeben sich die in Abbildung B2, Plot B & C gezeigten Moglich-
keiten. Allerdings ist schnell klar, dass, wenn beide Funktionen PEP (i) und Prv(x) monoton
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A B
PEP/Prv
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(durchgezogen) (durchgezogen)

PEP PEP 5
(gestrichelt) (gestrichelt) TSl
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Abbildung 3.2: A: Nach Gleichung (B1]) ergibt ein hohes PEP /Pyruvat-Verhéltnis einen hohen
Phosphorylierungsgrad von EITA. Ein hoher Phosphorylierungsgrad wird fiir
eine niedrige Wachstumsrate gemessen. B Das PEP /Pyruvat-Verhéltnis muss
dann {iber der Wachstumsrate aufgetragen, abfallen. C: PEP und Pyruvat als
Funktion der Wachstumsrate. Sensitive Struktur, da Unsicherheiten leicht zu
starken Verschiebungen des Verhéltnisses fithren kénnen. D: PEP und Pyruvat
als Funktion der Wachstumsrate. Robuste Struktur, da Unsicherheiten kaum

zu Verschiebungen des Verhéltnisses fiihren.

steigende Abhéingigkeiten von der Wachstumsrate zeigen (Plot B), dies auf ein sensitives Ver-
halten hindeutet: Leichte Anderungen oder Stérungen auf das System (in der Abbildung fiir
PEP gezeigt) konnen dazu fithren, dass das Verhéltnis stark verdndert wird, sich im Extrem-
fall sogar umdrehen kann. Der in Abbildung in Plot C gezeigte Fall stellt dagegen einen
robusten Verlauf dar: Verdnderungen oder Stérungen verdndern das PEP /Pyruvat-Verhéltnis

kaum.

Geht man der Frage nach, wie das in Plot D gezeigte robuste Verhalten von der Zelle realisiert
werden kann, so stellt eine Mdoglichkeit die in Abbildung B gezeigte Feedforward-Steuerung
dar. Eine hohe Wachstumsrate und damit verbunden ein hoher Fluss durch die Glycolyse

erfordert auch einen hohen Fluss durch die Pyruvatkinase. Wenn nun allerdings die PEP Kon-
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zentration mit steigender Wachstumsrate kleiner werden soll, muss dies kompensiert werden,
da sonst die Rate nicht erhalten werden kann. Die Komponenten in der oberen Hélfte der Gly-
kolyse kénnen nun als Signal eingreifen und durch eine Aktivierung der Pyruvatkinase die hohe
Rate bewerkstelligen, da die Konzentrationen dieser Metabolite mit steigender Wachstums-
rate ebenfalls steigen. In der Tat ist schon lange aus Versuchen mit isolierter Pyruvatkinase
bekannt, dass diese stark von Fruktose 1,6 Bis-Phosphat aktiviert wird (Waygood and Sanwal,
1974) (in Abbildung Blist Fruktose-1,6-Bis-Phosphat nicht explizit im Modell enthalten und
durch Glukose 6-Phosphat ersetzt).

Der Feedforward-Loop kann hier als eine robuste Struktur aufgefafst werden, die im regelungs-
technischen Sinne keinen geschlossenen Kreis aufweist, wie bei der robusten Struktur bei der
Chemotaxis zu beobachten ist. Trotzdem kann aber erwarten werden, dass sie unempfindlich
gegeniiber Storungen ist. Im folgenden Kapitel sollen nun fiir unterschiedliche Modellvarianten
Parameter ermittelt werden, die experimentelle Daten beschreiben. Es wird gezeigt, dass die
Modellvarianten mit Feedforward-Loop deutlich besser die experimentellen Daten beschreiben

als die Modelle ohne Feedforward-Loop.

3.2 Parameterschatzung und Modellbewertung

Mathematische Modelle in der Systembiologie miissen auf der einen Seite versuchen, das be-
kannte Wissen {iber die biologischen Netzwerke so genau wie mdglich zu erfassen, auf der
anderen Seite aber auch die wesentlichen strukturellen Elemente, die fiir ein beobachtetes
Verhalten verantwortlich sind, herausstellen. Oben wurde ein robustes Verhalten durch den
Feedforward-Loop vorgestellt. Diese Arbeitshypothese soll nun weiter verfolgt werden. Dabei
wird gezeigt, dass mit unterschiedlichen Modellvarianten, die sich durch den Detailliertheits-
grad und damit das biologische Wissen, welches reprisentiert wird, unterscheiden, gleich gute
quantitative Ergebnisse erreicht werden konnen, wenn das entscheidende strukturelle Element
im Modell beriicksichtigt ist. Dazu wurden in einer Studie eine ganze Reihe von Modellvarian-
ten zundchst hinsichtlich ihres stationdren Verhaltens untersucht. Dabei wird die geschétzte
Streuung o (residual mean square) der Messgrosse EITA~P in % bezogen auf die Gesamtkon-

zentration nach der Beziehung

1 1
o = 00 Z € (3.3)
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zur Beurteilung herangezogen. Hierbei sind ¢; die Residuen, N ist die Anzahl der Daten-
punkte und n ist die Anzahl der Parameter, also der Freiheitsgrade des Systems. Es sind
nur diejenigen Parameter, die geschitzt werden, beriicksichtigt. Tabelle Bl fafst die Modell-
varianten zusammen. Da mit den Modellen ein grofser Bereich der Wachstumsrate abgedeckt
werden soll, miissen auch wachstumsratenabhéngige Vorgénge einbezogen werden. Dies ist im
wesentlichen die Aktivitidt der RNA Polymerase, die sich im Bereich der Wachstumsrate ver-
doppelt. Da bekannt ist, dass die Synthese der Enzyme der Glykolyse sonst nicht reguliert

ist, wird folgender Ansatz fiir eine auf den Maximalwert skalierte Enzymmenge = verwen-
det:

e  05p

= + 0.5. 3.4

€0 M+ Ku ( )
Anschaulich bedeutet die Gleichung, dass es ein recht hohes Basalniveau fiir kleine Wachs-
tumsraten gibt und dass die Enzymmengen dann in Form einer Michaelis-Menten-Kurve auf
den Maximalwert ansteigen. Neben dieser von der Wachstumsrate abhingigen Enzymmenge
sind auch Abflussraten in die Monomersynthese beriicksichtigt. Die Werte fiir die Raten sind

einer stationdren Flussverteilung entnommen (Kremling, 2002).

) M(‘)de‘lle I‘\/Il‘ | Mpde]le M2

M1 Mila Mlb Milc Mld Mle Mif M2 M2a M2b M2c M2d M2e M2f

Abbildung 3.3: Vergleich der o-Werte nach Gleichung ([B3)) fiir die verschiedenen Modellvari-
anten. Die Modelle der M2-Familie zeigen niedrigere Werte als die Modelle der
Variante M1.
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Tabelle 3.1: Zusammenfassung der Modellvarianten. Die Spalten geben die Kinetiken von 74,
Tpyi und 7,4, an. F bedeutet wachstumsabhéngige Enzymkonzentration, A bedeu-
tet Abfliisse in die Biosynthese. TMonod-Wyman-Changeux-Modell (Blangy et. al.,

kpyk cpep/Kpep (14+cpep/Kpep)® (1+ccep/Kaep)*

1968): r = (terpr/Rrpr)* (Feasy/Rag)® + L
Variante | 7y, | 7pyk Tpdn | E A
M1 gl | pl dl | ja ja
Mla gl | p2 dl |ja ja
Mi1b g2 | p2 d2 |ja |ja
Mlec g2 | pl dl | ja ja
M1d gl | pl d1 nein | ja
Mle gl | p2 dl | nein | ja
M1f g2 | p2 dl | nein | ja
M2 gl | pl* di ja | ja
M2a gl | p2* d2 |ja |ja
M2b gl | p3 di|ja | ja
M2c g2 | pl* dl |ja |ja
M2d gl | pl* dl | nein | ja
M2e gl | p3 dl | nein | ja
M2f gl | pl* dl | nein | nein
Kinetik Formel
gl Massenwirkung kgiy caicep
g2 MM gly CGlc(;C;lfI}zGGP
pl Potenzansatz Kpyk CPEP®
p2 Potenzansatz kpyr cpep®
pl* Potenzansatz | kpyx cpep® Colesp®
p2* Potenzansatz | kpy, cppp® ccieep®
p3 MWCT S.0.
d1 Mass action Epyk cpro
d2 Potenzansatz Kpyk Coro”
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Die Modellvarianten M1 und M2 unterscheiden sich in der Regulationsstruktur der Glykolyse.
Die M1-Modelle besitzen keinen Feedforward-Loop wihrend bei den Modellen M2 Glukose-
6-Phosphat die Pyruvatkinase aktiviert. Fiir den kinetischen Ansatz der Pyruvatkinasereak-
tion sind unterschiedliche Varianten vorgeschlagen. Beispielsweise beriicksichtigt der Monod-
Wyman-Changeux-Ansatz, dass das Enzym in einer aktiven und in einer inaktiven Form vor-
liegt und dass der Aktivator Glukose-6-Phosphat den Ubergang in die aktive Konformation
erleichtert.
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Abbildung 3.4: Vergleich der Modellvarianten M1a (oben) und M2b (unten). Die Legende gibt
Aufschluf {iber die verwendeten Substrate. Die linke Spalte stellt Messungen
fiir PTS Kohlenhydrate dar (Symbol OJ). Die rechte Spalte stellt Messungen fiir
Nicht-PTS Kohlenhydrate dar (Symbol (). Die Messungen wurden mit Ein-
zelzuckern durchgefiihrt wie in der Legende beschrieben. Die Messung erfolgte
in der exponentiellen Phase (Bettenbrock et all, 2007).

27



3 Analyse globaler Regulationsnetzwerke

Alle Modelle wurden mit dem gleichen Verfahren (MATLAB Optimierungsroutinen) an die
vorliegenden experimentellen Daten angepafst. Die Daten beschreiben den Zusammenhang zwi-
schen spezifischer Wachstumsrate g und dem Phosphorylierungsgrad des PTS-Proteins EITA.
Sie wurden aus Experimenten bei Wachstum auf Glukose und Laktose sowie aus Experimenten

mit nur einer einzigen Nahrstoffquelle gewonnen (Bettenbrack et _all, 2006, 2007).

Abbildung zeigt die Ergebnisse der Parameterschiatzung fiir alle Modelle. Die beste An-
passung gelingt mit Modell M2b, welches auch die grofte Komplexitit aufweist. Das Modell
verwendet die Monod-Wyman-Changeux-Kinetik fiir die Pyruvatkinasereaktion und beriick-
sichtigt sowohl die Abfliisse in die Monomersynthese als auch die wachstumsratenabhéngigen
Enzymmengen. Im Vergleich dazu kann aber ebenfalls ein gutes Ergebnis erzielt werden, wenn
ein Minimalmodell wie Variante M2f verwendet wird. Abbildung B4l zeigt die experimentel-
len Daten der Messungen mit Einzelzuckern in der Gegeniiberstellung der Varianten M1a und
M2b. Die simulierten Verlaufe machen deutlich, dass mit der Modellvariante ohne Feedforward-
Loop nur qualitativ das richtige Verhalten erzielt werden kann, die quantitative Beschreibung
aber deutlich schlechter ist. Abbildung zeigt die zu Abbildung B4l passenden Verldufe von
PEP und Pyruvat. In der rechten Abbildung ist gut zu sehen, wie sich der Feedforward-Loop

4 = = g
® = N > o

PEP, Pyruvat (-) & PEP/Pyruvat (-.)
o
>

PEP, Pyruvat (-) & PEP/Pyruvat (-.)

o
iy

0.2

Abbildung 3.5: Abhéngigkeit von PEP und Pyruvat von der Wachstumsrate p fiir die Mo-
dellvarianten M1a (links) und M2e (rechts). Das PEP/Pyruvat Verhéltnis ist
strich-punktiert gezeichnet, experimentelle Daten des PEP /Pyruvat Verhélt-
nises mit Symbol gekennzeichnet (Bettenbrock et all, 2007).

bemerkbar macht. Der Verlauf der Konzentration von PEP besitzt ein Maximum bei einer
sehr kleinen Wachstumsrate und wird fiir hohere Wachstumsraten dann immer kleiner. In

der Variante ohne den Loop sind sowohl PEP als auch Pyruvat monoton steigend iiber den
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Verlauf der Wachstumsrate, allerdings mit unterschiedlichem Anstieg, was zu einem fallenden
PEP /Pyruvat-Verhiltnis fiihrt. Die Messung des PEP /Puryvat-Verhéltnisses in vivo ist immer
noch sehr aufwindig und fehlerbehaftet. In der Abbildung sind Messungen aus verschiedenen

Experimenten eingetragen, die deutlich machen, dass die Tendenz im Modell richtig wieder-

gegeben wird.

3.3 Dynamische Simulation verschiedener

Kohlenhydrataufnahmesysteme

Das in Abbildung BTl gezeigte Schema stellt ein Grundgeriist fiir ein erweitertes Modell dar,
welches nun eine dynamische Simulation und Analyse von verschiedenen Kohlenhydratauf-

nahmesystemen erlaubt. Dabei werden Teilnetzwerke zur Beschreibung der Aufnahmekinetik

non PTS sugar Q

Q PTS sugar

Y

Y

transcription
efficiency Crp

gene |T°™ gene -
expression| - - - |expression
Tn-pts y Y Tots_up

basic network

Y

ElIA~P

i

Abbildung 3.6: Erweitertes Modell zur Beschreibung der Genexpression. Das Ausgangssignal
des Sensors, EIIA~ P, wird weiterverarbeitet und es wird eine von Crp ab-
héngige Transkriptionseffizienz ermittelt (nichlinear Kennlinie). Dieses Signal
wird dann verwendet, um fiir individuelle Transporter fiir PTS und Nicht-PTS
Zucker die Genexpression zu beschreiben. Die Pfeile zwischen den Transpor-
teinheiten deuten an, dass sich solche Systeme auch gegenseitig beeinflussen

konnen. Die Aufnahmeraten dienen dann als Eingang in das Grundmodell.

[
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und der Genexpression entsprechend Abbildung in modularer Art und Weise erginzt.
Das bedeutet, dass die Struktur und die kinetischen Parameter des Grundmodells unverin-
dert bleiben und nur die im Bild gezeigten Verbindungen beriicksichtigt werden. Der Ausgang
des Grundmodells, der Phosphorylierungsgrad von EITA wird als Eingang in einen weiteren
Block zur Beschreibung der Crp-abhingigen Transkriptionseffizienz gefiihrt. Experimentelle
Daten, die fiir einen Crp-abhingigen und einen Crp-unabhiingigen Promotor aufgenommen
wurden (Bettenbrock et all, 2007), erlauben die Ermittlung einer nichtlinearen Kennlinie, die
die Syntheserate der Proteine beschreibt (Abbildung B7). Dazu wurden Experimente mit ver-
schiedenen Kohlenhydraten verwendet und die Daten in der exponentiellen Phase aufgenom-

men. Aus den Daten kann folgender Zusammenhang ermittelt werden:

5000

4500

S,

'S
o
S
=]

Rate of protein synthesis (rel. units)

= = N N w w
o o o a o a
] o =] o =] o
=] =] =] =] =] =]

500F

0.4 0.6
Degree of phosphorylation EIIA [-]

Abbildung 3.7: Zusammenhang zwischen dem Phosphorylierungsgrad von EITA und der Rate
der Proteinsynthese. Die Messungen wurden mit einem Crp-unabhéngigen Gen
(O) durchgefiihrt, welches konstitutiv exprimiert wird. Das Crp-abhingige
Gen () hat ein niedriges Basalniveau (k;) und zeigt ein sigmoides Verhalten

(h = 6) in Abhéngigkeit vom Phosphorylierungsgrade.

6
CEITAP

- 3.5

cprrap® + K6 (8:5)

Die Gleichung weist einen recht hohen Hillkoeffizienten h von 6 auf. Dies deutet darauf hin,

Tsyn = kb + ksyn

dass durch die Kennlinie mehrere stark verkoppelte Prozesse zusammengefafst sind. Wie in
Abbildung [ZT] zu sehen ist, falkt die Kennlinie die beiden rechten Blécke zusammen, die durch
die Aktivitidt des cAMP-Crp Komplexes auch riickgekoppelt sind. Im folgenden sollen am
Beispiel der Glukose-Glukose 6-Phosphat-Diauxie die Ergebnisse vorgestellt werden. Es ist
bekannt, dass beide Transporter von Crp abhénigig sind.
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3.3.1 Glukose Glukose 6-Phosphat Diauxie

Das Grundmodell wurde um Gleichungen fiir Biomasse, Substrate und Transportenzyme er-
génzt. Hierzu wurde Modell M2f ausgewéhlt, da es die einfachste Struktur besitzt. Messtech-

nisch liegen nur Messungen des Glukosetransporters vor. Fiir die Simulation sind nur die kine-
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Abbildung 3.8: Glukose Glukose 6-Phosphat Diauxie. Links oben: Zeitverlauf von Glukose
6-Phosphat, Glukose und Biomasse. Rechts oben: Zeitverlauf des Phospho-
rylierungsgrades von EITA. Unten: Zeitverlauf von PtsG (aus verschiedenen

Experimenten aufgenommen, daher mit skalierter Zeit).

tischen Parameter der Transporter angepasst worden (7,,4,- und Kj,-Werte). Die Parameter,
die oben ermittelt wurden (Kapitel 3.2), sind unveréndert beibehalten. Im Experiment wird
zunichst Glukose 6-Phosphat aufgenommen, wihrend Glukose nicht verstoffwechselt wird.

Aus dem zeitlichen Verlauf des Glukose-Transporters ist zu entnehmen, dass die Glukose-6-
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Phosphat-Aufnahme zu einer reduzierten Genexpression an PtsG fiihrt. Da die molekularen
Details dieser Interaktion noch nicht bekannt sind, ist ein einfacher Ansatz in den entspre-
chenden Kinetiken beriicksichtigt. Das mittlere Bild in Abbildung zeigt den Verlauf des
Phosphorylierungsgrades von EITA. Es ist zu sehen, dass sich bei einer hohen Wachstumsrate
nur ein niedriger Wert einstellt. In der Ubergangsphase kommt es zu einer leichten Erhéhung
des Phosphorylierungsgrades, was durch das Modell sehr gut wiedergegeben wird. Das Bei-
spiel macht deutlich, dass das Modell auch eine dynamische Simulation erlaubt und zu guten

Ergebnissen fiihrt.

Zusammenfassend lést sich festhalten, dass E. coli durch eine einfache Steuerung mittels eines
Feedforward-Loops eine robuste Struktur besitzt, die es ermdglicht, die Fliisse durch die Gly-
kolyse zu messen und entsprechend darauf zu reagieren. Der Vergleich von Modellvarianten
mit unterschiedlichem Detailliertheitsgrad zeigte deutlich, dass sich die Messdaten nur ausrei-
chend gut anpassen lassen, wenn der Feedforward-Loop beriicksichtigt wurde. Eine modulare
Erweiterung des Modells um die Beschreibung der Genexpression und der Kinetiken der Sub-
strataufnahme zeigt gute Ergebnisse bei der Beschreibung des dynamischen Verhaltens des

Gesamtsystems.
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Parameterunsicherheiten

Die Planung neuer Experimente spielt in der chemischen Verfahrenstechnik generell eine wich-
tige Rolle. Auch in der Systembiologie werden Methoden und Verfahren zur Versuchsplanung
immer wichtiger, da oft experimentelle Daten anfallen, die nicht aussagekréftig genug sind,
um mathematische Modelle zu validieren. Bei der modellgestiitzten Versuchsplanung stehen
die Unterscheidung verschiedener Modellhypothesen und die Verbesserung der Parametergiite

im Zentrum der Untersuchungen.

4.1 Modelldifferenzierung

Liegen experimentelle Daten fiir die Parameterschitzung vor, so lassen sich oft zwei oder meh-
rere Modellstrukturen damit anpassen. Damit ist zunéchst keine Aussage dariiber moglich,
welches Modell am besten geeignet ist. Zur Losung des Problems wird ein weiteres Experi-
ment gemacht, in der Hoffung, durch zusétzliche Messinformation eine Modelldiskriminierung
durchfithren zu kénnen. Zur systematischen Planung eines solchen Experimentes wird in der
Regel ein Kriterium der Art

max Z -y, Q (y, —u,) (4.1)

Utk

definiert, welches Werte fiir die Elngangsgroﬁe u zu Zeitpunkten ¢ ermittelt, die die Differenzen
der beiden Modellausgéinge Y, und y, maximieren. Die Differenzen werden mit einer geeigneten
Matrix ) gewichtet.

In der Literatur werden eine ganze Reihe von Ansétzen fiir die Matrix ) vorgeschlagen (Asprey and Macchi
2000; IChen_and Asprey, 2003; Munack, 1992). Allerdings fehlt in den meisten Féllen eine aus-
fiihrliche Analyse von Beispielsystemen und Anwendungen. Folgende Punkte beschreiben den

Ablauf bei der Versuchplanung:
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Definition der Modellvarianten und Durchfiihrung eines ersten Experimentes

Validierung der einzelnen Modellvarianten (Parameterschitzung und Ermittlung der Pa-

rameterunsicherheiten).

Durchfiithrung des neuen Experimentes und Aufnahme von Messdaten.

Erneute Anpassung der Experimente an die Modellstrukturen. Dabei werden die Daten

des alten und des neuen Experimentes verwendet.

Besonders die letzten beiden Punkte finden in der Literatur kaum Beachtung; in der Regel
beschrankt man sich nur auf den Entwurf des Experimentes. Im folgenden sollen an einem
kleinen zelluldren Netzwerk alle Schritte beschrieben werden, die die Modelldiskriminierung
umfafst. Betrachtet wird dabei die in Abbildung gezeigte Anlage mit einem Bio-Reaktor,
der eine Zudosierung eines Substrates mit der Rate ¢ und der Konzentration ¢** erlaubt. Das
zelluldre Netzwerk beschreibt die Aufnahme des Substrates und den weiteren Stoffwechsel.
Dabei stehen fiir den zweiten Reaktionsschritt zwei Modellalternativen zur Verfiigung (Mo-
dell A und Modell B). Der Stoffwechselweg soll die Umsetzung des Stoffes M1 in M2 mittels
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Abbildung 4.1: Reaktorsystem und biochemisches Reaktionnetzwerk. Substrat S seht zum
Wachstum der Biomasse B zur Verfiigung. Das intrazellulire Netzwerk be-
schreibt die Interaktionen der Metabolite M1, M2 und M3, wobei die Ansétze

fiir die Raten in den Varianten A und B unterschiedlich sind.

Enzym M3 beschreiben. Das Enzym wird mit M2 entweder iiber die Aktivitdt (Modell A)
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oder iiber die Synthese (Modell B) variiert. Damit liegen in den Raten ry und ry die Modell-
unterschiede:

Modell A ro = f(M1, M2, M3)
rs = const.
Modell B r, = f(M1, M3)
re = f(M2). (4.2)

Zur Uberpriifung der Methode wurden keine realen Daten aus dem Labor verwendet, sondern
simulierte Daten, die anschlieffend verrauscht wurden. Abbildung zeigt zunédchst das Aus-
gangsexperiment mit den angepassten zwei Modellvarianten. Eine Analyse der Residuen zeigt,

dass beide Modelle die Experimente in etwa gleich gut beschreiben. Gesucht sind nun Eingangs-

[umol/gDW]

[umol/gDW]

0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
th th] th]

Abbildung 4.2: Messpunkte (A, o) und simulierte Verldufe der beiden Modelle (Modell A
durchgezogen, Modell B gestrichelt). Oben links: Biomasse (durchgezogen) und
Substrat (in beiden Modellen gleich), oben rechts: Mi; unten links: Ms; unten
rechts: Ms.

funktionen fiir die Feedrate ¢ und die Feedkonzentration ¢**, die das Kriterium Gleichung (4.1)
maximal machen. In einer Fallstudie wurden unterschiedliche Kombinationen an Ausgangs-/
Messgrofsen und Wahl der Matrix () untersucht, wobei neben einem Standard-Gradienten-

Verfahren auch eine stochastische Optimierungsmethode verwendet wurde (Kremling et all,
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4 Versuchsplanung und Ermittlung von Parameterunsicherheiten

2004a). Folgende Gewichtsfunktionen () werden untersucht:

Q = 1 (Einheitsmatrix) (4.3)
1

W T S giatziaNe 44

Q ($ZA—5Z"LB)2 ( )

Q = (Cu + SC4+SCp)™ (4.5)

Q = (SCs+SCp)". (4.6)

Gleichung ([4) zeigt die Gewichtung mit dem Mittelwert der Zustdnde aus beiden Modellen.
Damit ist sicher gestellt, dass grofe Unterschiede im Verlauf verschiedener Zustinde auf ein
gleiches Mak gebracht werden. In Gleichung (EEH) bedeutet Cy; die Varianz-Kovarianz-Matrix
der Messfehler, wobei angenommen wird, dass die einzelnen Messgrofen nicht korreliert sind.
Damit hat C'y; nur Eintrage in der Hauptdiagonalen. Die Matrizen SC'4 und SCp sind ebenfalls

eine Diagonalmatrix mit den Elementen

SCui = Y 54, 00, (4.7)
J
und
SCpi =Y _sp,on, (4.8)
J
wobei s Sensitivititen sind, die wie folgt angeschrieben werden:
Jyi
Sij = 8—p]|3 (49)

und aﬁj die Varianz des Parameters p; aus dem ersten Experiment ist. Die Sensitivititen s;;
sind dynamisch zu rechnen und sind abhéngig vom gewihlten Arbeitspunkt (hier der aktuelle
Parametersatz). Die Bedeutung der Gewichtsfunktion nach Gleichung (£H) kann man sich
wie folgt veranschaulichen. Es erfolgt eine geringe Gewichtung der Zustandsgréfen in der

Zielfunktion, wenn
e die Messunsicherheit o2, der ZustandsgroRe y; hoch ist und wenn

o die Zustidndsgroke y; eine hohe Sensitivitét s;; gegeniiber einem Parameter p; aufweist,

fiir den im ersten Experiment eine hohe Unsicherheit ermittelt wurde.
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4 Versuchsplanung und Ermittlung von Parameterunsicherheiten

Tabelle 4.1: Zusammenfassung der Fallstudie (Teil 1).

Optimierungsmethode
Ansatz Fall | Ausgang Stochastisch ‘ Gradientenbasiert
Gewichtung mit 1| M1 3.7195-10% | 3.7342 - 10°¢
2| M2 9.0224-107° | 7.8716 - 10~°
3| FE 3.6658 - 107% | 8.015- 1077
4| M1, M2 3.7198 - 10° | 3.7342 - 10°
Einheitsmatrix 5| M1, E 3.7198 - 10° | 3.7342 - 10°
6| M2, E 3.6658 - 107% | 7.9476 - 107°
7| M1, M2, E | 3.7195-10° | 3.7367 - 10°
Gewichtung mit 8| M1 2.8287 2.8378
Quadrat d. Mittelwerte 9| M2 0.0222 0.1201
10 | E 0.0476 0.0493
Q wie in Gleichung (7)) 11| M1, M2 2.8394 2.8428
12| M1, E 2.8685 2.8806
13| M2, E 0.0686 0.0692
14| M1, M2, E | 2.8739 2.8857

Ein Vorteil des vorgestellten Ansatzes ist, dass hier die Gewichtsfunktion in Gleichung (EH)

sehr gut zu veranschaulichen ist. Tabelle I Tlfakt die Ergebnisse der Fallstudie zusammen.

Einige Félle sind in den Tabellen fett dargestellt. Sie stellen fiir die verwendeten Gewichte die
optimalen Fille dar, wobei bei anndhrend gleichen Zahlenwerten der Fall mit der geringeren
Anzahl von Messgrofien herangezogen wurde. Interessanterweise ist in drei von vier Féllen
die Verwendung einer einzelnen Gréfie ausreichend gewesen, um die Zielfunktion zu maximie-
ren. Da die Gewichte in unterschiedlichen Zahlenbereichen liegen, sind auch die Werte der
Zielfunktion stark unterschiedlich und konnen fiir die vier Fille nicht verglichen werden. Ab-
bildung zeigt, dass mit dem Entwurf des Experimentes und der Durchfiihrung allein noch
kein befriedigendes Ergebnis erzielt werden kann.

Gezeigt sind die Eingangsfunktionen fiir die Feedrate und die Feedkonzentration (obere Reihe),
die simulierten Vorhersagen der Modelle und die Messdaten, die sich ergeben, wenn mit dem

“richtigen” Modell Daten erhoben werden. Da sich grofe Unterschiede zwischen den Vorher-
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4 Versuchsplanung und Ermittlung von Parameterunsicherheiten

Tabelle 4.1: Zusammenfassung der Fallstudie (Teil 2).

Optimierungsmethode

Ansatz Fall | Ausgang Stochastisch ‘ Gradientenbasiert
Messvarianzen & 15 | M1 1.356 3.6054
Parametervarianzen 16 | M2 36.3359 2.1768

17| E 2.6896 0.099

18 | M1, M2 36.4986 7.6538
Q wie Gleichung (E3) 19| M1, E 2.6897 2.5091

20 | M2, E 36.9019 2.4782

21 | M1, M2, E | 37.0645 7.763
nur Parameter- 22 | M1 24.88 22.9863
varianzen 23 | M2 1.5598 - 10! | 1.4355 - 101!

24 | B 3.6623 2.6398

25 | M1, M2 1.5598 - 101t | 1.4355 - 10
Q) wie in Gleichung (E.6) 26 | M1, E 24.88 3.6468

27 | M2, E 1.5598 - 10t | 3.6207

28 | M1, M2, E | 1.5598-10* | 1.4355 10!

sagen und dem daraufthin durchgefiihrten Experiment zeigen, ist eine wiederholte Anpassung
der Messdaten erforderlich. Fiir das vorgeschlagene (neue) Experiment lassen sich allerdings
die beiden Zustandsgréfen M1 und M2 recht gut an beide Varianten anpassen. Nur fiir den
Verlauf M3 findet sich kein Parametersatz von Modell A, der beide Experimente gleich gut
beschreibt (Abbildung El). Nur Modell B ist in der Lage, beide Experimente wiederzuge-
ben.

Die vorgelegte Studie macht am Bespiel eines kleines biochemischen Netzwerkes deutlich,
dass allein der Entwurf und die Durchfiihrung eines neuen Experiments nicht ausreichen,
um eine Modelldiskriminierung durchzufiihren. Fiir das obige Beispiel wurde nur die Grofe
M2 fiir die Optimierung herangezogen. Jedoch konnte M2 mit beiden Modellvarianten gut
angepafst werden. Die Vorhersage des neuen Experimentes fiir M3 zeigte kaum Unterschiede.
Hier war es dann allerdings nicht md6glich beide Experimente anzupassen. In [Kremling et al.
(2004a) wurden auch die Vertrauensbereiche der Parameter mit dem ersten und mit beiden

Experimenten berechnet. Es konnte gezeigt werden, dass durch das neue Experiment auch
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Abbildung 4.3: Optimales Experiment, entworfen mit W nach Fall 23. Obere Reihe: Opti-
male Eingangsgrofen ¢ und ¢**. Zweite und dritte Reihe: Zustandsgrofen wie
gekennzeichnet Modell A (durchgezogen) und Modell B (gestrichelt). Grokere
Unterschiede in den Modellpradiktionen finden sich im Verlauf von M1.

eine erhebliche Verbesserung der Konfidenzintervalle erreicht wurde.

4.2 Ermittlung von Parameterunsicherheiten mit dem

Bootstrap-Verfahren

Die Ermittlung der Parameterunsicherheiten hatte sich im letzten Kapitel als ein wichtiges Ele-
ment in der Versuchsplanung herausgestellt. Fiir Modelle, die zeitliche Verldufe aufweisen, die

linear in den Parametern sind, lassen sich die Varianzen und Kovarianzen der Parameter leicht
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Abbildung 4.4: Links: Verlauf der Enzymkonzentration beim Ausgangsexperiment nach An-
passung beider Experimente. Rechts: Verlauf der Enzymkonzentration des neu-
en Experiments nach Anpassung. Modell A (durchgezogen), Modell B (gestri-
chelt) und Messdaten (Symbol ).

angeben. In der Regel ist dieser Fall aber nicht gegeben und man greift wie oben gezeigt auf
eine Linearisierung um einen gewahlten Parameter zuriick, um die Varianz-Kovarianz-Matrix

zu ermitteln (die Sensitivitdtsmatrix stellt diese Linearisierung dar).

Die Varianz-Kovarianz-Matrix Cp der Parameter erhilt man mit der Matrix der Sensitivitdten

S und der Varianz-Kovarianz Matrix der Messfehler C'y; nach folgender Gleichung;:

N —1
Cp = (ZST-CM1-5> = ! (4.10)

wobei iiber N Messpunkte aufsummiert wird. Der Kehrwert von Cp wird auch als Fisher-
Informations-Matrix (FIM) F bezeichnet. Allerdings gilt auf Grund der Cramer-Rao-Ungleich-

ung die folgende Beziehung fiir Modelle, die nichtlinear in den Parametern sind:

oy = A (F7Y), (4.11)

d.h., es kann nur eine untere Grenze fiir die Parameterkonfidenzintervalle angegeben wer-
den (Ljung, 1999). Uber die obere Grenze kann keine Aussage getroffen werden, da sie stark
von der Anzahl der Messpunkte und der Parameter-Nichtlinearitit abhingt. Die untere Gren-
ze wird fiir lineare Félle und fiir eine (theoretisch) unendliche Anzahl von Messpunkten er-
reicht.

Eine Alternative zur Ermittlung der Konfidenzintervalle stellt das sogenannte Bootstrap-
Verfahren dar (Efron_and Tibshirani, 1993; IDiCiccio and Efron, [1996). Dies ist ein statisti-

sches Verfahren, um Parameterunsicherheiten zu bestimmen. Die Idee besteht darin, basierend
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4 Versuchsplanung und Ermittlung von Parameterunsicherheiten

auf dem Satz von Messdaten D nicht nur eine einzige Schitzung der Parameter p durchzu-
fiihren, sondern die Messdaten im Bereich ihrer Messgenauigkeit stochastisch zu verindern
und damit eine Reihe neuer Datenséitze D], D3 etc. zu generieren. Fiir jeden Datensatz er-
hilt man dann einen anderen Satz an geschitzten Paramtern pi, p3 etc. Die Ermittlung der
Parameterunsicherheiten besteht dann in der Auswertung eines Histogrammes fiir jeden ein-
zelnen Parameter. Dabei werden die Parameterwerte sortiert und dann nach ihrer Haufigkeit
aufgetragen. Ein Konfidenzintervall von 95% likt sich dann direkt aus dem Histogramm able-

sen.

Um zu zeigen, dass sich schon bei recht einfachen Modellen grofse Unterschiede ergeben kon-
nen, soll eine algebraische Gleichung der unabhéngigen Variablen x mit einem Parameter b
betrachtet werden:
1
= 4.12
b+ ( )
Abbildung E1 zeigt beispielhaft die Histogramme, wenn der Bereich von z (0 < z < 50) 1000

Messpunkte (links) oder 25 (rechts) Messpunkte enthélt. Die Daten wurden dabei mit weiftem

Rauschen mit einer Varianz von 20% verrauscht. Fiir eine groke Anzahl von Messpunkten

wird fast eine Normalverteilung erreicht, wihrend bei einer kleinen Anzahl von Messpunkten
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Abbildung 4.5: Histogramm fiir 6000 Bootstrap-Durchléaufe. Fiir 1000 Messpunkte (links) er-
hélt man fast eine Normalverteilung wihrend bei 25 Messpunkten (rechts)
ein deutlicher Bias zu sehen ist. Die weiflen Balken geben die entsprechenden
Werte des Konfidenzbereiches berechnet mit der FIM wieder.

ein deutlicher Bias im Histogramm zu sehen ist. Allerdings ist der Mittelwert beider Vertei-

lungen fast identisch. Bei der Ermittlung der Vertrauensbereiche von Parameter b ergeben
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4 Versuchsplanung und Ermittlung von Parameterunsicherheiten

sich Unterschiede zur FIM (weifer Balken). Die Auswertung der Histogramme liefert mit der
Bootstrap-Methode in beiden Fillen grofere Werte fiir die Parameterunsicherheit als mit der
FIM.

Um Parameterunsicherheiten zu ermitteln wurde eine umfangreiche Studie an einem kleinen
biochemischen Netzwerk durchgefiihrt (siehe Abbildung EEfl). Ausgehend von einem Standard-

q CZU

- — —]

P qOUt1S1B

= .
IMl— M2 m3 ™

Abbildung 4.6: Reaktorsystem und biochemisches Reaktionnetzwerk. Substrat S seht zum
Wachstum der Biomasse B zur Verfiigung. Das intrazellulire Netzwerk be-
schreibt die Interaktionen der Metabolite M1, M2 und M3, wobei die Ansétze

fiir die Raten in den Varianten A und B unterschiedlich sind.

experiment werden Messdaten durch Simulation erzeugt, anschliefend verrauscht und dann
die Parameter gefittet. Um den Einfluss der Wahl verschiedener kinetischer Ausdriicke fiir
die einzelnen Raten zu ermitteln, wurde eine ganze Reihe von Varianten untersucht, die in
Tabelle zusammengestellt sind. Abbildung B links zeigt fiir das Beispielsystem den Ver-
gleich fiir den Parameter r,,,,2 und macht den Unterschied zwischen dem Bootstrapverfah-
ren und dem klassischen Ansatz iiber die Fisher-Informations-Matrix deutlich. Abbildung
rechts zeigt den zeitlichen Verlauf der Vertrauensbereiche von M, berechnet einmal mit dem
Bootstrap-Verfahren (durchgezogene Linien) und einmal mit der FIM (gestrichelt). Der Ver-
trauensbereich berechnet mit dem Bootstrap-Verfahren ist deutlich gréfser und umfaft ca.
95% aller Messdaten. Die Berechnung mit der FIM schneidet hierbei deutlich schlechter ab.

Die Uberschneidung der Kurven ergibt sich dadurch, dass fiir die kinetischen Parameter die
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Abbildung 4.7: Links: Parametrisches Histogramm eines Parameters, ermittelt mit der
Bootstrap-Methode. Zum Vergleich ist das Konfidenzintervall berechnet mit
der FIM ebenfalls eingetragen. Rechts: Vergleich der beiden Verfahren bei der
Vorhersage von Konfidenzbereichen der Zustdnde (gestrichelte Linien geben

das Intervall berechnet mit der FIM wieder, durchgezogene Linie geben das

Tabelle 4.2: Ubersicht kinetische Ansatze.
Modell 1 Modell 2 Modell 3
_¢s cs cs

1 | Tmazl cs+Ks Tmaz1 cs+Ks Tmaz1 cs+Ks
T2 | T"maz2 CM1 T'max2 CM1 T"max2 Cn]\}[l

ry | T 3763“ Tmaz3 Ch Tmaz3 Cr
max 0%2—1—1(]@[2 max M2 max M2
T4 | T"maxzd CM3 Tmaxza CM3 Tmaxza CM3
0.7,

0.5

1
Time (h)

Intervall berechnet mit dem Bootstrap-Verfahren wieder).

Maximal- bzw. Minimalwerte eingesetzt wurden.

Zusammengefafst ergibt die Studie, dass fiir alle Varianten die Konfidenzbereiche mit der
FIM kleiner sind, als die mit dem Bootstrap-Verfahren berechneten. Die Unterschiede zum
Bootstrap-Verfahren lagen bei einem Fall (14,1 in Modell 2) bei Faktor 4. Ausserdem konnte
gezeigt werden, dass mit der verbesserten Berechnung der Vertrauensbereiche der Parame-
ter auch die Vertrauensbereiche der Zustandsgrofen genauer angegeben werden konnen. Im
vorliegenden Beispielsystem liefen sich die Vertrauensbereiche der Zustandsgrofen einfach
ermitteln, da eine lineare Reaktionssequenz vorlag. Fiir komplexere Systeme ist eine Bestim-

mung sicher nicht einfach moglich und kann u.U. nur iiber eine Monte-Carlo-Simulation erfol-
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gen.
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5 Zusammenfassung

Die vorliegende Schrift beschiftigt sich mit dem Einsatz systemtheoretischer Konzepte in der
Systembiologie. Die Systembiologie ist eine noch recht junge Disziplin, bei der Methoden und
Werkzeuge unterschiedlicher Fachrichtungen zum Einsatz kommen und die interdisziplinires

Denken fiir eine erfolgreiche Bearbeitung der Problemstellungen verlangt.

Zentrale Zielstellungen in der Systembiologie sind die Entwicklung leistungsfahiger mathe-
matischer Modelle, die Aufkldrung und das Verstédndnis von Regulationsstrukturen sowie das
modellgestiitzte Entwerfen neuer Experimente zur Uberpriifung molekularbiologischer Hypo-
thesen. Die vorliegende Arbeit leistet zu diesen drei Aspekten Beitrige, die in den Kapiteln
2-4 zusammengefaftt und in den beiligenden Publikationen in internationalen Zeitschriften de-
tailliert ausgefiihrt sind. Bei der Modellierung kommt es dabei auf eine sehr enge Verbindung
mit experimentell arbeitenden Gruppen an, damit aussagekréftige Modelle gewonnen werden
konnen. Eine optimale Kooperation konnte am MPI in Magdeburg mit der Arbeitsgruppe von

Frau Dr. Bettenbrock gestaltet werden.

Zur Beschreibung der Kohlenhydrataufnahme des Bakteriums E. colt wurde ein sehr detaillier-
tes Modell erstellt, welches mit einer umfangreichen Basis an experimentellen Daten verifiziert
wurde (Bettenbrock et all, 2006). Dabei gelang es, alle Experimte mit einem einzigen Parame-
tersatz zu beschreiben und so eine hohe Giite bei der Anpassung zu erreichen. Das Modell ist
in der Lage, das dynamische Verhalten sowohl des Wildstammes, als auch einiger Mutanten-
stdmme bei verschiedenen Betriebsfiihrungen wiederzugeben. Mit dem Modell ist es in Zukunft
moglich, weitere Studien in Richtung Modellreduktion oder Softwaresensorik vorzunehmen.
Dabei kann das Modell als Referenz fiir das reale Geschehen in der Zelle eingesetzt werden.

Dies erlaubt es, neue Methoden schneller und effizienter zu entwicken.

Die Analyse globaler Regulationsstrukturen ist von besonderem Interesse in der Systembiolo-
gie. Im Gegensatz zu ganz spezifischen Reizen, bspw. der Zugabe eines einzigen Zuckers, die
von Seiten der Molekularbiologie bereits auch gut verstanden sind, verspricht die Aufklarung

von globalen Regulationsstrukturen einen besonderen Erkenntnisgewinn. Globale Regulatoren
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5 Zusammenfassung

beeinflussen eine grofe Anzahl von Genen und Operons und damit grofse Teile des Stoffwech-
sels. Mit einer einfachen Modellstruktur, die sich aus dem obigen Modell ableiten lafst, konnte

gezeigt werden, dass ein Feedforward-Loop in der Glykolyse, der schon lange bekannt ist, zu

einem robusten Verhalten der Zelle fiihrt i , , |20_0_é) Die robuste Netzwerk-
struktur sorgt dafiir, dass sich Unsicherheiten oder Storungen nicht oder nur kaum auf die

Funktion des Systems auswirken.

Die Planung von neuen Experimenten und die Bestimmung von Parameterunsicherheiten sind
wichtige Methoden in der Systembiologie, um die Modelle aussagekriftig zu machen. In zwei
Studien (I.]Qs.h.i_at_a.].], |20.0§.d,|g) wurden anhand von kleinen biochemischen Netzwerken Me-
thoden entwickelt bzw. verbessert, die es erlauben Modelle zu diskriminieren und die Para-

meterunsicherheiten besser anzugeben als mit klassischen Methoden. Zur Verbesserung der
Parameterschitzgiite wurde dabei ein statistisches Verfahren eingesetzt, welches es erlaubt,
unter Einsatz von Monte-Carlo Verfahren und wiederholter Parameterschitzung fiir jeden Pa-
rameter ein parametrisches Histogramm zu erstellen, welches dann ausgewertet wird. Mit der
Methode konnte gezeigt werden, dass obere und untere Schranken der Parameter so ange-
geben werden konnen, dass entsprechende Messdaten ausreichend gut wiedergegeben werden

konnen.
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6 Symbol- und Abkiirzungsverzeichnis

Symbole, die in den Formeln verwendet werden:

Symbol

c Konzentration

y Stochiometrischer Koeffizient

r Rate

Vg Reaktorvolumen

i Zuflussrate fiir Substrat ¢

g Molekulargewicht

k Geschwindigkeitskonstante

K Halbséttigungswert, Bindungskonstante
n Expressionseffizienz

Q Kinetischer Parameter fiir Kooperativitit
h Hillkoeffizient

I Spezifische Wachstumsrate

€ Residuum

o? Varianz

C Varianz-Kovarianz-Matrix

F Fisher-Informations-Matrix

Q Gewichtungsmatix

Sij Sensitivitit der Zustandsgrofe ¢ bzgl. Parameter j
S Matrix der Sensitivititen
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6 Symbol- und Abkiirzungsverzeichnis

Abkiirzungen von Komponenten des biochemischen Netzwerkes von FE. coli:

Abkiirzungszeichen
PtsG
Mle

Crp

EI

HPr
EITA
EITA~P
PEP
Prv
Glc6P
TP

Glukose-Transport-Protein

Repressor des ptsG Gens

Globaler Transkriptionsfaktor

Protein des Phosphotransferasesystems
Protein des Phosphotransferasesystems
Protein des Phosphotransferasesystems
Phosphorylierte Form von EITA
Phosphoenolpyruvat

Pyruvat

Glukose 6-Phosphat

Triosephosphat
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A dynamic mathematical model was developed to describe the
uptake of various carbohydrates (glucose, lactose, glycerol, sucrose,
and galactose) in Escherichia coli. For validation a number of iso-
genic strains with defined mutations were used. By considering
metabolic reactions as well as signal transduction processes influ-
encing the relevant pathways, we were able to describe quantita-
tively the phenomenon of catabolite repression in E. coli. We veri-
fied model predictions by measuring time courses of several extra-
and intracellular components such as glycolytic intermediates, EII-
A phosphorylation level, both LacZ and PtsG concentrations, and
total cCAMP concentrations under various growth conditions. The
entire data base consists of 18 experiments performed with nine
different strains. The model describes the expression of 17 key
enzymes, 38 enzymatic reactions, and the dynamic behavior of more
than 50 metabolites. The different phenomena affecting the phos-
phorylation level of EIIA“™, the key regulation molecule for inducer
exclusion and catabolite repression in enteric bacteria, can now be
explained quantitatively.

Catabolite repression in Escherichia coli designates the observation
that if different carbohydrates are present in a medium under unlimited
conditions, one of them is usually taken up preferentially. Although the
fundamental biochemical principles of the regulatory network have
been revealed, a quantitative description of this growth behavior is still
missing. The center of the regulatory network is formed by the phos-
phoenolpyruvate (PEP)*:carbohydrate phosphotransferase systems
(PTS). These systems are involved in both transport and phosphoryla-
tion of a large number of carbohydrates, in movement toward these
carbon sources (chemotaxis), and in regulation of a number of meta-
bolic pathways (1-3). The PTS in E. coli consist of two common cyto-
plasmatic proteins, EI (enzyme I) and HPr (histidine-containing pro-
tein), as well as an array of carbohydrate-specific EII (enzyme II)
complexes. Because all components of the PTS, depending on their
phosphorylation status, can interact with various key regulator proteins,
the output of the PTS is represented by the degree of phosphorylation of
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the proteins involved in phosphoryl group transfer, e.g. unphosphoryl-
ated EIIA“™ inhibits the uptake of other non-PTS carbohydrates by a
process called inducer exclusion. Phosphorylated EITA“"™ activates the
adenylate cyclase (CyaA) and leads to an increase in the intracellular
cAMP level.

Understanding the regulation of carbohydrate uptake requires a
quantitative description of the PTS. In this context it is important that
the degree of phosphorylation of EIIA“ is proportional to the PEP/
pyruvate ratio, when no carbohydrates are transported (4) and the
respective equilibrium constant is an upper boundary when the PTS is
active (5). The PTS should therefore not be regarded as a measure for
the transport of PTS substrates but more as a general measure for car-
bohydrate availability. One feature of our contribution in this study is
the dynamic simulation of uptake and degradation of several carbohy-
drates using a single set of parameters and the validation of the model
with measurements including the degree of phosphorylation of EITA“™.

Previously, a detailed mathematical model describing diauxic growth
behavior of E. coli on a mixture of glucose and lactose has been pre-
sented (6, 7). It describes the dynamics of a number of important met-
abolic components and enzymes, including gene expression. In the
present study, using a number of isogenic strains with defined muta-
tions we have extended the model to include the uptake of additional
carbohydrates (glycerol, sucrose, and galactose). By combining these
carbohydrate pathways with the signal transduction processes, it was
possible to set up a comprehensive mathematical model of catabolite
repression in E. coli. Fig. 1 sketches the metabolic pathways and regula-
tory interactions considered in the model.

The intention of this contribution is to model a well known biological
system in a detailed, realistic, and quantitative manner, to demonstrate
the use of appropriate tools and methods, and to show how the iterative
process of experimental verification and model adaptations can lead to
a deeper understanding of biological systems as well as the formulation
of new biological problems. This is in contrast to other models of
inducer exclusion, which describe the system simply as a switch
between different steady states (8), exclude the dynamics of the regula-
tory network (9), or describe only small parts of the system (10, 11).

The overall strategy for experimental model verification comprises
three ideas: (i) stimulating the system in different time frames by slow or
fast changes of the environmental situation; (ii) providing conditions
that allow growth under carbohydrate limited and unlimited condi-
tions, respectively; and (iii) constructing a set of isogenic mutant strains
with defined mutations in genes involved in the pathway of interest.
Model predictions were verified by measuring several extra- and intra-
cellular components, i.e. glycolytic intermediates, EIIA“™ phosphoryla-
tion levels, protein concentrations of both LacZ and PtsG, and total
cAMP concentrations under various growth conditions. The entire data
base consists of 18 experiments performed with nine different strains.
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FIGURE 1. Systems diagram of pathways and
regulatory interactions considered in the
model. The graphic shows schematically the path-
ways and regulatory interactions included in the
model. Boxes show functional units with similar
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MATERIALS AND METHODS

Strains, Media, and Growth Conditions—All strains used were iso-
genic derivatives of LJ110, constructed by standard P1kc transduction
techniques (7). Strains and the relevant mutations are listed in Table 1.
The glk::cat mutation of BL2 was taken from strain DM1000 (12). The
dgsA::Tnl0kan mutation was taken from strain KM563, kindly provided
by W. Boos (University of Konstanz). The sucrose positive derivative of
LJ110, named LJ210, was constructed essentially as follows. The 9.2-kb
EcoRV/HindIII fragment from pJoe637 (13) carrying the genes for the
PTS-dependent transport and metabolism of sucrose was cloned
between the inverted repeat regions of the transposon Tn1721 yielding
plasmid pKJL710. This plasmid with the artificial mini-Tn1721:scr™,
which lacks the tnpA gene for a transposase, was used to transform
strain CSH28 F'lac (14). The tnpA gene was introduced into this strain
by transformation of plasmid pPSO110 tupA ™ (3). To select for transposi-
tion of the mini-Tni72I:scr™ onto the F'lac, strain CSH28/F’lac/
pPSO110/pKJL710 was crossed with the prototrophic Scr-negative strain
PS5 (15). Standard minimal medium plates with 0.2% sucrose as sole carbon
source were used for the selection of PS5/F'lac:mini-Tni727:scr
transconjugants. A P1kc lysate was generated from one of the transcon-
jugants and used to transfer the mini-Tn1727::scr” into the chromo-
some of LJ110. Using standard Hfr and P1 mapping techniques the
insertion of the mini-Tni721:scr” into the E. coli chromosome was
located at 6 min (corresponding to position zag). All other strains and
mutations and the construction of the plasmid F'8gal::¢p(ptsGop-lacZ)
have been described earlier (7).

Strains were grown in phosphate-buffered minimal medium as
described previously (16). Carbohydrates were sterilized by filtration
and added to the concentrations indicated in the figures. All experi-
ments were performed at 37 °C. They were performed either in shaker
flasks with volumes at least 5 times higher than the culture volume
under vigorous shaking or in a Biostad B reactor (B. Braun, Biotech
International). Cultures were stirred at 400 rpm and aerated with 1 liter
of air/I culture volume/min. Antibiotics were added to the precultures
but were omitted from the experimental culture to avoid side effects.
Tetracycline was added to 10 mg/liter, chloramphenicol to 25 mg/liter,
and kanamycin to 25 mg/liter.

Analytical Methods—The concentration of biomass was determined
by measuring the absorbance (optical density) of the culture at either
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420 or 560 nm in an Ultrospec 3000 spectrophotometer (Amersham
Biosciences). Extracellular carbohydrates and acetate were determined
enzymatically with the respective test kits of r-Biopharm GmbH (Ger-
many). cAMP was quantified with the cAMP enzyme immunoassay kit
from Sigma-Aldrich. All tests were performed as recommended by the
manufacturer. Measurement of [B-galactosidase activities was per-
formed as described (17). The analysis of the EITA“** phosphorylation
state was carried out by Western blotting essentially as described by
Takahashi et al. (18). Contrary to the protocol, proteins were precipi-
tated at —80°C at least overnight. Detection was performed with poly-
clonal EITA“™ antibodies from rabbit. As secondary antibodies, goat
anti-rabbit antibodies conjugated with horseradish peroxidase were
used, and detection was carried out by using the SuperSignal West
Femto maximum sensitivity substrate (Pierce) and a cooled charge-
coupled device camera system (Intas) or by exposure to films. The sum
of the two EITA™-specific bands in each lane was set to 100%. Time
courses of glycolytic metabolites (glucose 6-phosphate, fructose,
fructose 6-phosphate, PEP, and pyruvate) were measured as
described elsewhere (19-21).

Simulation Environment and Parameter Identification—To set up
the equations and perform simulation studies, the ProMoT/Diva envi-
ronment was used (22). Parameter estimation was also performed using
the program Diva as described previously (7).

According to the reference model (7) the specific growth rate, w, is

assumed to be dependent on all incoming substrate fluxes r;, weighted
with yield coefficients Y, which leads to the formula.
w=Yarg + Yoro + .00+ Yor, (Eq. 1)

One problem, however, is that the yield coefficients are not constant for
different growth conditions. Thus, for some experiments it was not
possible to simulate the time course of biomass simultaneously with the
time courses of sugar uptake. Because sugar uptake is proportional to
biomass concentration and, additionally, the balances for the enzymes
and proteins, rates of synthesis, degradation, and dilution term are in the
same order of magnitude, incorrect predictions of the growth rate lead
to large deviations in a number of state variables. To overcome this
problem the following strategy has been used here. Based on the exper-
imental data, the specific growth rate was determined as a piecewise
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constant function or as a spline function for each experiment and,
finally, was used as an input into the system.

RESULTS

Model Formulation and Validation—To extend and validate the ref-
erence model (7), additional experiments with differing carbon sources,
conditions, and isogenic mutants were performed. Additional intracel-
lular and extracellular states (extracellular acetate, galactose, sucrose,
and glycerol, degree of phosphorylation of EIIA, concentration of
EIICB®'®) were measured. Thus the PTS and its interactions with several
uptake systems were observed under varying conditions. Metabolic
pathways for sucrose, glycerol, and galactose were included in the
model. Furthermore, a new biochemical scheme for induction of ptsG
(23) was incorporated. The mathematical model is composed of ordi-
nary differential and algebraic equations (DAE system). A detailed doc-
umentation of the model is included in supplement 1.

Although many kinetic parameters have been published in the past by
other groups, the use of different strains and conditions in those studies
made it necessary to repeat a number of experiments with a defined
wild-type strain and isogenic mutant strains. The experiments provide
an excellent basis for parameter estimation and model validation. Batch
experiments with single growth substrates as well as with mixtures of
two substrates were conducted. To analyze the influence of starting
conditions, the same experiment was performed with varying precul-
ture conditions. Pulse and fed batch experiments provided information
about fast processes. Additionally, continuous cultures were used to
study the behavior of the bacterial culture under limited carbohydrate
conditions as well as the transition from saturating to limited carbohy-
drate supply. To summarize, the results from 18 different experiments
were applied in the modeling process. Figures showing measurements
and simulations of these experiments are shown in supplement 2. On
the basis of these experiments and by application of the ProMoT/Diva
environment (22) with sophisticated methods for sensitivity analysis
and parameter analysis and estimation, 55 parameters could be esti-
mated, which represents about 32% of all the parameters. The following
sections of this article will demonstrate some of the results and discuss
some alterations regarding the initial model.

Regulation of pts Operon and ptsG Expression by cAMP-CRP and Mlc—
The glucose-specific PTS in E. coli consists of the cytoplasmic protein
EIIA“™, encoded by the crr gene (part of the ptsHIcrr operon) and the
membrane-bound protein EIICBS (gene ptsG), which transport and
concomitantly phosphorylate glucose. The phosphoryl groups are
transferred from PEP via successive phosphorelay reactions involving
EL, HPr, EIIA®™, and EIICB®' to the substrate. The regulation of the
ptsG gene and of pts operon expression is very complex. Among others,
two major regulators, the cAMP-CRP complex and the repressor Mlc
(also called DgsA, gene dgsA) (3, 23-25), are involved. It was demon-
strated that unphosphorylated EIICB®' can relieve the repression of
ptsG gene expression by sequestering Mlc from its binding sites through
a direct protein-protein interaction in response to glucose (3, 26 —-29)
(reviewed in Ref. 1). In contrast to Mlc, the cAMP-CRP complex acti-
vates ptsG gene expression. Because intracellular cAMP levels are low
during growth on glucose, these two antagonistic regulatory mecha-
nisms guarantee a precise adjustment of ptsG expression levels under
various growth conditions.

Regulation of the ptsG gene by Mlc was incorporated into the model
in order to analyze its effect on overall growth behavior. This is realized
in the model as follows. For the glucose phosphorylation step of PTS, an
irreversible bi-bi mechanism for the two substrates, extracellular and
intracellular glucose, was applied (see Ref. 7). Either glucose or phos-
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TABLE 1
Strains
Strain Genotype Origin
Lj110 W3110, E~, Fnr* 3)
BKG47 LJ110 A(ptsG) :: cat 7)
KB51 LJ110 AcyaA854:: Tnl0/6 7)
KB7 LJ110 dgsA :: TnlOkan This study
LJT172 LJ110 F'8:: ¢p(ptsG,,,—lacZ), This study
A(manXYZ)::cat
LJT171 LJ110 F'8:: (ptsG,, ,—lacZ), This study
dgsA:: TnlOkan, A(;mmXYZ) cat

LZ110 LJ110 A(argF-lacZ)169 3)
KB53 LJ110 lacI3098:: Tnl0Okan 7)
BL2 LJ110 glk:: cat This study
Lj210 LJ110 zag:: miniTn1721 scr™* This study
PS5 S136 recA56 (13)
CSH28 F'lac (14)

phorylated EITA“™ bind to EIICB™ at first. This means that the follow-
ing conformations of the PTS transporter occur: free EIICBS, the
unphosphorylated complexes EIICB“'-Glc,, and EIICB®"-Glc,, and the
phosphorylated complexes EIICB®'.EIIAP, EIICB'“Glc,, ‘EIIAP, and
EIICB®*-Glc, *EIIAP. All unphosphorylated conformations are now
able to bind to Mlc but with different affinities. As a result of the param-
eter fitting, affinities of unphosphorylated complexes with glucose were
much stronger than affinity of free EIICB'. This corresponds qualita-
tively to experimental results.”

Using strains LZ110 and LJT172 (both dgsA™) and the dgsA-negative
strain LJT171 (see Table 1), ptsG-lacZ expression as an indicator for the
amount of EIICB®'® was monitored by measuring the 8-galactosidase
activity. Bacteria were pre-grown on glycerol or glucose and inoculated
on glucose, glycerol, or a mixture of glucose and glycerol, respectively.
These experiments were used to estimate parameters for ptsG
expression.

A basal activity of ptsG expression can be detected if cells are grown
with glycerol alone (Fig. 2F, dash-dotted line). In cultures of strain
LZ110 growing on glucose and glycerol, induction effects could be
observed during the first (glucose) phase. EIICB®' accumulated until
the supply of glucose had been exhausted. During this growth phase,
uptake of glycerol was prevented by inducer exclusion and low cAMP
values. After depletion of glucose, Mlc became active and prevented
further synthesis of EIICB". By dilution through growth, the amount of
EIICB®'® was now diminished (Fig. 2F, dashed line). In the dgsA mutant
strain LJT171, during growth with glucose EIICB'® was synthesized in
approximately the same amounts as in LZ110. Differences became obvi-
ous during the second (glycerol) growth phase. Although in LZ110 ptsG
is repressed during growth with glycerol, in LJT171 it is induced even
more strongly. This can be attributed to the lack of inhibition by Mlc
and to higher intracellular cAMP levels during growth with glycerol.
Extracellular cAMP accumulated in large amounts in the medium
(Fig. 2D).

Transcription of one of the two major promoters of the ptsHIcrr
operon (ptsH PO0) is regulated in the same way as transcription of ptsG.
However, the concentrations of the encoded enzymes increase only by a
factor 2 or 3 (30-32) for EI and HPr, and EIIA™ is almost constant,
because crr is, in addition, transcribed by a constitutive promoter
located within the ptsI gene (30, 32). Because of the weak effect of reg-
ulation by Mlc and cAMP-CRP on pts operon expression, it was
neglected in the previous model (7). The concentrations of the PTS
proteins were set to be constant. This model variant allowed the simu-
lation of a number of experiments, but interestingly, one type of exper-
iment, the so-called “disturbed” batch, could not be reproduced. In

5 K Jahreis, unpublished data.
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these experiments the cells are grown on a single carbon source and
glucose is pulsed in the midlog phase of growth. The feeding of glucose
results in dramatic changes of the phosphorylation level of EIIA™, Dis-
turbed batch experiments with glycerol and lactose were performed
(Fig. 3).The glucose uptake rate after the pulse was drastically reduced
(to less than one-third of that during growth on glucose). Two phenom-
ena might be responsible for this effect. First, it has been verified exper-
imentally for Salmonella typhimurium (33) that PTS velocity and activ-
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ity are reduced by EITA“"" binding to LacY and GlpK. These interactions
are considered in the model. As a second possibility, the concentrations
of PTS enzymes could be reduced down to rate-limiting conditions.
Using the set of parameters describing glucose uptake in the other
experiments, simulated glucose uptake proceeded much too fast. It was
not possible to fit the curve by modulating the GlpK interaction with
EIIA“" or by using different fixed concentrations of the PTS proteins.
Therefore regulation of the pts operon expression by Mlc and by
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cAMP-CRP was introduced into the model. Mlc activity was modeled as
described and validated for ptsG expression. The slow uptake of glucose
during disturbed batch experiments could then be described. Fig. 3B
presents the results of different model variants (with and without regu-
lated expression of EIICB', HPr, and EI).

It can now be stated that although the expression of the pts operon
varies only by a factor of 2—3, this variation is important for the activity
of the PTS under certain growth conditions. It may be that this is most
obvious when cells are shifted quickly from poor substrates like glycerol
to good (PTS) substrates. Although such situations are seldom moni-
tored in experiments, they might occur regularly in nature where the
supply of nutrients can change very rapidly and dramatically. The
degree of phosphorylation of EITA“"" depends on the rate of phospho-
rylation of glucose by the PTS, the PEP/Prv ratio (5, 4), the amount of
complexation of EIIA®™ with Lacy, GIpK, and other enzymes, and as a
result of this study, also considerably on the concentrations of the com-
mon PTS enzymes. Some of these factors might influence the activity of
the PTS to a greater or lesser extent, but all contribute to the overall
behavior. The model could now be used to dissect these different influ-
ences, which would be tedious to do with experiments only. The exam-
ple shows that even in a very complex model with many parameters not
every result can be obtained simply by fitting of parameters. If a model is
carefully validated, mistakes or incorrect simplifications become
obvious.

Analysis of Glucose-Lactose Diauxic Growth—The phosphorylated
form of EIIA™ directly or indirectly activates the adenylate cyclase
CyaA, which generates cAMP from ATP. Thus, high cAMP levels are
the consequence of carbohydrate-limiting conditions. The alarmone
cAMP binds to CRP, a global carbon catabolite regulator responsible for
the induction of various genes. Because cAMP-CRP is a negative tran-
scription factor for adenylate cyclase and a positive transcription factor
for CRP and the PTS proteins, the system shows a number of feedback
loops and is therefore highly complex.

In the case of glucose repression of the lactose uptake system, regu-
lation due to inducer exclusion is generally believed to be the most
important mechanism (34), and the cAMP-CRP complex is supposed to
be mainly required for autoregulation of the lactose uptake system (4,
35) in order to prevent lactose uptake rates that are too high. The rele-
vance of the cAMP-CRP complex during diauxic growth on glucose and
lactose is seen in an acceleration of expression of the lacZYA operon
after depletion of glucose and therefore a minimization of the lag phase
between glucose and lactose utilization. However, the question has
arisen as to how regulation of cAMP is realized in such a dynamic
fashion (34).

Measurements for the validation of the model presented here
allowed, in combination with simulations, a deep insight into the occur-
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FIGURE 5. Diauxic growth on glucose and lactose (preculture glucose) with LJ110
(wild type). Time courses are as follows: A, concentrations of biomass (dashed line, x) and
extracellular glucose (solid line, open circles); B, concentration of extracellular lactose
(solid line) and extracellular galactose (dashed line); C, fraction of unphosphorylated Ell-
AS™; D, rates of phosphorylation of intracellular glucose by PTS (solid line) and glucoki-
nase (dashed line); E, concentration of B-galactosidase; F, rate of lactose uptake. Symbols
denote measurements, and lines denote simulation results. gDW, grams dry weight.

ring processes. The model has been validated by measurements of 3-ga-
lactosidase, extracellular cAMP, and the degree of phosphorylation of
EIIA“™ during diauxic growth of the wild type and a lacI mutant (strain
KB53, see Table 1) on glucose and lactose. Fig. 4 shows simulation
results of intracellular cAMP, CRP, and the complex of both during
glucose/lactose diauxie of the wild type (Fig. 5). The results are in agree-
ment with data presented previously (34). After depletion of glucose,
cAMP rose sharply and subsequently decreased rapidly during expo-
nential growth on lactose. Simulation results of the CRP concentration
show a slight increase (factor 1.3) during the lactose uptake phase. The
complex of both, which is crucial for regulation, shows qualitatively the
same behavior as cAMP. This indicates that during diauxic growth the
variation of cCAMP concentration is much more important than the
variation of CRP concentrations, which have almost no effect. This is in
accordance with results from Ishizuka et al. (19) who reported that
variation of cAMP concentration is responsible for transient repression,
whereas the lowering of the CRP concentration becomes important for
permanent repression. This indicates that the regulation by variation of
cAMP concentrations is important for fast, dynamic processes, e.g. dur-
ing the lag phase, whereas variation of CRP concentration becomes
important for the adaptation to a certain carbon source.
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In contrast to regulation of the lactose uptake system, cAMP-depend-
ent catabolite repression seems to be the dominant mechanism of glu-
cose repression of glycerol uptake (36). This corresponds to simulated
higher cAMP and CRP levels during growth on glycerol (see supplement
2, Fig. 11).

In Fig. 5, measured phenomena are described for growth of wild-type
cells on glucose and lactose. EIIA“™" was unphosphorylated mainly dur-
ing the uptake of glucose. Once the glucose had been consumed, EITA“™
shifted very quickly to its phosphorylated form and afterward became
increasingly unphosphorylated during induction of the lac operon and
uptake of lactose. In Fig. 5, plots C and F, the correlation of unphospho-
rylated EITA“* and the rate of lactose uptake during the second growth
phase can be seen. Uptake of glucose and lactose proceeded in the same
manner for all studied strains, apart from BKG47 (supplement 2, Fig.
20). However, the measured degree of phosphorylation of EITA“™ dif-
fered. Strain BL2 (supplement 2, Fig. 12) showed a very low degree of
phosphorylation, whereas in KB7, a dgsA mutant (supplement 2, Fig. 18)
EIIA“™ was much more phosphorylated. Strain BKG47 showed a
reverse diauxic growth on glucose and lactose, and lactose was now
taken up preferentially. The degree of phosphorylation of EITA“"" during
lactose uptake was nearly as low as for the wild type.

Another interesting feature of glucose-lactose diauxie is the produc-
tion of intracellular glucose during growth on lactose. This intracellular
glucose may be phosphorylated by a glucokinase (gene glk) or by the PTS
(2, 37). Growth of two mutant strains, one of them lacking the glk gene
(strain BL2, see Table 1) and the other one lacking the ptsG gene (strain
BKG47, see Table 1), on lactose shows that phosphorylation via glucoki-
nase and phosphorylation via PTS are possible in vivo. To solve this
problem, measurements of the phosphorylation degree of EITA™ dur-
ing growth of the wild type and of various mutants on lactose combined
with model analysis were suitable to answer the question of the ratio of
both of these fluxes.

According to the reference model (7), the predominant part of intra-
cellular glucose had to be phosphorylated by the PTS in order to repro-
duce the measured degree of phosphorylation of EIIA“™ (not shown).
However, this model was not able to reproduce measurements with
BKG47 because it predicted 100% phosphorylation of EIIA“™. By a
refinement of the pyruvate kinase kinetics, which was Michaelis-Men-
ten-type kinetics in the reference model, to a Hill-type kinetics and
subsequent fitting of the glycolysis parameters with different experi-
ments, including a sucrose pulse experiment with measurements of
glycolytic intermediates (21), the model was improved significantly and
can now be used to explain the growth of all strains on lactose. Fig. 5D
shows that with the new model about two-thirds of the intracellular
glucose is phosphorylated by glucokinase and one-third by the PTS. The
lower degree of EITA“"" phosphorylation of strain BL2 can be explained
by a higher flux via the PTS caused by the lack of glucokinase (supple-
ment 2, Fig. 12). However, this flux was almost as high as that in strain
KB7, being caused by higher concentrations of HPr and EI and resulting
in a degree of phosphorylation which is even higher than in the wild type
(supplement 2, Fig. 18). The most interesting result of this set of exper-
iments was that the exchange of the pyruvate kinase kinetics from
Michaelis-Menten-type to Hill-type kinetics was necessary to repro-
duce the measured data. The simplification of the model set up by using
formal kinetic approaches leads to false results. Choosing the wrong
kinetics might be without effect for many enzymes, but for enzymes that
modulate key metabolites, choosing the right kinetics is crucial. This
was obvious for this set of experiments because the PTS phosphoryla-
tion state is influenced mainly by the PEP to pyruvate ratio. By changing
the pyruvate kinase kinetics this ratio is also influenced directly.
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DISCUSSION

In this study we present a comprehensive model of E. coli metabolism
that is able to describe uptake and degradation of several carbohydrates
(glucose, lactose, glycerol, sucrose, and galactose) and to reproduce
measurements of intracellular enzyme concentrations (LacZ and
EIICB®!), glycolytic intermediates, and the phosphorylation state of
EIIA“". The different phenomena influencing the EITA“™ phosphoryl-
ation level, which is the key regulator for catabolite repression and
inducer exclusion, can now be analyzed by using this model.

In contrast to other modeling approaches, important parts of our
model could be validated by a comprehensive set of experiments, i.e.
based on the experimental data a number of uncertain or even unknown
kinetic parameters could be estimated. The organism was stimulated by
providing different mixtures of carbon sources using different precul-
ture conditions, i.e. modifying the intracellular initial conditions and by
altering the biochemical network by constructing a set of isogenic
mutant strains. All experiments are described with a single set of param-
eters. Moreover, the dynamic behavior of the strains in a number of
growth situations (diauxic growth, batch, continuous culture, disturbed
batch, pulse response) could be reproduced.

The biological knowledge represented in the model has been col-
lected from a number of publications: kinetic studies on enzymes and
transcription factors as a starting point for parameter identification;
genetic studies to set up a possible model structure and experimental
data from array studies and proteomics to decide whether gene expres-
sion for proteins in the model has to be included.

The strategy presented in this study shows that it is possible to esti-
mate a relatively high number of parameters even if only a limited set of
measurements is available. This is based on the fact that the analysis of
the system was performed under varying conditions and stimuli. More-
over, the experiments revealed that some modules (submodels) had to
be refined by including more detailed knowledge of molecular biology;
mainly the description of regulatory processes had to be improved. This
demonstrates that mathematical models can help access regulatory pro-
cesses if they are described very accurately and are validated with appro-
priate experiments. In addition, the data presented reveal that to set up
a realistic model of good quality it is also important to carefully choose
the correct kinetics. As presented here for the enzyme pyruvate kinase,
the selection of the wrong kinetics (Michaelis-Menten) leads to prob-
lems in the model validation procedure. Although the use of formal
kinetic approaches simplifies the model formulation, it is also a source
of error. Testing different possible reaction kinetics would be necessary
for the set-up of a good model.

The model presented confirms the current knowledge about catabo-
lite repression and glucose-lactose diauxie in E. coli. Inducer exclusion
is the most important regulatory mechanism in glucose-lactose diauxie,
as described by Inada et al. (38), but in the case of glycerol the situation
is different. This model will be used in the future to analyze these dif-
ferences more thoroughly. The model hints at an important effect of
cAMP concentrations during switches like that from glucose to lactose
in diauxic growth as reported by Ishizuka et al. (19). CRP concentrations
seem to be less important during such dynamic processes and might be
more important for long term adaptation to different growth substrates.
It has been reported that the pts operon is regulated by cAMP-CRP as
well as by Mlc (30, 31). This regulation is weak (factor of 2—-3) (32) and
hence has often been neglected. The quantitative analysis, with the help
of a dynamic mathematical model, was able to show the effects of this
regulation. Obviously it is important if cells are shifted from feast to
famine conditions. The analysis of intracellular glucose phosphoryla-
tion is another good example for the application of a quantitative math-
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ematical model. Intracellular glucose phosphorylation by glucokinase
and by PtsG has been reported in the past (33—41). The different pub-
lications propose a different share of both systems depending on the
source of intracellular glucose. But such analyses are mostly qualitative.
A quantitative mathematical model that is able to consider dynamic
enzyme concentrations and fluxes can help to evaluate these differ-
ences. The analysis performed for the phosphorylation derived from
splitting of lactose is shown in this study, but the model would allow the
same analyses to be performed for growth with maltose or mellibiose as
well. This might be another application of the model in the future.

As shown in this article the mathematical model confirms biological
knowledge about catabolite repression and allows additional quantita-
tive analyses. Dynamic models for cellular systems that are validated
with a comprehensive set of experiments are seldom found in the liter-
ature. However, there is pressing need for “good” models, those able to
describe phenomena relevant to biotechnology or medicine. The model
at hand can help to develop strategies for model set-up and validation
for these systems.
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In Escherichia coli K-12, components of the phosphoenolpyruvate-dependent phosphotransferase systems
(PTSs) represent a signal transduction system involved in the global control of carbon catabolism through
inducer exclusion mediated by phosphoenolpyruvate-dependent protein kinase enzyme IIA™ (EIIA“™) (= EIIAS™)
and catabolite repression mediated by the global regulator cyclic AMP (cAMP)-cAMP receptor protein (CRP).
We measured in a systematic way the relation between cellular growth rates and the key parameters of
catabolite repression, i.e., the phosphorylated EIIA“™ (EIIA“™"~P) level and the cAMP level, using in vitro and
in vivo assays. Different growth rates were obtained by using either various carbon sources or by growing the
cells with limited concentrations of glucose, sucrose, and mannitol in continuous bioreactor experiments. The
ratio of EIIA“™ to EIIA"~P and the intracellular cAMP concentrations, deduced from the activity of a
cAMP-CRP-dependent promoter, correlated well with specific growth rates between 0.3 h™' and 0.7 h™",
corresponding to generation times of about 138 and 60 min, respectively. Below and above this range, these
parameters were increasingly uncoupled from the growth rate, which perhaps indicates an increasing role

executed by other global control systems, in particular the stringent-relaxed response system.

In Escherichia coli, the phosphoenolpyruvate (PEP)-depen-
dent phosphotransferase systems (PTSs) represent important
uptake systems for a number of carbohydrates which mediate
transport and concomitant phosphorylation of their respective
substrates (10, 44). In addition to their transport function, all
components of the various PTSs of a cell form an important
signal transduction system. The signal transduction properties
of the PTS depend on the phosphorylation state of its proteins
(26, 49). The PTSs usually consist of two general proteins, i.e.,
the PEP-dependent protein kinase enzyme I (EI), and the
histidine-containing protein (HPr), and up to 20 different, sub-
strate-specific enzymes II (EII). EII usually comprise two sol-
uble domains EIIA and EIIB involved in phosphotransfer and
the membrane-bound transporter domain EIIC (44). The ma-
jor regulatory output signal of the PTS depends on the phos-
phorylation level of EIIA“™ (according to its genetic nomen-
clature), also designated EIIA' due to its function as the
EIIA domain for the glucose-specific PTS (9, 23, 52). EIIA™
inhibits the activity of a number of non-PTS transporters and
enzymes (8, 32, 33, 35, 36), a process referred to as inducer
exclusion. Furthermore, the phosphorylated form of EIIA<™
(EIIAS™~P) activates adenylate cyclase (1, 13, 41, 57), which
in turn synthesizes cyclic AMP (cAMP) (59). The indicator
molecule or alarmone cAMP is the coactivator of the impor-
tant global transcription factor CRP (cAMP receptor protein).
Together, they regulate in a process called cAMP-CRP-depen-
dent catabolite repression efficient transcription of different
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genes involved in the synthesis of a large number of catabolic
enzymes (4, 39, 43). The central role of EIIA“"~P in the
activation of adenylate cyclase is largely based on mutant anal-
ysis (13, 23, 33).

The phosphorylation state of the PTS and hence the intra-
cellular cAMP concentrations are postulated to depend largely
on two major factors: (i) the uptake rate of any PTS substrate
which determines the dephosphorylation rate of EI (this kinase
autophosphorylates in a reversible process with PEP to gener-
ate pyruvate [49]) and (ii) the ratio of PEP to pyruvate, two
central intermediate metabolites in glycolysis and gluconeo-
genesis which directly influence the EI autophosphorylation
reaction. This ratio, however, is especially difficult to measure
in vivo, and there is little corresponding data available for cells
growing under different conditions (18, 27). In one thorough
study, starved cells were used (16, 17). The results indicated a
correlation between the EITA™ phosphorylation level and the
PEP-to-pyruvate ratio, but it is not clear how these results
reflected the conditions in growing cells. Furthermore, recent
in vitro reconstitution experiments indicated the putative exis-
tence of additional factors which might also modulate adenyl-
ate cyclase activity (38, 41, 42, 47). Therefore, the determina-
tion of the phosphorylation level of EITA“™™ was considered an
alternative test for the intracellular PEP-to-pyruvate ratio dur-
ing steady-state conditions. Metabolic reactions are very fast,
and hence, the PTS phosphorylation levels as well as the PEP,
pyruvate, and also intracellular cAMP concentrations should
quickly reach a quasi-steady-state level during growth with
nonlimiting concentrations of carbohydrates.

In this paper we systematically tested the correlation be-
tween growth rates, EIITA™ phosphorylation levels (meaning
in this case the ratio of EIIA“™ to EITA“"~P), extracellular
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cAMP concentrations, and the activity of a cAMP-CRP-depen-
dent promoter in E. coli K-12 grown on different carbohydrates
and with various carbohydrate concentrations but only for
growth rates () between 0.3 h™* to 0.7 h~. Above and below
these growth rates, the correlation was less clear, which sup-
ports the idea that additional regulatory elements become rel-
evant under these conditions.

MATERIALS AND METHODS

Bacterial strains, media, and growth conditions. The two strains used in this
study were LJ110, an Fnr™ derivative of the E. coli K-12 mutant W3110 (22), and
its genetically engineered derivative LJ210, which carries the scr genes for PTS-
dependent transport and metabolism of sucrose integrated within its chromo-
some (2, 54).

Strains were grown in phosphate-buffered minimal medium (MM) as de-
scribed by Tanaka et al. (58). For some bioreactor experiments, the ammonium
concentration of the medium was increased to 90 mM to enable growth to higher
cell densities. Carbohydrates were sterilized by filtration. If not indicated other-
wise, they were added to 2 g/liter for experiments in shake flasks and to 5 g/liter
for batch experiments in bioreactors. For the reporter gene assays, kanamycin
was added to the cultures to 25 mg/liter. Biomass concentrations were deter-
mined by measuring the absorbance at 420 nm or at 560 nm in an Ultrospec3000
(Amersham Biosciences).

Strains were pregrown overnight in MM supplied with the same carbohydrate
to be used in the experimental culture. The cultures were washed in fresh MM
without the addition of carbohydrates. For experiments in shake flasks, the
volumes in the flasks exceeding the culture volume at least five times, the washed
cells were inoculated to 2.5 X 107 cells/ml. The cultures were incubated at 37°C
under vigorous shaking (250 rpm) if not indicated otherwise. Growth was mon-
itored by measurement of the absorbance at 420 nm. For batch experiments in
bioreactors, preculture conditions were the same as for experiments in shake
flasks. The cells were added to approximately 1 X 10% to 2 X 10® cells/ml. The
cultures were continuously stirred under aerobic conditions (partial O, pressure
of >20% of saturation). For experiments with various carbohydrate concentra-
tions, the reactor was set up with 3 liters of MM supplied with 0.1 g/liter of the
respective carbohydrate. Cells were added to approximately 4 X 10® cells/ml, and
1 liter/h of MM supplied with 0.8 g/liter of the respective carbohydrate was
continuously fed into the bioreactor while the same volume was withdrawn.
Carbohydrate and extracellular cAMP concentrations were monitored by either
directly taking supernatant from the reactor with the help of a filtration module
in the reactor or by taking culture samples and removing cells quickly by cen-
trifugation at low temperatures (4°C).

Measurements of metabolite concentrations and enzyme activities. Measure-
ments of extracellular carbohydrate concentrations were performed either enzy-
matically with the test kits from r-Biopharm GmbH (Germany) or on a Dionex
DX-600 system (Dionex Corp.) equipped with an electrochemical detector and a
Carbopac PA-100 column. Extracellular cAMP concentrations were measured
with the cAMP enzyme immunoassay system (GE Healthcare) as recommended
by the manufacturer. For these tests, the cells were precultured in the same
medium and carbon source as used during the test. Cells washed free of cAMP
as described above were inoculated to 5 X 107 cells per ml, the changes in cAMP
concentrations were determined throughout a complete growth curve, and the
cAMP concentration for a cell density of 5 X 108 cells per ml was obtained after
interpolation. The B-galactosidase activities were determined essentially by the
method of Pardee and Prestidge (37) and modified by Miller (31) and expressed
in micromoles per milligram of protein and per minute. Determination of intra-
cellular PEP and pyruvate concentrations were performed as described previ-
ously (53).

Analysis of the EITAC™ phosphorylation state. The EIIAC™ phosphorylation
state was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis
and Western blotting essentially as described previously (57). Deviating from the
protocol, protein precipitation was carried out at —80°C overnight. Detection
was performed with polyclonal EITAC™ antiserum from a rabbit. As secondary
antibodies, goat anti-rabbit antibodies conjugated to horseradish peroxidase
were used, and detection was performed with the SuperSignal West Femto
Maximum sensitivity substrate (Pierce) and a cooled charge-coupled-device cam-
era (INTAS, Germany). The sum of the EIIA“™-specific bands was set at 100%.

Reporter gene studies. To analyze the activity of the cAMP-dependent scrYp
and cAMP-independent scrKp promoters, fragments covering the promoter re-
gions of both genes and approximately 200 bp upstream and downstream of the
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start codon including the known cAMP-CRP binding site of scrYp (55), were
amplified by PCR, and each promoter fragment was cloned separately in front of
the luxCDABE genes into pCS26 (3). The plasmids were transformed into E. coli
LJ110, and the cells were grown in MM supplied with different carbohydrates. At
various time points throughout a growth curve, samples were taken. The biomass
concentrations of these samples were determined by measurement of the absor-
bance at 420 nm, and the relative luminescence units of a 100-wl sample was
measured in a luminescence reader (Mithras; Berthold Technologies) (measure-
ment time of 0.1 s). For analysis, the relative luminescence per 5 X 10° cells and
the growth rates of the cultures were calculated. Average values for a specific
experiment were taken from at least three measurements during the exponential
phase of a culture.

RESULTS

Analysis of EIIAC™ phosphorylation levels and of extracel-
lular cAMP concentrations during growth on different carbo-
hydrates. To analyze the influence of growth rates on the
EIIA“" phosphorylation level and on extracellular cAMP con-
centrations, growth was tested first in shake flasks. Various
hexoses, pentoses, and organic acids, which feed into different
parts of central metabolism, were used as single carbon
sources, among them PTS and non-PTS substrates. Strain
LJ110 or its sucrose-positive relative LJ210 were grown in
standard minimal medium supplied with saturating amounts (2
g/liter) of the carbohydrate. Additionally, the EIIA™ phos-
phorylation levels were determined from experiments in bio-
reactors. As expected, the growth rates varied with different
carbohydrates, but identically for both strains. Furthermore,
no significant differences in growth rate and EIIA™" phosphor-
ylation could be observed between both types of experiments.
Consequently, they were summarized and presented together.

If, as hypothesized initially (13, 33), adenylate cyclase was
activated only by EIIA“"~P, then EIIA“™ phosphorylation
levels and cAMP concentrations should correlate closely. Ac-
cording to the data in Table 1 and Fig. 1, high growth rates
seemed to correspond to low cAMP and low EIIA“™ phos-
phorylation levels, and low growth rates seemed to correspond
to high cAMP and high EIIA“"™ phosphorylation levels.

Considering EITA“™ phosphorylation levels, for relatively
high growth rates, no clear distinction between PTS substrates
and non-PTS substrates could be seen. Thus, about 20% of
EIIA"™ remained phosphorylated during growth on the PTS
substrates N-acetylglucosamine and mannitol and a similar
percentage during fast growth on the non-PTS substrates lac-
tose, L-arabinose, and gluconate.

Furthermore, a closer analysis revealed that the close cor-
relation between growth rates, EILA™ phosphorylation levels,
and cAMP concentrations was valid only for cells growing with
specific growth rates (u) between 0.3 h™! and 0.7 h™! (corre-
sponding to about 140- to 60-min generation time). This was in
contrast to cells growing very slowly (n < 0.3 h™'), in partic-
ular those growing on acetate, b-mannose, and D-glucosamine.
One major difference with these slow-growing cells was not
only the EIIA“™ phosphorylation levels but also the extracel-
lular cAMP concentrations deviated strongly from experiment
to experiment, although both were sampled from the same
cultures, and the deviations in growth rates were minor (see
the error bars in Fig. 1 and Table 1). It is not clear whether this
represents a systematic behavior of starved cells or whether
this high variability was caused by experimental procedures,
though these were highly standardized as described in Mate-
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TABLE 1. EIIA“™ phosphorylation levels and extracellular cAMP concentrations”

. Crr, > -

Carbon source fi 3}22" w(h™h E]g/?] ((7: )P EXtrsgﬁg::l?;hi/;‘MP PEP-to-pyruvate ratio
D-Glucose-6-phosphate 1 0.74 = 0.09 20+ 4 55+25 0.21 =0.29
D-Glucose 2 0.68 = 0.03 5+2 142 = 24 0.15 = 0.01
Sucrose 3 0.65 = 0.02 107 148 = 18 0.45=0.29
Lactose 4 0.60 = 0.04 177 137 = 48 0.12 = ND
N-Acetyl-D-glucosamine 5 0.57 = 0.03 17 =10 114 =19 ND
D-Mannitol 6 0.58 = 0.06 14 =6 137 =23 0.22 = ND
L-Arabinose 7 0.51 = 0.04 25*2 111 =78 ND
D-Gluconate 8 0.50 = 0.03 309 99 = 31 0.04 = 0.06
Maltose 9 0.48 = 0.07 41 =10 395 = 140 0.27 = ND
sn-Glycerol 10 0.43 = 0.02 47 =4 374 = 125 ND
D-Fructose 11 0.41 = 0.05 24+3 400 £ 450 0.40 = 0.29
Succinate 12 0.35 = 0.05 65 = 16 271 =133 1.07 = ND
D-Glucitol 13 0.32 = 0.02 26 = 10 ND ND
D-Galactose 14 0.28 = 0.06 59+9 473 £ 96 ND
Acetate 15 0.17 = 0.02 41 x24 1342 = 1350 6.68 = 1.95
D-Mannose 16 0.15 = 0.03 48 =22 1447 = 1142 1.4 +=1.03
D-Glucosamine 17 0.12 = 0.01 649 ND ND

“ The growth and test conditions from batch experiments with various carbon sources were as described in Materials and Methods using strains LJ110 and LJ210.
Growth rates and phosphorylated EIIA""~P and extracellular cAMP concentrations measured at 5 X 10® cells per ml represent means =+ standard deviations from

at least two independent experiments. ND, not determined.
® Numbers in the symbols in Fig. 1 and 2.

rials and Methods. Poor correlation could perhaps indicate
that under these growth conditions, extracellular cAMP con-
centrations do not correspond directly to intracellular cAMP
concentrations, e.g., because additional factors modulate
cAMP excretion from the cell and subsequent uptake into the
cell, degradation of cAMP, or cAMP production, respectively
(4, 12).

Deviations of another type could be seen during growth on

100

D-fructose, D-glucitol, and D-glucose-6-phosphate. (i) On fruc-
tose and on glucitol, the phosphorylation levels of EIIA<™"~P
(24%) were too low, and the extracellular cAMP level during
growth on fructose was too high compared to those of other
carbohydrates in cells growing at similar growth rates. Growth
on fructose, and in particular AptsH mutants in which fructose-
specific protein (FPr) replaces the missing histidine-containing
protein (HPr), have already been reported to cause enhanced
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FIG. 1. Correlation of EITA“™ phosphorylation state and growth rate during growth of E. coli LJ110 and LJ210 with various carbon sources.
EITA™ phosphorylation levels were determined by Western blotting as described in Materials and Methods. The data represent mean values from
at least two independent cultures and from at least four samples taken during exponential growth of one culture. The numbers in the symbols refer
to the carbon sources as indicated in Table 1 with error bars indicating standard deviations. Circles correspond to non-PTS substrates, while squares
represent PTS substrates. The gray line connecting the data points for PTS substrates represents a trend line considering all PTS data points. The
dashed gray line represents a trend line considering all non-PTS substrates with exceptions glucose-6-phosphate and acetate. The trend lines show
almost linear correlations between EITAS™ phosphorylation levels and growth rate. The obtained R?s were 0.93 for the PTS and 0.86 for the
non-PTS trend line. The gray dots at w = 0.25 h™! are drawn to point out the two areas mentioned in the Discussion.
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cAMP production (6, 26). Moreover, in contrast to other PTS
substrates, e.g., N-acetylglucosamine and mannitol, which al-
low high growth rates, growth on fructose and on glucitol
is slow and the influence of the transport reactions on the
EIIA“" phosphorylation state might become visible. Different
characteristic curves of the correlation of growth rate and the
level of EITA“™~P have also been predicted by a mathemat-
ical model that we have set up (2). This model predicts that the
difference in both curves becomes more pronounced at lower
growth rates (A. Kremling, unpublished results). These pre-
dictions are supported by the data presented in Fig. 1. (ii)
Dephosphorylation was at its maximum (90 to 95%) during
growth on sucrose (. = 0.65 h™") and, in particular, on glucose
(i = 0.68 h™ 1), but not on glucose-6-phosphate (. = 0.74 h™;
80% dephosphorylation), the fastest growth substrate tested
here. Glucose-6-phosphate, the only phosphorylated carbon
source tested here, stimulates a EIICBA“'"“-dependent glu-
cose/glucose-6-phosphate exchange (51). When present at high
intracellular concentrations, it causes back phosphorylation of
EIICB®" by glucose-6-phosphate, which would consequently
result in an elevated level of EITA“™~P.

Determination of the activity of a cAMP-CRP-dependent
promoter compared to a cAMP-CRP-independent promoter.
Accurate and fast measurements of intracellular cAMP con-
centrations are difficult and further complicated by the high
extracellular cAMP concentrations which amount to 95% of
the total cAMP (12, 40). Intracellular cAMP determinations
always require extensive washing. Such methods are impossible
to validate, as no standards for intracellular cAMP exist and
the influences of washing on cAMP levels are poorly under-
stood. To minimize the problems, “in vivo” measurements
were performed by using the cAMP-dependent scrYp promoter
and the cAMP-independent scrKp promoter of the scr regulon
from pUR400 (54). Both promoters were fused independently
and in the absence of the specific repressor gene scrR and
independently, to the luxCDABE genes of the low-copy-num-
ber vector pCS26, as described in Materials and Methods. The
usage of the lux reporter genes, either behind a cAMP-depen-
dent or cAMP-independent promoter, should allow accurate
measurements of the activity of the cAMP-CRP complex. This
in turn should closely correlate with the active intracellular
cAMP concentrations. Consequently, constitutive expression
of the scrKp promoter represents the overall capacity of the
transcriptional and translational machinery of the cells. On the
other hand, transcription from scrYp is very low in the absence
of cAMP, and transcription should increase strictly correlated
to increasing intracellular cAMP levels (54). Also, because
both promoter activities were measured with the same reporter
genes, from the same vectors, and in the same host strain,
changes in the activity of the cAMP-independent promoter
scrKp can be used to correct for changes in scrYp activity due
to altered growth rates and to changes in plasmid copy num-
bers.

Cells of strain LJ110 carrying either of both constructs were
grown in parallel on minimal medium with different carbohy-
drates. The relative luminescence units were determined
throughout batch experiments in shake flasks, and all measure-
ments were carried out in parallel to limit further day-to-day
variations. Analysis of the units measured during the exponen-
tial growth phase revealed activity variations with changing
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growth rates, but the changes differed in a characteristic way
for the two promoters, being more pronounced for scrYp than
for scrKp (Fig. 2). In addition, while the scrKp promoter
showed considerable activity at all growth rates, the scrYp ac-
tivity was only marginal at high growth rates.

In growing cells, proteins are diluted constantly because of
the increase in cell volume followed by cell division. Therefore,
to correct for higher dilution rates of proteins in faster growing
cultures, the activities of both promoters were expressed in
relative luminescence units multiplied with the corresponding
growth rate. Analysis of these corrected units revealed a rather
constant basal activity of about 4,000 corrected units for the
cAMP-independent promoter scrKp on all carbon sources, ex-
cept for acetate (1,570 units) with its exceedingly slow growth
rate (Fig. 2C). This indicated that the overall capacity of tran-
scription and translation correlated with growth rate, except
for very slow growth rates. In contrast, the corrected activities
of the cAMP-dependent promoter varied drastically (=100-
fold [Fig. 2D]). As before, two distinct ranges could be de-
tected in the experiments. For growth rates higher than 0.6
h™!, low intracellular cAMP concentrations were indicated by
marginal activities of the cAMP-dependent scrYp promoter.
This was expected in view of the low extracellular cAMP con-
centrations measured for these growth rates (Table 1). In con-
trast, decreasing growth rates correlated with higher scrYp ac-
tivities, and intracellular cAMP concentrations peaked around
0.3 h™! or 140-min generation time. At very slow growth rates
(=0.3 h™ 1Y), scrYp still showed significant activities, but here no
clear correlation between growth rate and cAMP could be
seen. The plot representing the corrected scrYp activity, i.e.,
intracellular cAMP (Fig. 2D), resembled the ratio of the
EIIA“™ phosphorylation level to growth rate (Fig. 1). Al-
though the slope of the two curves differed for growth rates
between =0.3 h™! to = 0.7 h™*, the plot showed the same
ranges. This indicated that EITA“"" phosphorylation levels cor-
related, but not directly, with the intracellular cAMP concen-
trations.

Extracellular cAMP concentrations (Table 1) correlated less
well, perhaps due to variable excretion or metabolism of
cAMP. In addition, the reporter gene assays determined the
activation of a promoter by the cAMP-CRP complex. This
activation does not exclusively depend on the intracellular
cAMP but also on the CRP concentrations (reference 10 and
references therein). Data based solely on extracellular cAMP
measurements thus do not necessarily mirror the true intracel-
lular cAMP concentrations and must be considered with great
caution.

Bioreactor experiments with various carbohydrate concen-
trations. Up to now, we investigated the correlation of growth
rate, EIIA“"™ phosphorylation level, and cAMP concentration
when the growth rate of the cells was limited by the quality of
the carbon source. An alternative method to vary the growth
rate is to grow the cells under different or limiting concentra-
tions of a specific substrate. Using batch cultures as well as a
chemostat-like construction by means of dialysis bags, Notley-
McRobb et al. (34) reported drastic changes in intra- and
extracellular cAMP concentrations at external glucose concen-
trations around 300 pM for E. coli. According to the K,,, value
of 3 to 10 wM for the Glc-PTS transport activity in whole cells
(7,23), a change in the phosphorylation state of EITA“™ at this
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FIG. 2. Correlation of the activities of the cAMP-independent scrKp and cAMP-dependent scrYp promoters to growth rates resulting from
growth on different substrates. (A and B) Relative luminescence activities (in relative light units [RLU]) of E. coli LJ110 carrying either the
constitutive and cAMP-independent scrKp promoter (A) or the constitutive and cAMP-dependent scrYp promoter (B) fused to luxCDABE genes
of pCS26 during batch cultures with various carbon sources. (C and D) scrK and scrYp activities, respectively, after multiplication of the RLUs with
the corresponding growth rate. This standardization is done to account for differences in dilution rate of the proteins that vary with growth rate.
(D)Activity of the scrYp promoter after multiplication of the RLUs with growth rate. By using an exponential fit, we were able to obtain a R? of
0.95, showing good correlation. The trend line was added to this plot as a dotted gray line. Values represent mean values from at least three
independent experiments, and the error bars indicate standard deviations. The numbers in symbols correspond to carbon sources as in Table 1.

high glucose concentration seemed unlikely. Unfortunately,
the EIIA“™ phosphorylation state was not determined in these
experiments.

During the starting phase of continuous bioreactor experi-
ments, the carbohydrate concentration drops until it becomes
limiting, i.e., growth rates are mostly determined by the de-
creasing external carbon source concentrations. This decrease
is much slower than it is in batch experiments, allowing for a
better resolution of data in the low carbohydrate concentration
ranges, in particular those related to changing growth rates,
cAMP concentrations, and EIIA“™ phosphorylation levels.
Therefore, such an experiment was performed with glucose as
the carbon source, and a typical time course is shown in Fig. 3.
During the first 3 hours and with high glucose concentrations,
the EIIA“"" phosphorylation level remained low. The slow rise
in phosphorylation level probably reflects adaptation to stron-
ger aeration within the bioreactor. At about 2.7 h, when the
extracellular glucose concentration had dropped to about 40
wM, the phosphorylation level changed within minutes from
about 10 to 70%, finally reaching more than 90%. At about the
same time, the extracellular cAMP concentrations began to
increase considerably faster than before, which we interpret as
due to higher cAMP production rates. Thus, the changes in the

EIIA“™ phosphorylation level and in the extracellular cAMP
concentration occurred simultaneously, again indicating a cor-
relation between both parameters. Growth rates could not be
calculated precisely from the data because, due to the high
dilution rate, changes in biomass were very small within the
relevant time window. However, growth rates as calculated
from the dilution rate were estimated to vary between 0.6 h™!
for growth under nonlimiting glucose concentrations and
about 0.33 h™! for growth under limiting glucose concentra-
tions.

A set of continuous bioreactor experiments similar to the
one shown in Fig. 3 was performed with glucose, sucrose, and
mannitol (Fig. 4). These three PTS carbohydrates have similar
K,,, values as determined in transport assays, i.e., 5 to 12 uM
for glucose and the Gle-PTS (7, 23), 10 uM for sucrose and the
Scr-PTS (55), and 2 to 11 pM for mannitol and the Mtl-PTS
(15, 19, 25, 48), respectively. Therefore, they could be expected
to give similar results. For each substrate, the phosphorylation
levels of EIIA“™ and the measured extracellular cAMP con-
centrations (data not shown) correspondingly and drastically
began to increase when the external carbohydrate concentra-
tions reached a level of 10 to 50 wM. As before, growth rates
could be calculated only when based on dilution rates and
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FIG. 3. Time course of an experiment with various glucose concentrations. Show are the measurements from a continuous bioreactor
experiment with E. coli LJ110 with glucose as the carbon source. Bioreactor setup and measurements were as described in Materials and Methods.
cAMP samples were taken by taken samples from the bioreactor and by rapid centrifugation of these samples at 4°C. Open circles indicating the
glucose concentration (in micromolar) are given on the leftmost y axis as well as extracellular cAMP concentrations given in nanomolar and
represented by open triangles. The EITA™ phosphorylation level represented by filled squares is plotted on the rightmost y axis.

decreasing carbohydrate concentrations. They were estimated
to change from about 0.55 h™' to 0.33 h™' within the relevant
time interval.

In summary, these data show a correlation between EITA™
phosphorylation levels, cAMP production rates, and the extra-
cellular carbohydrate concentrations which determine the
growth rates. Using a mathematical model for the glucose-PTS
which was able to reproduce the experiments (2), we calculated
that an apparent K, value of 12 wM extracellular carbohydrate
corresponds to a level of 50% phosphorylated EITA™. This
was in general agreement with the known kinetics of the three
PTSs. Although at a first glance the experimental setup of

Notley-McRobb et al. (34) seems to allow growth experiments
equivalent to our experiments in a continuous bioreactor, de-
viations in the experimental setup may account for the differ-
ent results. Thus, at least for their dialysis cultures, it is not
clear whether glucose and oxygen diffusion within the dialysis
bag was sufficient. Furthermore, due to the known problems in
the measurement of extracellular cAMP concentrations, it is
also not clear how accurate cAMP concentrations could be
determined under their experimental conditions. Comparing
phosphorylation assays performed with cell extracts to growth
and transport assays with whole cells, high deviations (10-fold)
in the K, values have been measured for the glucose-PTS (50)
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FIG. 4. Growth experiments with changing carbohydrate concentrations. The figure shows measurements from continuous bioreactor exper-
iments with strain LJ110 or LJ210 and with glucose, sucrose, or mannitol as the carbon source. The experimental setup and measurements were
as described in Materials and Methods. The EITA“™ phosphorylation level is plotted semilogarithmically against the carbohydrate concentrations.
Symbols: l, O, and @, experiments with glucose as the carbon source; A and A, experiments with sucrose as the carbon source; *, experiment with

mannitol as the carbon source.
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and the three hexitol-PTSs (25). Yet it is difficult to envision,
how these observations could explain the 30- to 90-fold devi-
ation between the measured apparent K,, value for the glu-
cose-PTS and the onset of extracellular cAMP increase as
observed by Notley-McRobb et al. Besides this discrepancy,
both sets of results indicated a similar correlation between
growth rates, the ratio of EIIA“™ to EIIA“"~P, and cAMP
concentrations.

DISCUSSION

The data presented within this study demonstrate, to our
knowledge for the first time, why the PTS is suited as a sensor
system for the physiological state of the cell. The data show a
strict correlation of growth rate, determined by the quality of
the carbon source, and the EIIA“™ phosphorylation state, at
least for medium to high growth rates. We hypothesize that if
growth is limited solely by the quality of the carbon source, i.e.,
by the cell’s capacity to take up and metabolize the carbon
source, then the PEP-to-pyruvate ratio in the cell is a direct
measure of this growth rate. This PEP-to-pyruvate ratio is
reflected by the phosphorylation state of EIIA<"™, making this
molecule an ideal candidate for sensing the physiological state
of the cell. This information is subsequently transduced by the
modulation of enzymatic activities, most importantly the activ-
ity of adenylate cyclase. In contrast to previous assumptions,
we could show that the EITA“™ phosphorylation state not only
represents a measure for the presence or absence of a PTS
substrate but that the phosphotransferase system represents a
universal sensor for the physiological state of the cell with
respect to the carbohydrate metabolism. This is possible be-
cause the PTS phosphorylation state is directly linked to the
PEP-to-pyruvate ratio and hence to the central metabolism.

In enteric bacteria, carbon and energy metabolism are con-
trolled largely by two global regulatory mechanisms called
cAMP-CRP-dependent catabolite repression and inducer ex-
clusion. The combined phosphotransferase systems of a cell
together constitute an expedient signal transduction system
that senses intracellular changes in carbon catabolism and en-
ergy metabolism as changes in the phosphorylation levels of its
components. All phosphoryl-transfer reactions within the PTS
are reversible. Therefore, the major key parameters which
determine the phosphorylation level of its components are the
PEP-to-pyruvate ratio during growth on any carbon source,
even a non-PTS carbon source, together with the uptake ac-
tivity of the various PTSs during growth on PTS substrates.
Furthermore, the EITA“™ phosphorylation level should reflect
directly the PEP-to-pyruvate ratio in the cell regardless of the
carbon source used for growth (49). Unfortunately, determi-
nations of the true intracellular PEP and pyruvate concentra-
tions are difficult to perform in growing cells. A network of
reactions is coupled to the so-called pyruvate node, and the
control of activity or of synthesis of the corresponding genes
and enzymes has not yet been elucidated in detail. For an
estimation of the true intracellular concentrations of PEP and
pyruvate that may change in the millisecond range (28), a
careful determination of all fluxes would be needed. At
present, such an analysis can be performed only by using mu-
tants (reference 20 and references therein) and mathematical
models (18). We used measurement of the EITA™ phosphor-
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ylation level as an alternative method. This measurement is
based on the strict coupling of the PTS to the PEP-to-pyruvate
ratio in the cell (49).

Correlation between growth rates and EIIA™ phosphory-
lation levels. Our data show a good correlation of growth rates,
as determined by the quality or quantity of the carbon source,
and the EITA“™ phosphorylation states, at least for medium to
high growth rates. Different growth rates were obtained first by
using various carbohydrates. In such cells, growth was limited
by the affinity and capacity of the uptake systems, as well as by
the capacity of the first metabolic reactions. High growth rates
clearly correlated with lower EIIA“™ phosphorylation levels,
indicating a lower PEP-to-pyruvate ratio, and vice versa, but
only for cells grown with generation times of about 140 to 60
min, i.e., specific growth rates between 0.3 h™* and 0.7 h™%.

Three apparent exceptions among the carbon sources were
D-fructose, D-glucitol, and D-glucose-6-phosphate (substrates
11, 13, and 1, respectively, in Fig. 1). During growth on fruc-
tose, phosphorylation of EITA“™ was too low (~20% deter-
mined versus ~50% estimated) and extracellular cAMP levels
were too high, compared to other carbon sources allowing
similar growth rates. The low phosphorylation level of EIIA<™
might be related to the involvement of the HPr-like protein
FPr in the fructose-PTS. Thus, AptsH mutants, in which FPr
replaces the missing HPr, also show enhanced cAMP produc-
tion (6, 26). Furthermore, the repressor protein FruR (alter-
natively Cra) of the fru operon is involved as an activator in the
regulation of the pps gene, encoding PEP synthase (14; our
unpublished results), and of some other glycolytic and glu-
coneogenic genes in E. coli and Salmonella enterica serovar
Typhimurium (5, 45, 46). Another possibility is that the low
phosphorylation level of EIIA“™ during growth on fructose
simply results from dephosphorylation of the PTS during fruc-
tose transport. This is corroborated by the fact that with glu-
citol, the other PTS substrate, which allows medium growth
rates, the same deviation was observed. Hence we postulate a
distinction between PTS substrates and non-PTS carbon
sources. This distinction was very weak for substrates allowing
fast growth but became more pronounced for substrates re-
sulting in medium growth rates. This is corroborated by mod-
eling studies which predict that at high growth rates, the PTS
phosphorylation activity should have a low impact on the phos-
phorylation level of EITA“™, while at low growth rates this
impact increases considerably (22). Although the comparison
to glucitol and the analysis with the help of the model provide
an explanation for the low phosphorylation state of EITA<™
during growth on fructose, they cannot explain the high levels
of extracellular cAMP during growth on fructose that we and
others have observed.

The third substrate that displayed a deviating behavior was
glucose-6-phosphate. During fast growth on glucose-6-phos-
phate, the phosphorylation level of EIIA“™ was higher than
expected. It had already been reported that glucose-6-phos-
phate did not elicit catabolite repression, although cAMP lev-
els were very low during growth with glucose-6-phosphate (11).
It is tempting to speculate that glucose-6-phosphate interferes
with the PTS phosphorylation level. Glucose-6-phosphate is
the product of PTS-mediated glucose uptake. High intracellu-
lar levels of glucose-6-phosphate have been reported to inhibit
PTS-mediated glucose uptake (21, 24). In addition, EIICBS'/
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EIIA“™-mediated cross phosphorylation of glucose by glucose-
6-phosphate has been reported (51). During growth on glu-
cose-6-phosphate, high intracellular glucose-6-phosphate levels
apparently allow rephosphorylation of the PTS, explaining the
elevated phosphorylation levels of EIIAC™,

Compared to the batch experiments, the continuous biore-
actor experiments allow a better resolution of data within the
transition phase from fast growth on high substrate concentra-
tions to lower growth rates caused by decreasing external sub-
strate concentrations. We used three PTS substrates, i.e., D-
glucose, sucrose, and D-mannitol, with similar transport K,
values, of which the former two PTSs use EIIAC™ as their
phosphate donor. The corresponding results did show the
same general trend as the previous experiments, i.e., higher
growth rates correlated closely with decreased phosphorylation
of EIIA™. In particular, they did not show a significant in-
crease in the EIIA“™ phosphorylation level before the sub-
strate concentrations decreased to concentrations in the range
of the K, values (Fig. 3 and 4). Obviously, cells coordinate
EIIA“™ phosphorylation and cAMP levels with growth rates in
a similar way, whether cell growth was limited because of the
nature or amount of the carbon source used.

Correlation between growth rates and intracellular cAMP
levels. A second key parameter besides the PEP-to-pyruvate
ratio in the control of carbon catabolism is the alarmone
cAMP. This coactivator of the global transcription factor CRP
is essential in controlling the synthesis of several hundred
genes and catabolic enzymes. In a AcyadA mutant of E. coli,
increasing growth rates on glucose could be obtained by adding
increasing amounts of cAMP to such cells. Furthermore, dif-
ferent cAMP concentrations corresponded to the growth rate
on diverse carbon sources (12). Unfortunately, we and others
have been unable until now to test intracellular ;(AMP concen-
trations in growing cells directly, rapidly, and in a reliable way
(30, 40). As shown in Table 1, extracellular cAMP concentra-
tions have no simple relation to the intracellular, i.e., biologi-
cally active, cAMP amounts. Attempts to correlate intracellu-
lar cAMP levels with B-galactosidase activities transcribed
from a constitutively expressed lacZp promoter (12) have not
sufficiently taken into consideration indicator protein dilution,
thus presenting an incomplete picture of the cell’s physiology
under various growth conditions. In an extension of such in
vivo studies, we compared the activities from a cAMP-depen-
dent promoter and a cAMP-independent promoter of the scr
regulon. These constructs allowed correction for changes in
promoter activities due to altered growth rates and concomi-
tant protein dilution rates and to plasmid copy number effects.
In agreement with the EIIA™ phosphorylation tests, these
corrected data also indicated, first a major (central) phase,
valid from medium to high growth rates (Fig. 2). Within this
phase, the constitutively expressed and cAMP-independent
promoter scrKp showed variations of less than twofold in its
corrected promoter activities over the range of growth rates
between 0.3 h™' and 0.7 h™'. Because the corrected scrKp
activities represent basically the general transcriptional and
translational capacity of the cell, this capacity seems to corre-
late strictly with growth rates within this central range. The
marked deviation during growth on acetate probably indicates
the increasing starvation stress. This contrasted with the
cAMP-dependent promoter scrYp, whose equally corrected,
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activities varied more than 100-fold within this central range of
growth rates. Such drastic changes must obviously be attrib-
uted largely to changes in the intracellular cAMP concentra-
tions and more precisely in the amount of active cAMP-CRP
complexes. Similar to the EITAS™ phosphorylation level, the
intracellular cAMP levels had a clear maximum around a p of
0.3 h™" (or 140-min generation time) (Fig. 2), and no differ-
ence between PTS and non-PTS substrates could be seen.
Apparently, the physiologically relevant intracellular cAMP
concentrations (Fig. 2) cannot be deduced easily from the
extracellular cAMP concentrations (Table 1).

Conclusions. To the best of our knowledge, we show here
for the first time that below and above a specific growth rate of
0.3h 'and 0.7 h™', the EIIA“™ phosphorylation state and the
activity of the cAMP-CRP-dependent promoter as represented
by the scrYp activity became increasingly uncoupled from the
growth rate. These deviations were not simply a consequence
of the large inaccuracies in the corresponding tests. Rather, the
results seem to indicate additional factors also modulating the
PEP-to-pyruvate ratio, EIIA""~P levels, and cAMP produc-
tion or the activity of cAMP-CRP-dependent promoters. For
low growth rates, both promoter activities and the EIIA<™~P
level decreased roughly in parallel, while for high growth rates,
the three key parameters became constant. Apparently,
cAMP-dependent gene activation becomes less and less rele-
vant during either very fast (u = 0.7 h™ 1), or very slow growth
(w = 0.3 h™!), perhaps indicative of more global cellular
changes in the corresponding cells. Thus, between specific
growth rates of 0.4 h™! to 0.8 h™!, the mean cell volume
increases from 0.55 to 1.38 pwm?, the number of ribosomes per
cell doubles, and the ppGpp concentration decreases from 150
to 25 pM (29, 56). Such extreme physiological conditions
which trigger stress responses seem to be increasingly con-
trolled by other global antistress regulatory networks, e.g.,
RpoS in slow-growing and prolonged starving cells, and the
“stringent-relaxed” control system which in fast-growing cells
mainly determines growth rates. Similarly, other global regu-
latory systems can be expected to become active in cells grow-
ing under, e.g., phosphate or nitrogen limitation, and hence
might override the regulation by cAMP-CRP. Finally, highly
different EITA™ phosphorylation levels during growth on poor
growth substrates seem to indicate that under such extreme con-
ditions PTS phosphorylation can be uncoupled from the PEP-to-
pyruvate ratio, corroborating data pointing to additional factors
which also control adenylate cyclase activity (34, 38).
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ABSTRACT

Motivation: Need for software to setup and analyze
complex mathematical models for cellular systems in
a modular way, that also integrates the experimental
environment of the cells.

Results: A computer framework is described which allows
the building of modularly structured models using an
abstract, modular and general modeling methodology.
With this methodology, reusable modeling entities are
introduced which lead to the development of a modeling
library within the modeling tool ProMot. The simulation
environment Diva is used for numerical analysis and
parameter identification of the models. The simulation
environment provides a number of tools and algorithms to
simulate and analyze complex biochemical networks. The
described tools are the first steps towards an integrated
computer-based modeling, simulation and visualization
environment.

Availability: Available on request to the authors. The
software itself is free for scientific purposes but requires
commercial libraries.

Contact: ginkel@mpi-magdeburg.mpg.de
Supplementary information:  http://www.mpi-magdeburg.
mpg.de/projects/promot

INTRODUCTION

dynamics of small metabolites if the system is shifted
from one steady state to another (Schaefeal., 1999).
These facts—availability of knowledge of the genetic
structure and new measurement technigues—smooth the
transition of biology from a qualitative to a quantitative
science. However, to analyze and possibly predict cellular
behavior based on the the increasing quantity of knowl-
edge and therefore more complex cellular system models
the application of mathematical modeling is necessary.

For dynamical systems, we previously introduced a
suitable modeling framework (Kremlingt al, 2000)
based on the definition of submodels callesbdeling
objects These modeling objects cover a broad range
from single enzymatic reaction steps to rather complex
structures, which are calledperonsand modulonsin
bacterial genetics (Neidhardit al, 1990). This paper
deals with two computational aspects in modeling cellular
systems: (i) the modular assembly of dynamic model
equations; and (ii) model validation based on parameter
identification from available measurements. Although
different other modeling and simulation tools like GEPASI
(Mendes, 1997), Jarnac (Sauro, 2000), VCell (Schaff
et al, 1997), DBSolve (Goryaniret al, 1999), E-Cell
(Tomita et al, 1999) and others also solve systems
of differential equations, they don’t provide a modular
approach for model setup.

The success in modern biology in analyzing the genetic A problem not discussed here in detail is the exchange of
structure of many organisms has allowed bioinformaticsnodels between different modeling and simulation tools.
to become a very popular science. Consequentially, ¥Vetake partin an international initative of simulation tool
number of database systems have been developed to orgtevelopers to define a practical standard for mathematical
nize the large amount of data occurring during researchnodels of cells that is calledystems_Iology markup
(e.g. Kanehisa and Goto, 2000; Salgaetoal, 2001). language (SBML Huckat al, 2000). It is planned to
New measurement techniques like cDNA microarrays andmport and export SBML in ProMot.
2D-gelelectrophoreses have been also established and aré\fter introducing the modeling concept, a software
used to obtain insight into the overall cellular state. More-€nvironment, combining two tools, namely ProMoT and
over, new measurement techniques which allow sample®iva will be presented. The Press_Maleling Tool

to be taken within a time window of 2/100 seconds areP’roMoT (Tiankle et al, 2000) was originally designed

possible now and are used to analyze the intracellulai©r the computer-aided modeling of chemical processes
as well as for the implementation of libraries that contain

reusable modeling entities. The differential-algebraic

*To whom correspondence should be addressed.
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models created with ProMoT are added to the model
library of the simulation environment Diva (Molet al., vane Device-
1997). DOfferential Algebraic Fjuations—DAE, some- & level
times also called ODE-NAE models are a combination

of ODE that are simultaneously solved with algebraic

constraints. The numerical methods provided by Diva are

applied to the numerical analysis, dynamic and steady O S
state simulation and identification of model parameters. e ﬁ ;

~Blo-1eac

Phase-
level

SYSTEM AND METHODS

Systems biology seeks to combine experimental and the-
oretical work for a better understanding of the overall be-
havior of cellular systems. This implies that not only the
cellular interior has to be modeled but also the environ- /
ment, e.g. the fluxes into and out of a bioreactor which al--
low exposure of the organism to defined and reproducible
conditions. When analyzing complex systems with a high
number of elements and several interconnected levels, e.g.
a fermentation plant with a bioreactor containing liquid
and biophase, where the biophase again is decomposed in ¢
metabolic units, a common base is required which is ap- /
plicable to all levels. Therefore, network theory was pro-~
posed for analysis and synthesis problems in chemical and
biochemical engineering. Fig. 1. Representation of different detail levels of a bioreactor
Network theory model by the means of network theory. The diffgrent layers are all
represented, based on components and coupling elements. These
Network theory (Gilles, 1998) gives a fundamental way toelements provide a modular structure and interfaces for the more
decompose various processes into hierarchical units in getailed levels.
systematic manner. The hierarchical structure of the pro-
cess is represented in several levels (see Fig. 1). All lev-
els consist of two basic types of elements, nanoeilypo-  Vvector is passed across phase or device borders it must
nents representing the holdup of different physical quan-consist of extensive quantities only, like mass flux, molar
tities (drawn as circles in the figure), amdupling ele- flux or volume flux, otherwise it is not possible to achieve
mentsdescribing the interactions and transports betweemodularity.
the different components (rectangles in the figure). The ) . )
top level can be, for example a device level consisting oflodeling concept for biochemical plants
components like reactors and other devices and coupling continuously stirred tank reactor with several substrate
elements like valves and pumps etc. The devices agaii@eds and an outflow is considered as an example for a
consist of phases that are coupled by phase-boundaries iochemical plant and is depicted in Figure 1. The plant
membranes and finally the phases consisttofageshat  is composed of process devices namely the reservoirs and
are coupled via reactions or diffusive and convective rethe bioreactor and their coupling elements that are valves.
lations. Network theory integrates all these levels into thelhe bioreactor is modeled with two phases: the liquid-
same theoretical concept in a modular way with well dephase and the biophase. The liquid-phase model comprises
fined interfaces. its volume as an extensive reference quangtyunit [1])
How are these models computed? There is a divisiomnd storages for the substrates (concentratmn@init
of tasks between the basic elements. Components providg/11)). The biophase contains storages for intracellular
information about theipotentials i.e. their concentration metabolites, and the biochemical reactions as coupling
and require information about the fluxes coming in andelements. As an extensive reference quantity, e.g. biomass
leading out of them. Essentially they balance the potentialénpio) or total volume of the cells should be used.
with regard to the fluxes. Coupling elements calculate the For an exact formulation of the cell growth, all existing
fluxes i.e. the reaction rates, depending on the potentialexchange-fluxes through transporters between the two
and provide the flux information to the components. Thisphases have to be summed up. But due to the fact that
two-directional information exchange of potentials andbiological models can probably never comprise every
fluxes forms apotential-flux vectar If a potential-flux  single transport pathway connecting the cell to the liquid

= Simating

Storage-
level

AeaCHNS

oD

Stvgge
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phase, a slightly different approach has to be chosemlycolysis) and elementary entities (e.g. reactions). In
We suggest balancing the exchange-fluxes by using yieldeneral they represent components and coupling elements
coefficientsY (unit [gpw/g]) for the substrates taken into of network theory on different hierachy levels. Modules
account in the model. The balance of biomass then resul&re encapsulated and therefore separated from their envi-

in: ronment whereas their interfaces are definetelbyinals
JoutlV] The behavior of a module is characterized by aggregated
Mbio = YT M jex[G ] Mpio — Mpio — , (1) variables and equations in a module-local DAE.
R Vi To establish connections in a modularized model,

. groups of variables are assigned to terminals. When

where M is a diagonal matrix of the molar weights of terminals are linked, additional linking equations connect
the substratesjex[c] the substrate exchange betweenthe different behavioral subsystems. Terminals are not re-
biomass and liquid phasel,y[V] the liquid flow out quired to have a specified direction (e.g. input or output).
of the reactor ang: the growth rate of the cells. This In case of substance flows in biological reaction networks
allows for modeling the cell growth realistically while they represent a bidirectional information exchange of a
representing only the main substrate transport pathwagoncentration and a flow rate in the sense of potential flow

(called channel) in the model. vectors. Another important form of terminals in biolog-
_ ical systems are cellular signals which represent only a
Modeling framework for cellular systems concentration. Modules, terminals and links are structural

In microbiology, the thinking in functional units (describ- modeling entities, whereas variables and equations are
ing a subset of the cellular processes) has become populbehavioral modeling entities.

and has resulted in the definition of subnetworks that are The emphasis on modularity has several advantages in
under control of a common regulator protein (Neidhatdt modeling complex biological systems:

al., 1990). The combination of these ideas with network . )

theory leads to a modeling framework which was previ-® he user works with comprehensible networks of
ously introduced (Kremlingt al, 2000). At the highest ~ medules rather than with reaction networks with
level of resolution, elementary submodels (modeling ob- Nundreds or thousands of parts. With this feature
jects) are defined. Important elementary modeling objects It IS also easier to divide tasks between different
are substance storages and substance transformers for the Modelers working on parts of the same system, which
metabolic network and signal transformers for the regula- 'S desirable for large scale biological models;

to_rl}/ network. t b ted b bstanc the interface of a module can be specified separately
Wo ormore storages can be connected by a SULSIANCE .,y g implementation. This leads to a simplified

;ga:nmsgssrrgfé :?:;: dp;esst?/\r/]ésc?)rtﬂolce hn?g]r:f;l rzzczz?s'_-r(:??ﬁe' exchangeability of different module implementations
P y asp ' with the same interface. This can be used e.g. for

representation of the stoichiometric struciure 9f the reac- implementations of a module which differ in the detail-
tion with interfaces for substrates and products; and (ii) the level-

reaction kinetics together with the participating and con-

trolling ligands (activators and inhibitors). e an important and often neglected task in model devel-
Since the understanding of signal transduction and gpment is model debugging. With the depicted struc-
processing is the key for describing the overall behavior  tyre it is easier to debug an individual module with its
of cellular systems, these processes are described in a jnput-output behavior in a well defined test frame first
separate class named signal transformers. Elementary pefore the modules are combined to a larger system.
modeling objects can now be aggregated to describe since the couplings are explicit in the modular system,

more complex processes like gene expression or signal yemoval of feedback can be easily carried out as sim-
transdcution cascades (Kremling and Gilles, 2001). plification to isolate errors in the model.

Modular model representation The modeling entities in ProMoT are organized as an
ProMoT enables the use of object-oriented modelingbject-oriented class hierarchy with multiple inheritance.
techniques including encapsulation, aggregation, andhis concept from computer science was adopted to
inheritance. In ProMoT, dynamic models are built byallow a better organization of complex modeling libraries
aggregatingstructural and behavioral modeling entities and flexible implementation of large scale models. Every
Structural modeling subdivides a model inteodules  entity in this hierarchy inherits all parts and attributes from
Examples for modules in systems biology are procestheir respective superclasses. With this method abstraction
units (e.g. fermentation reactors), balanced volumess possible and more general and reusable entities can be
(e.g. phases), functional units of the metabolism (e.gformed.
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conforming to the CLOS Meta Object Protocol (Kiczales
et al, 1991), this foundation of ProMoT is implemented
as an extension of standard Lisp classes. The classes are
dynamic meta-objects in the Lisp runtime environment;
Visual Editor | |Aggregation View ! that is why it is also possible to edit them at runtime using
either the graphical editor or through changing the source
1 code.The possibility to do this is rarely found in pro-
| CORBA (ILU) | s gramming languages: most languages provide class meta
. objects only for reflection (i.e. read-only introspection in
—— Lisp J_ava), if they provide any at all. For example, common
Lisp and Smalltalk also allow one to change classes
(write access), which is one of the main reasons to build
the modeling environment in Lisp. The representation
Equatonset ! Y : of the mathematical model is done in a symbolic way.
N'E?g;i';nsg This make.s it possible to manlp'ulate thg formulae, e.g.
(CLOS Classes) for normalization of the differential equations or during
optimization of the final simulation model, which can be
[ cowriter | easily implemented in Lisp.

v The modeling language MDL (Model Description Lan-
guage) of ProMoT is a declarative, object-oriented lan-
guage that allows a symbolic implementation of variables
and equations rather than the programming of imperative
Simulation Module code. ProMoT interprets MDL to create the class repre-
sentation and can serialize the classes to MDL. Thus the
modeling language is used as the storage format for the
modeling libraries. Because every aspect of a model can
Fig. 2. Software architecture of ProMoT. The kernel provides all be described within MDL, the_ modeling language '$ the
model handling including reading and writing modeling language,M0St powerful way to model in ProMoT. The GUl is a
instantiation, consistency-check and writing of Diva models. Theclient that is implemented in Java using the Java Foun-
GUI and the kernel interact through a Corba-middleware called ILU dation Classes (Swing). It interacts with the kernel in a
Model View Controller (MVC) fashion and has the role of
a view and controller for the models in the kernel. With
the GUI, users can explore and manipulate the modeling
IMPLEMENTATION OF ProMoT entities by their graphical representation. Therefore views
ProMoT provides a special modeling language as well agf the inheritance hierarchy and the topology of submod-
a graphical user interface (GUI) for interactive modeling.yles and their connections can be presented. The visual
The modeling tool, as well as the simulation enVianmentaspect is very important especially for the communication
are developed under different Unix-derived operatingn interdisciplinary teams, to have a common notion of
systems, however the main platform is Linux. As shownthe considered modeling entities. Besides that also graph-
in Figure 2 the kernel of the system is implementedical editing of the topological structure of modeling enti-
as a modeling server in object-oriented Common Lispies can be done interactively with flow-chart diagrams.
(using the @mmon _Lisp Object §stem CLOS). Further |n this way new higher structured modules can be cre-
information about availability and requirements of theated easily. For changes on behavioral modeling entities
software can be found on the web page. Although Lisghe GUI launches a text editor in order to change the MDL
is currently not a very popular language, it has certairsource code of a single modeling entity. Thus modeling
qualities that are adjuvant for an easy and flexible impletanguage and graphical editor can be used alternately to
mentation. ProMoT’s modeling entities are classes andhange modeling entities from the user interface.
use multiple inheritance. Therefore they are internally The internal processes in a typical modeling scenario of
represented by specialized classes in CLOS, whiclProMoT are as follows: The user loads necessary libraries
handles inheritance and creation of instances. The class@he details are introduced in the next subsection) with
represent aggregation and composition of aggregateslsic module definitions from MDL files using the class
parts explicitly, which allows construction of complex browser of the GUI (Fig. 3). Then he creates or extends a
containment hierarchies and their analysis in the finamodule that should be simulated in Diva (the main model).
model. Since Lisp classes themselves can be programmetherefore he builds the module structure out of predefined

Java

Class Browser Structure View

ProMoT: Kernel |MDL Interpreter | | MDL Writer |

Optimizer >

Model
Instance

Consistency- |<—»
Check
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-I:I—lﬁommt User Interface x
File Class Select Options
7 rmiod eling-entity

identifies implicit algebraic equationgy), that have to be
calculated simultanously with the differential equations.

@ [ behavioral-mod eling-entity
@ 3 structural-modeling-entity
@ & module
¢ & ecal

£ biophase

& S function-sub net
ZF liquidphase

@ £ metabolic-subnet
2 reactor

@ £ regulation-subret

@ L transport-subnet

h:=g(x, h, p,t) 4)
Bi(x, h, p,t)x = f1(x, h, p, t) 5)
0= fJ'(x, h, p,t). (6)
Explicit equations in the algebraic part are sorted accord-

ing to their dependencies and are directly calculated as as-
signments to intermediate variabledy the functionsg.

¢ fgﬁgg Additionally constant expressions and unnecessary vari-
® f;aﬁiuns_ ables are identified and eliminated through symbolic trans-
S 57 cammlyic formations. This produces a more compact and performant
o oser farmal implementation of the model that also avoids numerical
& polyrmerisatar . . .. ..
& F structure problems with inconsistent initial conditions of the DAE.
oo ciorewansformar Finally ProMoT generates Fortran source code that

& &8 terminal can be used within the simulation environment Diva.
Therefore the Code Generator diler et al, 1997)
is invoked which translates the symbolic representation

Fig. 3.ProMoT class browser showing the class library discussed iI'Pf_ ProMoT to Fortran subrqutines qnd prepares the
the text. initialization of the sparse matrix numerics of Diva.

Library for metabolic models

modules from the library and adds special parameter anéll modeling entities are held in a knowledge base that
initial values for the variables. If the user needs a speciatomprises elementary modeling objects like terminals,
module with a behavior not available in the library, hestorages, transformers and channels as well as predefined
can create this using the modeling language. He shoulbigher structured modules, e.g. for gene-expression. The
use standardized abstract superclasses for the new moduiger-defined models can be based on the predefined
to stay compatible with the rest of the library. Finally modules and are added also to the knowledge base. In
the main model is written to Diva. In this process thethis way the setup of new models is simplified and sped
Lisp class representing the main model is instantiatedip considerably. It is less error-prone and in addition the
with all contained submodules. Then a consistency checkiodels become standardized, what enables exchange and
is performed, that unveils logical errors in the modelreusability of models. The library for modeling biological
structure and also structural errors in the underlyingsystems in ProMoT contains several categories which are
equation system. presented to the user in the tree-structure of the class
If these checks can be passed successfully, a compaatowser (see Fig. 3).
DAE is generated from the structured representation For the representation of basic modules like storages
within ProMoT by aggregating all equations together withand substance transformers basic terminals are defined,
coupling relations. The modular structure is only usede.g.term-reaction-flux andterm-storage-flux
during modeling: since the Diva simulator does not allowfor connections of intracellular reactions with intracellular
changes to the structure at runtime, it is not needegtorages. These terminals define a potential varialfite
during simulation. The structured way of modeling in a concentration and a flux variahiefor the reaction rate.
ProMoT and the use of modeling libraries often introduceSubclasses of these basic terminal types add additional at-
unnecessary algebraic equations in the resulting model fdributes, e.g. in the terminakrm-1lig-storage-fluxa
couplings in links and calculations of variables to achievevariable for the molar weight is aggregated which is nec-
flexible modules. The resulting DAE can be divided into aessary to convert cell-external concentrations at the border
differential part (2) and a purely algebraic part (3): of the biophase.
The predefined elementary modules are represented be-
Bi(x, p, )X = fi(x, p, 1) (2)  neathmodule/library with thestorages as animpor-
0= fo(x, p, 1), (3) tant subgroup. There are storages defined for the liquid-
phase and for the biophase with different kinds of termi-
wherex is the vector of stateq the vector of parameters, nals. For exampletorage-intra x is a storage with a
u the input vector andB; is the descriptor matrix. term-storage-flux terminal. It contains a differential
The modeling system analyzes the algebraic garand  equation for a substance storage that automatically takes
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both groups respectively that form the aforementioned
complementary aspects. This enables a selection of the
required transformer either trough the brakdmetics

or structure from the browser tree. For example, the
module trans2a-mm_1 is a transformer that connects
two storages with a Michaelis—Menten-reaction and a
graphical representation to the lefthannel2a-mmui

is a channel with a Michaelis—Menten reaction and un-
competitive inhibition, where the first connected storage
has to be extracellular and the product is intracellular.
This channel class is instantiated as submodulec in

t gila i /' Figure 4.
r r&c; The user-defined modules are also held in the knowledge

- —

dna_lac allo

WA Expressor

and library modules. Library modules are just designed
having more generality in mind. As an example a model of
talc the carbohydrate uptake BEcherichia col(Kremling and
Gilles, 2001; Kremlinget al,, 2001) has been implemented
in ProMoT. The top module of th&. coli model is the
%lassreactor that consists of the biophase and the liquid-

t_lace

Fig. 4. Setup of a model for lactose transport as it appears in th

visual editor of ProMoT. The whole drawing is the interior of a Bpase (as shown in Fig. 1). The classophase itself

module. The white and gray boxes at the outer edges are extern hiahlv structured and . tral ts of
terminals (in this case referring to terminals of the submodules)!S M1gN'y Structured and comprises some central parts o

The elements inside the drawing are aggregated submodules, lind€ catabolism and different transport pathways with their
represent links. respective interacting regulation networks. One of these

pathways is the uptake of lactose as shown in Figure 4.
Lactose is taken up, coming in with thelace terminal
on the left, through ther_lac channel on the left
and cell-internal lactoséac. It is further degraded up
by the transformerr_lacz into glucose and galactose
: J . leaving the module through the terminals on the right
ure is used for defining the constantenzyme-concentratloH . ) L
. . i and side. A by-product of this reaction is allolactose
as an input into a substance or signal transformer. L C
. (allo), which is important for the control of transcription

Another important _ subgroup of the library is of the enzymes LacY and LacZ catalyzinglac and
reactions, where transformers and channels are . . ;
_lacz in coor_lac. This provides, that the enzymes

defined. Their attributes are subdivided into kinetic and-

structural properties. Beneath the subcladsasetics only get expressed, if lactose Is present n the mgdlum.
: X . . The signal-transformesoor_lac models the interactions
there are various predefined modules, aug.Michaelis—

Menten,mmea: Michaelis—Menten with essential activa- at the promoter binding site of the DNA-sequence for
tion ! in N ona mechanismsr2: sequential random the enzymes and also integrates the signal of a global
» PP- PINg-pONg mé MEr2. Seq ) ctivator that is included through the termiibahd_clac.

2 substrate mechanism and of course simple form : .

first- and second-order reactions. In these modules thehe dla_mond-shaped expressor contains a model for the
, . . ' . translation and the degradation of the two enzymes. The

appropriate variables, equations and terminals for the

calculation of the reaction kinetics are defined. Kinetics ¢2CiOMT-1ac interacts with other transport pathways for

define terminals as well for connecting storages thaglucose (namely the phosphotransferase system) via the

actually do not take part in the reaction as substrate 0mhibitor ElIA, which enters the model as a concentration
y X ) gignal through the terminat_eiia. As long as the
product but affect the rate as e.g. enzyme, activator or

e e . glucose transport is active the resulting high concentration
|nh|b|_tor. For the_ structural (stoichiometric) part of the of EIIA inhibits the uptake of lactose.

reactions there is a separate group of modules below

structure. These classes contain terminals and stoi-

chiometric parameters for subtrates and products and moStUMERICAL MODEL ANALYSIS WITH DIVA

of the the geometry-information (position of substrateThe numerical analysis of the models is done with
and product terminals, iconic representation). Finallythe simulation environment Diva (Mohét al, 1997).

the complete transformer or channel inherits the relevaniiVithin Diva many different numerical computations are
kinetic and structural properties from one element ofpossible, based on facilities to calculate the steady state

the dilution by the cell-growthx into account. In Figure 4
the moduled ac andallo are instances of this class. The
modulestorage-const-enz_c like e_lacr in the fig-
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and dynamic behavior of the model using non-linearFor the optimization a SQPSequentialQuadraticProg-
equation solvers and integrators. For metabolic modelsamming) method from the NAG library (Mér and
two methods are of special interest: (i) parameter analysig/right, 1993) is used.

with respect to experimental data; and (ii) identification of

parameters and model accuracy. Numerical analysis of the example
) o A mathematical model for catabolite repression was intro-
Parameter analysis and sensitivities duced previously (Kremling and Gilles, 2001; Kremliet

Sensitivity analysis of cellular models is often associatedl., 2001). The model describes glucose and lactose uptake
with the calculation of flux and concentration control as well as the control of gene expression of the respective
coefficients from ‘Metabolic Control Analysis’ (Heinrich enzymes. The model comprises 22 ODE’s and seven al-
and Schuster, 1996). Diva uses parameter sensitivitiegebraic equations. According to the underlying modeling
wij = 9x; /0 p;j for another purpose. concept, the equations are assigned to modeling objects.
The aim of the parameter analysis is to find a paramete®Dne of these objects, Lac transport has been introduced
vedor p, that is a subset of all parameters contained in thelove.
model. It should be possible to estimgbewith a given Based on the available measurements in first run—
variancey. The choice ofy depends on the accuracy of biomass, extracellular glucose, lactose and intracellular
the measurement data and the demands on the model. TacZ—and the experiments performed it is expected that
identify the elements opf, given some initial vectop, the ~ parameters which could be estimated are closely related
user is interested in, the following approach is used: Théo glucose and lactose transport kinetics and to LacZ
model and the measured data are analyzed with the Fishsynthesis. The result of the analysis shows that 16 param-
information matrix (Ljung, 1999). The Fisher information eters could be estimated In a second run three additional
matrix is defined by: measurements—intracellular concentration of protein
ElIA which is involved in glucose uptake and intracellular
and extracellular cAMP concentration—are included in
the analysis (the time course of these experiments are not

yet published). With these measurements available, 20
with the matrix of the sensitivitie®V(ty) = dx/d p and parameters could be estimated.

the covariance matri(tx). The covariance matrig is
assumed as a diagonal matrix with the variance of th®|SCUSSION

statesoj as elements. It is assumed ttdo not depend An overview was given for a workbench of software

from time pointt, while it is taken as a constant. tools that supports modeling and numerical analysis of

Applying a method introduced by Posten and Munack,e i jar systems. The modeling tool ProMoT provides an

(1990), p can be determined by analyzing the eigenval- thodol th ibility t
ues X and eigenvectors oF: The parameterp; out of approved methodology and the possibility to use ready

A . made modeling entities out of knowledge-bases. Efficient
p, most contributing to the eigenvector that correspond

h I . e d el ?nodeling is supported by the use of a graphical user
to the smallest eigenvalugnin, Is removed successively ierface and a modeling language. Sophisticated methods

from p until y > ‘/mlm. Although this provides only a for the numerical analysis of the resulting models are
local estimate of the lower bound for the variance of parovided by the simulation environment Diva. Besides
rameter estimation, the method was applied successfullfynamic simulation the identification of parameters and
in optimal experimental design for a biotechnological pro-the analysis of sensitivities are possible. The workbench

N

F =Y Wt Cto W], )
k=1

cess (Baltest al, 1994). is different from other tools like Gepasi and Jarnac
' ' because it deals with modular models and can handle
Parameter estimation DAE like VCell and DBSolve. It is well suited for

Identification with Diva is restricted to the estimation of larger simulation and parameter estimation problems
parameters in a fixed model structure. Measurement datith up to 10000 differential equations, because of
(zik) is awilable for a subset of the states at time pointthe advantages of modular model development and the
tx. The aim of the estimation method is to minimize theéfficient numerical routines of the simulator. The main
objective function: advantage of our software is the modular modeling
Nn approach which is to our knowledge not provided by any
(D) — 2 (X (Xo, U, P, tk) — Zik\2 8 other aforementioned tool. Since the development cycle
(p) = Z Z Wik ( Zmax ) (8) for the models includes a compilation step, the advantage
k=li=1 ' of the efficient computation in Diva is bought with a
where wix, Z"® are scaling factors of the individual longer preparation time, which does not scale well for

1
measurement data and for each experiment respectivelyapid prototyping of small text-book models.
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For the modeling of cellular signaling the current Kohler,R., Ruumsclissel,S. and Zeitz,M. (1997) Code generator for
approach is to simplify the interactions of proteins, DNA implementing differential algebraic models used in the process
binding sites and other substances to form signal trans- simulation toql DIVA. InProceedings of 15th IMACS World
formers. This simplification is often not easily possible, ~CongressBerlin, pp. 621-626. o _
due to a deficiency of quantitative knowledge. Thereford"®Mling,A. and Gilles,E.D. (2001) The organization of metabolic
the only correct way is to model all possible interactions reaction networks: Il. Signal processing in hierarchical structured

with explicit reactions and to explore the behavior of the functional units Metab. Eng.3, 138-150.
P P Kremling,A., Jahreis,K., Lengeler,J.W. and Gilles,E.D. (2000) The

.SyStem interactively in simulation and experiment. S_mce organization of metabolic reaction networks: a signal-oriented
in complex regulatory networks the number of reactions approach to cellular modelMetab. Eng. 2, 190—200.

'r‘_cre_ases_ eXp_onent'a”y due to combinatoric effects Ot(remling,A., Bettenbrock,K., Laube,B., Jahreis,K., Lengeler,J.W.

binding sites in complex macromolecules, the models ang Gilles,E.D. (2001) The organization of metabolic reac-

become very complicated. For a solution of this problem tion networks: I1l. Application for diauxic growth on glucose and

current research aims to describe the basic interactions of lactose Metab. Eng. 3, 362—379.

binding sites and the compound structure of the moleculesjung,L. (1999)System Identification—Theory for the Usgecond

and to let the modeling system generate the complete reac- edn, Prentice Hall PTR, Upper Saddle River, NJ.

tion network automatically. It is planned to implement this Mendes,P. (September 1997) Biochemistry by numbers: simula-

approach as a specialized class of modules in ProMoT. tion of biochemical pathways with GEPASI Brends Biochem.
The goal of the described software tools is a virtual lab-  Sci, 22, 361-363.

oratory containing facilities for modeling, simulating and Mohl,K.D., Spieker,A., ohler,R., Gilles,E.D. and Zeitz,M. (1997)

visualizing parts of intracellular metabolisms. Therefore DIVA—A simulation environment for chemical engineering

other computer aided methods have to be integrated. For 2Pplications.ICCS Collect. Vol. Sci. Pafbonetsk State Techn.

rising amounts of knowledge the use of databases is neces- Versity, Ukraine, pp. 8-15.

. - . - Moré,J.J. and Wright,S.J. (199%)ptimization Software Guide
sary which allow the sharing of discoveries between work SIAM, Philadelphia, PA.

groups at different locations connected by th_e internet.'Fo,(leidhardt,F_Cq Ingraham,J.L. and Schaechter,M. (1P9§¥iology
effective development of Co,mplex met‘_abo“C (_:‘_alcu,lat'on of the Bacterial Cell: a Molecular Approact8inauer, Sunder-
models the use of standardized modeling entities is only 5,4 A,

one aspect. Others are facilities which allow the visualpogten c. and Munack,A. (1990) On-line application of parameter

ization of different aSp_ectS of the resglting special mod-  estimation accuracy to biotechnical processefrbreedings of
els and support especially the debugging of models under Acc. 3, pp. 2181-2186.

construction. Salgado,H., Santos,A., Gama-Castro,S., Millan-Zarate,D.,
Diaz-Peredo,E., Sanchez-Solano,F., Perez-Rueda,E., Bonavides-
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ABSTRACT Availability: The specification of SBML Level 1 is freely
Motivation: Molecular biotechnology now makes it pos- available from http://www.sbml.org/.

sible to build elaborate systems models, but the systems Contact: syshio-team@caltech.edu.

biology community needs information standards if models

are to be shared, evaluated and developed cooperatively. 1 INTRODUCTION
Results: We summarize the Systems Biology Markup ~ Systems biologig characterized by synergistic integration

Language (SBML) Level 1, a free, open, XML-based Of theory, computational modeling, and experiment (Ki-
format for representing biochemical reaction networks.  tano, 2002). Many contemporary research initiatives
SBML is a software-independent language for describing ~ demonstrate the growing popularity of this kind of multi-

models common to research in many areas of computa-  disciplinary work (e.g. Abbott, 1999). There now exists

tional biology, including cell signaling pathways, metabolic ~ @ Variety of computational tools for the budding systems
pathways, gene regulation, and others. biologist (see below); however, the diversity of software

has been accompanied by a variety of incompatibilities,
*To whom correspondence should be addressed. and this has lead to numerous problems. For example:
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e Users often need to work with complementary re-(termedevel9 will add additional structures and facilities
sources from multiple simulation/analysis tools in theto Level 1 based on features requested and prioritized
course of a project. Currently this involves manuallyby the SBML community. By freezing sets of features
re-encoding the model in each tool, a time-consumingn SBML definitions at incremental levels, we hope to
and error-prone process. provide software authors with stable standards and allow

the simulation community to gain experience with the

 When simulators are no longer supported, mOdeli%nguage definitions before introducing new elements.

developed in the old systems can become stranded a
unusable. This has already happened on a number @¢f2 Benefits to Biologists

occasions, with the resulting loss of usable models tQNidespread use of SBML in software packages would
the community. Continued innovation and develop-henefit users as well as developers, by helping to address
ment of new software tools will only aggravate this \he problems of interoperability listed earlier in this

problem unless the issue is addressed. introduction. With greater interaction between tools, and

e Models published in peer-reviewed journals are ofter® common format for publications and databases, users
accompanied by instructions for obtaining the modeWould be better able to spend more time on actual research

definitions. However, because each author may use @ther than on struggling with data format issues. (Note
different modeling environment (and model represenihat biologists and other software usersroéintended to
tation language), such model definitions are often no¥rite their models in SBML by hand—it is the software
straightforward to examine, test and reuse. tools that read and write the format.)

1.1 Approach 2 OVERVIEW OF SBML LEVEL 1

The current inability to exchange models between differ-A chemical reaction can be broken down into a number
ent simulation and analysis tools has its roots in the laclof conceptual elements: reactant species, product species,
of a common format for describing models. To addresgeactions, stoichiometries, rate laws, and parameters in
this, we formed &oftware Platforms for Systems Biology the rate laws. To analyze or simulate a network of
forum under the auspices of the ERATO Kitano Systemseactions, additional components must be made explicit,
Biology Project (funded by the Japan Science and Techincluding compartments for the species, and units on the
nology Corporation and hosted in part at the Californiavarious quantities. A definition of a model in SBML
Institute of Technology). The forum initially included simply consists of lists of one or more of these various
representatives from the teams developing the softwareomponents:

packagesBioSpice (Arkin, 2001), Cellerator (Shapiro
and Mijolsness, 2001DBsolve(Goryaninet al,, 1999),
E-CELL (Tomita et al, 2001), Gepasi(Mendes, 1997),
Jarnac (Sauro, 2000)StochSin{Morton-Firth and Bray, = SpeciesA chemical substance or entity that takes part in
1998), andVirtual Cell (Schaffet al, 2001), and later a reaction. Some example species are ions such as
grew to include the developers BfoMoT/DIVA (Ginkel calcium ions and molecules such as ATP.

et al, 2000) and the CellML language at the University of
Auckland and Physiome Sciences (Hedial, 2001).

The forum decided at the first meeting in April 2000 to
develop a simple, XML-based language for representing
and exchanging models between simulation/analysis
tools: the Systems Biology Markup Languag®BML). Parameter A quantity that has a symbolic name. SBML
We chose XML, the eXtensible Markup Language (Bray provides the ability to define parameters that are
et al, 1998), because of its portability and increasingly global to a model, as well as parameters that are
widespread acceptance as a standard data language for local to a single reaction.
bioinformatics (Acharcet al., 2001). SBML is formally
defined using UML, the Unified Modeling Language (Ob-
ject Management Group, 2002), and this in turn is used
to define a representation in XML. The base definition,
SBML Level listhe result of analyzing common features
in representation languages used by several ODE-, DAE-Rule A mathematical expression that is added to the
and stochastic-based simulators, and encompasses the model equations constructed from the set of reac-
minimal information required to support non-spatial tions. Rules can be used to set parameter values,
biochemical models. Subsequent releases of SBML establish constraints between quantities, etc.

Compartment A container of finite volume for well-
stirred substances where reactions take place.

Reaction A statement describing some transformation,
transport or binding process that can change one or
more species. Reactions have associated rate laws
describing the manner in which they take place.

Unit definition A name for a unit used in the expression
of quantities in a model. This is a facility for both
setting default units and for allowing combinations
of units to be given abbreviated names.
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1 | <?xml version="1.0" encoding="UTF-8"7>

2 | <sbml xmlns="http://www.sbml.org/sbml/levell" RNAP —» waste

3 level="1" version="2">

4 <model name="gene_network_model">

5 <list0fUnitDefinitions>

6 -

7 </list0fUnitDefinitions>

g <listOfCompartments> RNA cyt MRNACyt

10 </list0fCompartments>

11 <listOfSpecies>

12 R

13 </list0fSpecies>

14 <listOfParameters>

15 -

16 </listOfParameters> Fig. 2. Schematic diagram of the example model.

17 <listOfRules>

18 R

19 </listO0fRules>

2(1) <listOfReactions> enable updated versions of a given SBML level to be dis-
22 </listOfReactions> tinguished.

23| </model> Inside sbml, there must be exactly one subelement:
24 | </sbml> model, which itself can have a single optional attribute

whose value specifies the name of the model (as shown on
line 4). Themodel element can contain several different
Fig. 1. The skeleton of a model definition expressed in SBML, subelements; each acts as a container for a different kind
showing all possible top-level elements. of component in a model definition. The contents of these
listO0f containers are the topic of Section 4.

A software package can read in a model expressed i
SBML and translate it into its own internal format for 3 AN EXA_MPLE MODEL . _
model analysis. For instance, a package might providén the following sec'tlons, we describe the various com-
the ability to simulate a model by constructing a setPonents of SBML with the help of a concrete example. It
of differential equations representing the network andllustrates one application of SBML, but it is by no means
then performing numerical integration on the equations tdhe only type of model that can be represented.
explore the model’'s dynamic behavior. Our example is a two-compartment model of a hypo-

Figure 1 shows the skeleton of an SBML model descripihetical single-gene oscillatory circuit in a eukaryotic cell.
tion. It exhibits the standard characteristics of an XML The model is shown diagrammatically in Figure 2 and the
data stream (Bragt al, 1998): it is plain text, each ele- reaction equations for the model are given in Table 1. In
ment consists of a matched pair of start/end tags enclosébis highly simplified model, the nucleus of the cell is rep-
by ‘<’ and ‘>’ characters, some elements can contain at‘ésented as one compartment and the surrounding cell cy-
tributes of the formattribute="‘value’, and the first toplasm as another compartment. Let us suppose that there
line contains a particular sequence of characters (begirs & gene G which encodes its own repressor and is tran-
ning with ‘<7xm1’) declaring the rest of the data stream asscriptionally activated at a constant ratg, by aubiqui-
conforming to the XML encoding standard. tous transcription factor U. Transcriptional activation in-

The elementbml, beginning on line 2 of Figure 1, en- Vvolves several enzymatic reactions summarized here as
capsulates an SBML model definition. The first attribute,the production of activ&NAP(from source materiakrc)
xmlns, is required for tools that read XML to be able to and its degradation (twastg. The transcribednRNAis
verify the syntax of a given definition against the XML then transported out of the nucleus and into the cytoplasm,
Schema for SBML. (This is an aspect of XML parsing where it is translated into the produd?)(of the gene G
that is beyond the scope of this article; interested readfrom constituent amino acidsAf) and where it is also
ers may find more information in books such as that bysubject to degradatiof® travels from the cytoplasm back
Skonnard and Gudgin 2001.) Thevel attribute on el- into the nucleus to repress further transcription of G, but is
ementsbml identifies the SBMLlevelin use; currently itself also subject to degradation. Eventually, the concen-
the only level defined is Level 1, but Level 2 is alreadytration of P becomes so low that G can be reactivated by
under development. The attributersion is provided to U, and the cycle repeats itself.
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Table 1. Reactions in the example modehRNAuc: mRNA in nucleus.  text characters for compatibility with existing simulation
MRNAyt: MRNA in cytoplasmRNAcyt, RNAyc: RNA constituents. The software
terms beginning with the letter&" and ‘V’ are parameters given values in '

Section 4.4.
4.1 Compartments
React Rat A compartmentin SBML represents a bounded volume
eacton ate in which species are located. Compartments do not
orc— RNAP \/t P/KD) necessarily have to correspond to actual structures inside
AP RNAP' or outside of a cell, although models are often designed
— waste ¥d- that way. The following fragment of SBML defines the
RNAuc — MRNAC Vm1 - RNAP- RNAwc compartments for our example model:
Km1 + RNAyyc
MRNAwc — MRNAyt ki - MRNAwuc <listOfCompartments>
Vm2 - MRNAyt <compartment name="Cyt" volume="1.5" />
MRNAyt — RNAeyt MRNAy + Km2 <compartment name="Nuc" outside="Cyt" />
< i >
RNAyt — RNAuc ko - RNAyt /1list0fCompartments
Vim3 - MRNAyt - AA . . .
AA— P —ms T T AATK y; There is one required attribute for @mpartment
" elementname, to gve it aunique name by which other
P— AA (Vma - P)/ (P + Kma)

parts of an SBML model definition can refer to it. A
compartment can also have an optionablume attribute
giving the total volume of the compartment. This enables
concentrations of species to be calculated in the absence
4 THE COMPONENTS OF SBML of spatial geometry information. Theolume attribute
Our goal in this section is to describe SBML in enoughdefaults to a value oft” (one). The units of volume may
detail that readers can gain a general sense for itse explicitly set using the optional attributeits. The
capabilities. This description summarizes SBML's majorvalue of this attribute must be one of the following: a
elements but omits many details; a detailed definition igredefined unit name from Table 2, the teraolume’
presented in the SBML specification (Huakial, 2003).  (which, if used, signifies that the default units of volume
At the outset, we need to elaborate on two data typghould be used—see Section 4.5), or the name of a unit
issues. The first concerns the definitions of basic datdefined by a unit definition in the enclosingdel. If
types such aslouble, integer, etc. Whenever these absent, as in the example above, the units default to the
are used in SBML, they simply refer to the definitions of value set by the built-involume’.
these data types in XML Schema (Biron and Malhotra, The optional attributeutside can be used to express
2000; Thompsoet al, 2000). The second issue concernscontainment relationships between compartments. If
the allowable syntax of names in name attributes. Namegresent, the value afutside for a given compartment
are used throughout SBML to allow different componentsmust be the name of another compartment enclosing it,
of a model to have meaningful labels. When an SBMLor in other words, the compartment that is ‘outside’ of
model definition is converted by a simulation/analysisit. This enables the representation of simple topological
software tool into the tool's native internal form, theserelationships between compartments, for those simulation
names are typically turned into symbols in the software’'ssystems that can make use of the information (e.g. for
representation of the model. However, some simulationirawing simple diagrams of compartments). Although
and analysis tools place restrictions on the charactersontainment relationships are partly taken into account by
allowed in symbolic names. To support these packageshe compartmental localization of reactants and products,
names in SBML Level 1 are restricted to character stringét is not always possible to determine purely from the
having the following syntax: a name is case-sensitive angeaction equations whether one compartment is meant to
must begin with either a letter or an underscore) (" be located within another. In the absence of a value for
character, followed by any number of letters, digits oroutside, compartment definitions in SBML Level 1 do
underscore characters in any combination. The minimunmmot have any implied spatial relationships between each
length for a name is one letter, or one underscore followedther. (We hope to introduce support for additional spatial
by one letter if the first character of the name is ancharacteristics in a future level of SBML.)
underscore. A ‘letter’ can be either upper or lower As with the other top-level components, compartments
case. Also, though XML permits the use of Unicodeare optional in an SBML model definition. If no compart-
characters (Unicode Consortium, 1996), SBML limits ment is defined, the model is assumed to be located within
the set of characters allowed in names to plain ASClla single compartment of unit volume.
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4.2 Species a constant quantity in the compartment throughout the
The species element in SBML is used to represent course ofareaction. (The tetmoundary conditioralludes

entities such as ions and molecules that participate i the role of this constraint in a simulation.)
reactions. The following is the list of species for our A final optional attribute ofspecies is charge, an

example: integer indicqting a charge vqlue (in terms of electrons,
not the Sl unit Coulombs). This may be useful when the
<1istOfSpecies> species is a charged ion such as calciunftGa
<species name="mRNA_nuc" compartment="Nuc"
initialAmount="0.0032834" /> 4.3 Reactions
<species name="RNA_nuc" compartment="Nuc" A reactionrepresents some transformation, transport or
initialAmount="96.117" /> binding process, typically a chemical reaction, that can
<species name="RNAP" compartment="Nuc" change one or more chemical species. In SBML, reactions

initialAmount="0.66349" />

, are defined using lists of reactant species and products,
<species name="mRNA_cyt" compartment="Cyt"

. Ca N their stoichiometric coefficients, and kinetic rate laws.

initialAmount="3.8742"/> S limitati . . | SBML
<species name="P" compartment="Cyt" pace limitations permit us to give only one

initialAmount="22.035" /> reaction definition as an example:

<species name="RNA_cyt" compartment="Cyt"

S . . <listOfReactions>
initialAmount="0.0054068" /> <reaction name="R1" reversible="false">
<species name="AA" compartment="Cyt" <1listOfReactants>
initialAmount="90.465" /> <species Reference species="src" />
<species name="src" compartment="Nuc" </1istOfReactants>
initialAmount="1" <list0fProducts>
boundaryCondition="true" /> <species Reference species="RNAP"/>
<species name="waste" compartment="Nuc" </1istOfProducts>
Nt =nqn
initialAmount="1 <kineticLaw formula="Vi/(1+P/Ki)" />
boundaryCondition="true" /> </reaction>
</listOfSpecies>
Thespecies element has two required attributeame </1istOfReactions>

and initialAmount. The attributename is required
to give each species a unigue name in a model. The The requirechame attribute gives the reaction a unique
attribute initialAmount, of type double, is used to name to identify it in the model. The optional attribute
define the initial quantity (as a total molar amount, notreversible takes a boolean value indicating whether the
concentration) of the species in the compartment where tteaction is reversible. If unspecified, the default value is
is located. The units of this quantity may be set explicitly‘ true’. An explicit flag is necessary because the kinetic
using the optional attributenits. The value ofunits  law expression for a reaction is optional. Information
must be one of the following: a predefined unit nameabout reversibility is useful in certain kinds of analyses
from Table 2, the termsubstance’ (which, if present, such as elementary mode analysis (Schuedtat., 2000).
signifies that the default units of quantity should be used— The optional attributéast is another boolean attribute
see Section 4.5), or a new unit name defined by a unih thereaction element; a value oftrue’ signifies that
definition in the enclosingnodel. If absent, the units the given reaction is a ‘fast’ one. This may be relevant
default to the value set by the built-isdbstance’. when computing equilibrium concentrations of rapidly
The attributecompartment is a string that names the equilibrating reactions. Simulation/analysis packages may
compartment within which the species is located. Thechoose to use this information to reduce the number of
attribute can be omitted only if the model does not defineDDEs required and thereby optimize such computations.
any compartments (and thus assumes the default; sdéne default value ofast is ‘false’.
Section 4.1); otherwise, each species must have a valueThe reactants and products of a reaction are identified by
for compartment. references to species usiageciesRef elements inside
The optional attributédoundaryCondition takes on 1listOfReactants and 1istO0fProducts containers.
a boolean value to indicate whether the amount of thé\ speciesRef has one required attributespecies,
species is fixed or variable over the course of a simulationwhose value must be the name of a species defined in
The value ofboundaryCondition defaults to a value the model’s listOfSpecies. Stoichiometric numbers
of ‘false’, indicating that by default, the amount is not for the products and reactants can be specified using
fixed. If the amount of a species is defined as beingwo optional attributes on thespeciesRef element:
fixed, it implies that some external mechanism maintainstoichiometry anddenominator. Both attributes take
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positive integers as values, and both have default valuegist0fParameters>
of ‘1’ (one). The absolute value of the stoichiometric —<parameter name="Vi" value="10" />
number is the value oktoichiometry divided by <parameter name="Ki" ~value="0.6"/>
denominator, and the sign is implicit from the role of ~ <Parameter name="Vkd" value="1" />
the species (i.e. positive for reactants and negative for :pammeter name="Vmi" value="50" />
. parameter name="Kml" value="1" />
products). The use of separate numerator and denominator . . .neter name="k1" value="10000" />
terms allows a simulator to employ rational arithmetic «<paraneter name="vm2" value="50" />
if it is capable of it, potentially reducing round-off  <parameter name="Km2" value="1" />
errors and other problems during computations. In our <parameter name="k2" value="10000" />
example model above, we only needed to use the default <parameter name="Vm3" value="50" />
values. <parameter name="Km3" value="80" />
Finally, the optionalkineticLaw element is used to ~ <parameter name="Vm4" value="50" />
provide a mathematical formula describing the rate at <parameter name="Kma" value="1" />

which the reactants combine to form the products. (In"/}ist0fParaneters>

general there is no useful default value that can be The parameter element has one required attribute,
substituted in place of a missing kinetic law, but thename, representing the parameter’s name in the model.
element is optional because certain kinds of networkrhe optional attributevalue is of type double and
analysis are still possible in the absence of informatiordetermines the numerical value assigned to the parameter.
on reaction kinetics.) The&kineticLaw element has The units on theralue may be specified by the optional
one required attributeformula, of type string, that attribute units. The string used fomnits must be
expresses the rate of the reaction dobstancgtime  chosen from one of the following: a predefined unit
units. The allowable syntax of formula strings is describechame from Table 2; one of the three termabstance’,
in the SBML Level 1 specification; it consists of basic ‘time’, or ‘volume’ (see Section 4.5); or the name of
operators such as multiplication, addition, exponentiationa rew unit defined in the list of unit definitions in the
etc., as well as a number of predefined functions forenclosingnodel.
common kinetic rate laws. Parameters can be defined in two places in SBML: in
A kineticLaw element can optionally have attributes lists of parameters defined at the top level im@del-
substanceUnits andtimeUnits to specify the units type structure (in thdistOfParameters described in
of substance and time. If these attributes are not used igection 2), and within individual reaction definitions (as
a gven reaction, the units are taken from the defaultglescribed in Section 4.3). Parameters defined at the top
defined by the built-in termssubstance’ and ‘time’ level areglobal to the whole model; parameters that are
of Table 3 in Section 4.5. Although not used in our two- defined within a reaction are local to the particular reaction
compartment example model, laineticLaw element and_ (within that reactionyverrideany global parameters
can also contain zero or more optionphrameter having the same names.
eIe_ments that define new terms used only infibemula 45 Unit Definitions
string. . . S
Readers may wonder why formulas in SBML are Although we did not need to deflng any special units in our
not expressed using MathML (W3C, 2000). Although exz?lmple model_, SBML does _prowde a way to define new
using MathML would be more in the spirit of XML, Units and redefine default units. ,
it would introduce new complexity for software tools. A Unit definition consists of aame attribute and an
Most contemporary simulation software tools for system&Ptional 1ist0fUnits subelement that in turn contains
biology represent mathematical formulas simply using®"€ OF moreunit elements. For example, the following
text strings. To keep SBML Level 1 simple and maximally d€finition illustrates how an abbr]?vialt.lon namethls
compatible with known software, we chose to represent@" b€ defined for the units mmotis™:
formulas as strings as well. This does not preclude @jistofunitDefinitions>
later level of SBML from introducing the ability to use  <unitDefinition name="mmls">

MathML. <1ist0fUnits>
<unit kind="mole" scale="-3"/>
4.4 Parameters <unit kind="liter" exponent="-1"/>
. . . <unit kind="second" exponent="-1"/>
The parameter element in SBML is used to associate </1ist0fUnits>

a name with a floating-point value, so that the name can «/ynitpefinition>
be used in formulas in place of the value. Here are the ..
parameter definitions for our example: </1list0fUnitDefinitions>
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Table 2. The possible values dfind in aunit element. All are names  Table 3. SBML's built-in quantities.
of base or derived Sl units, except fdimensionless’ and ‘item’, which
are SBML additions.Dimensionless’is needed for cases where a quantity
does not have units, antlten’ is needed to express such things as ‘N items’ Name Allowable Units Default Units
(e.g. ‘100 molecules’). AlthoughCelsius’ is capitalized, for simplicity,
SBML requires that these names be treated in a case-insensitive manner.
Also, note that the gram and liter/litre are not strictly part of International substance molesor no. of molecules _moles
System of Units (BIPM, 2000); however, they are so commonly used in’°1%me liters liters

SBML's areas of application that they are included as predefined unit namedime seconds seconds

ampere henry lumen second . ) ) )
becquerel hertz lux siemens following three general cases (whetas a variable,f is
candela item meter sievert some arbitrary function, and/ is a vector of parameters
Celsius joule metre steradian . .

coulomb katal mole tesla and variables that may includ@:

dimensionless kelvin newton volt

farad kilogram ohm watt 1. left-hand side is zero: e f(W)
gram liter pascal weber . .

gray litre radian 2. left-hand side is a scalar: x = f(W)

3. left-hand side is a rate-of-change /it = f (W)

As this illustrates, SBML uses a compositional approach! € second dimension concerns the role of variabie
is

to defining units. The definiton of mmol+ s the equations above:can be the name of a compartment

constructed by combining anit element representing (10 Set |ts_volume),hthe namefof a species (to set its
millimoles with aunit element representing litet and ~ concentration), or the name of a parameter (to set its

anotherunit element representing second value). _ .
The unit element has one required attributeind, The approach taken to covering these cases in SBML

whose value must be a name taken from the list of unitéS 0 define separate kinds of elements for each of the

in Table 2. The optionaéxponent attribute has a default €2S€s; and to allow these within a singlst0fRules
value of ‘1’ (one). A unit such as liter! is obtained by container within anodel definition (see Table 1). Each

using attributeskind="liter" and exponent="-1". contains aname attribute that specifies the quantity being
Finally, aunit element also accepts an optioraale referenced, and fiormula attribute that holds the right-
field: it,s value must be an integer used to set the scalBand side expression of the rule. For the actual details, we

of the unit. For example, a unit that hag#nd value of refer readers to the SBML Level 1 specification.
‘gram’ and ascale value of -3’ signifies 1073 x gram,
or milligrams. The default value afcale is zero. 5 STATUS AND FUTURE PLANS

There are three special unit names in SBML, listed inAs mentioned above, SBML Level 1 is intended to pro-
Table 3, corresponding to the three types of quantities thatide only a basic representation of biochemical reaction
play roles in biochemical reactions: amount of substancejetworks. Space constraints prevent us from giving a
volume and time. SBML defines default units for thesedetailed description of SBML here; the full definition is
guantities, all with a defaulscale value of 0. The awailable in a separate document (Hucktal, 2003).
various components of a model, such as parameters, cah number of simulation and analysis packages already
use only the predefined units from Table 2, new unitssupport SBML Level 1 or are in the process of being
defined in unit definitions, or the three predefined namesxtended to support it. At the time of this writing, the
‘substance’, ‘time’, and ‘volume' from Table 3. The tools include:Cellerator (Shapiro and Mjolsness, 2001),
latter usage signifies that the units to be used should beBsolve(Goryaninet al,, 1999),E-CELL (Tomitaet al,
the designated defaults. A model may change the defauk001), Gepasi (Mendes, 1997)Jarnac (Sauro, 2000),
scales by reassigning the keywordgbstance’, ‘ time’, NetBuilder (Brown et al,, 2002), ProMoT/DIVA (Ginkel

and ‘'volume’ in a unit definition. et al, 2000), StochSim(Morton-Firth and Bray, 1998),
andVirtual Cell (Schaffet al,, 2001).
4.6 Rules Future levels of SBML will add more features requested

Rulesn SBML provide a way to create constraints on vari- by the modeling community. The process for feature se-
ables and parameters for cases in which the constraintsction involves a request for proposals from Saftware
cannot be expressed using the reaction components delatforms for Systems Biologgrum, followed by discus-
scribed in Section 4.3. There are two orthogonal dimensions and votes during subsequent meetings, and finally
sions by which rules can be described. First, there are threbe drafting of a specification by selected members. Some
different possible functional forms, corresponding to theof the features under discussion for SBML Level 2 are the
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introduction of MathML and metadata support. The latter simulation and analysis of cellular metabolism and regulation.
will add a systematic mechanism for recording such infor-  Bioinformatics 15, 749-758. _
mation as author and publication references; it will also-edley,W.J., Nelson,M.R., Bullivant,D.P. and Nielson,P.F. (2001) A
provide a way to annotate a model with information such short introduction to CellMLPhil. Trans. Roy. Soc. London A
; ; 359, 1073-1089.
ross-referen iological rces. _ .
as;ﬂgﬁ; eﬂ?ee pcrgjset; big O?ngiir?;tirzcr): Caesprimarily Hucka,M., Finney,A., Sauro,H.M. and Bolouri,H. (2003) Systems

. Biology Markup Language (SBML) Level 1: Structures and
Caltech/ERATO-led effort toward a community-led and facilities for basic model definitions, Available via the World

-maintained model for the future of SBML. We invite all  \yige web at http://www.sbml.org/.

interested parties to join us. Kitano,H. (2002) Systems biology: a brief overviecience295,
1662-1664.
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Abstract

A large group of separation problems can be solved using selective adsorption on suitable solids. A mathematical description of adsorption
isotherms, which relate the equilibrium concentrations in the fluid phase to the loadings of the solid, could be used to design, observe and control
such processes in an efficient way. However, the determination of the isotherms typically requires the identification of unknown parameters
in postulated models from experimental data. While for the estimation of the parameters a number of tools and methods are available, a
comprehensive analysis of the quality of the parameters is seldom performed. To estimate and characterize parameters obtained from adsorption
measurements in this work a non-linear regression analysis was explored in combination with an extended statistical analysis. Hereby, the
non-linearity method (“intrinsic” and “parameter-effect” non-linearity) proposed by Bates and Watts [1980. Relative curvature measures of
non-linearity. Journal of the Royal Statistical Society: Series B (Methodological) 42, 1-25] was used to check the quality of parameters and
the suitability of model/data combinations. The variances of the parameters are determined with the bootstrap method originally proposed by
Efron and Tibshirani [1993. An Introduction to the Bootstrap. Chapman and Hall, CRC Press, London, Boca Raton.]. The later approach clearly
overcomes some limitation of classical Fisher-information-matrix (FIM) method. By applying these statistical methods to different adsorption
models and data sets, it was found that non-linearity method is a good tool to check the quality of the model/data combination. Furthermore, it
was found that the confidence intervals of the parameters determined based on the bootstrap are larger than predicted by traditional methods.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: Adsorption isotherms; Parameter estimation; Non-linearity; Bias; Correlation coefficient; Confidence intervals; Bootstrap

1. Introduction

In many separation and purification processes like prepar-
ative chromatography, potable water purification and waste
water treatment, adsorption phenomena play an important role.
Knowledge about the underlying adsorption equilibrium is the
important pre-requisite in order to design and optimize adsorp-
tion processes (Ruthven, 1984). To solve a specific separation
problem, typically, adsorption equilibrium functions have to be
determined experimentally. Several static and dynamic methods
are available to acquire this information (Seidel-Morgenstern,
2004). A frequently applied method for determining single
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von-Guericke Universitdt Magdeburg, Universititsplatz 2, 39106 Magdeburg,
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doi:10.1016/j.ces.2006.08.052

solute adsorption isotherms is the conventional batch method
based on mixing known amounts of adsorbent with solutions
of various initial concentrations and measuring the equilibrium
concentrations. Solving the mass balance, corresponding equi-
librium loadings can be simply calculated. As a result of such
standard experiments, a certain number of pairs “concentration
in the liquid phase vs loading” are available which are analyzed
with various isotherm models. The models are subsequently
used to analyze the system behavior under consideration and
allow design, control and optimization of the process.

The aim of the paper is to analyze the quality of the param-
eters of isotherm models after their estimation using standard
optimization methods. In general, besides the estimation of the
parameters, the determination of parameter accuracy is a further
step before model analysis and application (Isermann, 1992).
Uncertainties of the model parameters may lead to wrong con-
clusions and make it difficult to design a certain adsorption pro-
cess. Therefore, a proper quantification of the uncertainties is
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required. A standard method frequently used in parameter esti-
mation procedures is a simple transformation of the adsorption
isotherms that are non-linear in the parameters into a form that
is linear in the parameters. This linear form allows an easy cal-
culation of the parameters and parameter variances. However,
given a model fthat relates a concentration c to the loading a by

a=flc.0)+e (1)

(where 0 is a vector of parameters, and ¢ the overall error) a
transformation

gla)=g(f(c.0) +¢ @

also transforms the overall error term of the model. Since
the method of linear regression normally assumes an indepen-
dently and identically distributed (i.i.d) error, the application
of the standard linear regression method is not longer reason-
able. Consequently, methods of nonlinear regression have to be
applied to estimate the parameters and to determine parameter
uncertainties.

In this contribution a non-linearity analysis according to
work of Bates and Watts (1980) is used to analyze the non-linear
properties of the function f, which can be quantified in terms
of “intrinsic” and “parameter-effect” non-linearity. These mea-
sures describe the extent of the non-linear behavior of the model
and can be used to characterize the quality of the “model/data
combination”. Theory used so far for the analysis of
uncertainties in parameters is mainly based on the Fisher-
information-matrix (FIM) (e.g., Ljung, 1999), which uses a
linear approximation of the function f. Therefore, the calcu-
lated variance of the free parameters represent only a lower
bound. A method to overcome this limitation, the so called
bootstrap approach (Efron and Tibshirani, 1993), is used in this
study to get a better approximation of confidence intervals.

The combination of the non-linear regression analysis with
the bootstrap approach is applied to equilibrium data for the
adsorption of indol from aqueous solution on activated car-
bon measured under static conditions. In a previous study pa-
rameters of different isotherm models were already estimated
by a least-square approach (Seidel et al., 1985). However, the
quality of the parameters obtained was not further analyzed.
As an extension to the previous mentioned study, the non-linear
characteristic properties of the parameters were analyzed in this
work in detail, confidence intervals were calculated and a com-
parison of the different models with respect to the available
experimental data was performed. The non-linearity in combi-
nation with Box’s bias estimate was used to check the quality of
model/data combinations. Further, confidence interval for non-
linear models were determined based on bootstrap method.

2. Experimental data

Experimental data were taken from Seidel (1987). Adsorp-
tion equilibrium data of indol dissolved in water have been
measured in a concentration range of 10~3-2mmol/I on four
different activated carbons at 20 °C. The following activated
carbon samples were analyzed: Hydraffin 71 (carbon 1),

TVAX 1 (carbon 2), Filtrasorb 400 (carbon 3) and AG3 (car-
bon 4). Details regarding the experimental procedure and the
characteristics of the activated carbon can be found in Seidel
(1987). The data sets for all carbons analyzed and the param-
eter values determined earlier by Seidel et al. (1985) are given
in Tables A.1 and A.2 respectively.

3. Methods
3.1. Model formulation

Commonly used isotherm models applied to describe ad-
sorption from aqueous solution on activated carbon are the
Langmuir, Freundlich and Redlich-Peterson isotherm equations
(Ruthven, 1984). The well-known Langmuir isotherm reads

kL - C (3)
a] =dg———.
L s 1+ kL c
The Freundlich isotherm reads
afp = kF . Cn. (4)
The Redlich-Peterson isotherm reads
Hgrp - ¢
ARp = ————— . (5)
1 + kgp - c?

The disadvantage of the Freundlich isotherm is that it does
not follow Henry’s law at concentrations approaching zero.
This condition is fulfilled by the Redlich-Peterson isotherm. For
p=1, Eq. (5) converts to the Langmuir isotherm, for 1 > kgrp-c?
it simplifies to Henry’s law and for 1 <kgrp-c? it becomes iden-
tical to the Freundlich isotherm. For p # 1, it is not possible
to transform the three parameter Redlich-Peterson model into
a linear form.

A more comprehensive theory for comparing the three ad-
sorption models given above (and other models) is provided by
the theory of adsorption on heterogeneous surfaces (Jaroniec
and Madey, 1988; Cerofolini and Rudzinski, 1997).

3.2. Parameter estimation and model accuracy

The free parameters in Egs. (3)—(5) were estimated using a
least-square (LS) approach. These parameters should minimize
the quadratic error between the experimental data Y°*P and the
model output ¥™°4 for all sample points. Typically, the squared
error is further normalized by the experimental data Y®*P (i.e.
a®P) to bring all measurements into the same scale. As in Seidel
et al. (1985) in this study the following objective function (@)
was used

YeXP _ Ymod

m 2
o= <#> , (©)
i=1

1

where m is the number of sample points.
Model accuracy was tested (i) with the relative standard de-
viation

[©
% 0, = T 100, (7
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with degree of freedom df = m — k, where k is the number
of model parameters and with the coefficient of regression Rf
(Montgomery et al., 2001)

k-(1—R?

RE =R = =g ®

with

2]
R*=1—— and Cr=)_ —
Cr i=1 Y;

2
m (Yiexp . l/mz?q:l Yiexp)

©))

The relative standard deviation (% a,) was used to compare
the results with Seidel et al. (1985). In the analysis R? is used
instead of R? since it takes into account the number of free
parameters, which is necessary to compare various models with
different degrees of freedom.

The methods described so far were applied already in Seidel
et al. (1985) for analyzing the data and the models. In this study
we performed additional statistical tests to check the quality of
parameters and the suitability of model/data combination. In
the following section, we will describe these methods shortly.

3.3. Non-linearity analysis

The non-linearity analysis gives a better understanding
regarding the extent to which non-linear models differ from
linear models. The concept was first introduced by Bates
and Watts (1980). The approach is illustrated below with an
example model 7 that is non-linear in a parameter 6. Using only
two measuring points it is possible to draw the solution locus
for a simple model given by

mo | _ |3 'xlg
R g o

in a two-dimensional phase plot. Parameter 6 is now varied
while the other values are fixed: e.g. x; =0.015, x, =0.7. The
solution locus shown in Fig. 1 describes the dependency of
given values for x on parameter 0. Since the model is non-linear
in 0, the expectation surface/solution locus is curved and equal
spaced values of 6 map to unequally spaced values on 7(0).
The shape of the solution locus and the spacing of the values
of constant A0 on the solution locus in the vicinity of a fixed
value of 0, are used as a measure of the degree to which the
non-linear model differs from the linear model. In-general the
non-linearity of a model can be separated into two components
(Bates and Watts, 1980):

1. “Intrinsic non-linearity” (IN) is associated with the curva-
ture of the solution locus in the sample space. It represents
the inverse of the radius of a circle which best approxi-
mates the solution locus in the direction of the tangent plane
for fixed parameter values. For a linear model, IN is zero
since the solution locus is e.g. a straight line in the two-
dimensional case.

2. “Parameter-effect non-linearity” (PE) is associated with the
projections of the parameter lines on the tangent plane to

3.2

3} Solution Locus AQ

28 r

& 26 V\\
24 | Parameter Spacing
2.2
2 1 1 1 1 1 1
0 0.5 1 1.5 2 25 3
M
Fig. 1. Plot of the expectation surface (solid line) in the response

space (Eq. (10)). The symbols correspond to equal spaced values for 6
0,0.05,0.1,..., 1).

the solution locus and is a measure of the lack of parallelism
and the inequality of the parameter lines spacing on the
solution locus at the least square solution. For a linear model
the parameters are equally spaced on the solution locus.

IN and PE can be calculated as suggested by Bates and Watts
(1988). Briefly, one calculates the tangent plane (first deriva-
tive with respect to the parameters) for function #(6) at a fixed
value for 0. Then the acceleration (second derivative with re-
spect to the parameters) can be decomposed in the direction
parallel to the tangent plane and normal to the tangent plane.
To determine the curvature measures for each parameter, both
components of the acceleration are divided by the squared
length of the tangent vector in direction of the selected param-
eter. The curvature measure that is in direction of the tangent
vector is designed as PE while the curvature measure normal
to the tangent vector is designed as IN. Since IN and PE are
normalized, they are dimensionless. The significance of IN
and PE, i.e., the close-to-linear behavior, can be assessed by
comparing the values with a corresponding significance level
from the F-distribution (critical values IN, and PE,)

1
N< =N,
JF(2/2, dfy, dfy)

1
PEL
VF(a/2,dfy, df>)

PE., Y

where df|{ =k and df, =m —k, and e.g. «=0.05, representing
a 95% confidence interval. Values smaller than the statistical
limits IN., PE. indicate a close-to-linear behavior. The theory
will be used below to access the non-linearity in adsorption
models with real data sets. For a number of examples, Bates
and Watts show that IN is typically small and that the major
contribution to the non-linearity is due to the parameterization,
i.e., PE. Moreover, they found that PE is closely associated
with the measure of bias introduced by Box (1971).
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3.4. Box bias calculation

For single response systems, the bias in the least square
estimate of parameters in non-linear regression models can be
calculated as follows according to the method proposed by
Box (1971)

—g2 —1
A =0y m T
Bias(d) = — [§ izlw,wi]

m m -1
xZWi tr {Z WiWiT} H; |, (12)
i=1 i=1
where the standard deviation o, is defined as

Z;’HZI (YieXp _ Yimod)z
O-tl = ’
df

(13)

and W; and H; are the first and second derivative of the model
function with respect to the parameters, respectively. The bias
given in Eq. (12) is a vector of dimension of parameter (k),
representing the discrepancy between the estimates of the pa-
rameters and the true parameter values. The bias expressed as
a percentage of a LS estimate is a good measure for the non-
linearity in parameters. The percentage bias can be expressed
as:

Bias(0;)
%B; =100 ———, j=1,...,k. (14)

0,

Ratkowsky (1983) quantifies a model as linear if %B is
below 1.

3.5. Fisher-information-matrix

The classical way to estimate the confidence intervals for
parameters is based on parameter sensitivities w;, which de-
scribe an infinitesimal change of a state variable x according to
a change of parameter 0;

Ox

o (15)

@j

FIM is calculated by the sum over all sample points with the
sensitivity vector o and the inverse of variance of the measure-
ments o2 (Ljung, 1999)

o=[w; vy - ol (16)
1

FIM=—=> 0" o, (17)
O'a ™

This expression for FIM appears if one calculates the variance
az of estimated parameters 6

o= E[(0 — E[0))?), (18)

with E[e] expectation. The following equation holds true for

the variance of single parameter O’(%) based on the Cramer—Rao

J

inequality

a§j>(FIM—‘)J~j. (19)

Thus the confidence interval for the parameters is given by
f df f df
The variance—covariance matrix (FIM~!) can be used to cal-

culate correlations between parameters

1 if h=j,
(FIM™1),,;

VEM Y, - JEIMT

where €;; represent the correlation coefficients between para-
meters A and j.

Qpj = if h # j, 21

3.6. Re-parameterization

Re-parameterization is highly recommended, if a model is
found to be far from linear (i.e., if PE/PE. > 1, Eq. (11))
(Ratkowsky, 1990). For re-parameterization, the parameters of
the model may be expressed as a function of the parameters
of a second model. Below re-parametrization for the Redlich-
Peterson isotherm is shown as an example. New parameters ¢,
¢, as a function of the actual parameters Hrp and krp can be
defined as follows:

1 krp
¢ = H_RP; 2= H_RP. (22)
Then Redlich-Peterson isotherm can be written as
agp= —— . (23)
1+l

Model (5) and (23) are “re-parameterizations” of each other. As
the shape of the solution locus is independent of the parame-
terization, the process of re-parameterization does not alter IN.
Different re-parameterizations of the basic model produce the
same goodness of fit and the same fitted values, but parame-
terization has beneficial effect by making confidence regions
narrower for the parameters ¢; and ¢, and convergence faster
(Table 1).

It should be noted that transformation of the parameters is
different from the transformation of the response variable into
a linear form. Transformation of a response variable distort the
response space and creates a new expectation surface, thereby
affects the disturbance term and the validity of the assumptions
on it. On the other hand, transformation of the parameters does
not affect the assumption of the deterministic part and the error
term.

3.7. Bootstrap approach

The bootstrap approach introduced by Efron and Tibshi-
rani (1993) is a data-based simulation method for statistical
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Table 1

Comparison of convergence using normal Redlich-Peterson (Eq. (5)) and re-parameterized Redlich-Peterson (Eq. (23))

D Whole data set

Normal Redlich-Peterson Eq. (5)

No. of iterations Function count

Re-parameterized Redlich-Peterson Eq. (23)

No. of iterations Function count

Cy 500 2000
Cy 118 476
C3 500 2000
Cy 250 2000

30 124
68 276
64 260
49 200

Termination criterion given to the optimizer was, maximum number of iterations 1000 and maximum number of function evaluations 2000.

inference. A main application of the method is the estimation
of confidence regions for a non-parametric distribution. To per-
form the analysis, the set of experimental data Y®*P is used
as a data base. Due to measurement errors a repetition of the
experiment would lead to a slightly different set of data Y7
and therefore to a different set of estimated parameters. The
bootstrap approach now uses a large set of B times replicated
experimental data (Y7, Y3,Y3..., Y}) to calculate statistical
properties of the resulting distribution of the (re)-estimated sets
of parameters. Since it is not practical to repeat an experiment
very often in reality, a Monte—Carlo simulation is used to gen-
erate the data. The approach is described below in brief; more
details can be found in Joshi et al. (2006).

3.8. Reconstruction of the experimental data

For every run of the Monte-Carlo simulation, the set of data
has to be replaced by a new one. As the considered experiments
were performed only once (Seidel et al., 1985), standard devi-
ations for all sample points were not available. The following
procedure was used to generate additional quasi-experimental
data sets: a constant average standard deviation (o) was as-
sumed for the whole data set, which was calculated by Eq. (13).
The bootstrap data were generated with an additive absolute
error (g, - r) for the model f with optimal parameters 0:

a* = f(c, @) 40,1, (24)

where r is a random number generated from normal distribution
with mean 0 and standard deviation 1.

3.9. Simulation, parameter estimation and outlier analysis

To estimate the parameters, Matlab environment with
“Isgqnonlin” solver, which applies the “Levenberg—Marquardt”
method for optimization was used to minimize @ in Eq. (6).
Simulations and parameter (re-)estimation was performed B
times to generate a sufficient data sets using Eq. (24).

The re-estimated parameters are first analyzed with respect
to outliers. Outliers are extreme cases of one variable, or a
combination of variables, which have a strong influence on the
calculation of statistics. Sometimes the data sets include one or
more values that appear unusually large or small and are out of

place when compared with the other data values. These values
are known as outliers and are often erroneously included in the
analysis of data sets. A single outlier is capable in changing
considerably the confidence interval of parameters. We com-
puted outliers as described in (Montgomery et al., 2001). Quar-
tiles Q; divide the sorted data set into four equal parts where
25% of the data can be found between Q1 and Q; (represent-
ing the median) and 25% of the data can be found between Q>
and Q3. The spread sp is defined as sp = O3 — Q. Outliers
are defined as such values that are beyond the borders given by
Q1—1.5-spand Q3+ 1.5-sp. In case of parametric histograms
the outliers with respect to parameter can be found because of
extreme data sets generated by random error (o, - r).

3.10. Confidence intervals in the bootstrap framework

Confidence interval analysis in the field of parameter estima-
tion is one of the important statistical tests to evaluate parame-
ter reliability. The goal of bootstrap confidence interval theory
is to calculate confidence limits for a parameter (; from the
bootstrap distribution which is represented in form of a para-
metric histogram (DiCiccio and Efron, 1996).

The set of replicated experimental data a}, a3, a3, ..., aj is
used to calculate statistical properties of the resulting distribu-
tion of the (re)-estimated set of parameters @)T, @;, @’3‘ and @}
where B is the number of bootstrap replications. Let 0*® indi-
cate the 100- (1 —o)th percentile of B bootstrap replication. Then
the percentile interval (510, Eup) of intended coverage 1 — 2«
is obtained by

(Oro, Oup) = (02 G124/, (25)

Once the intervals are calculated by the above given procedure
it is necessary to describe the length L, the shape sh of the
confidence interval (0jo, Oyp) and the shape of the histogram
shy which can be calculated as follows:

L = 0up — Oro, (26)
Oup — 0
sh= —2 | 27)
0— 0
O — 0
shy = &~ (28)
9_ sm
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Shape sh measures asymmetry of the confidence interval about
the point estimate. Shape sh > 1.0 indicates greater distance
from @up to 6 than from 0 to 0},. The corresponding shape of
the histogram, shy, is based on the deviation of mean from
the smallest value (Esm) and the largest value (élg). If length is
based on the current value of 5, %L can be used for normal-
ization:

%L = = -100. (29)

|| &~

From the data obtained, correlation coefficients €2;, are calcu-
lated with the standard method (Constantinides and Mostoulfi,
1999)

Cov(0", 07
0, =0 (30)
UQhO'Qj

3.11. Effect of sample size

The quality of the estimated parameters determined strongly
depends on the number of data points and the range of con-
centration where the measurements are performed. To analyze
the influence of the number of data points, the available data
set was reduced, by taking every second point. In this way the
covered range of concentrations remain same. All methods in-
troduced so far will be also applied for data sets modified in
this manner. IN and PE (Eq. (11)) values are useful quantities
to study the effect of sample size.

4. Results and discussions

Four data sets presented in Table A.1 were analyzed with the
three adsorption isotherm models described above. Below at
first, Carbon 2 data set with 13 data points is analyzed in detail.
Subsequently the results for the remaining data sets (Carbon 1,
3, and 4) are summarized.

4.1. Analysis of Carbon 2 data

4.1.1. Langmuir isotherm

In the field of adsorption thermodynamics, frequently, non-
linear isotherm models are transformed to models that are linear
in parameters. It is obvious that the Langmuir model (Eq. 3,
ar (c)) can be transformed to a linear form in three different
ways Laszlo, 2005, (Chairata et al., 2005), and (Senthilkumaar
et al., 2006), e.g.

1 1 1 1

— = e (31)
ar, as -k ¢ dag
1 1

== +— e (32)
ap  as -k ag

1
ap =a; — — - 2L, (33)

kL &

Table 2

Comparison between the parameters of transformed linear Langmuir models
vs non-linear Langmuir model and transformed Freundlich model vs non-
linear Freundlich model for Carbon 2 data set

Langmuir isotherm

Equation No. 0 j Parameter @)_/- Standard deviation
%0, (Eq. (7))
Eq. (3) as 2.3 19.32
kr 321.6
Eq. (31) as 2.0 22.33
kr 4924
Eq. (32) as 3.0 44.85
kr 59.5
Eq. (33) as 2.4 20.62
kr 344.8
Freundlich isotherm
Eq. (4) kr 3.6 19.09
n 0.26
Eq. (34) kr 3.6 20.07
n 0.25

Parameters can be then estimated via linear regression. It is
important to note again that, if an additive error term is as-
sumed as an appropriate representation of the overall error, the
transformation of the function involves transformation of the
error term, too (see Eq. (2)). All three transformable Lang-
muir models deliver different sets of parameters (see Table 2).
Results in Fig. 2a, show that three different isotherms ay (c) are
obtained based on the Eqs. (31)—(33). Although the agreement
for small concentrations is good, for large values of the con-
centration significant deviations from the measurements can be
detected. This is also true if Eq. (3) is applied. In general it was
found that Langmuir parameters have the highest bias of all
parameters (e.g. Bias =9.84% for k) compared to Freundlich
and Redlich-Peterson isotherm parameters. Furthermore, R? is
0.78 (Eq. (8)) and %a, is high (Table 2), showing the worst
agreement of this isotherm with measurements. The correlation
coefficient (244, = 0.52, (Eq. (21))) indicates that these two
parameters are not strongly correlated.

4.1.2. Freundlich isotherm
The Freundlich model (Eq. (4)) can also be transformed to
a linear form (e.g. Laszlo, 2005):

Inap=n-Inc+1n kp. (34)

In case of Freundlich model, only small deviations between
transformed and non-linear model (Eq. (4)) were observed
(Fig. 2b, Table 2).

A detailed statistical analysis e.g. IN and PE etc. was per-
formed with Freundlich isotherm (Eq. (4)). Tables 3 and 4
summarizes the results. IN and PE both are below the critical
limit. Furthermore, agreement between the models and data set
is good with high regression coefficient RCZ. = 0.98. The per-
centage bias for both parameters is below 1%. The confidence
intervals and correlation between parameters (., = 0.66)
are small revealing a relative high precision of the estimated
parameters.
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Fig. 2. (a) transformed Langmuir models as described in Eqgs. (31)—(33). Points are experimental data (Carbon 2). ---: Eq. (31), — : Eq. (32), and —— :

Eq. (33). (b) —- : Eq. (34). Solid lines represents non-linear models in original form (Egs. (3)—(4)).

Table 3

Nonlinearity estimates for the normal, re-parameterized model with whole and reduced data sets for Freundlich and Redlich-Peterson isotherm

D m Property Limit IN, & PE. Freundlich Limit IN. & PE. Redlich-Peterson normal Redlich-Peterson re-parameterized
Whole data set
C, 13 IN 0.4362 0.0617 0.4552 0.1968 0.1967
PE 0.1450 1.7443 0.3254
Cy 20 IN 0.4683 0.0417 0.4993 0.2291 0.2285
PE 0.0730 3.1992 0.4229
Cs 21 IN 0.4710 0.0530 0.5029 0.2348 0.2284
PE 0.0799 11.2271 0.1282
Cy 22 IN 0.4734 0.0219 0.5061 0.1579 0.1462
PE 0.0326 7.4871 0.3824
Reduced data set
C, 7 IN 0.3443 0.0923 0.3166 0.3220 0.3210
PE 0.2335 2.7429 0.4930
Cy 10 IN 0.4062 0.0715 0.4120 0.4063 0.4067
PE 0.1237 4.6467 0.6837
C3 11 IN 0.4183 0.0851 0.4297 0.4333 0.4325
PE 0.1335 16.4186 0.2193
Cy 11 IN 0.4183 0.0370 0.4297 0.2246 0.2173
PE 0.0521 22.9301 0.5912

1
JF /2, dfy, dfy)

Limit =

4.1.3. Redlich-Peterson isotherm

Fig. 3 and Table 3 summarizes the results for the normal
Redlich-Peterson model (Eq. (5)). IN is below the critical limit,
but PE is above the limit. The agreement between the model and
the data set is also confirmed by the high regression coefficient
Rg = 0.99. However, the quality of the parameters cannot be
assured because of the high PE value. To know which parameter
behaves non-linearly in the model, the bias was calculated.
Percentage bias values exceed 1% for both parameters Hrp
and krp, whereas for p is less than 1%. Furthermore, broad
confidence intervals were obtained (Table 4). Basically this is
because of a high correlation between the two parameters Hrp
and kRp (.Q]z = 0.99).

A re-parameterization was performed for the Redlich-
Peterson model (Eq. (23)) in order to decrease PE, bias,
correlation between parameters and size of confidence inter-
vals. The results obtained after re-parameterization are also
given in Table 3 (IN and PE). From the results summarize in
Fig. 3a, it can be seen that IN remains the same as explained
before. However, drastic decrease in PE value is observed
(Fig. 3b). However still, for parameter ¢; (Eq. (22)) the
percentage bias value still exceeds 1% (Table 5). The correla-
tion between the parameters has improved (Qpgpkgp = 0.35)
and the confidence intervals became smaller. Parame-
ters that characterize the goodness of fit have comparable
values.
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Table 4
Comparison between Freundlich and Redlich-Peterson confidence intervals calculated with FIM method (Eq. (17))
D 0; Freundlich 0; Redlich-Peterson
RZ 6,  %a, 0 %L %B R® 6, %o, 0 %L %B
Whole data set
C; kr 0.98 0.27 19.09  3.61 +0.40 22.02  0.12 Hrp 0.99 0.12 6.49 1297.1 £ 832.03 128.3 6.2
n 0.26 £+ 0.06 4292 040 krp 418.1 £260.96 124.8 6.0
P 0.86 +0.04 8.6 0.09
Cy kr 0.98 0.16 10.57  2.14+£0.12 11.59 0.0 Hrp 0.99 0.13 8.64  2639.4+3727.10 282.4 38.2
n 0.18 £ 0.03 29.22  0.11 krp 1264.1 £ 1780.40 281.7 38.1
P 0.85+0.03 6.87 0.05
C3 kr 0.98 0.21 14.14  3.22+0.21 13.08 0.03 Hrp 0.98 0.20 1448  9594.7 £ 39293.44 819.1 359.1
n 0.23 +0.03 2652 0.13 krp 3028.9 £ 12345.45 815.2 357.3
p 0.79 +0.04 10.46 0.08
Cy kp 0.99 0.08 748  2.514+0.07 590 0.003 Hgp 0.99 0.08 7.82  9632.5£31044.46 644.6 222.9
n 0.24 +0.01 11.21  0.02 krp 3898.7 £ 12544.64 643.5 222.5
P 0.77 +0.02 4.6 0.04
Reduced data set
C; kp 0.98 0.28 20.84  3.49+0.63 36.28 0.28 Hgp 0.99 0.11 7.60 1350.4 £+ 1606.24 237.9 13.3
n 0.26 +£0.10 7498 1.03 krp 4435 £513.23 231.4 12.9
P 0.85 +0.07 15.6 0.22
Cy kr 0.97 0.21 12.84 2.18+0.25 22.78  0.002 Hgrp 0.98 0.16 10.46  2289.9 £ 5202.94 454.4 74.2
n 0.18 +0.05 55.50  0.31 krp 1083.0 £ 2451.06 452.6 73.9
P 0.86 + 0.06 13.2 0.22
C3 kr 0.98 0.25 14.06  3.12+0.35 2222 0.05 Hgp 0.98 0.24 15.06  7358.2 +£50141.01 1362.9 955.3
n 0.23 +£0.05 45.02 033 krp 2398.1 £ 16272.09 1357.1 951.4
P 0.78 +0.08 19.6 0.22
Cy kr 0.99 0.09 770 246+0.13 10.83  0.009 Hrp 0.99 0.10 8.18 19945.9 +208667.71 2092.3.7  1995.1
n 0.23 +£0.02 20.28  0.05 krp 8185.7 +85529.38 2089.7 1992.6
P 0.77 £0.03 8.73 0.08

Values for RZ (Eq. (8)) and standard deviation (Eqgs. (13) and (7)) are also given. All results are shown for whole and reduce data sets.

4.1.4. Bootstrap analysis
4.1.4.1. Bootstrap confidence intervals The standard FIM
method and the bootstrap method are compared with respect
to parameter accuracy. With Freundlich and Redlich-Peterson
models B = 2000 bootstrap replication are performed (MAT-
LAB 7 is used; each run lasts approx. 4-6h on a workstation
with dual processor 2.2 GHz each, AMD Opteron 248, and
with 4 GB RAM). For higher values of B, no changes in
characteristics of the histograms could be observed. For the
calculation of the confidence intervals o« =0.05 is used. The o,
values used in Eq. (24) to generate data are given in Table 4.

Table 6 and Fig. 4, summarizes the results of the bootstrap
analysis. The comparison between the two approaches reveals,
that with the standard FIM method the confidence intervals of
the parameter are underestimated. The size of the confidence
intervals, calculated by the bootstrap method and with the FIM
differ up to a factor of & 2 (Fig. 4a, Freundlich model, param-
eter kp). Further, maximum probability values (@;-“ax) for the
parameters are also given in Table 6.

The non-linearity of the model can be observed by high val-
ues of the shape factor (shy > 1). It can be seen from Fig. 4b
that Redlich-Peterson parameters are highly biased (asymmetric

histograms) showing non-linear dependency of the parameters,
which agrees quite well with Box’s bias criterion (%B > 1).
The correlation coefficient between parameters (Hrp and krp)
from bootstrap parametric data is €5, = 0.99.

4.1.4.2. Comparison of the confidence intervals by a simulation
study To illustrate the usefulness of bootstrap method, simu-
lations were performed with the Freundlich model in order to
determine confidence intervals for loadings obtained from both
methods i.e., bootstrap and FIM. Extreme profiles for loadings
are calculated using upper bounds and lower bounds of the pa-
rameters. Fig. 5a shows the intervals calculated for loading a for
Carbon 2. The confidence region for a calculated using boot-
strap approach contains more simulated data points (= 95%) in
comparison to the profiles calculated with FIM method which
contains only &~ 76% of data points. This reveals that intervals
calculated with the bootstrap method are more appropriate.

4.1.5. Effect of sample size
The effect of sample size on the non-linear behavior
of model/data combination was examined by reducing the
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Fig. 3. Comparison between all data set (Carbon 1-4): (a) relative IN values (IN/IN.) before and after re-parameterization for Redlich-Peterson isotherm; (b)
relative PE values (PE/PE.) before and after re-parameterization for Redlich-Peterson isotherm; (c) relative IN values for whole and reduced data set; (d)
relative PE values for whole and reduce data set. (1-2) Freundlich isotherm and (3-4) Redlich-Peterson isotherm.

Table 5
FIM confidence intervals for Redlich-Peterson after re-parameterization
D N 0 ; Rf 04 Point estimation
Oro 0; Oup %L %B
Whole data set
C, 13 o 0.99 0.12 0.0003 0.0008 0.0013 128.3 2.13
o 0.304 0.322 0.340 11.2 0.098
p 0.82 0.86 0.89 8.63 0.09
Ci 20 oy 0.99 0.13 —0.0002 0.0004 0.0009 286.8 6.76
¢, 0.457 0.479 0.500 9.2 0.0596
p 0.82 0.85 0.88 6.9 0.08
C3 21 o 0.98 0.21 —0.0004 0.0001 0.0005 1433.4 30.07
o 0.292 0.314 0.334 13.5 0.0137
p 0.74 0.78 0.83 10.9 0.09
Cy 22 oy 0.99 0.08 —0.0003 0.00002 0.0003 2575.9 14.7
by 0.388 0.399 0.412 6.12 0.028

p 0.742 0.767 0.778 4.6 0.03
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Table 6
Comparison between confidence intervals of parameters of Freundlich and Redlich-Peterson models calculated with Bootstrap method (B = 2000)
D 0; Freundlich 0; Redlich-Peterson
0, 0o 0; 0Oy %L  shy 0T O 0; O 0; Oup %L shy 07 0
Whole data set
C, kr 3.68 3.07 370 447 3782 111 355 75 Hrp 1171.88 536,59 123559 231235 143.72 1.59 1150.00 109
n 029 021 030 045 7728 146 027 157 kgrp 377.94  181.24  398.05 726.19 13690 1.53 345.00 108
p 0.86 0.81 0.86 092 1246 1.03 086 44
Ci  kp 212 198 213 228 1422 1.07 213 26 Hrp 2058.08  643.53 2456.59  6476.27 237.43 257 1350.00 234
n 0.19 0.16 0.19 024 4296 115 0.19 80  krp 997.56  315.87 1185.11  3121.19 236.71 252 700.00 237
p 0.85 0.82 0.85 0.89 8.90 1.01 085 39
Cz3 kp 330 298 331 372 2241 119 323 80 Hrp 4976.54 52948 8386.70 24842.47 289.90 2.72  1000.00 4
n 025 020 026 033 5007 123 025 127 kgrp 157091 17850 2663.52  7888.80 289.48 2.80 250.00 6
p 0.79 0.72 0.79 0.88 1929 0.99 078 78
Cy kp 253 239 253 268 1143 1.02 251 34 Hrp 771534 126824 829570 18302.99 205.34 2.03  2500.00 0
n 025 023 025 028 2072 1.04 025 38 krp 312944 525.09 338730  7530.58 206.82 2.06 1250.00 1
p 0.77 0.75 0.77 0.79 5.62  1.01 077 40

O stands for number of outliers. Further given are median ((~) ), mean ((_) 1), shape of parametric histogram (shp), percent length of confidence interval (%L),

maximum probability values (7).
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Fig. 4. Comparison between bootstrap confidence intervals (solid line) with classical FIM confidence intervals (dotted line) for Carbon 2: (a) parameter kr of

Freundlich model; (b) parameter Hgrp of Redlich-Peterson model.

sample size for the Carbon 2 data set from 13 to 7 (using ev-
ery second point). This study was intended to explore whether
the sample size was enough for estimating parameters with sat-
isfying statistical properties. The analysis was performed with
the Freundlich and the Redlich-Peterson isotherm models as
described before. Table 3 in addition with Table 4 show the
effect of sample size. It can be concluded, that the reduction
in data set increases IN (Fig. 3c) and PE (Fig. 3d), and there-
fore also the bias. In case of Freundlich the curvature mea-
sure of non-linearity is still below the critical value for the
reduced data set. Obviously, the length of confidence intervals
(Table 4) increases for all the parameters.

A general statement on required sample sizes cannot be given
because it not only depends on model structure but also on the
region where the experiments are performed.

4.1.6. Analysis of Carbon 1, 3, and 4

Analysis of the data sets for Carbon 1, 3, and 4 (Table A.1)
reveals in case of the Freundlich model, that the IN and PE
values are always below the critical values, indicating a close-
to-linear behavior.

In case of the Redlich-Peterson model, a small discrepancy
between IN values before and after re-parameterization is found
(Table 3 and Fig. 3a). The reason behind this is, that parameters
HRp and kgrp are strongly correlated before re-parameterization
and a global minimum is difficult to obtain. Negative lim-
its of the confidence intervals are partly observed for Carbon
1, 3 and 4. This is again due to a high correlation between
the parameter Hrp and krp. PE values in all cases are higher
than the critical values (Fig. 3b). Re-parameterization is per-
formed to improve PE, correlation and confidence regions of the
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Fig. 5. Application of bootstrap confidence intervals with Freundlich model for Carbon 2 and 3. Confidence region for the loading based on the bootstrap

approach (solid line) and based on FIM (dashed): (a) Carbon 2; (b) Carbon 3.

parameters. As for Carbon 2, here, again a drastic reduction in
PE values and correlation is observed. The confidence intervals
are improved for ¢, as shown in Table 5. Now, only for pa-
rameter ¢ the confidence interval includes negative values. It
can be due to two reason. Firstly, the parameter ¢ is highly
biased. Secondly, more data points are needed in high concen-
tration region, to reduce the size of confidence intervals. As for
Carbon 2, the reduction in data sets causes an increase in the
curvature measures of the non-linearity for Carbon 1, 3, and 4
Fig. 3(c—d).

Application of bootstrap confidence interval for Carbon 3
(Fig. 5) also shows that ~ 95% of data points lie inside profiles
of loadings calculated from bootstrap approach in comparison
to trajectories calculated from FIM method which contain only
~ T1% of the data points.

5. Conclusions

In this study a methodology for the evaluation of the quality
of free parameters in adsorption isotherm models was applied.
It comprises a non-linearity analysis and the analysis of the
parameter confidence intervals by two methods, the classical
approach with the Fisher-Information-Matrix and the bootstrap
approach. The analysis was performed on single component
adsorption equilibrium data (indol from aqueous solution on
activated carbon) measured in a previous study (Seidel et al.,
1985).

In all cases considered slightly better minimal values of
the objective function (o) used in the parameter estimation
is obtained in comparison to the old study. Two approaches,
i.e., transformable linear and non-linear least square, show
that the Langmuir model does not give a satisfying descrip-
tion of the considered experimental data. In spite of the fact,
that the Freundlich isotherm does not follow Henry’s law, it
has the smallest values of IN and PE as well as the smallest
confidence intervals in comparison to the other models.
This indicates that for the covered range of the liquid phase

concentrations, this simple model provides an adequate de-
scription. The three parameter Redlich-Peterson model fits the
data best but the non-linearity of the parameters (PE values)
is high, giving high bias, and contains partly negative values
in the confidence intervals. Although the model fits the data
excellently from statistical point of view (Rg close to 1), the
model is not acceptable in the current form in terms of quality
of parameters. The concept of re-parameterization was used
to reduce the PE values for the Redlich-Peterson isotherm.
Significant reduction in PE and bias values are found leading
to smaller correlation coefficient values and better confidence
intervals for parameter ¢,. However confidence interval for
¢, remains negative. Thus, more data points would be needed
in high concentration range to obtained better results.

To overcome the limits of the Fisher-information-matrix
(FIM), which gives only a lower bound of the parameter confi-
dence intervals, the bootstrap method was applied. In general,
the non-linearities detected with the IN and PE values can also
be found in the bootstrap parametric histograms. Non-linear
parameters show a bias and have shape values different from 1.
The confidence intervals determined with the bootstrap method
are broader then the intervals obtained with FIM (in some cases
up to a factor of 2). Using the FIM approach, low sensitivities
of the parameters lead to negative values in the confidence
intervals. Benefits from the bootstrap approach becomes ob-
vious if the limit-values of the parameter confidence intervals
are used in a simulation study predicting limits of equilib-
rium loadings. Using the bootstrap interval values, &~ 95% of
the measured data points lie in between the predicted limits.
In contrast, using the values from the FIM approach, only
~ 71-76% data are covered. The application of the bootstrap
method is also a good possibility to verify the bias estimates
calculated with Box formula. As can be seen from the tables
given, high values of the shape are in accordance with high bias
values.

A study of the sample size for the Freundlich model shows,
that half of the size of data set used is enough to get values of
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IN and PE below the critical limit. Clearly with the reduction
of the data sets, a trend to higher IN and PE and broader con-
fidence intervals is observed. Model/data combination analysis
for Carbon 1, 3, and 4 with respect to the Freundlich model re-
veals a close-to-linear behavior as IN and PE values were found
below the critical limits. For the Redlich-Peterson model, the
non-linearity due to the parameterization was found again to
be high, concluding that re-parameterization of the model is

M. Joshi et al. / Chemical Engineering Science 61 (2006) 7805-7818

necessary to improve the quality of parameters.

Non-linearity analysis together with a bias estimate was
found to be a useful method to evaluate the accuracy of param-
eter estimates. Together with the bootstrap method the quality
of the parameters can be characterized in a much better way
then with traditional methods typically used so far. This con-
cept can be applied not only to analyze such simple adsorption
isotherms models but also for any model which is non-linear

in parameters.

Notation

Symbols

a

s =R gs

loading,mmol/g

saturation loading in Eq. (3),mmol/g
concentration in liquid phase,mmol/l
variability of observed values

data set

degree of freedom

expectation

non-linear function

F-distribution

transformed function

Hessian matrix of the model function
constant in Eq. (5),l/g

number of parameters

constant in Eq. (4),mmol! ™" . ["/2
constant in Eq. (3)

constant in Eq. (5),(1/mmol)”

length of confidence interval

number of data points

exponent in Eq. (4)

exponent in Eq. (5)

generates random number with normal distribu-
tion with mean zero and standard deviation one
coefficient of regression

corrected coefficient of regression
shape of confidence interval

shape of histogram

student ¢-distribution

trace

Jacobian matrix of the model function
state variable

data points

Greek letters

o significance level (e.g. 0.05)
overall error

n non-linear function

Oy absolute standard deviation in Eq. (13)

%0, relative standard deviation in Eq. (7)

0 real parameter

0 estimated parameters

omax maximum probability value from the parametric
histogram

0 mean value from the parametric histogram

0 median value from the parametric histogram

(2] objective function

¢ function of old parameters in Redlich-Peterson
case

® function of old parameters in Langmuir case

Q correlation coefficient

w parameter sensitivity in Eq. (15)

Subscripts

a absolute

b bootstrap

B number of bootstrap

F Freundlich

h indices for parameter

i running number of experimental data

Jj indices for number of parameters

L Langmuir

lo lower bound

lg largest value in parametric histogram

r relative

RP Redlich-Peterson

sm smallest value in parametric histogram

up upper bound

Superscripts

exp experimental values

mod model values

* new generated bootstrap data

Acknowledgement

Financial support provided by German Research Foundation
(DFG FOR-447) and Fonds der Chemische Industrie is grate-
fully acknowledge. We would like to thank Prof. D. Flockerzi
for fruitful discussions.

Appendix A

The data sets for all carbons analyzed and the parameter
values determined earlier by Seidel et al. (1985) are given in
Tables A.1 and A.2 respectively.
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Table A.1

Equilibrium data for the adsorption of indol from aqueous solution at 20 °C for Carbons C—C4 from Seidel (1987)

N Carbon 1 Carbon 2 Carbon 3 Carbon 4
¢ mmol/l a mmol/g ¢ mmol/l a mmol/g ¢ mmol/l a mmol/g ¢ mmol/l a mmol/g
1 0.00061 0.518 0.00043 0.378 0.00043 0.514 0.00032 0.368
2 0.00064 0.509 0.00074 0.507 0.00043 0.596 0.00036 0.347
3 0.00265 0.69 0.00177 0.72 0.00060 0.541 0.00070 0.473
4 0.00299 0.689 0.00230 0.986 0.00061 0.772 0.00144 0.453
5 0.0032 0.83 0.00587 1.287 0.00145 0.863 0.00384 0.649
6 0.00384 0.769 0.0147 1.572 0.00188 0.974 0.00405 0.678
7 0.00702 1.002 0.0148 1.572 0.00205 0.649 0.00512 0.812
8 0.00917 0.974 0.0272 1.828 0.00282 0.911 0.00811 0.823
9 0.0433 1.335 0.2832 2.360 0.00371 0.735 0.0118 0.781
10 0.0523 1.438 0.3191 2.590 0.0479 1.891 0.0125 0.793
11 0.0523 1.732 0.4416 2.697 0.0739 2.055 0.0314 1.200
12 0.1408 1.62 0.6754 3.174 0.0957 2.149 0.0320 1.074
13 0.2858 1.793 0.6936 2.972 0.0999 1.960 0.0493 1.330
14 0.3221 1.723 0.1080 2.223 0.0503 1.360
15 0.4318 1.948 0.1160 2.241 0.1599 1.518
16 0.5468 1.833 0.1478 2.293 0.1877 1.726
17 0.7364 1.957 0.1727 2.200 0.2666 1.707
18 1.058 2.092 0.5284 2.775 0.2704 1.880
19 2.289 2.226 0.8812 2.609 0.2941 1.893
20 2.292 2.232 1.132 3.177 0.5674 2.095
21 1.282 3.160 1.497 2.795
22 1.540 2.760
Table A.2
Parameter estimates for the Freundlich and Redlich-Peterson isotherms models using the data from Table A.1
D 0; Freundlich 0; Redlich-Peterson
0 i %0, Oy 0 i %0, Oq4
Whole data set
C kr 2.17 19.63 0.27 Hgp 2378 6.7 0.12
n 0.18 krp 1128
p 0.86
Ci kr 3.64 10.7 0.17 Hgp 1299 9.41 0.12
n 0.25 krp 416
P 0.86
C3 kr 3.27 14.7 0.21 Hgp 7139 15.12 0.19
n 0.22 krp 2247
p 0.8
Cy kr 2.52 7.6 0.08 Hgp 18248 8.6 0.08
n 0.24 krp 7289
P 0.77

Small differences between the parameters and standard deviations given below and parameters in Seidel et al. (1985) are due to truncating primary data

differently and different optimization algorithm used.
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Abstract

A quantitative description of dynamical systems requires the estimation of uncertain kinetic parameters and an analysis of their
precision. A method frequently used to describe the confidence intervals of estimated parameters is based on the Fisher-Information-
Matrix. The application of this traditional method has two important shortcomings: (i) it gives only lower bounds for the variance of a
parameter if the solution of the underlying model equations is non-linear in parameters. (ii) The resulting confidence interval is symmetric
with respect to the estimated parameter. Here, we show that by applying the bootstrap method a better approximation of (possibly)
asymmetric confidence intervals for parameters could be obtained. In contrast to previous applications devoted to non-parametric
problems, a dynamical model describing a bio-chemical network is used to evaluate the method.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Parameter confidence interval; Fisher-Information-Matrix; Bootstrap approach

1. Introduction

Measurements of small intermediates of primary meta-
bolism as well as mRNA or proteome data are available for
a large number of organisms (e.g., Schaefer et al., 1999;
Richmond et al., 1999). To analyze the data and to detect
new principles of cellular organization, often detailed
mathematical models are set up to describe intracellular
processes of interest. Besides the steady-state analysis to
calculate the distribution of fluxes in a large cellular
network, also dynamical models became very popular (e.g.,
Kremling et al., 2001). The models are mainly based on
balance equations for intracellular components and de-
scribe the temporal changes of the intracellular concentra-
tions by o.d.e.’s. The o.d.e.’s sum up all kinetic rates that
synthesize or degrade the metabolites. Therefore, kinetic
parameters are required that normally cannot be deter-
mined in vivo but have to be estimated from experimental
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Magdeburg, Germany.
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data. Corresponding methods are discussed in the literature
(e.g., Moles et al., 2003); the proposed algorithms have the
ability to cover also large and complex systems. Besides the
actual values determined for the different parameters it
appears highly desirable to have some information on the
confidence intervals of the estimated parameters. However,
methods to analyze the accuracy of estimated parameters
are scarce. Often, the following approach is used: the
variance of,j of parameter p; is given by

a, = (F) (1)

where F is Fisher-Information-Matrix (FIM). The con-
fidence interval of parameter p; is then given based on the
estimate p; of p; by (Press et al., 2002):

ﬁj—O'pj-t;/2<pj<ﬁj+0'p/.-l‘;/2, (2)

where ) ’ is given by Student’s t-distribution, v is the
degree of freedom and o is the (1 —a) 100% confidence
interval selected by the user. However, the approach
described has two major drawbacks. The given value in
Eq. (1) is only a lower bound for the variance and the
confidence interval is centered and symmetric to the
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estimated parameter. This is due to a linear approximation
of the state variables with respect to the parameters. Non-
linear systems behave in a different way: they show non-
normal distributions, often concomitant with a bias.

In the present study, we overcome the mentioned
problems by exploiting the so-called bootstrap method
(Efron and Tibshirani, 1993; DiCiccio and Efron, 1996).
The method surmounts the theoretical limitations by
assessing the uncertainties in statistics with data from
finite samples. Like a Monte-Carlo method, the bootstrap
uses stochastic elements and repeated simulations to
analyze the properties of the system under consideration.
The application of the method to dynamical systems is very
infrequent. Therefore, to demonstrate the potentials, a
small bio-chemical network is analyzed that describes the
temporal changes of the concentration of a number of
components with a set of o.d.e.’s.

Especially in a systems biology approach, the estimation
of parameters becomes more and more important to set up
“good” models (that is, models that are validated with a
number of experiments). For biological systems it was
shown that the sensitivity of state variables with respect to
kinetic parameters is important for a better understanding
of cellular dynamics. Here, we can show that the
confidence intervals of the parameters are larger than
predicted by traditional methods. Moreover, some of the
intervals show asymmetric shapes. These findings allow to
analyze the sensitivity of the parameters in a more precise
way. Furthermore, also the design of new experiments is
often based on directed modifications of the FIM to
stimulate the system in such a way that the sensitivities of
the parameters are improved. Applying an experimental
design, it is shown that the confidence interval calculated
with the bootstrap method reduces considerably.

2. Methods
2.1. Parameter estimation and model accuracy

Using a least-square approach, the kinetic parameters of
the model should minimize the quadratic error between the
simulation of the state variables x; and the measured data
xM for all state variables. As the latter is only available at K
discrete time points J = {ty,1,,...,x}, the errors at each
measurement time point are summed. The squared error is
furthermore normalized by the standard deviation of the
corresponding measurement noise ¢, for every state
variable x;. Thus, less noisy signals are more weighted
and all measurements are brought to the same scale. This
results in the following objective function:

n n ) _ oM 2

i=
where n is the number of state variables and ¢, are time
points where a sample was taken. To estimate the
parameters according to Eq. (3) solver “Isqnonlin”, which

uses “‘Levenberg—Marquardt” method for optimization,
from the MATLAB environment was chosen.

After estimation of the parameters, a model accuracy
evaluation analysis should be performed to ensure that the
model describes the experimental data sufficiently. This is
done scarcely in a systems biology approach and is based
mainly on large and often unknown measurement errors
for intracellular components. If available, the standard
deviation of the measured data is often based only on a low
number of measurements (degree of freedom df,). There-
fore, an F-test for every state variable, considering the ratio
of two y? distributed variates, @; with degree of freedom
df; = K — [; with /; is the number of parameters influen-
cing state i, and o,; with degree of freedom df,, is more
appropriate. With

®,/df

F = / fll (4)
O xj

a model is accurate if for all state variables

Foppap s <Oi<Frapar,ar- )

2.2. Bootstrap approach

The bootstrap method is a data-based simulation
method for statistical inference (Efron and Tibshirani,
1993). A main application of the method is the calculation
of confidence intervals for a non-parametric distribution.
The method is frequently applied to analyze data in
medicine (DiCiccio and Efron, 1996). Here, we are
interested in the confidence intervals of the kinetic
parameters for dynamical models. To perform the analysis,
an initial set of experimental data S is used as a database.
Performing parameter estimation results in a first set of
parameters. Due to measurement errors the repetition of
the experiment leads to a slightly different set of data Sj
and therefore to a different set of estimated parameters.
The bootstrap approach now uses a large set of B-times
replicated experimental data S7,S3,S5,...,Sg to calculate
statistical properties of the resulting distribution of the (re)-
estimated set of parameters. Since in reality it is not
possible to repeat the experiment a hundred times or more,
a Monte-Carlo method is used to simulate the data.

2.2.1. Outliers

Outliers are extreme cases in which one variable, or a
combination of variables, has a very strong influence on the
calculation of statistics. We identified outliers as described
in Montgomery et al. (2001). Quartiles Q; divide the sorted
data set into four equal parts where 25% of the data can be
found between Q, and Q, (representing the median) and
25% of the data can be found between Q, and Q;. The
spread sp is defined as sp = Q; — Q,. Outliers are defined
as such values that are beyond the borders given by Q, —
1.5-sp and Q5 + 1.5 - sp. The outlier procedure described is
used to analyze the data of the estimated parameters
resulting from the bootstap approach.
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2.2.2. Confidence intervals in the bootstrap framework

Confidence interval analysis is one of the important
statistical test to validate parameter reliability. The goal of
bootstrap confidence interval theory is to calculate
confidence limits for the parameters p; from their distribu-
tion (number density function). Normally, the distribution
is represented by a histogram. The number of bins in the
histogram is calculated by the Freedman—Diaconis rule
(Freedman and Diaconis, 1981).

The set of replicated experimental data S}, S3,S3,..., S
is used to generate a set of (re)-estimated parameters
D1.P5.P3, .., pp. The confidence intervals for the para-
meters are then calculated by the percentile method: let
ﬁ*(“) indicate the 100 - (1 — «) percentile of B bootstrap
replications; then the percentile interval (py,,p,,) of
intended coverage is obtained by

(Bros Pup) = (", p*172/9). (6)

The length L and shape sk of the confidence interval
(Pro> Pup) Of the distribution are calculated based on the
mean value j as follows:

L =ﬁup _ﬁlob (7)
sh="w L ®)
P =D

A shape sh>1.0 indicates a greater distance from p,, to p
than from p to p,,. Note, that, considering a confidence
interval in a normal distribution, it is symmetric about j,
and has a shape sh = 1.0. If length L is based on the current
value of parameter p, symbol %L is used:

L
%L = 100.5. ©)

2.3. Fisher-Information-Matrix

Traditionally, the solution of the non-linear o.d.e. system
is linearized for small parameter perturbations to calculate
the variances of the parameters with the help of the FIM
(Faller et al., 2003). The definition of the FIM is based on
parameter sensitivities w; which describe an infinitesimal
change of the state variable x; according to a change of
parameter p;:

axi

aﬁ .

(10)

wij =

Since the state variables are time dependent, the sensitiv-
ities wy; are also. The o.d.e.’s for the wy’s for a model with /
parameters of the form

i=f(xp) (an
are given by

o of of

W_@- W+@ (12)

with the matrix W-

wir Wiz -0 Wy
Wy Wy o ... :

W= . (13)
Wit Wn2 =00 Wy

The FIM is given now according to the following sum over
all times #;:

F=>wl.c'.w, (14)
Ik

with the variance—covariance matrix of the measurements

C. The expression for F appears if one calculates the

variance a{% of estimated parameters p:

0; = E[(p — E[)’]. (15)

with ETe] is expectation. The following equation holds true
for the variance of a single parameter a[% based on the
Cramer—Rao inequality (Ljung, 1999): ’

a2 >(Ff1 - (16)

=
Pj

Note that by using Eq. (16) only a lower bound of the
parameter variances can be calculated. This fact is
neglected in many publications that use FIM for further
parameter analysis and process improvement by experi-
mental design (e.g., Baltes et al., 1994).

2.4. Case study: generation of “‘experimental” data

Simulated data were generated using a dynamical model
describing a bio-reactor system. The model comprises the
uptake of a carbohydrate S by biomass X, and the
conversion of the substrate into intracellular components
(Fig. 1). The uptake reaction is catalyzed by enzyme E;
with product M. M is the product of the second reaction,
catalyzed by E,. Enzyme E; catalyzes the reaction from
M, to M3, and enzyme E,4 catalyzes the degradation of
M3. The corresponding o.d.e.’s for this system read:

X=u-D)-X,

S=D-(So—S)—r -mw-X,
M =r —r,—uMj,
My =ry—r3— uM,,
M3 =r3—rs— uMs, 17

with D = ¢;,/V is the dilution rate of the reactor, Sy is the
feed concentration, mw is the molecular weight of the
substrate to convert from molar to g/L, and u is the growth
rate of the biomass. Equations for the rate laws r; and the
experimental conditions are summarized in Table S1 in the
supplement.

The process described is controlled by input feed-rate g;,
and feed concentration S;. A first experiment was
performed by starting with a high substrate concentration
So and given input/ output feed-rate g;, to drive the system
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Fig. 1. Structure of the “‘real” model that is used to generate experimental
data. The growth of the biomass depends on the substrate uptake reaction
via enzyme E.

into a steady state. Samples for substrate, biomass and
intracellular components M, M,, and M3 are taken 10
times per hour. The numerical values of the simulated data
are added with random noise (using MATLAB random
number generator with a ¢-distribution, with degree of
freedom df = 10) within in the bounds given by relative
errors (data in Table S1). The experiment was repeated five
times and for all state variables the mean value #m and
standard deviation ¢ for each of the K = 20 time points
were determined (Table S2 in the supplement).

2.4.1. Reconstruction of the measured data distribution for
the bootstrap approach

To generate the data set S, S3, S5, ..., Sy the variance of
the measured data has to be known. The following
approach is used: as described above a mean value 77
and standard deviation o are available for every state
variable. Especially for measurements of intracellular
components in biological system, the type of error is
seldom known. Therefore, based on the data given, two
sets of bootstrap data are generated: one with a mean
absolute error ¢¢ for every state variable (mean over all
time points) and one with a mean relative error o;.

3. Results
3.1. Model selection

In contrast to the model description given above (Eq.
(17), kinetic rate laws for r; and parameter values in Table
S1), we mimic a realistic approach by presuming that the
knowledge on the system is incomplete: it is only known
that the metabolites are converted in a linear chain from
M, to M3 and model Eq. (17) is valid. To show the
influence of the choice of the kinetic rate laws on the

bootstrap results, three different sets of kinetics were
analyzed:

S
r1=rmaxl'ma (18)
72=rmax2'gl(M1)» (19)
3 = Fmax3 - §2(M>), (20)
¥4 = I'max4 - M3, (21)
with
Model 1: ¢, = M|,
g = M3 (22)
2 =™ pn | agn
KmZ +M2
Model 2: ¢, = M|,
n (23)
g2 = Mz,
Model 3: ¢, = M7, y
9o = M’zz @4

Model accuracy tests are performed with measurements as
described above; results are summarized for every model
variant in Table S3 in the supplement. Model 3 describes
the data at best, and Model 1 at worst.

3.2. Characteristics of parametric histograms

With the three models, B = 2000 bootstrap replications
were performed (MATLAB7 was used; each run lasted
approx. three days on a workstation with dual processor,
2.2 GHz each (AMD Opteron 248) and with 4 GB RAM).
For higher values of B, no changes of the characteristics of
the histograms could be observed (see Fig. S1 in the
supplement). For the calculation o = 0.05 is used, that is,
the confidence interval should contain 95% of the data.
First, data for the parameters are analyzed with respect to
outliers. For further analysis only those bootstrap data sets
which does not include any outlier are considered (see
Tables S4-S7 in the supplement).

Table 1 summarizes the results of the bootstrap data and
compares it with the characteristics obtained with the point
estimation by using FIM (see also Tables S4-S7 in the
supplement). In general, the confidence intervals obtained
from the bootstrap data are larger than those calculated
based on FIM. In cases where the sensitivity of a model
parameter is very low with respect to the experimental
data, the lower bound of the confidence intervals obtained
with FIM is negative. This can be seen exemplarily in
Fig. 2A with parameter ry,,3 in Model 1. Close inspection
of the data revealed that only a small part of the kinetics
r3 = r3(M>) is covered by the experimental data which
result in large confidence intervals. High values of the
shape s/ indicate non-linear behavior of a system. This can
be seen in Fig. 2B with parameter ry,x3 in Model 2. The
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Table 1
Summary of bootstrap results in comparison with a point estimation for the different models and for the type of errors used for the analysis
Rates/parameters Model 1 Model 2 Robustness Model 2 Model 3
FIM Bootstrap FIM Bootstrap FIM Bootstrap FIM Bootstrap
Absolute error
T P b; % L ﬁj‘?“‘x %L p %L pM™ %L p % L i % L b %L pM* %L
r K 0.04 120.20 0.04 124.08 0.04 119.53 0.04 128.03 - - - - 0.04 116.61 0.04 126.40
Fmax1(107°)  0.18  8.25 0.18 18.19 0.18 8.17 0.18 1831 - - - - 0.17 8.04 0.18  18.48
r Fmax2(107%)  0.43  17.97 042 21.66 043 1797 042 2260 - - - - 0.36 6573 0.38  68.65
m - - - - - - - - - - - - 0.83 7692 0.86 71.53
3 rmax3(107°)  3.03 10620.82 0.50 264.56 0.49 6645 045 68.01 — - - - 049 6635 045 67.71
Ko 1.80 4068.37 1.55 133.18 - - - - - - - - - - - -
n 2.96 284.10 295 5234 288 4265 283 41.69 — - — - 2.87 42.68 2.83 41.07
4 Fmax4(107°)  0.49  12.11 048 17.24 049 12.11 048 1752 - - - - 049 12.11 048 1742
Relative error
r K 0.04 16.24 0.04 2489 0.04 1620 0.04 2631 0.04 17.15 0.04 26.13 0.04 16.17 0.04 2522
Fmax1(107%)  0.17 2,11 0.18 9.45 0.17 2.09 0.17 9.62 0.18 2.12 0.17 9.18 0.17 2.08 0.17 9.45
" rmax2(107%)  0.51 20.19 0.53 46.82 0.51 20.19 0.54 4534 0.51 20.60 0.54 46.09 0.37 35.67 039 7248
m - - - - - - - - - - - - 0.85 20.48 0.83* 37.71
r3 Fmax3(107%) 1.26 3848.12 0.65 205.04 0.50 6544 0.53 79.28 0.50 61.87 0.51 74.61 0.50 6542 0.53 83.92
K,» .26 1598.30 0.93 96.27 - - - - - - - - - - - -
n 3.06 256.18 3.15 4256 287 3259 2.83 33.64 2.80 30.92 2.83 3556 2.87 3259 2.83 35.00
r4 rmaxa(107°)  0.50 13.48 0.52 20.74 0.50 13.48 0.51 2046 0.50 13.56 0.51 18.92 0.50 13.48 0.51 21.09

Values for the confidence region for the point estimation are calculated according Eq. (2); here 2.0 - g,; is the 95% confidence interval. The confidence
regions for the bootstrap data for the parameters are calculated according to the method described in the text. p*** is the value with highest probability.

“There are two maximum probability values, another is 0.89.

maximal difference between the point estimation and the
value with highest probability that we have found is nearly
83% based on the value of the point estimation (see Table
S4, parameter rpax3, absolute error). In 50% of all cases
analyzed the shape sh differs significantly from sh =1
indicating the non-linearity of the system with respect to
parameters.

A bias “per se” is not sufficient to conclude for non-
linearity. Fig. 2C shows the histogram of parameter rpax
having a symmetric distribution. Although the mean value
of the distribution is in close agreement with the point
estimation, the standard deviations between both ap-
proaches differ. As it can be seen in Fig. 2D, parameter n
in Model 2 has similar values for the mean and the
standard deviation calculated by FIM.

The parameters in rate law r; can be used to check the
accuracy of the optimization procedure: kinetics r; used to
generate the data (see section ““Case study”) and in the
model variants introduced in section ‘Results/Model
selection” are the same. The point estimation as well as
the bootstrap method show good agreement; both para-
meters rmax1 and K are estimated with high precision for
all runs (Table 1, Table S1).

A comparison of the type of measurement error
used revealed that relative errors for the state variables
give smaller confidence intervals. For the parameters rpax
and K, the differences are very prominent (e.g., Table 1,
values %L for K for Model 1 are 124.08 and 24.89), while

for the other parameters only minor differences could
be detected.

3.2.1. Correlation analysis

After generating the data, the bootstrap approach allows
a fast detection of correlations between parameters. Often,
using Michaelis-Menten kinetics, experimental data are
insufficient to estimate both ry,x and K with good quality
(Baltes et al., 1994). Plotting the results of the bootstrap
data of two parameters against each other is a good hint, if
a correlation exist. Fig. 3 shows such a plot and compares
it with a contour plot of the function A@ = ApTFAp.
Function A® represents the change of the system when it is
perturbed with small deviations Ap from the original set of
parameters and represents at the same time the confidence
region for the parameters under investigation. It can be
seen that the parameters are only weakly correlated
(correlation coefficient r = 0.644). Therefore, a simplifica-
tion of the rate law r; is not necessary.

3.3. Robustness analysis

Chemical and bio-chemical processes are subject to
different disturbances, e.g., for the dynamical system
considered fluctuations in the valves or in the feed
preparation may be present. To check the quality of the
bootstrap method with respect to disturbances of the
inputs, the feed-rate ¢;, was perturbed by addition of noise
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Fig. 3. Left: bootstrap results of parameter ry,y; plotted against the bootstrap results of parameter K in Model 1. Right: contour plot of the function

1 = Ap"FAp.

(relative error 10%). The bootstrap method was performed
using Model 2. The parameter values do not change
significantly and the main characteristics of the parameter
histograms remain as before (Fig. 4) although slight
changes can be observed (Table 1).

3.4. Evaluation of bootstrap method. simulation studies

For systems that are linear in the parameters, confidence
regions of the state variables can be calculated based on the
confidence intervals of the parameters while in the
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Fig. 5. Simulation of the system with two sets of parameters representing
high and low fluxes through the network. With the bootstrap method
(solid lines) more data lie in between the confidence region in comparison
with FIM (dashed lines).

non-linear case, only simulations can be performed. This is
done with upper bounds and lower bounds of the kinetic
parameters in reaction rates r; and r, for Model 3 obtained
from FIM and the bootstrap method, respectively. This
guarantees low and high fluxes in the system and also large
differences in the dynamical behavior of the state variables.
Fig. 5 shows the time course of metabolite M for the two
conditions. It can be observed that more data points lie in
between the interval given by the bootstrap approach than
obtained from FIM.

3.5. Experimental design

A further evaluation of the bootstrap method is the
comparison of the confidence intervals of the parameters if
a standard experiment and an optimized experiment are
available. The design of new experiments should allow to

stimulate the system in such a way that the estimation of
selected parameters becomes easier, that is, the sensitivity
of these parameters becomes higher in the new experiment.
Here, a new experiment was designed using a conventional
approach. The designed input profile was used to generate
new “‘in silico” experimental data. Again, these data were
analyzed with the bootstrap method. As an example, rate
law r, was used to estimate the parameters. With the
previous models it turned out that the experimental data
available are not sufficient to estimate the maximal rate of
the enzyme, rmax (therefore no Michaelis—Menten kinetics
are used in the models given so far). However, the
knowledge on rp,x may offer new insights in the overall
function of the network. To incorporate this, the kinetics
for r, was assumed

M,
K+ M,

in Model 1 in contrast to Eq. (19). The new experiment was
designed by optimizing the determinant of the FIM (D-
optimality). As system theoretical input, the concentration
of the first enzyme, represented by parameter rp,xi, was
used. A step change every hour for an overall time period
of 6 h was allowed. The choice of parameter ry,x is based
on the fact that it is not possible to redirect the system in
reasonable steady states alone with standard inputs ¢;,, and
So (data not shown).
The optimization problem is formulated as

min det(F*), (26)

where F* is the 2 x 2 FIM which is obtained when only
parameters rmax2 and K, are considered. Fig. 6 shows the
optimized input profile for ry,x; and the improvement of
the objective function by considering the function A® =
ApT - F* . Ap . Fig. 7 shows a comparison of the bootstrap
results of the two experiments. Since the intervals differ
considerably, it is not possible to show both histograms in
one plot.

(25)

2 = Fmax2 -
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4. Discussion

In the present study the standard FIM method and the
bootstrap method are compared to calculate parameter
accuracy. The FIM is based on the calculation of
parameter sensitivities and is used frequently in the
literature to calculate confidence intervals of parameters
in dynamical systems (Baltes et al., 1994; Asprey and
Macchietto, 2000; Chen and Asprey, 2003; Faller et al.,
2003; Zak et al., 2003). Hereby, the solution of the
differential equation system is linearized with respect to
the parameters. In contrast, the bootstrap method uses
statistical methods based on data generated by Monte-
Carlo simulations. For the case study presented, B = 2000
bootstrap replications were used. For problems with a
higher number of equations and parameters this number
might not be sufficient. The final number of runs needed to

estimate the characteristics of the distribution properly
may also depend on the quality of the parameters. In
general, we suggest to choose the number of bins
proportional to the estimated standard deviation from
the point estimation. Using a simple bio-chemical network
with a number of parameters, the non-linearity of the
system is reflected by a non-normal distribution of the re-
estimated parameters. Besides the choice of the kinetics, the
type of error and the specific stimulation of the system
show an influence on the size of the confidence interval and
on the shape of the parameter distribution.

The comparison of the two approaches reveals that with
the standard FIM method the confidence intervals of the
parameters are underestimated. The size of the confidence
interval, calculated by the bootstrap method and with the
FIM method, differs up to a factor of 4 in this study. This
is due to the non-linearity of the model with respect to the
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parameters. Although the data were generated by using
mainly Michaelis—Menten type kinetics, the quality of the
fit differs for each specific model. The best fit is reached
with Model 3, describing the data only with approximated
kinetics. However, comparing the quality of the para-
meters, the confidence intervals for the parameters in rate
law r, are broader in Model 3 than in Model 2.

Comparison of the type of error reveals that using
absolute errors for the state variables, large differences are
detected for parameters rp,c; and K in rate law rq. This
might be due to the fact that for estimation of the
parameters for r; the substrate concentration S is used
while for the other kinetics the intracellular metabolites
M, M,, and M5 are involved. In the experiment, .S starts
with a relative high value and ends at a low steady-state
value. In our approach, the variances of the state variables
are calculated by taking a mean over all data points. In
case of absolute error this results in a large deviations for
the substrate concentration, while for the intracellular
metabolites the deviations are smaller (see Table 1).

In Fig. 5 the application of the results of the parameter
confidence intervals is shown for a selected model variant.
A confidence region for the state variable M is predicted
by simulating extreme cases. This is done by combining low
and high fluxes through the network. With the bootstrap
method approximately 90% of the data points are inside
the confidence region while with the FIM method only
50% are inside. For a linear system, 95% of the data points
are expected to be inside the region. With the bootstrap
method this limit is approached very well. However, due to
the complexity of large bio-chemical networks a general
statement regarding the confidence regions for the state
variables cannot be given.

Experimental design allows to redirect a system in such a
way that hitherto insensitive parameters become sensitive.
Figs. 6 and 7 show an example using a Michaelis—Menten
type kinetics for r,. With the initial experiment, it was not
possible to estimate the parameters of r, in a reliable
manner. Since the direct application of the bootstrap
method to design new experiments is not reasonable due to
computational burden (one optimization run need approx.
200 function evaluations, i.e., 200 x 3 days) a conventional
design based on the minimization of the determinant of
FIM was performed. This leads to a new input profile to
efficiently stimulate the system. From the design with FIM,
a reduction of the standard deviations for the parameters
with factors approx. 120 and approx. 7, for parameters
rmax2 and Ky, respectively, is expected. Using the
designed input profile, with the bootstrap method, as
shown in Fig. 7, a factor of approx. 100 for parameter
Fmax2 18 reached.

From our studies we conclude that the proposed
bootstrap method is a valuable tool to determine con-
fidence intervals for systems that are non-linear with
respect to the parameters. It can be expected that a

calculation of the confidence regions of the state variables
becomes more precise if the parameter confidence intervals
are determined more accurately. This will be an important
step towards meaningful mathematical models, that is,
models with high predictive power.
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ABSTRACT: Mathematical models to describe transcription
(Arnold et al. (2001); Biotech Bioeng 72:548-561) and
translation (Mehra et al. (2003); Biotech Bioeng 84:822—
841) in bacteria are modified in order to improve reaction
kinetics and to include the number of polymerase molecules
that are active on the DNA, as well as to include the number
of ribosomes that are active on the nascent and on the
completed mRNA, respectively.
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Introduction

Using detailed mathematical models to describe cellular
processes has become very popular in recent years. This is
based mainly on two reasons: (i) the availability of
measurements of intracellular components and (ii) com-
putational efforts to set up detailed and comprehensive
mathematical models with the aid of software tools.
However, the formulation of models is often based on a
number of assumptions to reduce the complexity of the
system at hand. As will be shown in the following with two
examples describing the process of gene expression in
procaryotic cells this often leads to over-simplification and
basic conservation equations are thus violated.

In Arnold et al. (2001) a scheme to describe mRNA
synthesis is presented and a reaction kinetic is derived.

Correspondence to: A. Kremling

© 2006 Wiley Periodicals, Inc.

Figure A1l therein shows that genetic information, repre-
sented by D, is not subdivided into a control sequence and a
structural genetic information. Therefore, component D is
available only after termination of transcription. This
leads to the fact, that in Equation (7) in Arnold et al
(2001), ¢p appears as a substrate in the Michaelis—Menten
kinetics, that is, a high concentration of promoter leads to a
constant transcription rate, while the concentration of RNA
polymerase appears in v, that is, transcription rate
is proportional to the number of RNA polymerase
molecules. In contrast, it is shown below that the reaction
kinetics can be interpreted as Michaelis—-Menten
kinetics, where the transcription rate is proportional to
the number of promoters, and where RNA polymerase
represents the substrate that is converted from a free form to
an active form.

In Mehra et al. (2003) a mathematical model was
introduced to describe bacterial gene expression. The model
is used to elucidate the relationship between mRNA and
protein expression ratio under different conditions. The
basic reaction equations of the approach can be summarized
as follows:

ki o (1)

where M; is the free ribosome binding site of mRNA i,
R is the freely available ribosomes, RM; is the ribosome
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binding site that is occupied with a ribosome, AR; is the
concentration of the ribosome in the polysome, and P; is the
protein under consideration. For analysis, the overall
conservation equation for the ribosomes is built by adding
up RM; and AR; over all genes and adding the number of free
ribosomes:

Rr=R+ i RM;+ iAR,’ (2)

Analyzing the network given above, it can be seen, that for
one gene, the number of active ribosomes are pooled in state
AR;. The concentration of AR; is then calculated for the
steady-state condition in dependence of parameters k,; and
ks;. Since the stoichiometry of the given reaction scheme
does not provide information on the movement of a RNA
polymerase molecule on the mRNA, the parameters have to
be adjusted in such a way, that the number of active
ribosomes is estimated correctly. In Drew (2001) a Markov
model was developed to describe protein synthesis for
bacterial systems. As in the two contributions previously
discussed, here, the DNA is also not subdivided into a
control sequence and a structural sequence. Furthermore,
ribosomes are considered to bind only to completed mRNA
molecules. The model of Drew (2001) is extended in Heyd
and Drew (2003) which describes the process of elongation
in more detail.

In the following, a modification of the models is given to
describe the distribution of the RNA polymerase on the
DNA, and to include the distribution of the ribosomes on
both the nascent and completed mRNA.

Part of these considerations are described in a PhD thesis
(Kremling, 2002).

Results

A starting point for the model description is a situation
provided in Figure 1 illustrating transcription and transla-

S - o N\
- - ~
- (1 \ >
7V Y/ ?V “
= - I'e Is

Ribosome with
nascent protein

_O RNA polymerase with
nascent)rInRNA

Figure 1. Scheme of the considered steady-state-situation of the transcription/
translation process. The nascent mRNA is fixed by the RNA polymerase moving along
the DNA strand. Depending on the length of the nascent mRNA, ribosomes can bind
and move along the template.
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tion of a single gene. Here, RNA polymerase has started to
move along the DNA strand. Depending on the size of the
nascent mRNA, different numbers of ribosomes are bound
to the individual chains. This situation represents a steady-
state situation since the release of the polymerase at the
end of the chain is accompanied with the binding of a
new polymerase at the promoter binding site. Note, that a
number of different reaction mechanisms are conceivable
describing this situation. Although the velocities of trans-
cription and translation processes are correlated considering
an average gene, the set-up of a detailed step-by-step
mechanism for a single gene seems to be difficult. However,
a detailed model for translation is provided in a recent article
by Mehra and Hatzimanikatis (2006). In the following, the
scheme in Figure 1 is considered, since it represents the
situation when RNA polymerase moves along the DNA
template, independent from previous events. Reaction steps
are defined that are necessary to describe the situation
shown in the figure, comprising the distribution of the RNA
polymerase on the DNA and comprising the distribution of
ribosomes on the mRNA.

Transcription

A single gene with length [ is considered. RNA polymerase
P with o factor binds to the specific DNA binding site D.
After binding, the polymerase clears the promoter (para-
meter k) and moves along the DNA (parameter k; Egs.
(3) and (4)). Complexes Y and Y' describe the moving
polymerase. Binding of nucleotides enlarges the chain.
The velocity of reaction Equations (3) and (4) are assumed
to not depend on the concentration of the nucleotides.
The completed RNA molecule is subject to degradation
(parameter k,):

KTr
P+D<&PD (3)
kclr
PD=Y+D+o (4)
ke 1
Y +Nu—>Y (5)
kll’
Y! 4+ Nu = Y? (6)
ke k. .
Y + Nu-5 P + RNA = degradation (7)

Using rapid equilibrium assumption for the reaction
Equation (3), and steady-state assumptions for all complexes

DOI 10.1002/bit



Y’ one gets:

cp

cpp =—"—C 8
PD Koo + o DO (8)
cpD
Cy = kctrk_ (9)
tr
Cyl-1 = Cyl-2 = +++ = Cy (10)
The rate of transcription ry, is
cp
Ttr = ktrCyH = kycy = kctrmCDO (11)
and the o.d.e. for mRNA is:
. cp
¢ = key ———cpg — kyC 12
RNA R ¥ op DO ZCRNA (12)

RNA polymerase is distributed over all Y and Y’ complexes
and the number of active RNA polymerase molecules can be
calculated by:

ke
oy = 1-Zepp (13)
ki

CPactiv = |
Note, that the model does not account for the size of the
polymerase and the number of nucleotides that are occupied
with one polymerase molecule (in the reaction equation
given, the polymerase occupies only one single nucleotide).
However, since an undisturbed process is considered,
the choice of the discretization of the DNA, here, one
nucleotide, has no influence on the number of active
polymerases. Considering, for example, a smaller number of
stages on the gene, the velocity k,, will decrease with the same
ratio, that is, the ratio I/k,. will be constant. The ratio I/k,,
represents the time the polymerase needs from the start to
the end of the gene.

Translation

To set-up the scheme given in Figure 1, every Y' complex
(the moving RNA polymerase molecule) represents a
starting point for translation. Free ribosome R binds to
the (free) ribosome binding site Y*. For the overall binding
sites Y, the following conservation equation is valid:

Y =Y +RY (14)

The chain is considered to grow maximal to length s with
s=1/3 (in the following, the ratio m/1 instead of 1/3 is used).
For elongation, loaded tRNA" is needed. Load of tRNA with
amino acids is not included. However, the model can easily
be extended in this direction. Components X' and X]’:
describe the moving ribosome on the available nascent

mRNA:
Ky .
R +Y' &RY (15)
{ kcl 1 /
RY =X +Y (16)
. ke .
X' 4 tRNA* = tRNA + X (17)
. ky .
X! 4 tRNA* =% tRNA + X} (18)
. ky .
X |+ tRNA* =5 tRNA + X! (19)

Parameter k., describes the clearance of the ribosome-
binding site and parameter ky describes the velocity of the
moving ribosome (the reaction velocity does not depend on
the concentration of the loaded tRNA).

RNA represents the completed mRNA molecule, free
from DNA template and RNA polymerase. It can also be
translated, but is subject to degradation. Degradation of
the nascent mRNA is not considered. If one assumes that the
nascent mRNA decays with the same time constant k, as
the completed mRNA, this has only minor effect on the
steady-state concentration since the velocity of the RNA
polymerase (parameter k) is much greater than k,. The
process of ribosome binding is similar to the process
described above. RNA’ represents a molecule with a free
ribosome binding site. X and X describe the moving
ribosome on the completed RNA. The protein is first
synthesized, when the mRNA is complete (Eq. (24)):

K
R + RNA’ & RRNA (20)
kct
RRNA -2 X 4+ RNA’ (21)
g
X 4 fRNA* =% tRNA + X, (22)

ki
X; + tRNA* =5 tRNA + X, (23)

ky .k .
X,,_1 + tRNA* -5 R + protein - degradation (24)

As above, using the rapid equilibrium assumption for the
binding of the ribosome and steady-state assumptions for
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the complexes X, the following equations will hold true:

R

Cryi = ——— Cyi 25
T K+ " (25)
CR
c =— 26
RRNA = = - CRNA (26)
CRYX
CX1 — Cxl — kctl kl (27)
1l
CRRNA
X =cx; = kctlk—l (28)
t
The rate of translation ry is:
CR
g = k cx = k — (] 29
tl tl X ctl K1 + cx RNA ( )
and the o.d.e. for the protein is:
. (R
cp =kygy———c —kac 30
P = Kat e S ena — kacp (30)

To calculate the number of active ribosomes, two parts have
to be considered. The first part considers the molecules on
the single Y; complex while the second part considers the
molecules on the finished mRNA.

=5 ¢ _.m Kecgyi
R;ctivc - X l ktl

(31)

For all Y; one gets:

m kctl
zi: CR;clive l ktl Z lCRYZ
I—1) k.
= m( ) ﬁ R cy (32)
2 ka Kn+er

And the second part gives:

k ctl
CRRNA = MCX = M —— CRRNA (33)

t
active nl

For one single gene we need the following number of
ribosomes:

— ke e (1=l
CRocive = MYy Koter ( cy + CRNA)
kg _cr  (1=1 kar n (34)
kqg Kr+er \ 2 ke KTr+CP €Dy CRNA

If one considers mRNA and protein to be in steady state, the
following relationship will hold true for the ratio of protein
in a perturbed state to the reference state (index o):

c ket cr + KO KO+
fr=—"=-"2"Nd _—p (35)
Cpo kctlo R + K ka + 1
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where . is specific growth rate and fx is the ratio of mRNA
concentration for perturbed and reference state.

The concentration of free ribosomes cy has to fulfill the
following algebraic equation, if we consider n genes and a
total concentration of ribosomes cgy:

Ctlk
Cro = CR + E K
tly

. CR <lk -1 kctrk cp
Kle + CR 2 ktrk KTrk + cp

cpo, + CRNAk)

(36)

Conclusion

In contrast to previous models for transcription and for
translation (Arnold et al., 2001; Drew, 2001; Mehra et al.,
2003), here a model taking into account the number of
active RNA polymerase molecules, and the number of
ribosomes on the nascent and completed mRNA is
introduced. All models introduced so far are based on the
same set of assumptions, given in Mehra et al. (2003). The
model introduced here, takes into consideration, that for
cellular polymerization processes the number of active
catalysts like RNA polymerases and ribosomes has to be
calculated very carefully. Although steric hindrance of
neither a RNA polymerase molecule nor a ribosome
molecule is considered in the proposed model, the volume
of the molecules can be taken into account by dividing, for
example, the DNA in I segments, where I represents the
volume of the RNA polymerase. The proposed model will
allow one to estimate the parameters for the processes in a
better manner since the kinetic parameters have a clear
interpretation.

Equation (34) which calculates the number of active
ribosomes needed to produce a protein can be re-
formulated for steady-state using Equations (12) and
(30). The active number of ribosomes depend on the
number np of proteins, the number m of amino acids
aggregated into the protein and an overall constant k,
describing protein degradation and dilution by growth. The
equation reads:

m 3m k,
NMRyiy = kl nPkd (7 k_ + 1) (37)
tr

Further parameters ky, kg, k, do not depend much on
growth conditions and can be taken as constant values. The
calculation of the number of ribosomes along with this rule
of thumb is simulated in Figure 2. The Figure shows the
number of ribosomes that are on the completed mRNA
molecules and on nascent mRNA molecules. As can be seen,
the number of molecules on nascent mRNA is approxi-
mately 20% of the overall number of active ribosomes. As
shown on the right part of the Figure, with an increasing size
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Figure 2. Simulation of the number of ribosomes active during protein synthesis. Left: Dependence from the number of proteins. The solid lines represent the overall number
of active ribosomes while the dashed line represents the active ribosomes on the completed mRNA molecules. For the simulation no active degradation is taken into account,
therefore kyis represented by the growth rate . = 1.944 x 10~*(s~') = 0.7 (h~"). The length m = 1,000 (AA) is chosen for an average protein. Right: Dependence from the number of
amino acids (AA) that build the protein. The symbol represents the LacZ protein. Considering 3,063 bp on the DNA and a factor of 1.66 for the number of DNA templates which are
present for a growth rate p = 1.944 x 10~*s~'=0.7 h~" the number of AA is 1,710. The calculation results in ca. 2,400 monomers, representing 6,000 tetramers in the cell. Values of
the parameters are as follows: ky =40 (Nu) s~', ky=11.7(AA) s~', k,=7.7 x 1072 s7'=27.72 h™' (Bremer and Dennis, 1987; Kennell and Riezman, 1977).

of the protein and therefore an increasing number of amino
acids (AA) that have to be incorporated, the fraction of
active ribosomes on the nascent mRNA increases. The
symbol in the Figure represents the LacZ protein. Here,
about one third of the active ribosomes are on the nascent
mRNA.

The set-up of mathematical models is crucial if
polymerization processes in cellular systems are being
considered. They differ from models used in chemical
engineering because the catalyst is bound to a component
with limited size, that is, the length of the gene and/or the
transcript has strong influences on the kinetics.
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Abstract

The interdisciplinary field of systems biology has evolved rapidly over the last years. Different disciplines have aided the

development of both its experimental and theoretical branches.

One field, which has played a significant role is engineering science and, in particular chemical engineering.
Here, we review and illustrate some of these contributions, ranging from modeling approaches to model analysis with a special
focus on technique which have not yet been substantially exploited but can be potentially useful in the analysis of biochemical

systems.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Interdisciplinary research can be found in many
areas to improve scientific work by combining tools
and methods from different fields. Particularly, this
has been observed in molecular biology, where
researchers are confronted with large data sets (e.g.
DNA sequences) requiring to cooperate with infor-
mation scientists, leading to the establishment of
bioinformatics. Additionally, biologists face a huge
number of cellular components that have to be charac-
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terized by their functionality and the spatial/temporal
behavior. Here, the emergent field of systems biology
comes into play, developing a battery of experimen-
tal and theoretical approaches to solve problems in
biotechnology and medicine (Kitano, 2002a,b).
Although, the origin of systems biology research
as it is understood today is subject of controversy
(Wolkenhauer, 2001), it is well accepted that two pil-
lars can be defined: (i) a systematic collection of a
large amount of experimental data for every type of
component that can be found in a cell (Ideker et al.,
2001) and (ii) a theoretical approach based on the view
of a cell as a system, that can be characterized by
state variables, inputs and outputs. Many theoretical
fields like (bio-)physics, (bio-)mathematics and engi-
neering science have contributed to systems biology
with regard to the latter backbone, and it seems not pos-
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sible to assign a specific method to one of the fields.
However, all fields have their specialties, and here we
will focus on the activities initiated by the engineer-
ing community. In a series of papers, the groups of
E.D. Sontag and J.C. Doyle outlined possibilities and
perspectives in systems biology from a control engi-
neers point of view (Sontag, 2004, 2005; Csete and
Doyle, 2002). Sontag summarizes these activities as
follows: (i) improving the design of instrumentation
for high-precision measurements and manipulations;
(ii) analysis of biological systems with respect to feed-
back characteristics, sensitivities, gain quantification
and structure identification; (iii) sensor and actor design
for technical systems based on structures found in bio-
chemical systems; (iv) the formulation of entirely new
theoretical control and systems theory problems. From
our point of view, topic (ii) is the most important one,
since it allows to improve the knowlegde on cellular
systems, offering new approaches to reach this goal.

In systems biology, two main approaches have
become accepted during the last years: bottom-up and
top-down. The bottom-up approach is the most appro-
priate when all or most biochemical reactions of a
process of interest are known and sufficient experi-
mental data is available. The resulting mathematical
description can be qualitative or quantitative, determin-
istic or stochastic depending on the aim. Quantitative
models are characterized by a large number of kinetic
parameters that have to be estimated from the experi-
mental data. Optimization algorithms are available for
these tasks, which can also be used for designing new
experiments to improve the model structure and the
parameter quality. A rationale followed in the bottom-
up approach is a modular approach (Hartwell et al.,
1999; Saez-Rodriguez et al., 2005a,b), where networks
are decomposed into subunits (modules), which are
thoroughly examined and afterwards aggregated into
a larger model.

Collecting the huge amount of experimental data
required for conducting a clean bottom-up approach
is not feasible for many cases. Then, as an alterna-
tive to the bottom-up, the top-down approach, is useful,
particularly when not much knowledge about the inter-
actions of the elements involved is available. Here,
these interactions between network components are
examined first only based on experimental data. Based
on correlation analysis or further cluster techniques,
components that are tightly related can be identified,

leading to the reconstruction of the networks. Bottom-
up and top-down approaches complement each other,
and probably the most efficient way to progress would
be via a combination of both, following a so-called
middle-out approach (Noble, 2002).

There are many general reviews on systems biol-
ogy (Kitano, 2002a,b), from the point of view of a
control-theorist (Sontag, 2005), a biologist (Sorger,
2005), drug discovery (Butcher et al., 2004), focus-
ing on modeling approaches (Jong, 2002; Janes and
Lauffenburger, 2000), etc. In this review, we focus
specifically on contributions from (mainly chemical)
engineering sciences, which comprises, among others,
the development of modeling frameworks, charac-
terization of closed loops, model reduction, model
verification and experimental design. Many of these
methods are well-established in the engineering dis-
cipline and applied to similar, but not-biologically
inspired, problems. The goal of this contribution is
(based on several examples of our own work and oth-
ers), to illustrate how the engineering sciences can help
the development of systems biology.

2. Systematic modelling—a framework for
cellular systems

The set up of mathematical models to analyze com-
plex systems is very common in many research fields.
In chemical engineering, complex models comprising
a large number of equations arise, for example, in the
analysis of large plants or complex apparatus like dis-
tillation columns. Therefore, already in the eighties,
modeling concepts and simulation tools with efficient
numerical methods were developed. Additionally, sys-
tematic procedures for the model set-up of different
types of processes and different types of chemical
devices were established (Stephanopoulos et al., 1990;
Marquardt, 1996). The approaches are mainly based
on an object-oriented representation of the processes
under consideration (see e.g. Mattsson et al., 1998;
Ginkel et al., 2003). A particularly convenient mod-
eling framework is based on network theory (Gilles,
1998). Network theory allows the definition of differ-
ent levels, e.g. in chemical engineering, the plant level,
or the level of a single apparatus. The concept was also
applied to define different levels for cellular systems
resulting in the idea of a modular view of the processes
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(Kremling et al., 2000) that can be used as a basis for a
computer tool. In the next section, we summarize some
basic ideas based on this approach.

2.1. Network theory

Briefly, network theory considers all processes as
a connection of components and coupling elements.
Components possess a hold-up for physical quantities
like energy, mass or momentum. Coupling elements
describe the fluxes between components. Components
and coupling elements can be defined on different hier-
archical modeling levels. Consequently, systems of
components and coupling elements can be aggregated
to a single component on a higher level, or vice versa,
units can be decomposed into more detailed subunits.

To apply network theory to cellular systems, the
cellular processes have to be structured and charac-
terized to set up a model library. Such a library can
be seen as a construction kit that enables to build
models from predefined submodels (Kremling et al.,
2000). At the highest level of resolution, elementary
submodels (modeling objects) are defined. Important
elementary modeling objects are substance storages
(metabolites, proteins, DNA and RNA), substance
transformers (reactions) and signal transformers.

Elementary modeling objects can now be aggre-
gated to describe more complex processes like gene
expression or signal transduction cascades. Differen-
tial equations are typically used for the mathematical
description of storages. However, the concept is very
general and allows also to describe a component with
the number of molecules or in a very simple man-
ner only with “present”/“not present”. The latter case
allows to set up more qualitative models as described in
Saez-Rodriguez et al. (2006). For the substance trans-
formers, normally, algebraic equations are used that
relate the concentration of the substrates and effectors
to the reaction rates.

A completely different effort aims to develop stan-
dardized mathematical models, allowing an exchange
of models among different simulation tools. This stan-
dards will be described in Section 2.3.

2.2. Modularity

One of the ideas of the network theory is the simplifi-
cation of the modeling procedure by providing subunits

describing processes that have to be considered fre-
quently in a model. For example, gene expression
comprises the synthesis of proteins and is therefore a
candidate for a submodel; in the signal transduction
processes in eukaryotes, the MAP kinase cascade is
a good example for a submodel that often appears,
changing from instance to instance only the kinetic
parameters.

This decomposition into modules not only speeds
up the model set-up, but also facilitates the analysis
of complex networks: since the smaller subunits are
simpler to examine, one can expect to obtain new infor-
mation from the submodules that provide insights into
the properties of the whole network.

Hereby, the problem arises, in which way such sub-
models or functional units should be defined. Although
the modularity of biological processes is generally
accepted, a clear, unique definition of module is still
lacking. Different proposals, such as evolutionary con-
servation, robustness and genetic co-expression have
been suggested (Wolf and Arkin, 2003). There are also
several efforts to rationalize from a mathematical point
of view the definition of modules (Papin et al., 2004).
We have proposed two different approaches: one is ori-
ented on the biological knowledge and the functionality
of the submodels that are described (Kremling et al.,
2000), and the other on a conceptually more rigorous
criterion, namely the absence of retroactivity (Saez-
Rodriguez et al., 2005a,b). Both approaches are briefly
introduced.

2.2.1. Biologically motivated criteria

The criteria defined are based on studies with
prokaryotes but can be extended to describe processes
for higher organisms. These criteria are based on den-
ning functional units as those set of elements having in
common three properties:

(1) Physiological task: This is the case when a num-
ber of elements work together towards to the
same physiological task, for example, the differ-
ent enzymes involved in the specific catabolic
pathways for individual carbohydrates (lactose,
galactose, etc.).

(ii) Genetic unit: In bacteria, genes encoding the
enzymes of a functional unit are organized in
genetical units. Furthermore, a hierarchical struc-
ture is commonly present: at the lowest level
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in the hierarchy one can find operons: a group
of genes expressed from the same promoter(s)
and regulated individually by a common regula-
tor and a specific stimulus. The paradigm is the
lac operon of Escherichia coli. This well-known
operon encodes the enzymes involved in lactose
degradation, and is controlled by the repressor
Lacl and the inducer allolactose. There are also
genetic units at a higher hierarchical level. For
example, modulons are groups of operons and reg-
ulons controlled by global regulators that respond
to more general stimuli, such as stress situations.

(iii) Signal transduction network: All elements of
a functional unit are interconnected within a
common signal transduction system. The sig-
nal flow over the unit border (“crosstalk” or
“cross-regulation”) is small compared to the
information exchange within the unit. Therefore,
the coordinated response to a common stimulus
(“stimulon”) helps to identify the members of a
unit.

Fig. 1 illustrates the criteria. All molecular events
involved in lactose uptake for E. coli are shown: the nat-
ural inducer of the system is intracellular allolactose,
a by-product of the 3-galactosidase reaction. Allolac-
tose inactivates the lactose repressor Lacl which leads
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Fig. 1. The lactose pathway of E. coli represents a functional unit
according to the criteria described.

to the production of more enzyme LacY (permease)
and LacZ (lactose cleavage) and therefore also to the
production of more allolactose. LacY and LacZ are
metabolic enzymes responsible for the feeding of the
carbohydrate into the central pathways. On the genetic
levels, both genes (lacy, lacZ) are organized in an
operon. Since allolactose promotes enzyme synthesis
the elements are coupled by a positive feedback loop.
Together with different carbohydrate uptake systems,
the lactose pathway is under control of the transcrip-
tion factor Crp. Crp is the last element of this global
signal transduction unit that starts with the phospho-
transferase system (PTS) as a sensory element.

The proposed criteria allow a rather rough sub-
division of an overall cellular network. For smaller
networks, a framework to demarcate modules from a
system-theoretical point of view has also been devel-
oped that is introduced in the next section.

2.2.2. Absence of retroactivity as a criterion

The concept of absence of retroactivity considers
unidirectional connections between the modules as
interesting positions to separate signaling networks
(Saez-Rodriguez et al., 2005a,b). Fig. 2 illustrates the
concept with an example: the connection between two
units B and C is free of retroactivity if there is an
influence from a submodule B; from B to a sub-
module C; from C, but the submodule C; does not
influence B; directly (Saez-Rodriguez et al., 2005a,b,
2004; Conzelmann et al., 2004). It can be shown
that many signaling networks can be decomposed into
units connected without (or with a weak) retroactiv-
ity. Particularly, interesting is the fact that the modules

Aq

Fig. 2. The concept of absence of retroactivity: the connection
between two units A and B is retroactive since there is a direct
influence from a submodule A; from A to a submodule B; from
B and vice versa. However, the connection between B and C is free
of retroactivity since By influences C; but not vice versa. A feed-
back to another subunit, e.g. from C, to B3 (dashed line) is allowed
(Saez-Rodriguez et al., 2005a,b, 2004).
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obtained by applying the domain-oriented approach
(see Section 5.1) are connected free of retroactiv-
ity. The properties of such units are independent of
downstream elements and can be analyzed relatively
straightforward by means of system theoretical tools
(Saez-Rodriguez et al., 2004).

It results that there is a small number of mod-
ules, which via aggregation can describe almost any
signal transduction network (Saez-Rodriguez et al.,
submitted). Once such a kit is defined, it would
be reasonable to analyze its elements systemati-
cally form different points of view, such as stability,
monotony, signal transfer properties and dynamics.
As an illustration of this approach, a modular analy-
sis of a model for the EGF-induced MAPK cascade
(Schoeberl et al., 2002) allowed us to obtain insights
into the signaling network, e.g. that the low sensi-
tivity to ligand concentration can be traced back to
the saturation of the ERK module (Saez-Rodriguez
et al., 2004). Additionally, finding a less complex
model for a certain module which retains its essen-
tial input/output behavior (Conzelmann et al., 2004;
Saez-Rodriguez et al., 2004), it is possible to reduce
the complexity of the model, as discussed in Section
5.2.

2.3. Tools and formats in systems biology

Nowadays, many computational tools tailored for
research in systems biology are available. While some
tools are available to analyze biochemical systems from
a qualitative perspective (de Jong et al., 2003; Gonzalez
et al., 2006; Klamt et al., 2006), most of them are
devoted to kinetic modeling.

For reviews and a comparison of different
approaches and tools for the latter, we refer to the recent
reviews (Vacheva and Eils, 2006; Alves et al., 2006).
Basic to many tools is the automatic generation of the
balance equations that enables a dynamical simulation
of the state variables. To set up the equations, the sto-
ichiometric information for each reaction is used and
the rate laws have to be defined. Many tools also pro-
vide a graphical user interface that allows to choose a
modeling object, to parameterize it and to connect it
to other modeling objects. A broad spectrum of meth-
ods for model analysis are provided: the analysis of the
non-linear behavior to detect, e.g. bifurcations or oscil-
lations, the calculation of sensitivities and optimization

procedures for parameter estimation or experimental
design (Vacheva and Eils, 2006).

A special interface that allows to use features
from different tools is the systems biology workbench
(SBW): SBW-enabled programs provide services to
other client applications in such a way that programs
can work out different tasks with the same model, e.g.
simulation, graphical representation, model analysis,
etc. Interestingly, there are also two systems biology
toolboxes (SimBiology and SBToolbox; Schmidt et al.,
2006) for MATLAB, a well known tool in control and
engineering sciences.

Since models in systems biology are characterized
by many components and interactions, visualization
aspects are of great importance (Saraiya et al., 2005).
One tool that provides a rich visualization support
is the modeling environment ProMoT, originally set
up in the field of chemical engineering, and sub-
sequently extended to model kinetic (Ginkel et al.,
2003), and recently also logical models of biochemical
networks.

To allow an exchange between different tools, the
XML-based formats SBML (Hucka et al., 2003) and
CelIML (Cuellar et al.,, 2003) are widely used. In
SBML, the definition of a model consists of a list of
elements like compartment, species, reaction, parame-
ter, unit description and rule. The tool that uses SBML
has to create the relevant mathematical equations, dif-
ferential equations and algebraic equations from the
information given in this description. Fig. 3 shows three
elements, two substance storages and a substance trans-
former that connect both components. The left part
shows a graphical representation of the individual ele-
ments. A closer look at the transformer emphasizes
structural properties of the modeling object: besides
the two terminals for the components, two further ter-
minals are provided that allow to connect an enzyme
and an effector. The right part of the plot gives the
representation of the submodel in SBML.

It is important to note that exchange languages are
very useful in terms of exchangeability but, at the same
time, limit the form in which models can be set up
(which is not the case, e.g. applying more general mod-
eling approaches, such as the network theory). For
example, a model describing the dynamics in a bio-
reactor cannot be represented in an adequate manner
in SBML, where, e.g. valves and tubes can not be
described.
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<listOfSpeciess>
glk <gpecies name = "glc'"compartment= "cyt"
gle BAdE gleGp initialAmount= "0.1"/>
i <speciesname = "glc6-phosphate"compartment = "cyt"
Q initialAmount= "0.2"/>
</listOfSpecies>

Laﬁi tenz

i <listOfReactions>

> <reactionname= "glk">
<listOfReactantss>

<species Reactant species= "glc"/>
- </listOfReactantss>
<listOfProductss

<species Reactantspecies= "glcé-phosphate"/>
</listOfProducts>

<kineticlaw formula= "K*glc"/>
</reaction>

</listOfReactions>

Fig. 3. Example illustrating the representation in the modeling framework (Kremling et al., 2000) and in SBML (right) by means of a simple
system where two components are connected by a reaction. Note that modifiers (e.g. enzymes) are not depicted in neither the left figure (where

their potential connections to the reactions are shown) nor the right text.

3. Model verification and experimental design

New developments in metabolome, transcriptome
and proteome measurement techniques lead to a huge
amount of data that is used to set up detailed kinetic
mathematical models. Often, information on the stoi-
chiometry of the biochemical network describing the
material flow or signaling flow is available while
information on kinetic binding constants or turnover
numbers are uncertain or not given. Therefore, one
tries to find the best kinetic parameter values that
describe the experimental data, leading to an optimiza-
tion problem where the difference between simulation
data and experimental data is minimized. Optimiza-
tion problems are very frequently present in chemical
engineering to design a plant or an apparatus in such
a way that the quality and the quantity of a prod-
uct is optimal, and thus systems biology can profit
from the developments in the field of process engi-
neering. Besides parameter estimation, optimization
plays a key role in the design of new experiments,
either to verify new hypothesis or to improve the
structure and the kinetic parameters of a model.
The determination of the structure of a (biochemi-
cal) network from the experimental data is referred
as reverse engineering and is out of the scope of this
contribution.

For all subsequent sections, a general single input
non-linear model

= flxu, p); y=h), (1)

is considered with state varibles x parameter vector p,
input u and measured output y. The linearized model
at an operating point X Uss iS given by:

¥=Ax+bu; y=CYx. (2)

3.1. Parameter estimation

Before the procedure of parameter estimation can
start, the problem of parameter identifiability should be
solved: parameter identifiability addresses the question
whether a parameter of the model can be estimated
given a set of experimental data (a priori identifiability),
or to determine the accuracy which can be expected for
each parameter (practical identifiability) (Gadkar et al.,
2005). Determining a priori identifiability for general
non-linear systems is solved only for special types of
systems and depends on the inputs and the measured
state variables. The concept of identifiability can be
illustrated with a simple example (see Fig. 4).

The small network consists of two interconnected
components. Assuming mass action kinetics, the linear
ordinary differential equations (0.d.e.’s) are given by

x1 = —(k1 + kp)x1 +ksxy +u 3)

r2

0 ‘_rl_—éiér—z‘b
3

I

Fig. 4. Metabolic network with two components and five reactions.
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X2 = kox1 — (k3 + ka)x2, “4)

where u is the constant input rate (rg). If only the com-
ponent x; can be measured, the system can be rewritten
as one o.d.e. for x1 of order 2! and the expected time
course can be calculated by solving:

X1 + piXx1 + p2x1 = u + p3u, 5

where parameters p depend on the original param-
eters: pr=ki+ko+k3+ks, pr=ki(ks +ks)+kok,
p3=k3+ks. Using a system identification approach
for linear dynamical systems, the three parameters
of vector p can be determined, but it is not possible
to recalculate all the parameters k; from the original
system; that is, the parameters k; are not identifiable.
Studies on practical identifiability often use the
Fisher-Information-Matrix (FIM) to determine the
accuracy that can be expected for a certain system. The
FIM F is calculated as a sum over all time points #;
with the matrix of the parameter sensitivities W with
w;j = dx;/dp; and the variance—covariance matrix C
of the measured states by the following relationship:

F=) wrc'w. 6)

Tk

In many cases, matrix Cis a diagonal matrix with the
variances of the measured state variables. For dynam-
ical systems, the sensitivities are also time dependent
and therefore the following additional o.d.e.’s have to
be solved for a general system given in Eq. (1):

W= g W+ ﬂ @)
ax ap

where f are the right-hand side entries of the o.d.e.’s.

The expected standard deviation o0; for each parameter

pi can be determined by the following relationship:

Opi = \/(Ffl)ir (8

However, since the time course of the state vari-
ables are non-linear, the given relationship is due to
the Cramer-Rao inequality only a lower bound (Ljung,
1999). Advanced methods therefore use statistical
methods to improve the estimation of the parameter
standard deviation.

! Calculation of the time derivative of both sides of Eq. (3) and
inserting Eq. (4) leads to Eq. (5).

A method recently introduced uses the so-called
bootstrap method: like a Monte-Carlo method, the
bootstrap uses stochastic elements and repeated sim-
ulations to analyze the properties of the system under
consideration. Depending on the conditions, remark-
able differences between the results obtained with the
bootstrap and with the FIM can be detected (Joshi et
al., 2006), arguing thus for the use of bootstrap meth-
ods for a rigorous analysis of parameter identifiability
in biochemical systems.

Analysis of the FIM can also be used to detect cor-
relations between parameters and thus obtain hints on
which parameters can be estimated together. Several
methods are introduced to group together parame-
ters with a certain accuracy with respect to parameter
estimation. The method introduced by Reichert and
co-workers (Brun et al., 2001) uses the collinearity
index yx of a modified FIM which is set up for K
parameters: first, the sensitivities w;; are scaled with
appropriate values for parameter p; and state x; : w;"j =

ox;/0p; p? /x5; afterwards the column of the matrix W*
with the scaled sensitivities are divided with the norm
of the respective columns (Brun et al., 2001):

ok
wj

; €))

Finally, the minimal eigenvalue of W*TWx* for
a group of K parameters is the inverse of collinear-
ity index yg. If the parameters are highly correlated,
matrix Wx* tends to be singular. Therefore, the mini-
mal eigenvalue is very small and the collinearity index
vk is high if some of the K parameters are correlated.

Parameter estimation is a classical optimization
problem that is formulated in general with the objective
function ® as follows:

ex _ .8 2
min,® = ZZ;W (10)

m n

with y*} is the measured value for state n at time point k
in the mth experiment, y;, the corresponding simulated
value that depend on the parameter vector p and o is
the standard deviation of the measured values V- In
many applications, the standard deviation is not known
for every single sample point, and o, is considered a
constant absolute error or proportional to the measured
value.
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The engineering community has provided many
scientific inputs to the development of optimization
algorithms. Particularly, Banga and co-workers com-
pared different strategies and concluded that a global
stochastic optimization method, “Evolution Strate-
gies” (ES), was the best one to solve a benchmark
problem (Moles et al., 2003). In recent years, algo-
rithms that combine local and global search strategies
have become popular, to circumvent their prob-
lems (mainly, not finding the global optimum and
slow conversion, respectively) (Katare et al., 2004;
Rodriguez-Fernandez et al., 2006). Hybrid algorithms
start the search with a global optimization and then
switch to a local one. Using this approach, the
computing time could be reduced significantly. Still
problematic is to find the heuristics to switch from the
global to the local search (Rodriguez-Fernandez et al.,
2006).

3.2. Experimental design

The goal of experimental design is to define the most
informative experiment, e.g. to distinguish between
two or more model variants, to improve the validity
of the model by reducing the parameter variances and
to clarify the structure of the model. For many cases,
again, an optimization problem can be formulated to
solve one or in an iterative approach more of the prob-
lems, see, e.g. Asprey and Macchietto (2000). The first
two issues are discussed here.

3.2.1. Discrimination between competing models

A typical case is the following: two or more
model variants are available that describe one single
experiment very well. Here, an experiment has to be
performed that (ideally) allows a clear discrimination
between the models. For a number of years, approaches
have been developed to discern between model can-
didates, e.g. Boox and Hill (1967), Munack (1992),
Cooney and McDonald (1995). The key idea is to find
an input profile that maximizes the difference of the
outputs of the competing models. In a series of papers,
Asprey and co-workers describe and review methods
for this purpose (Chen and Asprey, 2003). One of the
approaches uses an extended weighting matrix includ-
ing the variances of the measured state variables and
the sensitivities of the parameters. In this case, the task
can be formulated as the maximization of an objective

function

Tend
max = / [AXT (HQAX()]dz, (11)
Io
with Q being a general weighting matrix and Ax
being the difference between the responses of the two
competing models. Many different approaches for the
choice of the weighting matrix can be found in the liter-
ature. Weighting should be done if the interesting state
variables are within different orders of magnitude. In
this case, it is useful to use a diagonal weighting matrix
with elements:

1
T (i1 + x2)/2)%

That is, to weight by the average of the two mod-
els. It is, however, also possible to include information
about the measurement variances, the variances of
the parameters of the model and the sensitivity of
these parameters with respect to the interesting state
variables. In Kremling et al. (2004a,b), the following
approach was used:

Qii 12)

Q=(C+VC; +VCy)™, (13)

where C is the variance of the measurements, and VC s
the variance—covariance matrix for model predictions:

VC = wF'wT (14)

with sensitivity matrix W and FIM F. In this approach,
only the diagonal elements of C and VC are used. This
means that the squared model difference for a single
state variable is weighted by a sum given by its mea-
surement variance, and the square of the sensitivity of
each fitted parameter with respect to the state variable,
multiplied by the variance of the parameter. In other
words, the difference of a state variable contributes less
to the objective function if: (i) the measurement error
of that state variable is large and (ii) the state variable
in the designed experiment is very sensitive to parame-
ters that could be estimated only with large errors using
the experiment(s) performed so far. In Kremling et al.
(2004a,b), the approach was successfully applied to a
small biochemical network.

3.2.2. Improving parameter accuracy
The quality of the parameters, that is, the parameter
variances can be determined with the FIM as described
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above. To improve the quality of the estimated param-
eters different criteria of optimality are defined:

e A-optimal design minimizes the trace of F~!.

e D-optimal design maximizes the determinate of F.

e E-optimal design maximized the minimal eigenvalue
of F.

e Modified E-optimal design minimizes the ratio
between the maximal and the minimal eigenvalues
of F.

The A- and D-optimal design are related to the arith-
metic and the geometric mean of the expected errors. In
contrast, the E-design tries to minimize the largest error.
For the formulation of the optimization problem, some
constraints have to be taken into account. Most impor-
tant seems to be the input variable that is available to
control the process. Using bio-reactors, often the feed
rate and the feed concentration are used. Besides the
range of possible input values, the time points where
the input can be altered have to be taken into account
(Kutalik et al., 2004).

4. Control and observation

In control engineering, the closed loop behavior is
designed in such a way that a number of constraints
are fulfilled. First, the closed loop is analyzed with
respect to stability, which is the most important char-
acteristic. Besides stability, and in order to design and
to follow a process, observability (how much can be
seen) and controllability (how much can be changed)
are two additional concepts useful for analyzing the
system. Some applications of engineering approaches
to the stability analysis will be discussed in Section 6.1;
here, we shall introduce the concepts of controllabil-
ity and observability and their applicability to systems
biology.

4.1. Controllability

Controllability is concerned with the question
whether it is possible to calculate an input function u
that allows to drive the system in finite time to certain
desired final values of the state variables x or the output
variables y. The problem is solved in two steps. First,
controllability is checked that guarantees (at least for
all linear systems) that an input function can be found,

and second, the input is calculated in dependence of the
desired final values. A fist attempt to analyze control-
lability in the S-systems framework was performed by
Ervadi-Radhakrishna and Voigt (2005). They used an
exact feedback linearization to transform their model
into a controllable linear form. The procedure was
applied to a small metabolic pathway with three state
variables and with two and three input variables. Inputs
in the system are the enzyme activities. A number of
test scenarios were simulated and the authors conclude
that the S-systems representation is a good basis to
analyze controllability. Controllability could also be
useful in experimental design to check if, for desired
domains of the state variables, an input function can be
found.

4.2. Observability

Observability can be seen as a measure to infer the
state variables x of the system from its measured out-
put y. As in the case of the controllability, the problem
is solved in two steps. First, observability clarifies if
it is possible to reconstruct state variables and second,
an observer (or filter) has to be designed that allows to
estimate the time course of the state variables from the
measured outputs. This method has a high potential for
systems biology, where the development of measure-
ment devices is still time-consuming and expensive.
Moreover, such a tool will allow to follow cellular
events even if some components cannot be measured
directly. Importantly, with information on internal state
variables, the system can be controlled and redirected
from the outside to reach a desired behavior as far as
allowed by its controllability. Another field of appli-
cation of this concept is model reduction: variables,
which are not observable are in many cases not of
interest, and can thus be removed from the model (see
Section 5.1).

Let us illustrate this approach with a simple linear
pathway, shown in Fig. SA. The reaction kinetics are
assumed to be irreversible. The system, of dimension
n (i.e., with n state variables), reads

X3 =1ry—r3

s)

Xy =ro—ry, Xy =ry—r,

which can be expressed in a compact manner in the
linear form if mass action is applied (Eq. (2)). The
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Fig. 5. (A) Linear pathway with feedback. The feedback allows to observe the system by measuring only X;. (B) Pathway of a small network

to check structural observability.

observability can be checked by calculating the rank
of the matrix

P =[CTATCT....ATY" Ty, (16)

where A, B and C are defined as in Eq. (2). If the rank
of P is less than n, then not all states can be recon-
structed. For the system without feedback (r; =f(X1)),
and measurements of X; or X5, rank of P is equal to
2, and therefore does not allow to reconstruct all state
variables. With the measurement of X3 (i.e., y=X3), it
can be shown that P has full rank and all states can
be reconstructed. Linear pathways are often regulated
by feedback inhibition of one of the first enzymes in
the pathway by the end-product (r] =f(X1,X3)). If this
feedback is taken into account in the calculation, then
rank of P is equal to 3 and the system is observable,
independent from the choice of the output. This is due
to the influence of X3 on state X, or in other words,
X1 contains information from all components from the
closed loop and therefore, the measurement of X is
enough to reconstruct all other state variables.

The concept of observability has been extended to
make it independent from the choice of the numeri-
cal parameter values. For a comprehensive description
of such a structural analysis, see Wend (1993) and
Unger et al. (1995). Hereby, the analysis of structural
observability analyzes the structural matrices S4 and
Sc, where S4 and S¢ have the same dimension as A and
Cin Eq. (16), respectively, but contain entries * instead
of numerical values.

The system is structurally observable when: (i) rep-
resenting the system as a graph, all nodes are linked
directly or indirectly to the measured output and (ii)
the structural rank of the matrix

S
Sp = (;) (17)

is n. To determine the structural rank of matrix S,
one has to find columns with at least one entry *. For
biochemical networks, this condition is almost always
fullfilled since the components have an influence on
their own degradation. To represent the dynamical sys-
tem as a graph, the information of the Jacobian matrix
can be used. The entries J;; = of;/0x; indicate if element
Jj has any influence on element . If this is the case, the
respective nodes in the graph are connected. A simple
example is shown in Fig. 5 plot B. Two components
representing two pathways are connected by a third
component X3. In the case that only component X3 can
be measured, matrix Sy reads

* 0 0
0 * *

Sp=1| =* * * . (18)
0 0 *

For this example, the conditions are fulfilled, since
X3 can be reached by X7 and X5 (5,(3,1)=5,(3,2)=*).
Moreover, the structural rank is 3, since the diagonal
elements of the upper parts of S, have an entry. If it is
assumed that reaction r; in Fig. 5 reads:

X
y—
K> +X»

and if Xy > K>, o is simplified:

rn=k X3, (19)

r =kyX3. (20)

In this case, the S, is as follows:

* 0 0
0 0 *

Sp = * 0 * . 21
0 0 *
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and the structural rank is only 2. The system is not
structural observable.

The structural considerations assure that a system
is observable for almost all parameter sets, but cannot
guarantee that the system is observable for all param-
eter values. If for this example, both metabolites X
and X, run on the same time scale, i.e. the entries in
the Jacobian of the system Jj1 and J»; are similar, the
systems matrix A reads for example

[—1 0 0
A=]0 -1 -—-1], (22)
1 1 -3

and the matrix P is then:

0 1 -4
P=10 1 —-4], (23)
1 -3 8

Matrix P has rank =2, that is, the system is not fully
observable.

Letus illustrate these ideas on a more realisitc exam-
ple. The set of equations for a bacterium growing during
a batch experiment in a bio-reactor has a special struc-
ture that facilitates the reconstruction of state variables.
The equations for biomass B, substrate S and internal
metabolites M; read

B=uB=Yry,B 24)

S= —wryp B 25)

M; = ZVijrij —uM; = Z)/ijrij — YropM;,  (26)
J J

with substrate uptake rate ryp, stoichiometric coeffi-
cients y;;, metabolic rates r;;, molecular weight of the
substrate w and yield coefficient Y. In general, the
substrate uptake rate ry, depends on the substrate con-
centration. If the growth rate depends on the uptake
rate = Yryp, a graph based on the Jacobian can be
drawn as shown in Fig. 6 indicating that all internal
metabolites can be used to reconstruct at least biomass
and substrate, since both state variables can be con-
nected to every metabolite in the network. Furthermore,
if the uptake rate depends on an internal metabolite,
e.g. on ATP or on a member of the phosphotrans-
ferase system (e.g. the PEP phosphotransferase system
in E. coli transfers a phosphoryl group from central

B - S .‘____Mi —

O Q (b)o

Fig. 6. General structure of a cellular model that includes the trans-
port of the substrate. If one or more metabolites M; are involved in
the transport process, that is, yup =f(S, M;) the graph has to extended
by the dashed lines (a) and (b).

metabolism to the incoming substrate), this metabo-
lite influences the biomass concentration and hence,
all metabolites that have a direct or indirect link to this
metabolites “transfer” the information to the biomass
(Fig. 6). Therefore, the system is observable by only
measuring the biomass or the substrate concentration.

4.2.1. Observer/Kalman-filter

If the property observability is checked, an observer
or filter can be constructed to estimate the state vari-
ables. A general scheme is shown in Fig. 7. The idea is
to have the “real world” and the “model world” in par-
allel with the same input signals. The input will result
in some response y of the real world system that can
be measured by the measurement device; in the model
world, the output is y. Both outputs are compared and
the difference y — ¥ is used in the observer/filter to
redirect the model towards the measured output 9. If
the difference y — § is negligible, it can be expected
that the simulated states & corresponding to the outputs
¥ are close to the states x in the real world. If the equa-
tions for the model are given as in Eq. (1), the equations
for the estimated state variables X are determined by

f= G )+ KO - ). @7)

where K is the gain of the observer.

Classical filter algorithms are based on the pure
model, e.g. the Luenberger observer, or take into
account that the model as well as the measurements are
subject to uncertainties, as in the case of the Kalman
filter. The latter and its extensions can therefore con-
sider that the model is not a perfect description of the
real world and that the measurements may be distorted
with noise. Since the measured data is not available at
any time point but at discrete sampling points, mod-
ern algorithms use two steps to first predict the course
of the state variable in the next time step and second
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Fig. 7. Set up of a model based measurement system.

to correct the state variables with the current measure-
ment. Although, sophisticated methods are available
to estimate state variables, open points are, e.g. to take
into account that parameters of the model are uncer-
tain. This problem is raised by Dochain (2003). In his
tutorial, problems of state and parameter estimation are
discussed and recent findings are summarized.

An observer was designed for the experimental data
from Bettenbrock et al. (2006). Measured time course
of biomass, glucose, lactose, proteins LacZ and EITA
(PTS protein) are available during diauxic growth of
E. coli on glucose and lactose. The system is observ-
able by using only the measured biomass. Results with
an extended Kalman filter (EKF) are shown in Fig. 8.
Remarkable results are obtained and all state variables
are reconstructed very well when only biomass is mea-
sured.

Note that the main difference to a standard parame-
ter estimation approach is that with the EKF the model
is adjusted dynamically to the experimental data as
soon as new data is available. Therefore, it is suitable
for on-line control of biochemical processes; for exam-
ple, it could be applied to a replacement organ (e.g. a
liver) to promptly monitor dangerous conditions.

5. Model reduction

Modeling strategies as those described in Chapter
2, together with the increasing amount of experi-

mental data available and its exploitation with the
parameter estimation and model discrimination meth-
ods introduced in Chapter 3, let us set up models
of increasing size and detail. However, such com-
plex models, which should actually be a tool to
understand biochemical processes, become themselves
difficult to understand. For many tasks, it is nei-
ther necessary nor desirable to work with such large
and unmanageable models. For example, in many
studies a specific question is to be addressed, and
only smaller parts of an existing model are needed.
In this case, one tries to simplify the structure of
the rest of the model keeping the main characteris-
tics of the original one. Therefore, the reduction of
mathematical models of biochemical networks into
manageable ones, without losing their essential prop-
erties, would be very useful (Saez-Rodriguez et al.,
2005a,b).

One can distinguish between two types of model
reduction. In the first type, only the behavior of
the model, that is, the dynamics or the steady state
characteristics, are needed and a phenomenological
description is used. On the second type, however,
model reduction is based on a simplified description
of the system by grouping together components or by
neglecting some of the molecular interactions; here, a
model description is required. In this section, we shall
introduce some approaches to the reduction of models
describing biochemical networks, mainly inspired by
engineering technics.
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Fig. 8. Results of an extended Kalman filter (EKF) applied to experimental data of diauxic growth of Escherichia coli on glucose and lactose
(Bettenbrock et al., 2006). Symbols represent measured data and solid lines is the output of the EKF. Dashed lines portray a pure simulation
with a simplified model based on the model proposed in Bettenbrock et al. (2006). The filter was designed with MATLAB.

5.1. Reduction of combinatorial complexity in
signal transduction networks

In signaling networks, particularly of mammalian
cells, the receptors and adaptor proteins are charac-
terized by their ability to bind different molecules
via different domains (Pawson and Nash, 2003) (see
Fig. 9(a)). If one considers all possible combinations
of proteins, the number of feasible states (micro-states)
increases exponentially (Blinov et al., 2004; Borisov et
al., 2005; Conzelmann et al., 2004). This combinatorial
complexity has typically been circumvented because it
is very difficult to say a priori which micro-states are
the important ones (Faeder et al., 2005). Therefore, a
rigorous description has to include all possible micro-
states (Fig. 9(a)). However, the number of equations is
very high even for relatively simple models.

Recently, a new approach based on the macro-states
(the states of the different domains) instead of the
micro-states (the possible molecular combinations) has
been proposed in Borisov et al. (2005) (Fig. 9(c)), and
extended and formalized in Conzelmann et al. (2006).
In this approach, a state space transformation allows a
reversible move between the macroscopic and micro-
scopic description.

The method operates as follows: starting with a sys-
tem of the form of Eq. (1) describing the micro-states x
(being y the macro-states of interest), first one adjusts
the kinetic parameters according to domain interac-
tions. For example, if a scaffold molecule A can bind
to B and C, and both binding sites are independent, the
kinetic parameters for the binding of A to B will be the
same for all micro-states (i.e. the parameters for free A
binding to B are equal to the parameters of the complex
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Fig. 9. Different approaches to the combinatorial complexity of signaling networks (Saez-Rodriguez et al., 2005a,b), illustrated by a scaffold
protein with three binding sites for three different proteins. While a rigorous description has to include all possible combinatorial combinations
(a), usually only some of them are modeled (b). According to Borisov et al. (2005) and Conzelmann et al. (2006), the system can be modeled

using new states describing the different domains (c).

AC binding to B). Importantly, this process is indepen-
dent of the parameter values; one only needs to know
whether the binding sites influence each other.

Second, one performs a linear transformation z =
Tx, where T is a square, non-singular matrix. The
resulting states z; can be classified into levels or tiers,
representing each tier a level of detail: Oth tier cor-
responds to the total concentration of the protein, the
first tier the macro-states (the state of the individual
domains), the 2nd tier the state of all pairs of domains
(i.e. the concentration of proteins with concurrently
occupied domains 1 and 2, 1 and 3, 2 and 3, etc.), 3rd
tier of triples of domains, and so on. Importantly, this
transformation is general, i.e. independent of domain
interactions and kinetic parameters (Conzelmann et al.,
2006). Furthermore, the new states of tiers 0 and 1 rep-
resent the number of free or occupied binding domains,
a quantity biologists are used to work with, and that
can be measured more easily than the concentration of
particular species.

It results that in many relevant cases the transformed
model equations for z can be decomposed into two sets
z; and z, so that z, is non-observable (see Section
4.2). Therefore, areduced model only has to account for
the o.d.e.’sdescribing z,(z, = 8,(z;, u)) (Conzelmann
et al., 2006).

5.2. Modular model reduction

As mentioned in Section 2.2.2, modules defined
according to the concept of retroactivity have the
advantage that their signal transfer properties are inde-
pendent of what they are connected to. Therefore, if a

(simpler) substitute for a certain module can be found, it
can replace it without altering the properties of the net-
work as a whole, leading to a reduction of the complete
system. In the case of (weak) retroactivity, a certain
difference may appear.

If the module under study is simple enough, it can
be analyzed analytically. For example, it can be shown
that a module describing the double-phosphorylation
of a MAPK can be reduced to a system with first order
lag for low input values, and to an integrator for high
values (Saez-Rodriguez et al., 2005a,b). For more com-
plex modules, however, a more heuristical approach,
based on simulation studies, has to be applied. Applied
to the model for the EGF-induced MAPK cascade
mentioned above (Schoeberl et al., 2002), simulation
studies showed that the input/output behavior of sev-
eral complex modules was remarkably similar. Thus,
the more complex modules could be replaced by the
structure of the most simple one, obtaining a very good
approximation to the original model (Conzelmann et
al., 2004).

5.3. Conservation relationships

A well-established form of reducing the number of
equations of a dynamic model is based on conserva-
tion analysis. This method is based on the analysis of
stoichiometric networks, a field started by the chem-
ical engineering community. A conserved moiety is
a molecular subgroup, which is conserved during the
evolution of a network (Sauro and Ingalls, 2004). Since
the total amount of a conservation moiety is constant,
instead of describing all the states by a differential
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equation, one of them can be computed by an alge-
braic equation. Importantly, this reduction is exact and
relies only on the network structure.

These structural conservations are particularly
important in the case of models of signal trans-
duction, which typically include many cycles of
activation/deactivation of proteins. Consider the sim-
ple example of a protein which can exist in two states,
active and non-active

P = Pj. (28)

In principle, one ODE would be written for the bal-
ance of both P and P4 . However, such a cycle represents
a conservation moiety and it holds

[P]+ [PA]l = Pr, (29)

where Pr is a constant. Therefore, only one differential
equation is needed (for either P or Pp), and the other
one can be computed according to (29).

Algorithms for the identification of conservation
moieties, based on an analysis of the stoichiometric
matrix, are well established. Furthermore, several mod-
eling tools incorporate them to automatically detect the
moieties and reduce the dynamical model accordingly
(Sauro and Ingalls, 2004).

5.4. Time scale hierarchies

Commonly, the time constants of biochemical sys-
tems span a large range, that is, the system is stiff.
To analyze the system in a specific time window, the
dynamics faster than those of interest can be approxi-
mated by the quasi steady-state assumption, and those
slower can be neglected. There is a large body of lit-
erature on this topic. The mathematical foundations,
e.g. singular perturbation methods and analysis of man-
ifolds, are well-defined in a number of papers and
textbooks (Fenichel, 1979; Segel and Slemrod, 1989;
Wiggins, 1994) and application to chemical system can
be found, see, e.g. Zagaris et al. (2004) and Powers et
al. (2002).

The simplest approach analyzes the eigenvalues A;
of alinear system of the form of Eq. (2) obtained from a
non-linear system by linearization around an operating
point (normally a steady-state xgs, Uss). The eigenvalues
determine the time constants A; of the system:

1

= —. 30
IRe(2;)| G0

Ti

Thereby, a fast and a slow system can be defined by
setting a threshold in a time constant 75. Fast modes
have a time constant t,-<rs, while slow modes have
7;>7>. Unfortunately, fast and slow modes of the sys-
tem do not correspond to state variables of the system
in a one-to-one mapping; the modes are characterized
by a linear combination of the state variables where
the linear combinations are given by the matrix of the
eigenvectors of the system.

For some applications, the respective modes can be
assigned to a group of state variables that are involved
in the same functionality. For example, in Kremling et
al. (2004a,b), a model describing carbohydrate uptake,
central metabolic reactions and gene expression for the
uptake systems was analyzed with respect to the time
scales. The authors concluded that, depending on the
choice of the time window and the stimulus of the sys-
tem, one or two of the subnetworks comprising the
sensoring and metabolisms modules could be consid-
ered to be in steady state.

To circumvent the problems mentioned before, Hu
and co-workers (Gerdtzen et al., 2004), first separate
the system given with the stoichiometric matrix S and
the vector of reaction rates r

¥=S8r—bx (€29)]

by defining fast and slow reactions rg,; and ry,,,. By
applying singular perturbation arguments and scaling
they rewrite the system in such a way that the fast reac-
tions do not appear anymore and the slow (original)
state variables can be grouped so that only the slow
time scales are represented.

Recently, a method for automatically decomposing
models of biochemical networks into a slow and fast
part has been proposed (Zobeley et al., 2005). The
method is based on: (i) a linearization of the system and
(i1) conversion of the jacobian into a block-diagonal
form, which allows the decomposition of the system
into a fast and a slow block. This process is repeated
along the simulated trajectory, providing hence a time-
dependent analysis. The user can define a tolerance
for the error of the approximation, and the method
decides automatically what can be considered ‘slow’
accordingly to the user-defined error. As the authors
point out, such a decomposition not only decreases the
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computational costs, but also allows the decomposi-
tion of the system in modules which can be analyzed
independently. The method was shown to be able to
reduce an oscillating, highly dynamic network for a
peroxidase-oxidase reaction system from a dimension
11 to a dimension ranging from 2 to 6, depending on
the regime of the system. It would be interesting to test
the method on large signaling networks.

5.5. Optimization approaches and set up of
‘minimal’ models

There have been several efforts to reduce models of
chemical networks models using genetic algorithms,
e.g. Edwards et al. (1998), which can be useful for
biochemical networks (Maurya et al., 2005). Maurya
and colleagues have applied these ideas to the reduc-
tion of signaling network models. In one approach,
they use genetic algorithms to identify set of param-
eters, which are good candidates to explain a certain
set of experimental data. Subsequently, they perform
multiparametric sensitivity analysis to rank the param-
eters in accordance with their importance. Finally, on
the basis of this ranking and in an iterative manner,
they ‘knock out’ parameters and check if the result-
ing reduced model can still describe the experimental
data. Using this approach, they could reduce a detailed
model describing the GTPase-cycle signaling module
from 48 to 17 reactions.

As an alternative method, they also applied mixed-
integer non-linear-optimization technics — also a
methodology developed mainly in chemical engineer-
ing — to the same problem, reducing the same model
to 14 reactions (Maurya et al., 2005). The advantage
of this approach is that topology and parameters are
simultaneously determined, and thus the method is an
order of magnitude faster.

Using similar principles but with a different goal,
Maurya et al. developed a promising approach to set
up models with a minimal number of state variables
and parameters (Maurya et al., 2006). The rationale is to
start with a simple model and add more complexity (via
more complex kinetic laws and adding new elements to
the network structure), until the model can reproduce
a certain behavior.

Their framework is related to the design of con-
trol systems and the authors propose an analogy
to the steps followed there: (i) optimization of the

kinetic parameters = tuning of the controller parameters
(i) modification of the kinetic rate law expres-
sions = modification of the control laws and (iii)
addition or deletion of components =updating of the
control structure.

It may be possible that different model structures
lead to the same characteristics observed exper-
imentally. On such cases, the procedure has to
be complemented by experimental design as those
described in Section 3 to discriminate model structures.

The method was applied to construct a model of the
MAP kinase cascade, The final model that was devel-
oped comprised 5 state variables and 16 parameters,
and shows good agreement with a previously published
model with almost 100 state variables (Maurya et al.,
2006).

6. Application of control theory

Ithas been proposed that, with the increasing knowl-
edge on the structure of biochemical networks and
especially the knowledge on signal transduction and
processing, the application of theoretical concepts from
control theory should become more important. Not
only the biological sciences will benefit from control
theory, but also vice versa, systems biological research
will lead to new challenges for control engineering
(Sontag, 2004). This section summarizes some of these
ideas and illustrates them with simple examples.

Some of the methods introduced in this section are
based on linearized models, thatis, the models are given
with the structure shown in Eq. (2). If one is dealing
with a non-linear system, it has to be linearized around
a working point/setpoint to apply the corresponding
methods. This leads to limitations since the response
of the non-linear system corresponds to that of the lin-
earized one only for the setpoint (and approximately for
very close points, such as those achieved upon small
inputs). However, for many applications in engineer-
ing sciences this approach has led to powerful control
strategies and there are also examples showing that it
can help to elucidate control principles in biological
systems (Yi et al., 2000).

6.1. Stability

The most important task for a control engineer is
to design a controller in such a way that the entire
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system, composed of the controller and the controlled
system, is stable (expressed in simple words, a sys-
tem is stable if, after a small perturbation, it returns to
the original state). In principle, living systems should
show a stable behavior (including attractors like limit
cycles); otherwise, a component would accumulate
to a point where it would lead to the collapse of
the organism. Therefore, one would expect a sim-
ple behavior in this regard in biochemical reaction
networks. However, in biochemical systems, due to
their non-linearities, two or more steady-states can be
observed. Furthermore, it results that these phenomena
are used by nature to process signals; for exam-
ple, a multistable system can lead to an irreversible
switch behavior, which is used to take irreversible deci-
sions, such as differentiation or cell fate (Laurent and
Kellershohn, 1999; Xiong and Ferrell, 2003; Eissing
et al.,, 2004). In general, not all of these steady-
states can be observed experimentally since they can
be unstable. The analysis of systems showing such
an interesting behavior will help to better under-
stand the design of the networks and also will open
possibilities in which way such systems can be manip-
ulated.

A basic principle used in control engineering is the
analysis of an overall system from the properties of
its single components. In control theory, the open loop
composed of controller and controlled system is com-
monly analyzed and the behavior of the closed loop
is calculated from properties of the single submodels.
This is the classical way to design a controller that has
to fulfill some requirements with respect to influences
of disturbances or setpoint tracking.

Sontag and co-workers consider a special class of
systems, monotone systems, and show that under some
conditions these systems cannot oscillate nor show any
chaotic behavior (Sontag, 2004). Monotone systems
can be non-linear, but they are well-behaved in the
mathematical sense (Sontag, 2005): if one modifies the
stimulus (or other conditions), and the system starts
to response, say, with a higher value than before, one
would expect that, for a ‘simple’ system, the response
would remain higher for the whole trajectory. Also, one
would expect that, if an even higher value for the input
is applied, the response would be even higher. Simi-
lar behavior would be expected for the initial values,
as well. This intuitive property is what characterizes a
monotone system.

Monotony can be assured (more specifically, strong
input/output monotony; here only SISO systems are
considered) if, for a system derived from a very general
system defined as in Eq. (1), the signs of all elements
in the Jacobian matrix J, and the derivatives df/0u and
ady/dc, are sign definite and there is no negative feed-
back in the adjacency matrix associated to J (Angeli
et al., 2004). This property is important in the context
of biochemical system as it can be analyzed very eas-
ily, since information on the connections between the
elements (e.g. arrows with +for activation and —for
inhibition) can often be seen in cartoons in biological
papers.

Multistablity is guaranteed for some ranges of feed-
back strengths, if the system in open loop is monotone
and the steady-state response k (the so-called I/O char-
acteristic) is sigmoidal (Angeli et al., 2004): if the
output of system is connected via a monotone increas-
ing function g to the input, i.e. the feedback is positive,
the steady-states of the closed loop system can be cal-
culated by considering the intersections between the
functions k and g~! (the inverse of the feedback char-
acteristic g).

Fig. 10 shows the open and the closed loop system
for lactose uptake (see Fig. 1) and a plot of the stimulus-
response curve. This example also illustrates the fact
that non-linearities in cellular systems are needed to
establish a certain functionality (Tyson et al., 2003):
in the example given above, the non-linearity is used
to guarantee that the system avoids a frequent turn
on and off if some fluctuations in the stimulus are
present. Other examples for functionalities in cellu-
lar systems are switch-like signal amplification (e.g.
the MAP kinase cascade; Huang and Ferrell, 1996),
adaptation (e.g. bacterial chemotaxis, Alonetal., 1999)
and oscillations during the cell cycle (Tyson et al.,
2003).

Another approach, Chemical Reaction Network
Theory, developed in the field of chemical engineer-
ing by Feinberg and colleagues (see, e.g. Feinberg,
1995), can be of great interest to explore stability in
systems biology, since it allows to determine whether
a certain (bio)chemical network can present multi-
stationarity. The strength of this theory relies on its
ability to provide assertions independently of specific
parameters. Therefore, it helps to discard multistation-
arity for a certain biochemical structure (Conradi et al.,
2005).
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Fig. 10. (A) Open loop for the lactose uptake system. The concentration of the uptaking protein determines the concentration of allolactose. (B)
Closed loop. (C) Simulation of the stimulus-response curve. A hysteresis can be detected, that is, the system possesses three steady-states — two

stable and one unstable— for a broad range of stimuli.

6.2. Integral feedback

An interesting biochemical example for a well
known technical feedback structure was discovered in
the bacterial chemotaxis. The steady state output of
the system (the phospho-rylated form of protein CheY)
does not depend on the input — or better here, distur-
bance of the system — which is an attractant for the
bacteria, e.g. a substrate, such as glucose. As shown by
Doyle and co-workers, the system can be represented
in such a way that an integral feedback can be detected
(Yi et al., 2000).

Integral feedback is used frequently in technical
control systems to regulate disturbances and to keep
the system at a desired setpoint. As can be seen in
Fig. 11, systems with integral feedback will respond
very differently to either changes of the setpoint or
disturbances.

In this context, it is a common approach to linearize
the models to apply linear control theory. Furthermore,
often Laplace transformations are used to convert the
systemofo.d.e.’s (a general formis givenin Eq. (2)) toa
system of algebraic equations. The transformed system
now “works” in the frequency domain, that is, the sys-
tem is analyzed with respect to amplitude amplification
and phase shift of a given sinusoidal input function with
frequency w. Linear systems are characterized by the
fact, that: (i) the frequency o will be leveled off while
a phase shift can occur and (ii) that the input amplitude
will be altered (amplified or damped). The response of
the system with respect to setpoint tracking or distur-
bance regulation can be described by separate transfer

functions. These transfer functions are composed of
properties of the controller and the controlled system
but have to fulfill different tasks: new setpoints have to
be reached very fast and precisely, while disturbances
have to be eliminated quickly.

From the linear system with a single input « and a
single output y, the transfer function P (i.e., an algebraic
relationship between in- and output in the frequency
domain) for the controlled system can be calculated:

Y = C(sI — A)~'bU = PU. (32)

With the transfer function for the controller R, output
Y (output in the frequency domain) of the closed loop
system (Fig. 11) can now be calculated by two parts G
and G», which are the transfer function for the setpoint
tracking W and for the disturbance Z, respectively:

Y=G W+ GZ (33)

Both transfer functions are composed from the indi-
vidual transfer functions of the controller and the plant.
It can be shown that the transfer function

1
S=—
1+ PR

plays an important role for the dynamics of the closed
loop. From an analysis of the closed loop, it results that
if §=0, then G, =0 and thus the effect of Z dissapears.
Howeyver, it can be shown that a conservation relation-
ship is valid, if S is considered over all frequencies w:
the integral over all frequencies is zero. This is shown in
Fig. 11 with a cellular network showing nearly an ideal
adaptive behavior: enzyme ez catalyzes the synthesis

(34)
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Fig. 11. (A) General scheme of a closed loop system with integral feedback. (B) Reaction network. (C) Scheme of the reaction network as a
closed loop. INT is integration. When the degradation of ez works near saturation, the concentration of ez becomes independent from itself.
(D) Simulation with two different values of r,. For the second disturbance, the adaption is not perfect. (E) Plot of the magnitude of S over the
frequency range. The area below and above the dashed line are equal.

of metabolite X while X feeds back to enzyme degra-
dation of ez. According to the figure, and assuming a
Michaelis-Menten kinetics for protein degradation, the
non-linear o.d.e.’s for the system read:

xez

ez=r1—kp——+,
ez + Ke

x = kzez — kgx +r; (35)
with rate r; as disturbance on X. As can be seen in the

Fig. 11, r; is the set point and the simple structure can
be translated into a feedback control loop with integral

feedback, if the degradation of the enzyme works in
saturation, that is, the degradation of ez becomes inde-
pendent of itself. This means that Eq. (35) is simplified
to:

ez =r) — kox, x = kzez — kgx + r5. 36)

Depending on the strength of the disturbance, the
systems adapt more or less very precisely (see Fig. 11).
The Figure shows also a so-called Bode plot of S(w),
that is, the amplification for various frequency values.
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Based on the conservation law, a part of the curve has
to be larger than 1 (dashed line). Hence, depending on
the input frequency, disturbances are damped for low
frequencies and are amplified for higher values. This
property has been described as the “robust but fragile”
nature of cellular systems with integral feedback (Csete
and Doyle, 2002). Since, in general, the input function
is not a pure sinusoidal function, but, e.g. a step input,
the expected time course response can be seen as a
mixture of the response over all frequencies. In the
simulation in Fig. 11, this can be seen in the time course
of X that shows an undershoot.

If a system is able to perfectly balance the distur-
bance it has to possess a subsystem which itself can
generate all disturbances. This “internal model princi-
ple” is known for a long time in control engineering. In
Sontag (2003), it is shown in which way a system with
a general structure can be decomposed in such a way.
This will help to elucidate the structure of unknown
networks that show adaptive behavior.

6.3. Robust control

A hallmark of models that describe dynamical pro-
cesses in cells is that they show a high degree of
uncertainty, since the knowledge is incomplete and the
kinetic parameters are often unknown and have to be
estimated from experimental data. In control theory,
model and parameter uncertainties can be described in
the “robust control” framework, see, e.g. Morari and
Zafiriou (1988). It seems therefore natural to apply
this concept for the analysis of cellular systems, as
recently attempted in Kim et al. (2006). Kim and
colleagues analyzed the dynamical behavior of Dic-
tyostelium cells by means of robust control theory.
The idea is to find parameter variations that destroy
the oscillations. It results that the re-formulation of
the given model into the robust control framework is
difficult and that the calculation of the lower bounds
seems to be impractical. However, the robust control
approach is a promising approach to cover uncertainties
in cellular systems.

7. Conclusions

Engineering sciences provide a bundle of computa-
tional tools and theoretical methods that are frequently

applied in systems biology research. In this article, we
summarize and illustrate recent advances in the field
of mathematical modeling and model analysis from an
engineering point of view.

A field closely related to systems biology is
metabolic engineering, which was established in the
eighties based on a quantitative description of bio-
chemical processes together with the possibility to
modify organisms by genetic alterations. The goal of
metabolic engineering is the improvement of quality
and quantity of interesting products in industrial appli-
cations. Therefore, the set up of models that are able to
describe growth of microorganisms, substrate uptake
and product formation was one of the central tasks
in early years. With the possibility to modify strains
and to introduce plasmids with genetic information of
new proteins, the modeling of gene expression, plas-
mid stability and protein secretion gained importance.
Clearly, the developments in metabolic engineering and
systems biology will benefit from each other and syn-
ergistic effects can be expected (Nielsen and Olsson,
2002).

The elucidation of functionality provided by
metabolic, genetic and signaling network structures
based on a mathematical description is an important
task, which we expect to be developed in the near
future. Since the processes that must be described are
characterized by uncertainties with respect to the com-
ponents involved and the kinetic parameters, the set up
of models and model analysis that cover such aspects
will become very important. One promising way that is
under investigation for linear systems is robust control
analysis. This framework allows to include very gen-
eral uncertainties or specific parameter uncertainties.
A possible drawback is that the method “works” in the
frequency domain and the applicability will probably
not be easy.

The development of “simple” models may also be
a useful approach. Although, big models comprising a
high number of components and interactions between
the components are useful, models that focus on cru-
cial points like switches, etc., may make it easier to
understand the functionality of a network. However,
it is not a trivial task to extract the important players
and interactions in a given network with many compo-
nents, and new methods are necessary. Alternatively,
one may start with the observed phenomena, such as
oscillations or multiple steady-states: from non-linear
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dynamics, basic structures are known that are able to
reproduce the desired behavior (Tyson et al., 2003);
starting from these structures and in combination with
the available biological knowledge, meaningful models
can be set up, that can help for a better understanding
of the observations.

A further crucial point in the near future will be
the design of new experiments based on prior knowl-
edge and experimental results. The goal will be to
design informative experiments to elucidate the struc-
ture of the network and to improve the accuracy of the
parameters. Methods proposed so far are based on the
formulation with deterministic o.d.e.’s or steady-state
equation systems where uncertainties are not included.
Therefore, extended methods are required that take into
account that the knowledge on some parts of the net-
works is limited.

Central to the methods described in this article is
a focus on model set up and model analysis. How-
ever, the work of engineers in classical fields is also
focused on problems of synthesis, like designing plants
and controllers for technical applications. In biol-
ogy, an analogous discipline is currently emerging:
synthetic biology. Here, as in the case of systems
biology, biology challenges engineering tools, and
probably classical engineering approaches will have
to be extended to cope with the complexity of cellular
systems (Andrianantoandro et al., 2006).
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Methods

A Benchmark for Methods in Reverse Engineering
and Model Discrimination: Problem Formulation

and Solutions

Andreas Kremling,'> Sophia Fischer," Kapil Gadkar,? Francis ]. Doyle,?
Thomas Sauter,? Eric Bullinger,* Frank Allgéwer,* and Ernst D. Gilles'-?

"Systems Biology Group, Max-Planck-Institut fiir Dynamik komplexer technischer Systeme, 39106 Magdeburg, Germany;
?Department of Chemical Engineering, University of California~Santa Barbara, Santa Barbara, California 93106, USA;
3Institute for System Dynamics and Control Engineering and “Institute for Systems Theory in Engineering, University of

Stuttgart, 70550 Stuttgart, Germany

A benchmark problem is described for the reconstruction and analysis of biochemical networks given sampled
experimental data. The growth of the organisms is described in a bioreactor in which one substrate is fed into the
reactor with a given feed rate and feed concentration. Measurements for some intracellular components are provided
representing a small biochemical network. Problems of reverse engineering, parameter estimation, and identifiability
are addressed. The contribution mainly focuses on the problem of model discrimination. If two or more model
variants describe the available experimental data, a new experiment must be designed to discriminate between the
hypothetical models. For the problem presented, the feed rate and feed concentration of a bioreactor system are
available as control inputs. To verify calculated input profiles an interactive Web site (http://www.sysbio.de/
projects/benchmark/) is provided. Several solutions based on linear and nonlinear models are discussed.

The analysis of metabolic and regulatory pathways with math-
ematical models contributes to a better understanding of the be-
havior of metabolic processes (Kitano 2000). The setup of the
structure of the model, that is, the stoichiometry of the bio-
chemical reaction network, is mainly based on data from data-
base systems or from literature. Recent efforts in measurement
technologies like cDNA array data or 2D-gel electrophoresis
(Ideker et al. 2001) will enable researchers to produce time
courses of several substances from inside the cell. Given such
data, a challenging task is to identify the underlying structure of
the network (“reverse engineering”) and—if two or more model
structures are suited to describe the experimental data—to design
new experiments that will allow discrimination between the
model candidates. Further problems include identifiability of the
model parameters, sensitivity of the parameters, and metabolic
design (Stelling et al. 2001).

The main focus of work in the field of reverse engineering
lies on the identification of genetic networks, that is, in which
way transcription factors are connected to the respective genes.
The methods used are based on a steady-state description (Tegner
et al. 2003) or on Boolean networks (D’haesseleer et al. 2000;
Repsilber et al. 2002). Using time-lagged-correlation matrices (Ar-
kin and Ross 1995; Arkin et al. 1997) or genetic programming
techniques (Koza et al. 2001), networks could also be recon-
structed if time courses of selected state variables were available.

In contrast to the top-down approach represented by the
reverse engineering techniques, the bottom-up approach starts
with a mathematical model for genetic and metabolic networks
based either on biochemical data from databases or on “car-
toons” from literature. One major problem here is the estimation
of uncertain or even unknown kinetic parameters, that is, the
problem of parameter identification, that covers several tasks. (1)
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Identifiability: Simply speaking, identifiability is concerned with
the following question. Given a particular model for a system
and an input-output experiment, is it possible to uniquely de-
termine the model parameters (Faller et al. 2003; Zak et al. 2003)?
(2) Parameter estimation: Using optimization methods, a set of
parameters is determined in such a way that the difference be-
tween the experimentally measured output and the predictive
output of the mathematical model becomes minimal (Moles et
al. 2003). (3) Finally, the accuracy of the parameters has to be
calculated. This is normally done by determining the confidence
limits of the estimated parameters (Faller et al. 2003; Swameye et
al. 2003). To apply statistical methods for this purpose, a large
amount of data is required. On the other hand, using the Fisher-
Information-Matrix (see below), only a lower bound for the vari-
ances of the parameters can be obtained (Ljung 1999; Banga et al.
2002). This lower bound would be reached if the model equa-
tions were linear in the parameters, which is normally not the
case. To overcome both problems, an alternative method, the
bootstrap method (Press et al. 2002), could be applied.

If two or more model variants are available describing the
same experimental observations, methods are available to design
new experiments that allow us to discriminate between the vari-
ants. Early approaches are described in the literature (e.g., Box
and Hill 1967; Munack 1992; Cooney and McDonald 1995). The
key idea is to find an input profile that maximizes the difference
of the outputs of the competing models. In a series of papers,
Asprey and coworkers have developed methods to maximize the
outputs of the system (Asprey and Macchietto 2000; Chen and
Asprey 2003). This is achieved by using an extended weighting
matrix including the variances of the measured state variables
and the variances and the sensitivities of the parameters. In Chen
and Asprey (2003), several methods for model discrimination are
also reviewed.

Here, in silico experimental data for an organism growing in
a chemostat as shown in Figure 1 are presented. For this purpose,
a computer model was set up based on a fictive network struc-
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Figure 1 Scheme of the bioreactor. Inputs are flow rates g;,, g,,, and
feed concentration c;,. Biomass is assumed to be homogeneously distrib-
uted in the reactor. The structure of the biochemical reaction network is
unknown and must be identified.

ture. Parameters are chosen in such a way that a realistic behavior
could be observed. After reaching a steady state, the flow rates q,,,,
q..: as well as the concentration of the substrate in the feed ;, are
changed. Measurements are available for three metabolites, M1,
M2, and M3, representing a small biochemical network of the
organism, and for biomass B and substrate S. Because different
algorithms for parameter estimation are already described in the
literature (Moles et al. 2003), this contribution focuses on the
accuracy of the parameters by comparing two methods for deter-
mining the variance of the parameters.

In the next section several problems are formulated to apply
strategies in the field of reverse engineering and model discrimi-
nation. This paper focuses on different methods for model dis-
crimination. For this purpose, two model variants are set up and
parameters are estimated. The paper is written for the interested
biological researcher and represents possibilities based on a sys-
tem-theoretical approach. It will be shown that for the given
problem it is not necessary to construct several mutant strains,
which is often a time-consuming task, but instead, the applica-
tion of system-theoretical methods using only control inputs
available for a bioreactor system is sufficient to provide satisfac-
tory results. Applications for these methods can be found fre-
quently in the field of molecular and cell biology. Considering
signal transduction pathways, open questions concern the
mechanism of action of the stimulus, cross-talk phenomena, that
is, the interaction of separated signal transduction units, and
type of control, for example, control of activity or of synthesis of
the components involved. Further applications are concerned
with the choice of the correct kinetic description for a biochemi-
cal reaction (Asprey and Macchietto 2000) or with the distribu-
tion of metabolic fluxes in complex networks (Kremling et al.
2001).

METHODS
Benchmark Problem

Problem Formulation
Based on the measurement of components (intra- and extracel-
lular) or expression data, the network structure has to be identi-
fied, that is, the interconnections between the given components
have to be detected.

If two or more model variants can describe the available
experimental data, the design of a new experiment is required to
select the most feasible model structure. For larger submodels for

1774 Genome Research
www.genome.org

cellular systems, measurements are not available for all state vari-
ables. Moreover, the development of new measurement tech-
niques is very time consuming. Hence, strategies that require a
lesser number of state variables to be measured and moreover
strategies that identify these state variables are advantageous. To
design a new experiment, inputs and outputs must be chosen in
such a way that parameters can be identified. Furthermore, pa-
rameters can only be estimated with high accuracy if the control
inputs direct them into sensitive regions.

The problem could also be used as a study in metabolic
modeling for students to illustrate methods in model setup,
model analysis, and experimental design.

Starting Conditions and Data Generation

Figure 2 shows time courses of metabolite concentrations M1,
M2, and M3 as well as the time courses of biomass concentration
B and substrate concentration S. The conditions during the che-
mostat experiment are summarized in Table 1. The molar mass
for the substrate used is 342.3 g/mol. The initial conditions for
biomass and substrate are 0.1 g/L and 2.0 g/L, respectively. The
volume of the bioreactor was held constant at 1.0 L for the given
time series (the maximal working volume of the reactor is
Vipax = 5.0 L).

Measurements are sampled every 2 h. To allow realistically
complex behavior, the following procedure was used. A set of
kinetic parameters was chosen for the (hidden) network. “Experi-
mental data” (time profiles of substrate, biomass, and metabo-
lites) were generated by simulation of this hidden network with
the abovementioned initial conditions. With a random number
rand, the absolute values of the state variables x were modified
according to X = x(1 + rand), where rand is normally distributed
with mean value 1 = 0, and the standard deviation o = 0.1.

With the information given so far, the problem of network
identification can be solved.

For the problem of model discrimination, the following ad-
ditional information can be used.

® Metabolite M1 is the first substance synthesized after uptake.
The transport mechanism was identified as a Michaelis—
Menten reaction law with the parameters given in Table 2.

® Substance M3 acts as an enzyme (E) converting metabolite M1
to M2. The reaction is irreversible, and the affinity (dissocia-
tion constant) of M1 was determined (Table 2).

® Degradation of M2 is also identified as a Michaelis-Menten
reaction law with the parameters given in Table 2. It is assumed
that flux from M2 is responsible for the entire biomass:
M2 — biomass.

® The enzyme is subject to control (control of activity or control
of synthesis).

To verify calculated input profiles an interactive Web site (http://
www.sysbio.de/projects/benchmark/) is provided. The site offers
the possibility to enter a vector of time points and corresponding
values for the input profiles for g;,, ¢,.., and c;, as well as sam-
pling time points (in h). Initial conditions for all state variables
must also be given. Outputs are the time vector at the given
sampling time points and a vector of all state variables with
added random noise. The time series data are shown in several
plots and can also be downloaded.

Model Formulation
Based on the information given above, equations are set up for
the state variables. The equations for reactor volume, entire bio-
mass concentration, and substrate concentration are formulated
in a very general way:

V =qin — Gour (1)



Benchmark for Model Discrimination
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Figure 2 Time series data for biomass and substrate (upper left), for substance M1 (upper right), for substance M2 (lower left), and for substance M3
(lower right). Data were generated as described above. Numerical values of the data are given in the Appendix and can be downloaded from the Web

site given in the problem formulation.

B:(u—q—“‘/”>3 )

$= i (¢ =) ~11 MW B, ®
where Mw is the molar mass of the substrate and r; is the uptake

rate. A Michaelis—-Menten kinetic rate law is used:

S

1 = Tmax m . (4)

Based on the information given above, two possible model vari-

ants are formulated: Model A describes the conversion of M1 to
M2 with a noncompetitive inhibition of the enzyme by M2:

Table 1. Conditions During Continuous Culture Experiment

Time Input

0-20h gn=0.25L/h
Gout = 0.25 L/h

¢, =2.0g/L
20-30h gn=0.35L/h
Gou = 0.35L/h

¢,=2.0g/L
30-60h Gin=0.35L/h
Gou =0.35L/h
¢, =0.50 g/L

The volume of the bioreactor was held constant at 1.0 L.

.=k ELL (5)
AT AT K 0+ MK, + M2

where k, is the turnover number and K;, the unknown affinity of
the inhibitor M2 to the enzyme. Degradation of metabolite M2 is
also described with a Michaelis—-Menten kinetic rate law:

M2

I3 = I3max Ko+ M2 (6)

Finally, enzyme synthesis is taken into account with a constant
velocity:

rsynA = ksynmaxA . (7)

In Model B, the control of enzyme synthesis instead of the con-
trol of enzyme activity is considered. Hence, equations 5 and 7
have to be modified. Now, for the enzymatic conversion of M1,
a Michaelis-Menten kinetic rate law is assumed. For the enzyme
synthesis, a formal kinetic rate law representing an inhibition is
used:

M1
ran=kon By ®)
KIB
rsynB = ksynmaxB m ’ (9)

where K represents inhibition of enzyme synthesis by M2.
The following system of equations for the concentrations
M1, M2, and E is obtained for both models:
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Ml=r —r1,— pM1 (10
M2 =15 13— pM2 1)
E = rsynA/B - }.LE . (12)

The equations for the intracellular components also consider the
dilution by growth represented by the specific growth rate p. To
describe the growth rate, it is assumed that part of the substrate
taken up by the organisms is converted into biomass with a yield
coefficient Y, The equation for p is:

=Yy (13)

With the vector of state variables x = [B, S, M1, M2, E], the vector
of inputs w = [q;,,, Gous Cinl, and the vector of model parameters p,
the model can now be written in the general form:

X = f(xl u, p, t) ’ (14)

RESULTS

Estimation of Parameters and Confidence Intervals

Based on the experimental data and the given parameters, the
following parameters have to be identified: Yy, kza/m Kopnmaxass
K4, and K.

Parameter Estimation

Using a least-squares approach, the parameters should minimize
the quadratic error between the simulations and the measured
data. As the latter is only available at discrete time points J = {t,,
t,, ..., ty}, the errors at each measurement time point are
summed. The squared error is furthermore normalized by the
standard deviation of the corresponding measurement noise o;
and by the maximal measurement. Thus, less noisy signals are
more weighted, and all measurements are brought to the same
scale. This results in the following objective function that the
optimal parameters should minimize:

J= 22( X(t))

te T i=1

with x; = max x,(t), (15)
=)

where M is the number of states, x; are the measured state vari-
ables, and X; the state variables of the models. The standard de-
viation of the noise is equal for all measurements, that is,
0; = 0.1x;. Table 3 shows the resulting parameter values p,,, after
a fit with the given experimental data. As the values of the ob-
jective functions attained for Model A and Model B differ only
slightly, it is not clear which one of the models is better suited to
fitting the benchmark problem.

Confidence Intervals

To estimate the confidence intervals of the parameters, two
methods have been applied: local approximation by calculating
the Fisher-Information-Matrix and a bootstrapping approach.

Table 2. Kinetic Parameters for Synthesis of M1, Degradation
of M2, and the Affinity of M1 to Enzyme E

Synthesis of M1 Values Imax = 2.4 X 10* umol/gDW h

K = 0.4437 pmol/gDW
K =12.2 pmol/gDW

max =3 X 10° pmol/gDW h
=10.0 pmol/gDW

Affinity M1 — E Value
Degradation of M2 Values
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Table 3. Identified Parameters of Both Models, Attained by
Minimizing the Objective Function (15) Over the
Benchmark Experiment

Parameter Model A Model B

Vs 6.968 x 10> g/umol 7.031 X 10> g/pumol
Kia 0.104 pmol/gDW —

Kig — 0.166 pmol/gDW

ks 5.988 x 10° L/h 5.559 X 10° L/h

Keymenax 7.2 X 103 ymol/gDW h 8.2 X 102 pmol/gDW h
Attained | 70 68

The Fisher-Information-Matrix is determined by the follow-
ing equation:

F=>s8"-MV'-S, (16)

teJ

where MV is the variance-covariance matrix of measurement
errors and 8 is the sensitivity matrix:

[ dx;  dx,; dx; —]
dp, dp, dpy
dx,  dx, .
s = dp,  dp, 17)
dx, dxy,  dxy
| dp, T dpnoy dpy

for a model with M considered states and N parameters. Because
the state variables are time-dependent, the sensitivities are also
time-dependent. A set of M - N differential equations has to
be solved together with the M model equations (Varma et al.
1999):

. of of

NE = -8+ P (18)
Having solved the equations, the Fisher-Information-Matrix is
calculated according to equation 16 by summing up all values
over the time span. The Fisher-Information-Matrix is the inverse
of the parameter estimation error covariance matrix of the best
linear unbiased estimator (Posten and Munack 1990). The stan-
dard deviations of the parameters are therefore the square roots
of the diagonal elements of F~'. They are, however, only lower
bounds for the standard deviations, because the system is non-
linear in the parameters (Ljung 1999; Banga et al. 2002):

o= \VF;' . (19)

The corresponding 95% confidence intervals can be approxi-
mated by two times the standard deviation (Press et al. 2002):

Pi=2 0;=pi=pi+2-0; (20)

and are displayed in Figure 3 by solid lines. The figure shows
relative confidence intervals Ap;, that is, the confidence intervals
have been normalized by the estimated parameters, given in
Table 3. Thus, a value of 1 corresponds to the estimated param-
eter being equal to the optimal parameter value. For K;, the cal-
culated 95% confidence interval includes negative values, be-
cause a normal distribution was assumed, which is obviously not
correct in this case.

The second approach estimates the “true” spreading of the
parameters by repeating the parameter fitting to a large number
of experiments, a so-called bootstrapping approach (Press et al.
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Figure 3 Parameter confidence intervals and box-plot. The parameter confidence intervals are shown normalized to the optimal values attained for
the benchmark measurements. The 95% confidence interval based on the Fisher-Information-Matrix is depicted by the solid lines. The box-plot depicts
the results of the bootstrap method. For both models, the estimated 95% interval for K, includes negative values. Therefore, the whole interval is not

depicted here.

2002). Here, 50 repeats were performed using the given Web site.
In practice, such a large number of experiments would rarely be
possible. Instead, “new experiments” can be generated by ran-
domly picking a certain number of data points and moving them
according to the uncertainty model of the corresponding mea-
surement. The bootstrap approach estimates not only a mean
and standard deviation of the parameter distribution, but also its
shape. This can be visualized using a box-plot as depicted in
Figure 3. A box-plot is a graphical representation of an ordered set
of numbers. It depicts the median value by the central line. The
median is the center value of a sorted list of data and is preferred
to the mean as it is less sensitive to outliers in the data. The box
shows where the central 50% of the values are, the so-called
second and third quantiles. The vertical bars indicate how the
remaining values are distributed. To eliminate the influence of
outliers, the length of these bars is usually bounded. Here, 1.5

times the height of the box is used as maximal extension. The
box-plot in Figure 3, for example, shows that the distribution is
not symmetric, but that values larger than the median are spread-
ing more than those below the median.

Clearly, the results of the two approaches differ quite sub-
stantially. This is due to nonlinear behavior of the system. Al-
though the first approach (calculating F) assumes that the system
is linear with respect to the parameters, the bootstrap approach is
not based on a linearization. Its drawback is that the underlying
experiment needs to be repeated several times. As high-
throughput experiments become more common, bootstrap ap-
proaches might become more feasible in the future.

As expected, the estimation of parameter Yy yields almost
identical values for both models (see Table 3). For the other pa-
rameters, the differences lie within the respective confidence
intervals. Both models achieve a good agreement between the

measurements and the simulated data, as
observed from the attained objective func-

tions in Table 3 and Figure 4. Discriminat-
ing between the two enzymatic hypotheses
is therefore not possible.

Solutions for Model Discrimination

In the following sections, different ap-
proaches to the model discrimination prob-
lem are discussed, and every approach sug-
gests a new design experiment. All solutions
presented here are based on the same struc-
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ture of the model equations, as given in
“Model Formulation” above.
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Large Steps on the Inputs

The idea was to look for simple profiles of
the manipulated variables, which can easily
be implemented in a real world experiment.
One simple possibility investigated here is
applying large changes on the two inputs
Gin = qour and c;,. This can result in an en-
hancement of small differences between the
time curves calculated using the two tested
models.

0 10 20 30 40 50 60
1h]

Figure 4 Benchmark data points (A, O) versus the simulated time courses of Model A (solid) and
Model B (dashed) using the parameters of Table 3. Upper left: X solid, S dashed; upper right: M1;

lower left: M2; lower right: M3.

The strategy used in this section com-
prises (1) calculation of the steady state of
four initial cases with low or high values of
the feed concentration ¢;, and flow rates
Gin = Gous (2) simulation of 12 different step
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Table 4. Experimental Procedure for Model Discrimination

Time (h) Gin (9/L) Gins Gour (L/)
0-24 2.0 0.4
24-60 0.1 0.4

experiments (four different initial conditions each with three dif-
ferent input changes: rate, concentration, and both) for both
models; (3) fitting of the model parameters for each experiment
and both models. Thus, 24 parameter sets are obtained, and the
respective objective functions are calculated; (4) comparison of
the resulting objective functions of Models A and B for each
experiment. The objective functions for one experiment are dif-
ferent for both models if one model describes well the obtained
data (low objective function) and the other does not (large ob-
jective function). Based on this comparison, the most discrimi-
nating experiment can be chosen. If the experimental data for
the 12 versions of the second experiment would not be available,
the parameter fitting step (3) was eliminated and the differences
between both simulated time curves (using Models A and B) of
every model state were used to identify the most discriminating
experiment (4). Therefore, the model parameters based on the
benchmark experiment would be used.

The most discriminating step that is suggested as a new ex-
periment is summarized in Table 4. Starting in steady-state con-
ditions with high flow rate and high feed concentration after 24
h, a change in the concentration is performed resulting in high-
flow-rate and low-feed-concentration conditions. Several simi-
larly discriminating cases were found but were not used in the
following. For the rest of the possibilities, either poor fits to the
Web site data and/or lower differences in the objective function
were obtained (data not shown).

The new parameters for Model B are close to those attained
by fitting only the benchmark experiment (see Table 5). The
parameters of Model A, however, are quite different, in particu-
lar, K;. The benchmark and the new experiment can be well fitted
by Model B—see M3 in Figure 5. However, the Model A with the
new parameter set is not any more able to fit M3 in the bench-
mark or the new experiment. Differences can be found all over
the simulated time span, whereas the highest differences can be
seen after the applied step (24 h) in the new experiment—see
Figure 5. The time curves for biomass, substrate, and metabolites
M1 and M2 show almost no differences between the two models.
From the above, it can therefore be concluded that Model A can
be discarded and that Model B describes the benchmark problem

0.08

0.07F

0.06

0.05

[umol/gDW]

better with the proposed parameters. The control of the enzyme
is realized by regulation of enzyme synthesis.

Linear Model Analysis—Analysis of the Phase Shift

The proposed solution is based on the linearized model. Regard-
ing a steady-state solution (x**) during continuous fermentation
(Gin = Goue = 0.25 L/h, c¢;,=2.0 g/L), the linearized model is giv-
en by:

x=Jx+Bu, (21)
with the Jacobian
of sand B )
J= X x> an D 55

The input/output behavior of a linear system is characterized by
two important observations: Stimulating the system with a given
frequency w, the output shows the same frequency, but with a
shift, named the phase shift, and amplified amplitude, named
the gain. Linear dynamical model equations as given in equation
21 can be transformed to algebraic equations, called transfer
functions, which can easily be handled.

For the proposed method, the gain and the phase shift for
the transfer functions G; = Y;/U; with outputs y, = M1, y, = M2,
and y; = E are analyzed. For Models A and B, all parameters are
fixed except parameters K;, and K, respectively. The values for
K, and K, are varied in the range 5 X 102 < K}, ,, < 10.0. Figure
6 shows the phase shift for input ¢ and output M1. As can be
seen, there exists a small frequency span where the two models
display different phase shifts for all parameter combinations.
Therefore, an experiment should be performed that forces the
system with a distinct frequency inside the frequency window to
see whether Model A or Model B is correct. To verify the ap-
proach, a frequency of w = 0.5 1/h was chosen and phase shifts
—6.2<Ad, < —23.16, and —23.43 < Ad; < —31.18 for Models
A and B, respectively, are expected. Figure 7 shows the time
course of the input g, = g9, + 0.1 sin(wt) and the time course of
M1 (data from the Web site). With the given data it was not
possible to fit parameters K;, or K;z with high quality. How-
ever, for the solution provided, only the phase shift must be
determined. The data were fitted with a second-order transfer
function G:

1.54 s>+ 1.46 s+ 0.37
T $2+0.67s+0.06

(22)

The phase shift for the given frequency w = 0.5 is Ad = —28.38,
indicating that Model B is correct. Note that the linear model

015

[umol/gDW]
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Figure 5 Data points of metabolite M3 (O) versus simulated time courses of Model A (solid) and Model B for the benchmark experiment (left) and

the new experiment (right).
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phase shift

T that is, to weight by the average of the two mod-
els. The objective function for a simple example
| with two state variables (x; and x,) reads:

tena | (Axy)? (Ax,)?
] Inz?X_fto <x1A+xm)2 <X2A+XZB>2 d.
2 2
7 (25)

_200 1 1 1

It is, however, also possible to include informa-

10° 10° 10° 10"
- w[1/h]

Figure 6 Phase shift for input g on output c,,,. Solid lines show maximal and minimal
values for Model A, whereas dashed lines show minimal and maximal values for Model B
varying parameters K, and K, between 5 X 1072 and 10. For the small frequency span
indicated by the vertical lines, the models are clearly separated (because of very small

distances between the dashed lines, only one line can be seen).

with the correct parameters (but without noise) has a phase shift
Ad = —30.66 (see Appendix for the correct model).

Nonlinear Model Analysis

For the purpose of model discrimination, an experiment with an
optimal input profile of the adjustable input variables (g;,,, Gous
and ¢;,) has to be planned. For reasons of convenience, g;, and
q..: are held equal here. The task can be formulated as the maxi-
mization of an objective function

max = f ;"”‘7 [Ax” (HWAX(t))dt , 23)

with W being a weighting matrix and Ax being the difference
between the responses of the two competing Models A and B
(indexes A and B are used further to point to the model variants).

Many different approaches for the choice of the weighting
matrix can be found in the literature. It is obvious that weighting
should be done if the interesting state variables are within dif-
ferent orders of magnitude. In this case, it is useful to use a di-
agonal weighting matrix with elements:

1

Wi=7—"""3,
(XiA +XiB>2

24)
2

0.2r

~0.2F

120 130 140 150 160 170 180

Figure 7 Time course of g, (dashed), fitted (solid), and experimental
values (circles) for M1; values are plotted minus mean values.

6 tion about the measurement variances, the vari-
ances of the parameters of the model, and the sen-
sitivity of these parameters with respect to the in-
teresting state variables. This can be useful,
because the values of the parameters may be un-
certain. Buzzi Ferraris et al. (1984) and Chen and
Asprey (2003) introduced such a strategy. The
weighting matrix is formulated as follows:

W=MV+VC, +VCy™, (26)

where VC is the variance-covariance matrix for model predic-
tions:

vVC=S-PV-S". 27)

PV is the parameter estimation error variance-covariance matrix
(F~1). It should be noticed that PV has to be approximated using
the experiments carried out before, which in this case means
only the benchmark experiment. Simplifying this approach by
using only the diagonal elements of MV, PV, and VC clarifies its
meaning: The squared model difference for one state variable is
weighted by a sum given by its measurement variance, and the
square of the sensitivity of each fitted parameter with respect to
the state variable multiplied by the variance of the parameter.
This means that the difference of a state variable contributes less
to the objective function, if (1) the measurement error of that
state variable is large and (2) the state variable in the designed
experiment is very sensitive to parameters that could be esti-
mated only with large errors using the experiment(s) carried out
so far (here the benchmark experiment).

For a simple example with two state variables, the objective
function looks now like this, if two parameters (index 1 and 2)
are considered for each model:

tend (AYI)Z
max = > >
u fo MV, +2(511,A “PViy,0) +2(S12,A *PV3,4)
+ (8118 - PVi1,) + (S12,5 - PVa2p)
(Ay,?
+ 2 2
MV,, +2(S21,A <PV a) +2(SZZ,A <PV 0)
+ (8215 - PVi1,p) + (22,5 - PVas )

dt,

(28)

Of course, this does not mean that VC has only diagonal ele-
ments (which would be mere chance), but that only the diagonal
elements are considered in the approach.

This approach could help to avoid the case that an experi-
ment is planned in which the model differences depend strongly
on the value of parameters that are poorly fitted with the experi-
ments carried out before. If the elements of MV are much larger
than those of VC and the measurements have a similar standard
variance (as in our case), it could be useful to use the following
weighting matrix, that is, the simplified approach without con-
sideration of the measurement variance:

W = (VC, + VCp)*. (29)
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Table 5. Identified Parameters of Both Models, Attained by
Minimizing the Objective Function (15) Over the New and the
Benchmark Experiment

Parameter Model A Model B

Vo 6.7 X 10> g/umol 6.7 X 10> g/umol

Kia 4.8 pmol/gDW —

K — 8.9 X 103 pmol/gDW
k, 2.3 X 10° L/h 3.2 X 10° L/h

Keynmax 8.2 X 102 pmol/gDW h 1.8 X 10~ 2 umol/gDW h

More interesting parameters, namely, the influence of the con-
sidered model state variables, the definition of the weighting
matrix, and the influence of the optimization method, are ana-
lyzed and discussed. In this particular case study, the model
structure is such that the biomass and the concentration of the
substrate do not depend on the choice of the model. Therefore,
only metabolites M1, M2, and M3 are of interest. Measurements
in biological systems are, however, often very time consuming.
Therefore, it is important to identify the state variables that have
to be measured for model discrimination.

Both using the stochastic method and using the gradient-
based optimization method may have advantages. With the sto-
chastic method, one cannot be caught in local optima, whereas
the gradient method leads to more exact results. Therefore, both
methods will be compared. Equations for the concentrations of
the state variables of both models are used as described in the
section on “Model Formulation” above. In the case of the gradi-
ent-based method, the objective function is maximized using
dynamic optimization offered by the DIVA simulation environ-
ment (Ginkel et al. 2003). In the case of the stochastic method,
the “Optimized Step-Size Random Search” (OSSRS) algorithm de-
veloped by Sheela (1979) is used.

As aresult of these considerations, optimization with several
objective functions, differing in the weighting matrices used and
the state variables or combinations of state variables considered,
was performed with both optimization methods. For the calcu-
lations, the following conditions are fixed:

® Input moves are allowed every 10 h.

® The integration time is 60 h.

® The constraints used are given in Table 6. The biomass con-
straint ensures that washout is avoided. Moreover, there is
enough biomass to be sampled out for the experimental mea-
surements.

e The initial conditions for the state variables are chosen such
that the steady-state values of both models are similar (station-
ary state with ¢ =0.25 L/h and ¢;, = 2.0 g/L).

® Parameter values for the models are as given in Table 3.

Table 7 summarizes the results obtained. A comparison be-
tween the values of the objective function can only be done for
one approach, because it depends on the definition of W. The
differences in the values of the objective function are very small
between stochastic and gradient-based method for nearly all
cases, although the obtained input profiles differ strongly (data
not shown). This hints of the existence of several local optima
with very similar values of the objective function. In some cases
(e.g., case 21) the gradient-based method was, however, stuck to
local optima of very low quality. For cases 1-14 (see Table 7), only
state variable M1 contributes significantly to the objective func-
tion. Therefore, equally high values are reached for all cases in
which M1 was included in the objective function and much
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lower values are obtained for the cases in which M1 was not
included. For cases 15-28, only M2 contributes significantly to
the objective function. Only the optimal cases (boldface in Table
7) for each approach have been followed up further.

The following results are obtained from this first step: (1) the
optimal input profiles differ strongly between the approaches
and (2) none of the models can describe the experimental data
with the set of parameters derived from the benchmark experi-
ment. Figure 8 shows exemplarily in silico experimental and
simulation data for case 23 (W as in equation 29, consideration
of M2). Parameter fitting was therefore repeated in a second step
with measurements from both experiments, the benchmark ex-
periment and the new experiment, for the indicated cases.

After parameter estimation, Model A can be excluded in all
cases, because the simulation of the enzyme does not fit the
benchmark experiment. Figure 9 (left) shows this result exem-
plarily for case 1 (without weighting, consideration of only M1).
The corresponding parameters can be found in Table 8. Exclusion
of Model A could be verified by an F-test. The F-test uses the ratio
of the standard deviations of two data sets and tests the null
hypothesis that they are not significantly different. The standard
deviations S of the residuals for the enzyme were calculated to be
1.7133 x 10~ * for Model A and 1.0104 X 10~ ° for Model B. The
level of significance was chosen to be a = 0.99 and the data sets
contained both 30 residuals.

F(30, 30),-0.00 = 2.3860 < i—A =16.9567.
B
This means that the null hypothesis has to be rejected and the
residuals of Model B have a significantly lower standard devia-
tion than those of Model A. For the other weighting matrices,
similar results were obtained (data not shown).

The findings of the proposed approach are discussed in the
following: first, the focus is on the question of which model state
variables have to be measured. Interestingly, the enzyme did not
contribute significantly to the objective functions of all the ap-
proaches studied. The conclusion could have been, that it is not
necessary to measure the enzyme. In the simulation results of the
designed experiments, there are big differences in M1 and M2
between the two models, but both models can describe M1 and
M2 after fitting. Therefore, without measurements of the en-
zyme, none of the models would have been able to discriminate
between the two models after fitting.

The second question focuses on the weighting matrix that
leads to the best results. All of the approaches could discriminate
between the two models. It could, however, be seen as an advan-
tage of the last approach (equation 29) that the simulation for
the enzyme with Model A does additionally not fit measure-
ments for the designed experiment (case 23; Fig. 9, right). This
could again be verified by an F-test with a level of significance
a =0.99. The standard deviations S of the residuals for the en-
zyme were calculated to be 0.0093 for Model A and

Table 6. Constraints Used for Finding Optimal Input Profiles

Constraints Value
Minimum flow rate 0.05 L/h
Maximum flow rate 1.60 L/h
Minimum feed concentration 0.50 g/L
Maximum feed concentration 10.0 g/L
Minimum volume 1.00 L
Maximum volume 5.00 L
Minimum biomass concentration 0.05 g/L
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Table 7. Summary of Results of Nonlinear Model Analysis
Optimization Method
State
Approach Case Variables Stochastic Gradient-Based
No weighting 1 M1 3.7195 x 10° 3.7342 x 10°
2 M2 9.0224 x 102 7.8716 x 10>
3 E 3.6658 x 10~ ¢ 8.015 x 107
4 M1, M2 3.7198 x 10° 3.7342 x 10°
W, unity matrix 5 M1, E 3.7198 x 10° 3.7342 x 10°
6 M2, E 3.6658 x 10~ ¢ 7.9476 X 10>
7 M1, M2, E 3.7195 x 10° 3.7367 x 10°
Weighted by square of average 8 M1 2.8287 2.8378
9 7 0.0222 0.1201
10 E 0.0476 0.0493
W as in equation 24 11 M1, M2 2.8394 2.8428
12 M1, E 2.8685 2.8806
13 M2, E 0.0686 0.0692
14 M1, M2, E 2.8739 2.8857
Simplified Chen and Asprey 15 M1 1.356 3.6054
16 M2 36.3359 2.1768
17 E 2.6896 0.099
18 M1, M2 36.4986 7.6538
W as in equation 26 19 M1, E 2.6897 2.5091
20 M2, E 36.9019 2.4782
21 M1, M2, E 37.0645 7.763
Simplified Chen and Asprey without measurement variance 22 M1 24.88 22.9863
23 M2 1.5598 x 10" 1.4355 x 10"
24 E 3.6623 2.6398
25 M1, M2 1.5598 x 10" 1.4355 x 10"
W as in equation 29 26 M1, E 24.88 3.6468
27 M2, E 1.5598 x 10" 3.6207
28 M1, M2, E 1.5598 x 10" 1.4355 x 10"

2.6202 x 10~ * for Model B. There were 30 measurements within
the designed experiment, and

S
F(30, 30),_0.0 = 2.3860 < S—A =35.4962 .
'B

Figure 10 shows parameter confidence intervals for the following
exemplary cases: (a) using only the benchmark experiment for
parameter fitting, (b) using only the experiment case 1 (without
weighting, consideration of M1), (c¢) using only the experiment
case 23 (W as in equation 29, consideration of M1 and M2), and
(d) using both the benchmark experiment and the experiment
case 1. Each designed experiment leads to a reduction of the
parameter confidence intervals, especially for parameters K;, and
K, respectively. Case a shows by far the lowest values, lower
than those obtained by using the two experiments in case d.
Third, the influence of the optimization method was ana-
lyzed. Both the stochastic and the gradient-based methods lead
to similar results. Using the stochastic method ensures, however,
that one is not stuck in a significantly suboptimal local optimum.
On the other hand, the stochastic method is very time consuming.

DISCUSSION

A benchmark problem for reverse engineering, parameter iden-
tification, and model discrimination is presented. The focus of
the investigation at hand lies on model discrimination. It is
shown that for a problem that may arise in microbiology or cell
biology, the application of system-theoretical methods allows
one to come to satisfactory results without constructing several
mutant strains. However, the application of the methods requires
that the cellular system can be stimulated from outside. If a bio-
reactor system is available, the feed rate and the feed concentra-

tion may be used. For all methods, dynamical measurements,
that is, time courses of interesting variables, are essential. Based
on new measurement technologies like cDNA-arrays or proteom-
ics, it is expected that such measurements are available in the
near future. Clearly, the methods are general and do not depend
on the special biochemical circuit under consideration.

Three methods for experimental design have been presented
that were all able to discriminate between two model variants.
Several parameters, namely, the influence of model state vari-
ables and control inputs, the definition of weighting matrices,
and the influence of the optimization method were analyzed. In
the case at hand, the problem is formulated in such a way that
biomass and concentration of the substrate do not depend on the
choice of the model. Only intracellular metabolites, M1, M2, and
M3, are of interest. Measurements in biological systems are, how-
ever, often very time consuming. Therefore, it is important to
identify the state variables that have to be measured for model
discrimination. Given in silico experimental data, two model

Table 8. Identified Parameters of Both Models, Attained by
Minimizing the Objective Function (15) Over the New
Experiment Designed Without Weighting and the
Benchmark Experiment

Parameter Model A Model B

Kia 0.0138 pmol/gDW —

Kig — 0.0136 pmol/gDW
k, 22.4 x 10° L/h 6.05 x 10° L/h
Ksynmax 0.00366 pmol/gDW h 0.0135 ymol/gDW h
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output has to be determined given a calcu-
lated input frequency. The only input/
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output combination that could be used here
was the pair g, ¢,,. Drawbacks of the ap-
proach are generating such an input (needs a
process control system) and the length of the
experiment, because only the tuned system
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should be small to stay within the linear
o M range of the model. This leads to very small
o0 changes in the desired output that can be
difficult to measure in a real-world experi-
ment.

The third approach discriminates the
models by bringing the states as apart as pos-
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sible, however weighting the differences of

40 60 the state variables. A method recently pro-
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posed by Chen and Asprey (2003) was sim-
plified to clarify the weights used. The
method calculates an input profile in such a
o0 way that the difference of a state variable

O contributes less to the objective function if
the measurement error of that state variable
is large and if the state variable in the de-

0 0
0 20 . 40 60 0 20

Figure 8 Optimal experiment, designed with W as in equation 29 (case 23). Optimal input
profiles, in silico measurement results (circles), and results obtained with Model A (solid line) and
Model B (dashed line) with the initial sets of parameters. Differences between the results of the

two models are most notable in M1.

variants are formulated, and it was shown that both models are
able to describe the given data.

Application of the three methods led to very different input
profiles for inputs g and c;,, in the experiment designed for model
discrimination. The first approach focuses on the largest possible
steps on the system inputs by starting from values representing
the limits of meaningful inputs. Simulation runs have been car-
ried out for the resulting 12 experimental versions. The experi-
ment that led to the largest differences between the objective
functions (equation 15) of the models has been chosen to be the
new experiment. This method represents a very intuitive ap-
proach.

The section on “Linear Model Analysis” above provides a
more “sophisticated” solution based on the phase shift of the
linearized models. Using this approach, the phase shift of the
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signed experiment is very sensitive to param-
eters that could hardly be estimated using
the benchmark experiment. Nonlinear opti-
mization leads to very different input pro-
files, depending on the weighting matrices
used and on the optimization method. One
of these profiles represents also a form of
large steps in the inputs (see Fig. 8), but the resulting differences
in enzyme concentration are larger than those obtained by the
first approach (cf. Figs. 5 and 9).

Common to all the methods is the observation that per-
forming the newly designed experiment (here, with the interac-
tive Web site) results in rather bad model predictions, if the in
silico data are compared with the simulation. This is based on the
large variance of the parameters determined in the initial experi-
ment. Therefore, the parameters had to be identified again and
Model A was excluded as a candidate model, because one state
variable could not be fitted with both experiments. Interestingly,
this state variable (M3) did not significantly contribute to the
objective functions.

The model used for the Web interface is given in the Ap-
pendix. It is composed of both control of the enzyme activity and

40 60
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Figure 9 (Left) Enzyme concentration in benchmark experiment after fitting with the benchmark experiment and designed experiment for case 1.
(Right) Enzyme concentration in the designed experiment (case 23) after fitting with the benchmark experiment and the designed experiment for case
23. In silico measurement results (circles) and results obtained with Model A (solid line) and Model B (dashed line). Results of Model A do not fit.
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Figure 10 (Left) Parameter confidence intervals for Model A. (Right) Parameter confidence intervals for Model B. Four cases are compared. From /eft
to right 1 (dot): experiment with W as in equation 29; 2 (solid) benchmark experiment; 3 (dashed) experiment obtained without weighting; 4 (dash-dot)

benchmark experiment and experiment obtained without weighting.

control of enzyme synthesis. However, the influence of control
of enzyme activity, represented by parameter K;,, is very small.
Therefore, the choice of Model B is the correct one. Comparing
the parameters estimated in the first and third approaches and
the correct parameters given in the Appendix (Table 9), the third
approach gets better results. Moreover, the confidence region for
the parameters is almost always smaller than for the benchmark
experiment. For the second approach, the re-estimation of pa-
rameters is not necessary. However, one has to determine the
phase shift for the frequency calculated that will last some time,
because the system has to be tuned.

Based on our results, it is not possible to recommend one of
these approaches. The application of one of these methods de-
pends strongly on the possibilities to stimulate the system and to
obtain measurements with high quality. The first method could
be performed as a first initial experiment if there was little time
to optimize the system. Comparing the stochastic versus the gra-
dient-based optimization methods, the former leads to better re-
sults. However, the computational effort for this method is very
high, as the calculation may last some days.

Another concern of this paper was the explanation and
comparison of two methods for the determination of parameter
accuracy. A very common method for this purpose is the approxi-
mation of parameter variances by use of the Fisher-Information-
Matrix. The parameter variances obtained by this method repre-
sent, however, only lower bounds, that is, the actual variances
will be larger. Furthermore, calculating the 95% confidence in-
tervals as two times the standard deviations, as was done in this
contribution, implies a normal distribution of the parameters. It
is, therefore, not surprising that application of the bootstrapping
approach, which does not have these drawbacks, leads to very
different results (although the proportions between the param-

Table 9. Additional Parameters of the Correct Model

Parameter Value

Vi 7.0 X 10~° g/pumol
Kia 0.01 ymol/gDW —
Kig 10.0 pmol/gDW

ky 6.0 X 10° L/h
Wsmrness 0.0168 pmol/gDW h

eters are similar). They represent the “true” spreading of the pa-
rameters. For the application of this method, either the possibil-
ity of repeating the experiment several times or the existence and
application of an uncertainty model of the corresponding mea-
surement are necessary. As high-throughput experiments be-
come more common, bootstrapping approaches might become
more feasible in the future.
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APPENDIX
Measurement

time [h] X [9/1] S [g/1]

0 0.1088 1.9134

2.0000 0.4345 0.0805

4.0000 0.4811 0.0791

6.0000 0.4114 0.0734

8.0000 0.3956 0.0990
10.0000 0.3714 0.0724
12.0000 0.3995 0.0782
14.0000 0.4477 0.0752
16.0000 0.4190 0.0853
18.0000 0.3540 0.0725
20.0000 0.3690 0.0781
22.0000 0.4345 0.1195
24.0000 0.3183 0.1178
26.0000 0.3767 0.1099
28.0000 0.3489 0.1243
30.0000 0.4019 0.1249
32.0000 0.2023 0.0403
34.0000 0.1595 0.0703
36.0000 0.1068 0.0691
38.0000 0.0868 0.0933
40.0000 0.1047 0.0893
42.0000 0.0967 0.1000
44.0000 0.0714 0.0965
46.0000 0.0916 0.1122
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48.0000 0.0992 0.1234
50.0000 0.0877 0.1180
52.0000 0.0766 0.1133
54.0000 0.0747 0.1196
56.0000 0.0769 0.1256
58.0000 0.0786 0.1269
60.0000 0.0781 0.1138
M1 M2 M3
0.0620 0.0079 0.0749
0.4479 0.0110 0.0124
0.3045 0.0102 0.0173
0.2534 0.0133 0.0266
0.2569 0.0116 0.0294
0.2736 0.0125 0.0378
0.2561 0.0130 0.0257
0.2268 0.0112 0.0332
0.2086 0.0121 0.0305
0.2375 0.0121 0.0296
0.2539 0.0128 0.0342
0.4895 0.0169 0.0258
0.4561 0.0147 0.0176
0.4673 0.0173 0.0187
0.5358 0.0144 0.0152
0.5961 0.0149 0.0156
0.1357 0.0067 0.0319
0.1584 0.0089 0.0432
0.1873 0.0121 0.0418
0.2860 0.0138 0.0296
0.3434 0.0135 0.0322
0.4408 0.0152 0.0267
time [h] X [g/1] S [g/M
0.4767 0.0161 0.0225
0.5163 0.0180 0.0222
0.5675 0.0165 0.0189
0.5399 0.0181 0.0202
0.5851 0.0177 0.0176
0.6062 0.0157 0.0157
0.5443 0.0128 0.0205
0.6399 0.0143 0.0154
0.6020 0.0127 0.0142

The values of M1, M2, and M3 are in [pmol/gDW]. A file with the
presented data can be downloaded from the Web site.

The Correct Model

The correct model is given by:

V =Gin — Gout (30)

s (0
b= ( . V) B 31)
§=qin (Cjy=S) —1y MW B.. 32)

For reaction rates r,, r,, and r; the following equations hold:

S
1 = Tmax m (33)
ky Ko 34
=R B F ML Ky, + M2 G4

M2
3 = I3max KMZ + M2 (35)

Enzyme synthesis is taken into account with:
KIB

rSyllB = ksynmax K[B + MZ . (36)

The following system of equations for the concentrations of M1,
M2, and E is obtained for both models:
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Ml=r—r,—pnMl (37)
M2=1,—1;—pnM2 (38)
E.:rsyn_p“E . (39)

To describe the growth rate, it is assumed that part of the sub-
strate taken up by the organisms is converted into biomass with
a yield coefficient Y,,. The equation for p is:

w=Yy-r. (40)

The correct parameters are summarized in Table 9.
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Abstract

The analysis of metabolic pathways with mathematical models contributes to the better understanding of the behavior of
metabolic processes. This paper presents the analysis of a mathematical model for carbohydrate uptake and metabolism in
Escherichia colilt is shown that the dynamic processes cover a broad time span from some milliseconds to several hours. Based
on this analysis the fast processes could be described with steady-state characteristic curves. A subsequent robustness analys
of the model parameters shows that the fast part of the system may act as a filter for the slow part of the system; the sensitivities
of the fast system are conserved. From these findings it is concluded that the slow part of the system shows some robustness
against changes in parameters of the fast subsystem, i.e. if a parameter shows no sensitivity for the fast part of the system, it will
also show no sensitivity for the slow part of the system.
© 2003 Elsevier Ireland Ltd. All rights reserved.

Keywords:Phosphotransferase system; Time scale separation; Sensitivity analysis; Robustness; PEP/pyruvate ratio

1. Introduction In this contribution, we concentrate on a very impor-
tant part of the bacterial regulatory system. The phos-
With developments in new measurement technolo- photransferase system (PTS) is an uptake system for
gies, and therefore the availability of time courses for several carbohydratesischerichia coliBesides this,
intracellular metabolites, the set up and validation of it acts as a sensor and is involved in the control of up-
mathematical models for cellular systems (or parts of take of a number of carbohydrates. For example, if glu-
the metabolism) has become very popular. Detailed cose is present in the medium, the synthesis of many
mathematical models promise a better understanding other C-source transport proteins and their correspond-
of the system under investigation, i.e. the models can ing catabolic enzymes is repressed. Since the PTS
be used for prediction and design and it might be pos- represents the start of the signal transduction pathway,
sible to draw new conclusions in fields of applica- the understanding of its dynamics is fundamental for
tion like biotechnology and medical scieng@emling the understanding of the whole pathway. Mathemat-
etal., 2001b)These activities are summarized with the ical models for the PTS can be found in a number
keyword “systems biology” and a number of projects of contributions.Liao et al. (1996)present a simple
mainly in the US Agrawal, 1999 but also in Japan  approach covering all steps in one equatiBohwer

(Kitano, 2000Q) have now begun. et al. (2000)discuss a very detailed model including
all reaction steps. They analyze the steady-state behav-
"+ Corresponding author. Tel:49-391-6110-466. ior of the system and present results using metabolic
E-mail addresskre@mpi-magdeburg.mpg.de (A. Kremling). control analysis (MCA). Recent studies take diffusion

0303-2647/$ — see front matter © 2003 Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/j.biosystems.2003.09.001
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into accoun{Francke et al., 2002)Jn Kremling et al. _ NonPTS Systems
(2001a)the reaction equations are divided into three Induction EIICB DA
modules: the first module describes the activities of © © o/ .
the general PTS proteins El and HPr, the second mod- Gl P-EICB Ena  P7HPT g PEP
ule describes the phosphotransfer from HPr to EIlA X X
and the third module describes the actual transport Glc 6P ENCB p~ElA  HPr  p-El  pyruvate
step mediated by the glucose transporter EffSB fo

Here, we have investigated carbohydrate uptake and Adenylate
metabolism on different time scales. The work was cyclase

Glycolysis

motivated by findings with laboratory experiments; a
“pulse response” experiment revealed fast dynamics Fig. 1. Schematic representation of the Glc-PTS. Inputs are the
while diauxic growth on glucose plus lactose covered entire concentrations of El, HPr, ElIA, EIICB, PEP, pyruvate, and
a broader time scale. Experiments were performed extracellular glucose. Important outputs are the phosphorylated and
either with a genetically engineered sucrose positive UnPhosphorviated forms of EIIA. These two conformations are
. . . o . measured in several experiments. Solid lines represent metabolic
strain or a wild type strain. The sucrose positive strain yeactions and dashed lines signal outputs of the PTS.
was used during the pulse response experiment. A
mathematical model describing sucrose uptake and
metabolism was introduced previougyang et al., et al., 1993) In a set of five reactions, a phosphoryl
2001) Measurements of a pulse response experimentgroup is transferred from phophoenolpyruvate (PEP)
were used to identify parameters of the glycolysis and through two common intermediates, enzyme | (El,
the phosphotransfer reactions of the PTS. The wild geneptsl) and the phosphohistidine carrier protein
type strain was used to identify parameters involved (HPr, geneptsH), to the EIFC, and finally to the sub-
in the control of glucose and lactose uptake. Since strate (se€ig. 1for the glucose PTS). E¥i® consists
the work focuses on model analysis, the experimental of the soluble EIIA™ (genecrr, hereafter denoted as
findings are only summarized briefly. EllA) and the membrane-bound transporter EIff8B
For model analysis, only glucose uptake and (geneptsG for glucose uptake. The Scr-PTS pos-
metabolism are under consideration. A close relation- sesses a sucrose-specific membrane-bound trans-
ship between time-scale hierarchies and robustnessporter EIIBC® (gene scrA), which also receives
was pointed out irRojdestvenski et al. (1999Ro- the phosphoryl group from EIIA. For further de-
bustness is the insensitivity of a selected characteristic scription of the PTS, sePostma et al. (1993)All
time course of a component, network function to sus- proteins involved in this phosphorylation cascade
tain growth Stelling et al., 2002adaption precision  act as signaling molecules, e.g. El in chemotaxis,
(Barkai and Leibler, 1997 with respect to changes of HPr in glycogen metabolism, and EIIA in inducer
external or internal parameters (different environmen- exclusion (by inhibition of lactose transport by the
tal conditions, mutations, or altered kinetic parame- lactose permease LacY). The incoming phospho-
ters).Rojdestvenski et al. (199@pnclude that the de-  rylated form of the sugar is further metabolized:
coupling of a system into two subsystems is necessary Glycolysis is the link between the transport reac-
for robustness. Running on different time-scales is one tions and their energy supply. Metabolism of glucose
of the characteristics that allow such decoupling. Aro- 6-phosphate during glycolysis results in two moles
bustness analysis of the overall system was performedof PEP.
to check the results dRojdestvenski et al. (1999) PTS-protein synthesis is under control of at least
two regulators. While the cAMErp complex acts as
an activato(DeReuse and Danchin, 1988)Ic is are-
2. Escherichia coli sugar uptake and metabolism pressor foptsG ptsHlandcrr (Plumbridge, 1998)If
glucose is present in the medium, EIIEBis mainly
The PTS represents a transport and at the same timein its dephosphorylated form. This form binds Mic,
a signal transduction system responsible for carbon and therefore prevents it from binding to the operator
catabolite repression and inducer exclus{®ostma binding site(Tanaka et al., 2000; Lee et al., 2000)
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3. Experimental results

The work was motivated by experiments performed
in our laboratory. They were used as a basis for
this study. Material and methods are according to
Kremling et al. (2001a) The work was performed
either with the wild type strain LJ11(Zeppenfeld
et al., 2000)or with LJ210. LJ210 (laboratory col-
lection of K. Jahreis, Osnabriick) is a Salerivative
of LJ110 that carries chromosomally tiser genes
of pUR400 (Wohlieter et al., 1975; Schmid et al.,
1982)

3.1. Pulse response experiment

To characterize the dynamic behavior of the glycol-
ysis in interaction with the PTS, the response of the

59

(dilution rate D = 0.1h%, concentration of su-
crose in the feedi, = 17g/l) was performed by
injection of a concentrated sucrose solution to a fi-
nal concentration of 0.3g/l. Resulting time courses
of the fraction of unphosphorylated EIIA, and gly-
colysis metabolites (glucose 6-phosphate, fructose,
fructose 6-phosphate, PEP, and pyruvate) were mea-
sured as described elsewhéishizuka et al., 1993;
Takahashi et al., 1998; Bergmeyer, 197%phe ob-
tained trajectories are shownkig. 2 Note that during
continuous culture, the steady-state conditidn=
holds true, where is the specific growth rate. Under
the chosen experimental conditions, cells are sugar
limited.

The added sucrose is consumed within 200s. Gene
expression can be neglected for this short time inter-
val. The pulse can be followed in all measured glycol-

cells in steady-state to environmental disturbances wasysis metabolites. The concentration of PEP decreases

examined. In the experiments, we cultivatéd coli
LJ210 in a continuous fermentation in a CSTR (type
KLF2000, volume 2.0l, Bioengineering) with defined
minimal medium as described iKremling et al.
(2001a) The disturbance of the culture in steady-state

because of increased consumption for the transport
process via the sucrose PTS. The important signaling
component EIIA is totally dephosphorylated, and re-
turns to the former steady-state after depletion of the
added sucrose.
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Fig. 2. Dynamic response of the PTS and glycolysis to a sucrose

pulse disturbing a continuous culture in steddy=stateh(). The

extracellular sucrose concentration was increased abruptly-ai s to a final concentration of 0.3 g/l. Experimental results are represented

by marks, simulation results by lines.
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Fig. 3. Left: Time course of glucose and lactose in the medium during diauxic experiment. Right: Time course of the intracellular protein
concentration of unphosphorylated EIIA and simulated intracellular glucose (dashed values were multiplied by factor 20). Experimental
results are represented by marks, simulation results by lines.

3.2. Diauxic growth on two substrates 4.1. Glucose PTS

The growth of strain LJ110 in mixed cultures with The following reaction steps are incorporated into
glucose and lactose was characterized to analyze ef-the model. Phosphoryl transfer from PEP to El (dimer)
fects of gene expression on the dynamics of the PTS. js described by:

Fig. 3shows simulations and experimental results for '
extracellular glucose and lactose as well as for unphos- E] + PEP—=P ~ El + Prv, (1)
phorylated EIIA when both carbohydrates are present ks

in the medium at the beginning. In addition, model \yhere Pry stands for pyruvate. There is no evidence
prediction for intracellular glucose is also sh_own. _ that dimerization of El plays a role in the dynamics of
As expected for the glucose phase, protein EllAis he pTS for the investigations performed in this paper.
mainly unphosphorylated. After the glucose is con- The dimer is the most important conformation and is
sumed, ElIA shifts very quickly to its phosphorylated  he only conformation considered here. Transfer of a

form (representing fast dynamics) and subsequently phosphory! group to HPr is described by:
becomes more and more unphosphorylated. This is

probably because intracellular glucose may also be p « g| + Hprk:za +P~ HPr. )
phosphorylated by the PTS. The observed dephospho- k_2

rylation of EIIA can be interpreted as regulatory phe-

Phosphoryl transfer from HPr to EllA is described by:
nomenon; since EIIA is an uncompetitive inhibitor of phory ! ! y

the lactose permease LacY, the increase of unphospho—P ~ HPr+ EIA k:3HPr+ P~ EIlA. ®)
rylated EIIA leads to a reduced lactose uptake rate. k-3

This prevents accumulation of glycolytic intermedi- _ c )
ates during high lactose uptake rates. Since protein EIICB'® is membrane bound and since

it is not clear if there is sequential binding of EIIA and
the carbohydrate or a random binding (a carbohydrate
4. Model equations for the PTS and glycolysis molecule is able to bind to the unphosphorylated en-
zyme), a random kinetic rate law is used for the last
Model analysis will focus on glucose uptake and two steps of the PTS; phosphoryl transfer from EIIA
metabolism. Therefore, only the equations for the glu- and the phosphorylation of the incoming carbohydrate
cose PTS are discussed here. (intracellular glucose is not included in the model, be-
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cause it is assumed that the concentration is very low expression is responsible for very slow dynamics of
at all conditions used here): the phosphorylated PTS components. For the analysis

r4 of the slow dynamics the lactose uptake system and

P~ EllA + Glcex—ElIA + Glc ~ P, (4) its control by the cAMRCrp complex are included

with the rate law- for glucose is taken frod{remling ~ from Kremling et al. (2001a)Since lactose is split
et al. (2001a) into glucose and galactose, the intracellular glucose
K 4CEIICBOCP~EIIA CGle pool depends strongly on the concentration of the

5) lactose permease artigalactosidase. In the model,

r4 = )
(Kena + cp~ena) (Kelc + colc) intracellular glucose can be phosphorylated by the

PTS as well as by a glucokinase (gagik).
4.2. Glycolysis

4.3. Model parameters

To get a clear picture of the dynamics, a simplified

model of glycolysis was used since the number of
time constants is equal to the number of observables.
The model comprises one step summarizing glycolytic
reactions and drain into the monomers starting from
glucose 6-phosphate, PEP, and pyruvate. Glycolysis in
the simple model is described by:

A rough structure of the whole model is given in
Fig. 4. The model differs fronKremling et al. (2001a)
in the PTS equations and the simplified model for
glycolysis. To estimate parameters from the presented
data, a procedure used Kremling et al. (2001a)
was applied. (i) Starting with parameters from litera-

, ture (Rohwer et al., 2000)a sensitivity analysis was
gly

G6P=2PEP (6) performed to detect the most sensitive parameters.
] o (i) Together with the measured data and the Fisher

The pyruvate kinase reaction is as follows: information matrix(Ljung, 1999)it was determined,

PER™Prv. %) whether the sensitive parameters could be estimated,

or not. Using a method introduced tosten and
Furthermore, drain into monomer synthesis has been Munack (1990)a set of parameters from the sensi-
taken into account by the following reaction scheme: tive parameters that could be estimated together were
G6P—"abiosynthesis determined..Para}meters for' the PTS and glycolysis
PEP-"42biosynthesis ®) are _summanzed |ﬁ'a_1ble 1 Differences between the
original modelKremling et al. (2001aand the model
presented here are negligible (data not shown).
All reaction rates for the model described so far are  The underlying reaction scheme for the PTS used
summarized inAppendix A As shown below, gene  here is simpler than that presented Rghwer et al.

Prv—Tdsbjosynthesis

global signal transduction system

* qJPtS All']cya ‘
Glc o — c
"| PTS | p-eia| Cva |camp| “'P
PEP,Prv | T > _
EIIA Wi P Glc6P
\
! * Y Glc6P
l—
Lactose Glucose Catat_)ollc
Glc reactions
Lac ex Glc6P Glcex

Fig. 4. Functional units in therpA-modulon. Protein EIIA and its phosphorylated form-BIIA are the main output signals of the
Glc-PTS. The output signalg from the CrpA submodel describe the transcription efficiency of the genes and operons under control of
the cAMP.CrpA complex(Kremling and Gilles, 2001)
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Table 1
Summary of the model parameters of the PTS and the simplified
glycolysis

PTS Glycolysis

k1 8.9E+6 gDW/umol kgly 6500umol/gDW h
k_1 5.9E+6 gDW/umol h Keep  1.5pumol/gDW

k2 2.8E+7 gDW/umol h kpyk 1000.0p.mol/gDW h
k_o 2.5E+7 gDW/umol h Kpep  100.0pmol/gDW
k3 5.0E+6 gDW/umol h kgep 1500.0 1/nh

k_3 7.5E+6 gDW/wmol h kpep 200.0 1/h

ka 9.17E+6 gDW/umolh  kpyy 25370 1/h

Kgna 0.0085;.LmoI/gDW

Kacic 0.0012¢g/I

CEIO 0.0lZmeollgDW

CHPIO 0.12pumol/gDW

CEIIAO O.lmel/gDW

cencso  0.003umol/gDW

(2000) Model parameters were fitted using experi-
mental results fronVang et al. (2001and our own as
yet unpublished experimental results. Therefore, the
number of (uncertain) parameters was kept as low as
possible. Since different strains and experimental con-

ditions were used, one cannot expect the parameters,

to show a good agreement with parameters from lit-
erature. This is reflected, for example, by calculating
the overall equilibrium constarie for the first three
reactions steps of the PTS:
CP~ENIA CPrv. )
CEIIA CPEP
Here a valueKeq = 1.13 is obtained while the value
from Rohwer et al. (2000)s Keq = 48.7 and from
Hogema et al. (1998% Keq = 14.0. The overall con-
centrations for the PTS proteins are fixed. For the ex-
periment shown irFig. 3, the value forcgcgo was
taken from a simulation study with the model from
Kremling et al. (2001a)The model takes into account
that the synthesis of EIICB is under control of Mic
and the cAMPCrp complex while the values for the
other PTS proteins are taken as constants. In contrast
Rohwer et al. (2000)ised constant concentrations of
all PTS proteins.

Keq =

5. Model analysis

Model analysis by means of theoretical tools is use-
ful for a better understanding of the behavior of cel-
lular systems. In silico, models are characterized by

A. Kremling et al./BioSystems 73 (2004) 57-71

a large number of elements and interactions, i.e. the
order of the system is rather high. However, systems
running on different time-scales tend to couple the
behavior of the fast modes to the slow modes. Alge-
braic equations can be used for the fast modes, if a
steady-state is assumed. Furthermore, the influence of
the parameters on the behavior of the system is im-
portant. Here, a sensitivity analysis is used to detect
important model parameters.

5.1. Time-scale separation

First, we analyzed the time hierarchies for the con-
ditions given during the “pulse response” experiment.
Therefore, the eigenvalues and eigenvectors of a sub-
system including PTS and glycolysis (observables El,
HPr, EIIA, G6P, PEP, and Prv) were calculated. To
determine eigenvalues and eigenvectors a steady-state
for r = 1.1 mmol/gDW h was chosen, representing
the condition used in the experiment. The equations
are linearized around the steady-state and the Jacobian
J is obtained. A transformation of the old system ob-
servablesc into new coordinateg with the inverse of
the matrix of eigenvectorg—1

2=T"1x (10)

allows an analysis of the system in separate time win-
dows characterized by the eigenvaluEgy. 5 shows

the entries of the rows df ~! where the abscissa rep-
resents the observables of the original system. Plots
A-C represent very fast processes. To detect the main
components of one mode, the linearized system was
stimulated by a step in the glucose concentration.
Afterwards, the entries in the lines af-1 must be
multiplied with the concentrations of the respective
observables. For line 1 ifi—1, representing the fastest
mode, the main components are EIl, Prv, HPr and
PEP. These observables are involved in the first PTS

reaction. In the second mode, the main components

are HPr and EIIA, which are involved in the second
PTS reaction. A clearer picture emerges when a new
mode can be directly linked to one of the observables
of the original system. This is the case for made
representing the dynamics of glucose 6-phosphate
and modezs, representing the dynamics of pyruvate.
The slowest modezg, represents the dynamics of
two original observables, namely PEP and glucose
6-phosphate.
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Fig. 5. Eigenvectors of the simplified reaction scheme for a glucose uptake rate &f11 mmol/gDW h (rows of the matriZ ). The
headline of each plot gives the apparent time constant of the system in (s).

To verify the results for the group translocation to zero.Fig. 7 summarizes the steady-state behavior
through the PTS proteins El, HPr, and EIIA, we sim- of the system. The glycolytic metabolites—other than
ulated the first second(s) of the pulse response exper-PEP—increase with increasing uptake rate while the
iment with the nonlinear model. The time courses of fractions of the phosphorylated PTS components EIIA
the PTS proteins, glucose 6-phosphate, pyruvate andand El decrease with an increasing uptake rate. The
PEP as well as the time courses of the PTS ratgs (  half maximal uptake rate was detected in the range of
r2, r3, ra) are shown irFig. 6. Based on the estimated 0.23mg/l (1.3.M). The value is smaller than in other
model parameters the rate of glucose uptakevaries reports, perhaps reflecting in vivo conditions.
with time. After a very fast increase it is not possible
to maintain at this rate, sinae, r», andrs are slower 5.2. Robustness analysis
and the supply with phosphoryl groups could not be
satisfied immediately, even though enough energy in  Rojdestvenski et al. (199%)ated, that the sensitiv-
form of PEP is available. This is in agreement with the ities of the fast part of the system are conserved when
simulation results of the intracellular concentrations the dynamics of the remainder slow subsystem is ana-
of the PTS proteins; the concentration of phosphory- lyzed. To check the assumption, a robustness analysis
lated EIlIA shows a quick drop, because it transfers the was performed. This was done by calculating changes
phosphoryl groups to glucose. In contrast, the concen- of the time course of a selected observable with respect
trations of phosphorylated El and HPr drop slower. All - to changes in the kinetic parameters, i.e. by calculating
PTS components reach a steady-state within 5s. Af- the parameter sensitivities. This means that the slow
ter the PEP pool is replenished by glycolytic reactions subsystem shows some robustness against parameter
the uptake rate of the PTS rises again and reaches &hanges, i.e. if a parameter shows no sensitivity for
steady-state after 30s. the fast subsystem, it will show no sensitivity for the

With respect to gene expression, PTS and glycol- slow subsystem.
ysis have much smaller time constants. The overall  Several methods are available to calculate and ana-
transport rate in this case reads lyze parameter sensitivities defined by:

r = f(cPEP, CPrvs Ccarbo CEIIBCO, CEIIAO > CEIOs CHPIO), Y

(11) IUiJ = gj, (12)

which is the solution of the algebraic equation sys- whereyx; is a observable of the model ang is a
tem, setting all time derivatives of the observables model parameter. A very popular method is used in
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Fig. 6. Time course of the simulated PTS rates, the degree of phosphorylation of the PTS proteins, and selected intracellular metabolites
(glucose 6-phosphate second row left, PEP, pyruvate second row right). For discussion of the dynamic behavior, see text.

Metabolic Control Analysis (e.g. seldeinrich and The method is based on the formulation of the fol-
Schuster, 1996 The method uses several theorems lowing optimization problem:
to connect local sensitivities and to make a statement ;

on global sensitivities and therefore relates the sys- maxzz ﬂAt

temic behavior to local properties. Here, a method — X; ’

from Hearne (1985Qeveloped for dynamic systems

was appliedHearne (1985puggests finding the di-  with observablesy; and changesAx; of x; due to
rection in which the overall parameter vector should changesA p of parameter vectop. The dimension of

be perturbed, so as to maximize the disturbance to thethe system is. The solution can be found by calculat-
trajectories of interest. In contrast to other approaches, ing the maximal eigenvalue and corresponding eigen-
the method oHearne (1985)ntegrates the sensitiv-  vector of matrixG given inAppendix A To calculate
ities of selected parameters on selected observablesmatrix G, dynamic and algebraic equations for the sen-
The method is also useful when looking for parame- sitivities have to be solved. For a differential-algebra
ters that are able to alter specific observables for which (DA) system with dynamic observablas algebraic
measurements are available. observableg, and parameter vectgr of the general

(13)
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Fig. 7. Steady-state behavior of the PTS/glycolysis model. Glucose 6-phosphate (upper-left plot); PEP and pyruvate (upper-right plot: PEP
solid, pyruvate dashed); fraction of phosphorylated EIIA and El (lower-left plot: EIIA solid, El dashed); uptake rate vs. residual glucose
concentration (lower-right plot). The half maximal glucose uptake rate is achieved with 0.23 mg/l.

form: For the analysis in this contribution the following strat-
i=f(xzp) (14) egy is used:
0= g(x, z p). (15) e The model is separated into two partsfast part

] ) o and a remaindeslow part. Based on the analysis
the matrix of the non-normalized sensitivitiés, = above, observables and parameters are assigned to
(dx/dp) and W, = (dz/dp) can be calculated by the the respective parts.
two following equations: e For thefast submodel, the sensitivity is calculated

df df df 16 with the method ofHearne (1985)taking all ob-
Wy = dp + d_LWX + d_Z_WZ (16) servables and all parameters for fiast subsystem
into account. This represents a “fingerprint” of the
. dg ~dg dg fastsubsystem. The fingerprint is compared with the
0= — 4+ —=W,+ —W.. (17) g
dp dx dz sensitivity of the same set of parameters, but now
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with respect to selected observables ofglmvpart of the respective eigenvalue. The analysis indicates

of the system. that the three fastest modes reach a steady-state with
time constants smaller than= 0.03 s. It was not pos-
5.2.1. Case study I: pulse experiment sible to assign one of these modes directly to one of

The fast part of the system is represented by the the original observable®alsson and Lightfoot (1984)
observables of the PTS (El, HPr, ElIA), while the showed that a mode may also represent an equilibrium
slow part of the system comprises glycolytic reactions. condition. The simulation results iRig. 6 show that
For the pulse experiment gene expression can be ne-this is not the case for the PTS rates. The steady-state
glected, due to the short period of time. For the slow condition at the beginning of the experiment is very
part, observables glucose 6-phosphate (vector of per-close to the equilibrium (in the equilibrium all rates
turbation is dark gray), PEP (light gray), and pyruvate are zero) and shifts away after the glucose pulse. In
(white) are selectedr{g. 8 left-hand side). Except  contrast to the fast modes, the main components of the
for parameter%; andk_j, the vectors are compara- slow modeg, andzs could be assigned directly to one
ble, although the values for the fingerprint are slightly observable of the original system: glucose 6-phosphate

higher in all other cases. and pyruvate, respectively. However, simulaton results
show that the time constants cannot be detected with
5.2.2. Case study II: diauxic growth experiment the nonlinear model. Although the concentration of

Here the fast subsystem is represented by the ob-glucose 6-phosphate rises very quickly, a steady-state
servables of the PTS (El, HPr, EllA) and the glycoly- is reached after 30 s that is much slower than expected
sis (G6P, PEP, and Prv). The remainder system is thefrom the linearized model.
slow part.Fig. 8, right-hand side, summarizes the re- Experimental data for the time course of PEP are
sults. As representatives of the slow part, the entire presented irHogema et al. (1998the PEP concen-
biomass (vector of perturbation is dark gray) and the tration decreases by a factor &f30 within 15s af-
lactose splitting enzyme LacZ (white) are selected. ter stimulation and increases during a period of 2 min,
For all observables the sensitivity of the slow system which is slower than shown here. This might also be
is conserved in the fast system. The sensitivity of gly- due to the different experimental conditions and strains
colysis is the most important. used. The experiment shown Kg. 2 which is the

basis for the parameter estimation, starts under limit-

ing conditions (the initial steady-state is reached after
6. Discussion 2 days) whileHogema et al. (199§)erformed the ex-

periment with cells taken from the exponential growth

A mathematical model for glucose uptake and phase. Considering the glucose uptake rate, we get
metabolism is analyzed with respect to time hierar- the remarkable result that the maximal value is nearly
chies and robustness. Based on previous published25 mmol/gDW h, showing the very high capacity of
results, simplified versions for the subsystems PTS the transporter.

and glycolysis are used during this study. Based on the results above, the analysis of the lin-
ear model show that the observables of the model can
6.1. Dynamics be divided into two groups. One group representing

PTS reactions and a second group representing gly-
It was shown that the structure of the PTS with colytic reactions. But, the linear model can give only

its successive phosphorylation steps with different dy- hints on the time constants of the system. Simulation
namics can lead to temporally shifted dephosphoryla- studies with the nonlinear model are therefore neces-
tion of the PTS components. A very common tool in  sary. Including slower processes such as gene expres-
engineering science is the analysis of the eigenvaluession in the analysis, the findings indicate that the slow
and eigenvectors of the linearized system. Thereby theincrease of the unphosphorylated form of EIIA dur-
system is transformed in new coordinates. Every coor- ing the diauxic growth experiment can be explained
dinate reaches a steady-state with a time constant thatoy a slow accumulation of intracellular glucose dur-
is represented by the reciprocal of the absolute value ing lactose metabolism. As can be seerkig. 9, the
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Fig. 9. Left: Time course of-galactosidase (simulation and experimental results) and simulation of the rate of protein synthesis. Right:
Uptake rate of glucose (solid), rate of phosphorylation of intracellular glucose (dashed).

induction of thelac operon lasts several hours, until  Since the degree of phosphorylation of protein EIIA
a plateau is reached. Therefore, the rate through theiS involved in the control of many carbohydrate trans-
PTS also rises slowly. port systems, we calculated the degree of phospho-
rylation in dependency of the PEP/pyruvate ratio for
the case where the PTS is active, and the case where
the PTS is not active and a flux through glycolysis

Regarding the steady-state characteristics, the de—is_ enforced. When th_e PTS is not active the SY”the'
grees of phosphorylation of the PTS proteins EIIA sis of pyruvate is realized only by the pyruvate kinase

and El are nearly linear over a broad rangddg( reaction. InFig. 10the pyruvate kinase flux was var-
7). For high uptake rates, the slope of the curve is ied between 2 and 6mmo|/gDWh (the incoming flux
decreasing, indicating a saturation behavior. This [0 9lucose 6-phosphate was fixed at 5 mmol/gDW h).
can also be seen in the plot of uptake rate ver- A_s can be seen, the PEP/pyruvate ratio is _decreasmg
sus glucose residual concentration. The values of With increasing pyruvate kinase flux. The right-hand
PEP pass through a maximum at an uptake rate OfS|de plot shows the shift of the degree of phosphory-
4mmol/gDWh (close to the half maximal uptake lation of EIlA in the cases where the PTS is active or

rate), while glucose 6-phosphate and pyruvate show not actlve_. When the PTS is not active, frdn. (9)
a linear dependency from the uptake rate. The initial the following _equatlon will hold true for the degree of
values measured for PEP and pyruvateHiygema  Phosphorylationde:
et al. (1998)for glucose (6.8 and 2;2mol/gDW, CP~EIIA CPEP/CPIv
respectively) are the same order of magnitude as dp = c -1 ’ (18)

_ _ EIIAO /Keq+ cPEP/CPIv
those shown in the figure. The course of PEP re-
flects the very important role of this key metabolite showing that the curve does not depend on the overall
in the entire system. For low uptake rates the PEP amount of the PTS proteins. Note tHad. (18)also
pool increases with increasing uptake rate, showing represents the upper bound for the case that the PTS
that PEP is available in sufficient amounts. For high is active. This upper bound is reached if the concen-
uptake rates, the capacity of the glycolysis becomes tration of the PTS proteins is increased.
more and more limiting, leading to decreasing PEP  The results of the model are in agreement with
concentrations. data inHogema et al. (1998jFig.2 therein shows

6.2. Steady-state characteristics
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Fig. 10. Left: PEP/pyruvate ratio corresponding to the rate of pyruvate kinase when the PTS is not active. Right: Corresponding degree
of phosphorylation for protein EIIA in the case that the PTS is not active (solid) and in the case where the PTS is active (dashed).

the degree of phosphorylation of EIIA for various shows a maximal deflection of selected trajecto-
carbon sources). Depending on the PEP/pyruvate ra-ries. These vectors are analyzed with respect to fast
tio, the degree of phosphorylation is adjusted: For and slow observables of the model. The analysis
non-PTS sugars, e.g. glucose 6-phosphate, a lowof two experiments—pulse response and diauxic
PEP/pyruvate ratio will also result in a low degree growth—reveals that some of the system parameters
of phosphorylation, and therefore in low cAMP show a robust behavior: If a parameter shows no sen-
concentrations. If a non-PTS sugar is provided, the sitivity in the fast system, it almost always show no
pyruvate kinase activity must be increased to estab- sensitivity for slow observables. Therefore, it is con-
lish the low PEP/pyruvate ratio. Data from literature cluded that the fast system may act as a kind of filter
indicates that the pyruvate kinase activity and con- for the sensitivities. These findings may lead to an
centration can be enhanced in a feed-forward loop improvement during parameter identification for large
by fructose 1,6-bis-phosphate (protein synthesis is systems composed of different units processing on
under control of FruR, which is modified by fruc- different time scales. In the first example, the sensitiv-
tose 1,6-bis-phosphate). Possibly, this results in a ities are distributed on a number of parameters, show-
higher flux through pyruvate kinase if a high flux ing that there is no single “bottleneck” in the PTS.
through glycolysis is possible, and therefore de- For the second example discussed above (Case study
creases the PEP/pyruvate ratio. Besides the pyruvatell), it turns out that the glycolytic flux, represented by
kinase activity other PEP metabolizing enzymes can parameterkgy, shows the highest sensitivity for the
also be expected to alter there activity in response slow variables, e.g. biomass and LacZ. Since the slow
to changes of the glycolytic flux and thereby also processes reflect control of protein synthesis, e.g. via
influence the PEP/pyruvate ratio. All findings indi- P ~ EIIA, the importance of the glycolytic flux dis-
cate that for all sugars that feed into glycolysis, a cussed already above and observedHogema et al.
high PEP/pyruvate ratio always points to a hunger (1998)is confirmed from a theoretical point of view.
situation, while a low PEP/pyruvate ratio signals a  From research in microbiology, the PTS is designed

satisfactory situation. as a sensor system. From our results and the cited ex-
perimental studies, it is concluded that it is a sensor
6.3. Robustness system for external carbon source supply, but rather

the glycolytic flux and the PEP/pyruvate ratio show a

A new approach was introduced to analyze pa- sensor function while the PTS acts more as a trans-

rameter sensitivities of slow and fast subsystems. mitter to process the signal to synthesize cAMP and
The method calculates a vector of parameters that finally activates Crp to start transcription.
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Appendix A

A.1. Model equations for the simplified
PTS/glycolysis model

The following rates are defined for reactions
(1)-(3):
r1 = kicpercel — k—1cprv(cEI0 — CEI) (A1)
r2 = kacupr(ceio — cel) — k—2¢EI(CHPrO — CHPY)
(A.2)
r3 = kacena (CHPro — CHPr)

—k_acHpr(cENAD — CEIA), (A.3)

and the model equations read, together V&th (5}

CEl =—r1+712
CHPr = —r2+ 73
CEIA = —T3+ 74 (A.4)

For glycolysis the following kinetics are used:

cGeP
raly = kgly ———200 (A.5)
" Kaep+ cosp
CPEP
Fpyk = kpyk————— (A.6)
b P Kpep+ cpep
rdrl = kg6pcGep (A7)
rdr2 = kpepcPEP (A.8)
rdr3 = KprvCPRV; (A.9)
and the equation system read:
CG6P = T4 — I'gly — Fdrl
cpep= —T11+2 X rgly — I'pyk — r'dr2
Cprv = 1+ pyk — Fdr3- (A.10)

A.2. Method oHearne (1985)

The method oHearne (1985)ses the normalized
sensitivitieswj;

o = wi Pd = i P
! Yxi o opjxi’
w1l ... Wim

Q= .. , (A.11)
@n1 ®Wnm

and the vector of sensitivities

A
sz[ﬂ...] (A.12)
P1
to formulate the optimization problem
max s’ (Z SZTSZAt> s. (A.13)
With scaling of the sensitivities
s'ls=1 (A.14)

as additional constraint, the problem can be reformu-
lated as an Euler-Lagrange equation with the solution

Gs= As, (A.15)
with

G=) 2'eAt (A.16)
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Zusammenfassung Die aktuelle Forschung in der moleku-
laren Genetik und die Erfolge bei der Analyse von Genexpres-
sion und Proteinfunktion fiihren zu einer bisher unerreichten
Fillle von Informationen Uber biologische Phanomene. Werk-
zeuge, die eine quantitative Beschreibung und Analyse er-
moglichen, haben dabei eine entscheidende Bedeutung. Der
Beitrag stellt Werkzeuge zur Modellerstellung, -simulation und
-analyse vor, die bereits fiir eine Anzahl von biologischen
Modellsystemen (Bakterien, Hefen) angewendet wurden. Das
Werkzeug ProMoT dient zur automatischen Erstellung der Mo-
dellgleichungen, die anschliessend vom Gleichungsléser Diva
numerisch untersucht werden konnen. Eine Analyse der Mo-
dellstruktur sowie die Berechnung von stationdren Flissen ist

KEYWORDS

mit dem FluxAnalyzer méglich. »»»  Summary Current
research in molecular genetics and success in developing
methods for functional genomics and proteomics lead to an un-
rivaled knowledge on biological systems. Tools that allow for
a quantitative description and analysis become therefore more
and more important. The paper at hand introduces tools for
model set up, dynamical simulation and analysis. The tools were
successfully applied for a number of biological model systems.
Tool ProMoT supports the automatical generation of model
equations; the equations were afterwards solved numerically
with Diva. To analyze the structure of and to calculate flux
distributions in metabolic networks, the FluxAnalyzer was de-
veloped.

J.3 [Life and Medical Science] Workbench, cellular systems

1 Einleitung

Die Erfolge der modernen mole-
kularen Biologie bei der Analyse
der genetischen Strukturen bei ei-
ner Vielzahl von Organismen hat die
Bioinformatik zu einer sehr popu-
laren Wissenschaft gemacht. Heute
stehen daher eine grofle Anzahl
von Datenbanksystemen zur Verfii-
gung, die umfangreiche Datenmen-
gen speichern und strukturieren.
Diese Datenbanken konzentrieren
sich hauptsichlich auf Sequenzda-
ten, Stoffwechsel- und Regulations-
wege unterschiedlicher Mikroorga-

it — Information Technology 46 (2004) 1

nismen. Neue Messtechniken wie
beispielsweise die Chip-Technologie
und die Gel-Elektrophorese gestat-
ten heute einen quantitativen Blick
in die Zelle. Andere Techniken er-
lauben die Messung von intrazel-
luldaren Metaboliten in einem Zeit-
fenster von 2/100 Sekunden und
gestatten daher die Analyse von sehr
schnellen Dynamiken, wenn die Zel-
len entsprechend angeregt werden.
Diese beiden Entwicklungen — ver-
ftigbares Wissen tiber die genetische
Organisation von Zellen und die
neuen Messtechniken — ebnen den

O Oldenbourg Verlag

Weg der Biologie von einer quali-
tativen zu einer quantitativen Wis-
senschaft. Stoffwechsel- und Regu-
lationswege sind jedoch durch eine
grofSe Anzahl interagierender Kom-
ponenten gekennzeichnet. Um diese
komplexen Systeme besser verste-
hen und womaéglich auch Vorhersa-
gen tiber das ganzheitliche Verhalten
machen zu kénnen, bedarf es aber
weiterer Hilfsmittel. Eines dieser
Hilfsmittel ist die detaillierte ma-
thematische Beschreibung von zel-
luldren Vorgangen. Mathematische
Modelle stellen dann das Herz-



stiick einer neuen Vorgehensweise
bei der Analyse des Wachstums- und
Produktbildungsverhaltens von zel-
luldren Systemen dar. Dieser neue
Forschungsansatz wird als Systems
Biology oder manchmal auch als
Computational Biology bezeichnet.
Er zeichnet sich durch eine starke
Kooperation zwischen Naturwissen-
schaftlern, Informatikern und In-
genieuren aus und versucht, durch
eine starke Kopplung zwischen Ex-
periment und Theorie einen Beitrag
zum verbesserten Verstdndnis der in
einer Zelle ablaufenden Vorgiinge zu
leisten.

In diesem Beitrag sollen einige
Rechnerwerkzeuge vorgestellt wer-
den, die in unserer Arbeitsgruppe
entwickelt und eingesetzt werden.
Diese betreffen die Bereiche Modell-
entwicklung, dynamische Simula-
tion, Parameteridentifikation, dyna-
mische Optimierung sowie die Ana-
lyse stationdrer Modelle und zellu-
lirer Netzwerke. Bild 1 gibt einen
Uberblick und zeigt, wie die einzel-
nen Werkzeuge gekoppelt sind.

Das Tool ProMoT dient dabei
als Reprisentation des verfiigbaren
biologischen Wissens und als Hilfs-
mittel, um die komplexen Modelle

zu erstellen. Bei beiden Aufgaben
stiitzt es sich auf ein Modellierungs-
konzept, welches fiir die Modellie-
rung von zelluldren Systemen entwi-
ckelt wurde. Darauf wird im nichs-
ten Abschnitt kurz eingegangen. Mit
der Simulationsumgebung Diva be-
steht nicht nur die Moglichkeit,
dynamische Simulationsstudien zu
betreiben, sondern das Werkzeug,
das sich durch eine sehr effizi-
ente Numerik auszeichnet, kann
zur Analyse von Sensitivititen und
zur Schitzung von unsicheren und
unbekannten Parametern herange-
zogen werden. Wichtige Merkmale
von ProMoT-Diva im Unterschied
zu anderen Simulationswerkzeugen
sind die graphische Benutzerober-
fliche, der durchgehend modulare
Aufbau der Modelle bei gleichzei-
tiger Transparenz des zugrunde-
liegenden Gleichungssystems sowie
die sehr effiziente Numerik (siehe
auch [1]). Das Werkzeug FluxAna-
lyzer dient schlieflich der Analyse
von stationdren Modellen und zel-
luldren Netzwerken. Es stellt eine
ganze Reihe von Methoden, die aus
den Bereichen Metabolic Flux Ana-
lysis und Metabolic Pathway Analysis
bekannt sind, zur Verfiigung.

Model-
Libraries
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Bild1 Uberblick tiber die vorgestellten Werkzeuge. In ProMoT wird das verfiigbare biologische
Wissen strukturiert und so aufbereitet, dass mathematische Modelle aus vorgefertigten Teilmodel-
len erstellt werden konnen. Die Teilmodelle sind in einer umfangreichen Modellbausteinbibliothek
abgelegt. Die Modelle kdnnen dann so abgespeichert werden, dass mit der Simulationsumgebung
Diva Sensitivitats- und Simulationsstudien durchgefiihrt werden konnen. Fiir die Analyse von sta-
tiondren Modellen steht der FluxAnalyzer zur Verfiigung. Dieser bendtigt nur die stochiometrischen
Koeffizienten des biochemischen Reaktionsnetzwerkes.

2 Modellierungskonzept fiir
zellulare Systeme

An dieser Stelle sollen in aller
Kiirze Grundziige eines Modellie-
rungskonzeptes vorgestellt werden,
welches eine strukturelle Dekom-
position des zelluliren Reaktions-
netzwerkes erlaubt [12]. Dabei wird
davon ausgegangen, dass die Bio-
phase in ihrem globalen Verhalten
einer gemittelten Zelle entspricht.
Eine zentrale Idee des Konzeptes
ist es, dem Anwender Modellbau-
steine zur Verfiigung zu stellen,
die parametrisiert und mit anderen
Modellbausteinen zu hoher struk-
turierten Modellen — den Funk-
tionseinheiten — verschaltet wer-
den. Die Modellbausteine besitzen
strukturelle Eigenschaften und ver-
haltensbeschreibende Eigenschaften.
Die strukturellen Eigenschaften er-
lauben eine passende Verschaltung
der Bausteine, wihrend die Ver-
haltensbeschreibung den einzelnen
Bausteinen eine mathematische Be-
schreibung zuordnet.

Bausteine, die einzelne Meta-
bolite oder Proteine beschreiben,
sowie Bausteine, die die biochemi-
sche Stoffumwandlung charakteri-
sieren, werden als elementare Mo-
dellbausteine bezeichnet. Aus ihnen
kann ein mathematisches Modell
des gesamten Stoffwechsels aufge-
baut werden. Zur vollstindigen Be-
schreibung der in einer Zelle ablau-
fenden Prozesse sind jedoch noch
weitere Grundbausteine notwendig:
Zelluldre Systeme sind in der Lage,
sich sehr schnell auf dndernde Um-
weltbedingungen einzustellen. Dies
liegt zum einen an der Moglichkeit
der Informationsverarbeitung, um
einen dufleren Reiz — etwa in Form
einer drastischen Verinderung der
Substratkonzentration — in ein zel-
luldres Signal umzuwandeln. Dieses
Signal wird weitergeleitet und ver-
arbeitet, um eine zellulire Antwort
hervorzurufen. Die Prozesse der
Signaltransduktion beruhen haupt-
sichlich auf Wechselwirkungen von
Proteinen. Des Weiteren besitzt die
Zelle eine hohe Anzahl von Steuer-
und Regelkreise, die es erlauben, ge-
wiinschte Stoffwechselwege zu- oder
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abzuschalten und damit in optima-
ler Weise auf die neue Situation zu
reagieren. Dies dufiert sich beispiels-
weise in der Anderung der Synthe-
serate oder Aktivitit der entspre-
chenden Stoffwechselenzyme. Zur
Beschreibung dieser Prozesse wird
zusitzlich die Modellklasse der Sig-
nalwandler benotigt.

Die Aggregation der elemen-
taren Modellbausteine sollte nach
vorgegebenen Regeln erfolgen. Beim
vorgestellten Konzept werden dabei
drei biologisch motivierte Kriterien
herangezogen, die eine Gruppie-
rung von elementaren Modellbau-
steinen zu Funktionseinheiten er-
lauben. Die Ableitung mehr forma-
ler Kriterien ist Gegenstand laufen-
der Forschungsarbeiten.

3 Modellerstellung mit
ProMoT

3.1 Objektorientierte Modeller-
stellung

ProMoT [1] ist ein objektorientier-
tes, gleichungsbasiertes Modellie-
rungswerkzeug. Es kann kontinuier-
liche und gemischt kontinuierlich-
ereignisdiskrete Modelle fiir die Si-
mulationsumgebung Diva erstellen.
Die Modelle werden dabei aus einer
abstrakten symbolischen Reprisen-
tation im Modellierungswerkzeug in
Fortran Unterprogramme tberfiihrt
und iibersetzt, wodurch eine sehr ef-
fiziente Simulation ermoglicht wird.
ProMoT erlaubt dem Modellierer,
objektorientierte Techniken zu be-
nutzen. Modellbausteine in ProMoT
sind Klassen, die einen lokalen Zu-
stand kapseln, als Container fiir
andere Bausteine dienen und durch
Vererbung spezialisiert und erwei-
tert werden konnen. Es werden
strukturelle und verhaltensbeschrei-
bende Modellbausteine unterschie-
den. Strukturell wird das Gesamt-
modell in Module unterteilt, die
bestimmten biologischen Einhei-
ten auf verschiedenen Ebenen des
Gesamtsystems entsprechen. Ent-
sprechend dem vorgestellten Mo-
dellierungskonzept werden auf der
untersten Ebene molekularbiologi-
sche Spezies und Reaktionen als
Module beschrieben, aber auch hé-

her strukturierte Funktionseinhei-
ten wie Stoffwechselwege, Regula-
tionssysteme und ganze Bioreakto-
ren werden durch Module reprisen-
tiert. Module besitzen Schnittstel-
len, so genannte Terminals. Durch
die Terminals kénnen die gekap-
selten Module miteinander intera-
gieren. Das lokale Verhalten eines
Moduls wird durch Variablen, alge-
braische Gleichungen und gewohn-
liche Differentialgleichungen be-
schrieben. Das Gesamtgleichungs-
system kann im allgemeinen Fall ein
differentialalgebraisches System mit
einem Index kleiner gleich 1 sein.
Einige Variablen der Module wer-
den den Terminals zugeordnet und
anschlieend bei einer Verkniip-
fung der Terminals mit Variablen
anderer Module durch Koppelglei-
chungen verbunden. Diskrete Zu-
standsianderungen werden mit Hilfe
von Petrinetzen reprisentiert, deren
Transitionen in Abhingigkeit der
kontinuierlichen Variablen feuern.
In der Systembiologie wird dies aber
bislang wenig verwendet, daher soll
hier nicht niher darauf eingegangen
werden.

Modellbausteine in ProMoT
sind in einer objektorientierten
Klassenhierarchie mit multipler Ver-
erbung organisiert. Dieses Konzept
aus der Informatik wurde aufge-
griffen, um komplexe Bibliotheken
von Modellbausteinen flexibel zu
gestalten und besser organisieren
zu konnen. Fiir systembiologische
Modellierungsprojekte wurde eine
Bibliothek von Modulen erstellt, die
sowohl elementare Modellelemente
wie Stoffspeicher und Stoffwand-
ler aber auch wiederholt vorkom-
mende Funktionseinheiten zur Be-
schreibung der Genexpression und
der Signaltransduktion modellieren.
Eine direkte Anbindung an Daten-
banken, um biochemische Daten
direkt in Modelle umzuwandeln,
ist z.Zt. nicht vorgesehen. Aller-
dings ist geplant, Modelle, die in
SBML [4] vorliegen, einzulesen und
Modellvarianten auch in SBML zu
exportieren.

Die Module in ProMoT besitzen
standardisierte Terminals, die eine
universelle Verkniipfung der Bau-
steine ermoglichen. Die Terminals
repriasentieren dabei Signale (Kon-
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Bild2 Modell eines Fruktosetransportweges von E. coli im graphischen Editor von ProMoT. Der
Stoffwandler t r ans_f u wandelt sowohl externe als auch interne Fruktose (durch die Terminals
t _frue, t _fru) in einer Phosphorylierungsreaktion in Fruktose-6P (t _f 6p) um. Die dazu beno-
tigte Energie wird duch die phosphorylierte Form des Enzyms ei i af bereitgestellt. Die Synthese
des Transportenzyms wird durch den Expressionsbaustein (durch die Doppelraute reprasentiert) be-

schrieben.



zentrationen oder Konzentrations-
verhiltnisse) oder Stofffliisse (bidi-
rektionaler Austausch einer Konzen-
tration und einer Flussrate). Be-
nutzer kénnen neue Module mit
Hilfe eines graphischen Editors oder
textuell in der Model Definition Lan-
guage (MDL) von ProMoT einge-
ben. Im graphischen Editor (siehe
Bild 2) wird ein Flussdiagramm be-
arbeitet, in dem Module aus der
geladenen Modellbibliothek durch
Drag'n Drop aggregiert und mit-
einander verbunden werden. Mit
Hilfe der Modelliersprache kon-
nen spezielle eigene Gleichungs-
modelle in elementaren Modulen
implementiert werden. Dabei kann
der Modellierer auf abstrakte Su-
perklassen aus der Modellbiblio-
thek zuriickgreifen. MDL ist eine
deklarative, objektorientierte Spra-
che, die eine Beschreibung der
Modellelemente, aber keinen im-
perativen Code enthilt. Sie wird
vom Modellierungswerkzeug gele-
sen und geschrieben und wird
auch als Datenformat zur Speiche-
rung der Modellbibliotheken ge-
nutzt.

3.2 Implementation des
Modellierungswerkzeuges

Ist der Aufbau eines Modells ab-
geschlossen, generiert ProMoT dar-
aus simulationsfihigen Code. Dazu
wird die Instanz einer Modulklasse
erzeugt (siche Bild 3), wobei alle
aggregierten Bestandteile auf ihre
Vollstindigkeit (z.B. fehlende Re-
ferenzen, Startwerte fiir die Varia-
blen) tberpriift werden. Anschlie-
Bend wird das resultierende Glei-
chungssystem fiir den Simulator er-
zeugt. Dabei werden alle in den
Modulen definierten Gleichungen
und Koppelgleichungen zusammen-
gefasst und strukturell analysiert.
Strukturelle Fehler des Gleichungs-
systems werden hierbei erkannt und
dem Nutzer mit Hinweisen zur Feh-
lerbehebung signalisiert. Fehlerfreie
Gleichungssysteme werden symbo-
lisch transformiert, um die Effizienz
des Simulationscodes zu steigern.
Dabei werden einfache, explizite al-
gebraische Gleichungen durch di-

rekte Zuweisungen ersetzt und la-
tente Variablen eliminiert, die vom
Nutzer nicht zur Ausgabe markiert
wurden. Dieser Schritt ist notwen-
dig, weil die feinkdrnige Struktu-
rierung der Module zwar flexibleres
Arbeiten bei der Modellerstellung
erlaubt aber auch eine grofle An-
zahl solcher Gleichungen und Varia-
blen erzeugt. Das endgiiltige Glei-
chungssystem wird mit Hilfe eines
Code-Generators in Fortran-Unter-
programme codiert und kann dann
mit den numerischen Bibliotheken
von Diva compiliert und gelinked
werden.

ProMoT ist, wie in Bild 3 darge-

stellt, in zwei Teilen implementiert:
(1) einem Kernel, der alle Mani-
pulationen der Modellelemente
und der Dateien mit den MDL-
Quelltexten durchfithrt und die
Algorithmen zur Gleichungs-
manipulation enthalt und
einer graphischen Oberfliche in
Java, die verschiedene Ansich-
ten auf die Wissensbasis von
Modellelementen und das gra-
phische Editieren von Modulen
erlaubt.
Diese beiden Teile interagieren als
Modell und View/Controller mit-
einander. Die Kommunikation der
beiden Teile erfolgt iiber Corba.

®
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CG-Writer

Code Generator (CG)

—

Bild3 Softwarearchitektur von ProMoT: Der
Kern ist in objektorientiertem Common Lisp im-
plementiert, die graphische Oberflache basiert
auf JFC/Swing und interagiert nach einem MVC
Pattern mit dem Kern. Die Kommunikation er-
folgt tiber Corba.

4 Numerische Analyse des
dynamischen Modells mit
Diva

Eine numerische Analyse der mit
ProMoT erstellten Modelle erfolgt
mit der Simulationsumgebung Diva,
die eine ganze Reihe von Metho-
den zur Berechnung stationirer Zu-
stinde und zeitlicher Verldufe aus
den nichtlinearen Differentialglei-
chungen bietet. Die Gleichungen
miissen dazu in der linear-implizi-
ten Form

Bi=f(x,pt) (1)

vorliegen. Hierbei steht x fiir den
Zustandsvektor, p fir den Parame-
tervektor, y fiir den Ausgangsvektor
und ¢ fir die Simulationszeit. Ma-
trix B ist die so genannte Descrip-
tor-Matrix des Differential-Algebra-
Systems. Gleichungen f reprisen-
tieren die rechte Seite des gesam-
ten Systems. Im Folgenden sollen
zwei Aspekte besonders herausge-
stellt werden:

(1) Parameteranalyse auf der Basis

verfiigbarer Messdaten und

(2) Parameterschitzung.

4.1 Parameteranalyse und
-sensitivitaten

Die Analyse von Sensitivititen wird
oft mit der Metabolic Control Ana-
lysis [3] in Verbindung gebracht.
Diva benutzt die Parametersensiti-
vitdten wj; = 0x;/9p; zur Unterstiit-
zung der Parameterschitzung. Dazu
wird in einem ersten Schritt eine
Parameterkombination gesucht, die
einen groflen Einfluss auf ausge-
wihlte Kurvenverlidufe besitzt. Nor-
malerweise werden hierzu nicht alle
Zustandsgroflen ausgewdhlt, son-
dern nur solche, fiir die Messwerte
zur Verfiigung stehen. Das Verfah-
ren von Hearne [2] berechnet einen
Parametervektor, der die Trajekto-
rien maximal aus der Ausgangslage
auslenkt. Parameter, die in diesem
Vektor eine hohe Gewichtung besit-
zen, zeigen eine grofle Sensitivitt.
Diva erlaubt auch die Berechnung
von Sensitivititen von Reaktions-
raten beziiglich ausgewihlter Para-
meter. Dies erlaubt im Besonderen
auch die Ermittlung von Flusskon-
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trollkoeffizienten, wie sie aus der
Metabolic Control Analysis bekannt
sind.

In einem zweiten Schritt ist nun
zu priifen, ob die sensitiven Para-
meter auf der Basis der verfugba-
ren Messdaten iiberhaupt geschatzt
werden konnen. Dazu wird die
Fisher-Informations-Matrix heran-
gezogen [13]. Diese Matrix ist durch

F=)Y [Wt) Clt) W(n)]

N
k=1

definiert, wobei W(#;) = dx/dp die
Matrix der Sensitivititen ist, und
C(ty) die Kovarianzmatrix. Wendet
man nun eine Methode an, die
in [15] vorgeschlagen wurde, kann
man Gruppen von Parametern be-
stimmen, die zusammen geschitzt
werden koénnen. Dazu ist eine Va-
rianz y der Parameter vorzugeben,
die man im besten Fall erreichen
will. Die Wahl von y hingt von der
Giite der Messdaten und den An-
forderungen an die Parameterschit-
zung ab. Bei zelluliren Systemen
muss man aber davon ausgehen,
dass die Parameter doch eine recht
breite Streuung (£20%) besitzen.

4.2 Parameterschatzung

Sind sensitive Parameter bestimmit,
die auch — basierend auf den Mess-
daten — geschitzt werden kénnen,
findet die eigentliche Parameter-
schitzung statt. Dabei ist man aller-
dings auf die einmal festgelegte Mo-
dellstruktur beschriankt. Die Mess-
daten zj liegen fiir ausgewdhlte
Zustandsgroflen zu diskreten Zeit-
punkten #; vor. Das Ziel der Para-
meterschitzung ist die Minimierung
der Zielfunktion @(p), die durch

N n 2
Z Z 5 (Xi(%o, U, P, t) — Zik
Wik T max
1

k=1 i=1

gegeben ist. Hierbei erlauben die
Faktoren wj und 2z die Ska-
lierung einzelner Messpunkte oder
des gesamten Experimentes. Fiir die
Optimierung stehen unter ande-
rem eine SQP (Sequential Quadratic
Programming) Methode aus der
NAG Bibliothek [14] zur Verfiigung.

5 Struktur- und
Stoffflussanalyse in
biochemischen Netzwerken
mit dem FluxAnalyzer

5.1 Grundlagen

Auf der Basis klassischer bioche-

mischer Methoden und nun auch

sequenzierter Genome lassen sich
ganze Stoffwechselnetze fiir ver-
schiedene Organismen rekonstru-
ieren, die iiber Datenbanken wie

KEGG [5] und MetaCyc [6] zu-

ginglich sind. Die stochiometrische

Struktur metaboler Netzwerke kann

daher als die am besten charakteri-

sierte Datengrundlage fiir die Mo-
dellierung betrachtet werden. Viele

Stoffwechselmodelle lassen sich (et-

was vereinfacht zu Gleichung (1))

darstellen als

(2)

Hier steht Vektor x fiir die Me-
tabolitkonzentrationen, N ist die
stochiometrische Matrix, die ge-
rade die Netzstruktur konserviert
(Zeilen: Metabolite, Spalten: die Re-
aktionen mit den stochiometrischen
Koeffizienten) und r ist der Reak-
tionsratenvektor.  Letzterer —wird
durch eine Funktion beschrieben,
die die Kinetik des Reaktionsmecha-
nismus reprasentiert und von den
Konzentrationen und kinetischen
Parametern abhingt. Insbesondere
sind die Parameter oft kaum be-
kannt. Aufgrund der Tatsache, dass
die Metabolitenkonzentrationen in
der Zelle approximativ im Flief3-
gleichgewicht vorliegen, vereinfacht
man Gleichung (2) zu:

x=Nr(x,p,t).

0=x%=Nr. (3)
Dieses Gleichungssystem ist Grund-
lage von strukturellen (topologi-
schen, stéchiometrischen) und sta-
tiondren Analysen in Stoffwechsel-
netzen und ist durch die Struktur der
Matrix N charakterisiert. Die spe-
ziellen Methoden zur Analyse von
Gleichung (3), die insbesondere der
Metabolic Flux Analysis und Metabo-
lic Pathway Analysis gewidmet sind,
legen nahe, eine angepasste Model-
lierungs- und Visualisierungsumge-
bung bereitzustellen. Diese wurde
mit dem FluxAnalyzer realisiert.
Wihrend Diva also fiir die dynami-
sche Simulation eines in ProMoT er-
stellten Modells herangezogen wird
— die Ausgabe der Ergebnisse er-
folgt in Matlab — ist der FluxAnalyzer
speziell fiir stochiometrische Analy-
sen eines biochemischen Netzwerkes
entwickelt worden.

5.2 Aufbau des FluxAnalyzers
Der FluxAnalyzer [9] ist ein Pa-
ket fiir das kommerzielle Programm
MatLab (Mathworks, Inc.) und pro-
fitiert dadurch von bereits imple-
mentierten algebraischen Funktio-
nen, sowie durch die eleganten
Moglichkeiten in MatLab, Benutzer-
oberflichen zu konstruieren. Fiir
die Analyse eines beliebigen Reak-
tionsnetzes legt der Benutzer ein
Netzwerk-Projekt an, das aus zwei
Teilen besteht (Bild 4):
(1) Abstrakte Netzstruktur: Mittels
Masken kann der Benutzer neue
Netzwerkelemente (vom Typ

MATLAB

FluxAnalyzer

Netzwerk Projekte

(definiert/erstellt vom Benutzer)

Torerartine Funktionen zur Analyse
iV -
von Struktur und Fliissen
m in Stoffwechselnetzen
e W \\

Toolbox =

eingebettet in ein Menii

Benutzerschnittstellen
(Textboxen)

Algebraische Routinen |
und Funktionen

Bild4 Aufbau des

FluxAnalyzers.



»Metabolit“ oder ,Reaktion®)
deklarieren, die bestimmte Ei-
genschaften haben. So kann fiir
jede Reaktion unter Anderem
eine symbolische Reaktionsglei-
chung definiert — dies dient dem
Aufbau der stochiometrischen
Matrix — und eine maximale
und minimale Reaktionsrate
angegeben werden. Alternativ
kann eine Netzstruktur auch
von ProMoT ex- und dann
in den FluxAnalyzer importiert
werden (Eine Darstellung der
Ergebnisse des FluxAnalyzer in
ProMoT ist nicht angedacht).

(2) Interaktive Flusskarten (IFK):
Diese stellen das Kernkonzept
der Interaktion und Visualisie-
rung im FluxAnalyzer dar (siehe
Beispiel in Bild 5).

Der Benutzer stellt selbstkrei-
erte oder aus anderen Quellen (wie
Datenbanken) erhiltliche Netzwerk-

grafiken zur Verfiigung, die das Netz
graphisch reprisentieren und als
Hintergrund fiir die IFK dienen. Auf
diesen Grafiken konnen dann Text-
boxen installiert werden, die jeweils
einem Netzwerkelement zugeordnet
sind. Beispielsweise kann an einem
Reaktionspfad in der Grafik die zu-
gehorige Textbox der entsprechen-
den Reaktion platziert werden, die
dann die Reaktionsrate der Reaktion
nach Berechnungen anzeigt. Ganz
bewusst wurde hier auf Algorith-
men zum automatischen Zeichnen
des Netzgraphen verzichtet, da diese
oftmals nicht den subjektiven Krite-
rien und Wiinschen des Benutzers
entsprechen. AuSerdem sind so auch
beliebige Annotationen moglich.
Jedes Netzwerk-Projekt kann
vom Benutzer mit einer umfang-
reichen Sammlung an Algorithmen
und Methoden fiir die metabole
Fluss-, Struktur- und Pathway-
analyse untersucht werden. Diese

Figure No. 1: Cataholic Network of Escherichia coli <2>

konnen bequem in einem Meni
gestartet und ohne detaillierte ma-
thematische Kenntnisse ausgefiihrt
werden. Die Ergebnisse werden di-
rekt in den IFK in den Textboxen
ausgegeben.

5.3 Funktionen zur Analyse von
Stoffwechselnetzen

Metabolic Flux Analysis (Metabole
Flussanalyse). Gleichung (3) ist nor-
malerweise unterbestimmt, d.h. es
konnen meistens keine stationdren
Raten im Netz berechnet werden.
Oft kénnen in Experimenten ei-
nige Raten gemessen werden (z.B.
Aufnahme/Ausscheidung von Sub-
straten/Produkten), die Gleichung
(3) in ein inhomogenes Gleichungs-
system tberfithren und mit denen
dann zumindest einige unbekannte
Raten bestimmt werden konnen.
Die Eingabe gemessener und Aus-
gabe berechneter Raten erfolgt di-
rekt in den Textboxen der IFK und

- |
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Bild5 Interaktive Flusskarte, die
in [17] eingesetzt wurde. Angezeigt
wird gerade ein Elementarmodus
(dunkle Boxen). In der Mendileiste

| befindet sich auch der Eintrag fiir
den FluxAnalyzer.
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wird farblich unterschiedlich mar-
kiert. Des Weiteren stehen Metho-
den fiir Konsistenzchecks — dies ist
relevant bei redundanten Messun-
gen —, zur Sensitivitdtsanalyse und
fiir den Vergleich unterschiedlicher
Flussverteilungen zur Verfiigung.

Optimierung von Fliissen Der Benut-
zer kann sich eine beliebige lineare
Zielfunktion definieren (zum Bei-
spiel um das Wachstum zu maximie-
ren). Eine optimale Flussverteilung
beziiglich dieser Zielfunktion kann
berechnet und angezeigt werden.

Metabole Pathway Analyse auf Ba-
sis von Elementarmoden. Elementar-
moden (EM) koénnen als kleinste
funktionale Teilnetze verstanden
werden [16]. Die grundlegende Be-
deutung der Elementarmoden ist
erst in den letzten Jahren erkannt
worden. Mit ihrer Hilfe konnen zum
Beispiel ,genetisch unabhingige®
Routen (Pathways) im Netz be-
schrieben, Flexibilitit und Robust-
heit des Netzes bestimmt und
die strukturelle Bedeutung einzel-
ner Reaktionen bei unterschiedli-
chen Wachstumsbedingungen ab-
geschitzt werden [8;17]. Die Be-
rechnung von Elementarmoden in
grofleren Netzen ist aufgrund der
kombinatorischen Komplexitit eine
diffizile Aufgabe [7]. Der FluxAnaly-
zer ermoglicht sowohl die effiziente
Berechnung als auch eine einge-
hende statistische Untersuchung der
berechneten Elementarmoden.

Andere strukturelle Eigenschaf-
ten wie Erhaltungsrelationen, struk-
turelle Inkonsistenzen (z.B. ,,Sack-
gassen®) und strukturelle Kopplun-
gen konnen bestimmt werden. Des
Weiteren kann die stochiometrische
Matrix exportiert oder graphisch
ausgegeben werden. Die IFKs und
die berechneten Daten konnen ge-
speichert werden.

6 Modellorganismus
Escherichia coli

Zur Beschreibung der Kohlenhy-

drataufnahme in Escherichia coli

wurde ein detailliertes Modell er-

stellt [10; 11]. Wichtigstes Phanom,

welches durch das Modell quan-

titativ richtig wiedergegeben wird,
ist die so genannte ,Kataboliten
Repression‘. Kataboliten Repression
meint die Fihigkeit des Zuckers,
Glukose die Aufnahme einer ganzen
Reihe von anderen Kohlenhydraten
zu blockieren. In der Zelle wird
diese Blockade durch eine Vielzahl
von biochemischen Reaktionen, die
ein komplexes Signaltransduktions-
system bilden, realisiert. Beteiligt
sind die Aufnahmesysteme der Zu-
cker, die als Sensoren fungieren, so-
wie Regulatorproteine am Ende der
Kette, die direkt mit den entspre-
chenden Bindestellen auf der DNA
interagieren und das Ablesen der
entsprechenden Information hem-
men oder aktivieren.

Um das Modell zu validieren,
d.h. zu iberpriifen, ob es die Rea-
litat richtig beschreibt, sind eine
Reihe von Experimenten durch-
gefithrt worden [10]. Diese Expe-
rimente wurden so geplant, dass
das System aus unterschiedlichen
Blickwinkeln betrachtet wird: An-
regung der Kohlenhydrataufnahme-
systeme durch Variation der Koh-
lenstoffquelle, Analyse der Signal-
transduktionseinheiten durch Ver-
wendung speziell konstruierter Mu-
tantenstimme, die Defekte in der
Signalweiterleitung besitzen, und
Auflgsung verschiedener Zeitfenster
durch impulsférmige Anregung (die
Experimente laufen innerhalb zwei
Minuten ab) oder Batch-Versuche
(die Experimente laufen tber acht
Stunden).

Das Modell ist vollstindig in
ProMoT implementiert. Bild 6 zeigt
den Browser. Aufgeklappt sind die
implementierten Stoffwechselwege.
Unten im Bild ist beispielhaft der
Modellbaustein ,reactor” gezeigt.
Dieser umfasst die Fliissigphase und
die biologische Phase. Durch Ankli-
cken mit der Maus kann man
sich die Bausteine dann detail-
lierter anschauen. Mit Hilfe des
FluxAnalyzers wurde eine ausfiihr-
liche FElementarmodenanalyse des
Zentralstoffwechsel in Escherichia
coli durchgefiihrt [17]. Durch die
Auswertung von bis zu 500.000
Elementarmoden konnten wichtige

Schlussfolgerungen fiir die struktu-
relle Funktionalitit und Flexibilitit
in diesem metabolen Netz gezogen
werden.

Mit Hilfe von ProMoT und Diva
soll es langfristig moglich sein, Ex-
perimente am Rechner analog zu
Laborexperimenten durchzufiihren.
Um die Funktionalitit zu verbes-
sern, ist geplant, Visualisierungs-
tools einzubinden, um komplexe
genetische und metabolische Netz-
werke darstellen zu koénnen. An-
wendungsfelder des FluxAnalyzers
finden sich vor allem in der Mi-
krobiologie, in der Biotechnologie
und in der aufkommenden System-
biologie. Das Werkzeug wird bereits
von drei industriellen Unterneh-

(34 [=]mlx]
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@ &7 module
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Bild6 Oben: Browser von ProMoT mit den
Modellbausteinen fiir das E. coli Modell. Auf-
geklappt sind die implementierten Stoffwech-
selwege. Unten: Modellbaustein ,Reactor”. Er
beschreibt die Fliissigphase und die Biophase
in einem Bioreaktor.



men und von mehreren Forscher-
gruppen genutzt. Ausfihrlichere Be-
schreibungen findet man in [9] und
auf der Webseite www.mpi-magde-
burg.mpg.de/projects/fluxanalyzer.
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Abstract

A mathematical model for th€dpD/KdpEtwo-component system is presented and its dynamical behavior is andfylal.
andKdpE regulate expression of thelpFABCoperon encoding the high affinity'Kuptake systenKdpFABCof Escherichia
coli. The model is validated in a two step procedure: (i) the elements of the signal transduction part are reconstructed in vitro.
Experiments with the purified sensor kinase and response regulator in presence or absence of DNA fragments comprising the
response regulator binding-site are performed. (ii) The mRNA and molecule numBepBABCare determined in vivo at
various extracellular K concentrations. Based on the identified parameters for the in vitro system it is shown, that different time
hierarchies appear which are used for model reduction. Then the model is transformed in such a way that a singular perturbation
problem is formulated. The analysis of the in vivo system shows that the model can be separated into two parts (submodels which
are called functional units) that are connected only in a unidirectional way. Hereby one submodel represents signal transduction
while the second submodel describes the gene expression.
© 2004 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction ing of the complex behavior of metabolic and regu-
latory networks of cellular systems. Although there

Mathematical modeling and dynamical simulation is a large qualitative knowledge, especially for bac-
become more and more important for the understand- teria, quantitative research is still scarce. Therefore,
relative simple biological (sub-)systems must be ana-

_— lyzed to get more insight in the dynamics of intracellu-
* Corresponding author. Tel.: +49 391 6110 466; y 9 9 y

fax: +49 391 6110 526. lar processes. A number of such processes are related
E-mail addresskremling@mpi-magdeburg.mpg.de to the survival in a broad range of environmental con-
(A. Kremling). ditions. Several parameters like the supply of different
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Fig. 1. General scheme of a two-component signal transduction system.

nutrients, the sudden presence of toxic substances, pH,jum to 80 in Synechocystis spin which the corre-
temperature, @concentration, osmolality, or different  sponding genes account for nearly 2.5% of the genome
other factors can rapidly change. To survive, bacteria (seeStock et al., 2000or review). Table 1shows a

are forced to monitor their environment constantly and broad range of conditions and adaptive responses con-
to adapt to changing conditions immediately. There- trolled by two-component systems in different bacte-
fore, bacteria have established special signal transduc-ria.

tion systems to execute adaptive responses to changing Sensor kinases typically contain an N-terminal
environmental conditions. The simplest circuits con- input domain which is connected via a linker to a
sist of two protein components (two-component sys- C-terminal transmitter domain. Response regulators
tems): a sensor kinase, often anchored in the cyto- typically consist of a N-terminal receiver domain
plasmic membrane, and a cytoplasmic response reg-coupled to one ore more C-terminal output domains
ulator that mediates an adaptive response, usually a(Fig. 1). Upon perception of a stimulus, the input

change in gene expressioRig. 1). Two-component

domain of the sensor kinase modulates the signal-

systems are widespread in bacteria, archaea and plantsing activity of its transmitter domain, resulting in
In Escherichia coli30 sensor kinases and 32 response autophosphorylation of a highly conserved histidine
regulators have been found. However, the number of residue with the/-phosphoryl group of ATP. Then, the
two-component systems differs enormously in differ- phosphoryl group is transferred to an aspartate residue

ent bacteria, ranging from 0 iklycoplasma genital-

of the response regulator receiver domain, resulting

Table 1
Sensor kinase/response regulator systems control various processes
Function/stress Organism System
Oxygen sensing E. coli ArcB/ArcA
Nitrate and nitrite respiration E. coli NarX/NarL, NarQ/NarP
Chemotaxis Various CheA/CheY
Nitrogen utilization E. coli NtrB/NtrC
K+ supply Various KdpD/KdpE
Phosphate supply Various PhoR/PhoB; PhoQ/PhoP
Antibiotics Enterococcus faecium VanS/VanR
Osmolarity E. coli,
Salmonella typhimurium EnvZ/OmpR
Gene transfer Bacillus subtilis ComP/ComA

Sporulation Bacillus subtilis KinB/SpoOF, KinA/SpoOF
Cell cycle Caulobacter crescentus CckA/CtrA
Photosynthetic apparatus Rhodobacter capsulatus RegB/RegA

Virulence Bordetella pertussis BvgS/BvgA

Quorum sensing Vibrio harveyi LuxN/LuxO; LuxQ/LuxO
Symbiosis Bradyrhizobium japonicum NodV/NodW
Development Myxococcus xanthus SasS/SasR
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in an activation of the output domain(s) to trigger of experiments. In the second step, the overall in vivo
response. In most cases the response is an alteration irsystem was analyzed. Since tk#pFABCDEregulon
the transcription level of a special gene or gene cluster comprises the genes for the transporter as well as the
(seeBourret et al., 1991; Parkinson, 1993; Parkinson sensor kinase/response regulator elements, an autocat-
and Kofoid, 1992; Stock et al., 1990, 20f@0 reviews). alytic behavior was observed. The model was extended
This contribution deals with the mathematical to describe MRNA and protein synthesis. The amount
description of a reaction mechanism representing a of mMRNA and the number of transporter molecules
two-component system for the control of"Kuptake inside the cell were determined experimentally. The
in E. coli. The KdpD/KdpEsystem is one example of mathematical model was used to analyze time scales
a typical two-component system, which regulates the of the stimulus response. To evaluate the quality of the
expression of th&kdpFABCoperon encoding the high  model, steady-state values of the concentration of the
affinity K+ transport systelKdpFABCin E. coli most K* uptake system for different stress conditions were
notably under K limiting conditions (Walderhaug calculated and compared with experimental data.
et al., 1992; Altendorf and Epstein, 1996; Jung and
Altendorf, 2002) A model for two-component signal
transduction was set up lgifisher et al., 1996garlier.
They determined a number of reacti_on parameters for Although it is known that during enzymatic activi-
phosphotransfer from the sensor klngse Vans to the jjag proteins form a number of temporary complexes,
response regulators VanR and PhoBEimerococcus  jy this contribution a rather simple reaction mecha-
Models fo_r other signal transduction systemEm:oh nism was used to describe the two-component system
are described e.g. byong etal., 1997; Kremlingetal., (i 2) Incorporating such temporary complexes in-
2001; Van Dien and Keasling, 1998; Koh etal., 1998 o565 the number of unknown parameters. Since for
The strategy to set up and to analyze the mathe- qqyjar systems measurements of the system compo-
matical model was as follows: First, t&dpD/KAPE  nonts are difficult and only a subset of components
signal transduction cascade was reconstructed in vitro .o 0 pe measured, the model structure should also be

(for details, seeAppendix A. A first model was set 55 gimple as possible to facilitate parameter identifica-
up describing autophosphorylation KéipD, transfer 4, (Saez-Rodriguez et al., 2004)
of the phosphoryl group between sensor kinase and re-  The reaction equations z;re:

sponse regulator, dephosphorylatiorkapE~ P, and Autophosphorvlation -
binding of the response regulator to DNA fragments Htophosphorylation -
comprising the specific response regulator-binding site k »

mentioned above. The model was validated by a set ATP + deD,:ADP +KdpD (R1)

2. Model equations for the in vitro system

KdpE -DNA
sensor kinase response regulator

ADP 4"
i"li;l;{rl o I( I Rznl Pi)l le =

ATP input 2

DNA binding

autophosphorylation  phosphoryl dephosphorylation
transfer

5

Fig. 2. The reaction mechanism for ti@pD/KdpE two-component system. The ellipses represent proteins. Two putative input loci are
under consideration. Input 1 describes alterations of the kinase activity while input 2 describes the alterations of the phosphatase activity. The
phosphorylated response regulator binds upstream &tlfsiBABCpromoter/operator region and in interaction with the RNA polymerase triggers
kdpFABCexpression. The reactions denoted as autophosphorylation, phosphoryl transfer, dephosphorylation and DNA binding are described in
the text.



26 A. Kremling et al. / BioSystems 78 (2004) 23-37

rylation, i.e. a decay of the phosphorylated response
k2
KdpDP + KdpE = KdpD + KdpE? (R2) regulator was not observég@uppe et al., 1996)The
k_o activated response regulator forms a dimer and is then
able to bind to the free DNA (state variable DNA
Dephosphorylation: in reaction R4 to build a transcription complex (state

ks variable KdpE — DNA). Non-specific binding of the
KdpE? + KdpD — KdpE + KdpD (+P) (R3) response regulator to other DNA binding sites could be

DNA binding: neglected in the model (experimental data not shown).
kp The equations for the system are assorted in the fol-
2KdpE? + DNA ¢ k:’ KdpE — DNA (R4) lowing. For the total concentration of the kinaéép D,
—b

and of the response regulat&¥p D, the following
For theKdpD/KdpEsystem it is yet not known at  equations hold:

which stage the stimulus enters the system and two »

possible input loci are under consideration (denoted in X47Po = KdpD + KdpD @)

the following as input 1 and input 2). In this contribu-  KdpE, = KdpE + KdpE? + 2KdpE —DNA  (2)

tion only one stress condition is under investigation and

therefore the stimulus is represented as a fixed param-A”d for the entire concentration of the DNA fragments

eter. In reaction R1 the stimulus (via input 1) enhances DNAo:

the kinase activ.ity that results in autophosphorylation DNAo = DNA ; + KdpE — DNA )

of the sensor kinase (state variablkdpD, KdpDP)

by ATP. In reaction R2 the phosphoryl group is trans- The three remaining differential equations read:

ferred to the response-regulator (state varialiigisE, dKdpD?

KdpE?). KdpE~ P contains the active output domain. T —k_1KdpD? ADP — ko KdpD? KdpD

It is known thatKdpEcan be phosphorylated by alter-

native phosphor donors in the presence of an truncated + k1 KdpD ATP + k_2 KdpD KdpE”
form of KdpD (Heermann et al., 2003lHowever, this )
phosphorylation plays a minor role in the presence or dKdpE? = —k_» KdpD KdpE” — k3 KdpEP KdpD
absence oKdpD. Because of this uncertainty, phos- dr 2

phorylation ofKdpEby acetyl phosphate and other low —2kp KdpEPDNA f+kz Kdp D" KdpE
molecular weight phosphordonors was not included +2k_p KdpE — DNA (5)
into the model. The dephosphorylation KépE ~ P dKdpE — DNA

by the cognate sensor kinalsdpD is described in re- dr

action R3 (controlled via input 2: decrease of dephos- ~ _ —k_ KdpE — DNA + thdpEpz DNA 6)
phorylation). It has been shown earlier thapE ~ P - f
dephosphorylation is only dependenti¢apD (Jung et To compare situations in vivo and in vitro and to

al., 1997)so that other phosphatases are not consideredstudy the influence of the phosphoryl source, ATP is
in the model. Note that, although the stoichiometry of taken as a constant parameter value although it is con-
the back reaction of R2 and reaction R3 are similar, sumed in minor amounts during the in vitro reaction.
the underlying mechanisms are different: for R3 it is

assumed th&dpDacts as an enzyme convertingasub- 2.1. Parameter estimation and results

strate KdpE ~ P) into productsKdpE and R) while

in R2 the phosphoryl group is transferred between the  The goal of parameter estimation is to find a set
regulatory proteins. Hence, the reaction rate for R3 (pa- of parameters that can describe the experimental re-
rameterks) is not included in the balance equation for sults. Here, it was based on the following experi-
the sensor. However, high values of the phosphorylated ments. The complete signal transduction cascade was
sensoKdpD~ P results in low values for the free form  reconstructed in vitro (se&ppendix Afor experimen-

of the sensor and therefore leads to a decreased ratdal details). Briefly, purified and reconstitutédipD
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Fig. 3. Experimental and simulation results for the in vitro system. (A) Stress situation (0 fiMni& DNA fragments comprising the
chromosomaKdpE-binding site were present. (B) Stress situation (0 mM)Kin the presence of DNA fragments. Solid lines: simulation
of phosphorylatedKdpD, dashed lines: simulation of phosphorylat€édpE, circles: experimental data for phosphorylatédpD, squares:
experimental data for phosphorylat€dpE

was mixed with purifiedKdpE (ratio 1:4). Then, an  conditions used in the in vitro experiments did not
ATP/ADP mixture (ratio 12.5:1) was added, and the reflect situations expected in vivo. Therefore, to repro-
amounts of phosphorylated sensor kinase and responseluce intracellular conditions the influence of the ATP
regulator were determined over tinfeig. 3). Two ex- concentration on the steady-state values of the phos-
periments were performed: one in the absence andphorylated response regulator was under investigation.
one in the presence of DNA fragments comprising the Fig. 4shows steady-state values of the degree of phos-
response regulator-binding site. In both experiments phorylationKdpE? / Kdp Ein dependence on the ATP
phosphorylate&kdpDwas detectable albeitat very low concentration. As can be seen, under in vivo conditions
amounts. In the presence of DNA fragments compris- (>1.5mM) a considerable higher degree of phospho-
ing the KdpE-binding site, the amount of phosphory- rylation is expected. Such high ATP concentrations
latedKdpEwas about 10 times higher as in the absence could not be adjusted in vitro, because by further
of these DNA fragments after 30 min. addition of cold ATP, no measurement signal can be
Subsequently, we searched for one set of param- detected.
eters that described these experimental results. Pa-
rameter values fitted with a least-square algorithm 2.2.2. Singular perturbation problem
(MATLAB ©) are summarized iffable 2 To have an For the understanding of the overall behavior of cel-
impression on the quality of the fitted parameters, a lular systems, mathematical models can be used to de-
sensitivity analysis was performed according to the Table 2
method HearngHearne, 1985)The method seeks a  p,ameter values for the in vitro data set
perturbed parameter vector to maximize the distur-
bance to the solution trajectory. Therefore, the method
is useful for analyzing effects of a combination of pa-

In vitro parameters
k1 =0.0029 1/nM DNAp = 100pnM

.. k_1=0.00088 1/luM KdpDg=1pM
rameter changes on the system. The parameters with;, - 10g 1/p,m KdpEg = 4uM
the highest sensitivity werk, k3, k;, andk_,. k_ = 1080 1/nuM ATP = 100pM

. . = 2 =
2.2. Model analysis and model reduction k= 5400 1/huM ADP =8uM
k_, =360 1/h
2.2.1. Stationary behavior kg =90 1/huM (OmM K*/no DNA)
H - = +
In the described experiment a low degree of ks =90 1/huM (OmM K*/DNA)

phosphorylation £1%) was observed. However, the Parameters were estimated with a least square algorithm.
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~

with K = k_/k andK}, = k_p/kp. Introducing a new

In vitro stater = rp + rd leads to a singular perturbation prob-

Degree of phosphorylation (=)
o
w

condition o ithe — :
in vivo lem withe = k/ky:
0.2 condition 1 ¥ =5 —K(r—rd) 9)
0.1 erd =r— (14 Kp)rd. (10)
0 . . . . . . . For very smalk itis allowed to perform a model reduc-
0 02 04 06 08 1 12 14 16 tion with ¢ = 0. The system (A1,A2) can be rewritten
ATP (mM) with one O.D.E. for:
Fig. 4. Steady-state behavior of the system. The degree ofphospho-’"/ =s— K(r — rd) (11)

rylation is defined aXdpE?/KdpE,. For in vivo conditions the . . .
degree of phosphorylation is much higher than for the conditions and one algebraic equation faf:
used in vitro. r

d = .
’ 1+ K,

For the overall original model (R1)—(R4), scaling
tect new (“emergent”) properties. A first step in model was performed withdr = 1/k2 KdpEydr and based
analysis is model reduction, i.e. to come to a “simpler” on the fitted set of parametee k2/k, KdpEy ~ 5 x
description of the system. Here, the number of inde- 10~3. Model reduction for the original system is then
pendent states (the order of the system) is reduced byequivalent to the assumption that reaction (R4) is in
coupling two (or more) states by algebraic equations. rapid equilibrium:

One possibility to obtain algebraic equations is to ana-
lyze tlrj1e time hxi/erarchies of?he syster?1 andtoregard fast KdpE"*DNA s = K}, KdpE — DNA. (13)
modes—in comparison to the chosen time window—as Thereby, the system is reduced to two O.D.E.s for
in steady-state. KdpDP and KdpE?, two algebraic equations to cal-
To illustrate the approach, the scheme is simplified. cylate the free amount of DNA (DNA, and unbound
Only two reactions are considered. Reaction (A1) de- response regulatorK(ipEsp) and two algebraic equa-
scribes phosphorylation and dephosphorylation of are- tions for the total amount of sensor kinase and response
sponse regulatotp from a general source(constant regulator:
entity) and reaction (A2) describes the interaction of

12)

rp with the DNA binding-site: d KdpD” = —k_1 KdpDP ADP — k KdpD” KdpE
dt
k P
synthesis:  s&rp (A1) +ki KdpDATP + k2 KdpD KdpEy
k- (14)
d KdpE?
. P _k_,KdpD KdpE", — ks KdpE", KdpD
b
— i i : =
DNA-binding: rp]:brd (A2) +ky KdpD” KdpE (15)
p2
Scalingthe O.D.E.s witlt = 1/k dt, and rearrang- KdpEP = deE? + depEf DNA (16)

ing leads to the system: Kp
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2
KdpE'”DNA

@ : (17)

DNAo = DNA +

whereK), = k_p/k;, is the binding affinity ofKdp E";
to the binding site DNA:. The two algebraic equations

29

The organisation of th&kdpFABCDEregulon is
shown inFig. 5. UnderkdpFABGinducing conditions a
transcriptkkdpFABCis formed, and probably by a read-
through effect the transcription &dpDEis also en-
hanced. Indeed, under'Klimiting growth conditions,

for the total amount of sensor kinase and response reg-increased amounts ¢&fdpD andKdpE are detectable

ulator read:
KdpDy = KdpD + KdpD?
KdpEy = KdpE + KdpE?.

(18)
(19)

Differences during simulation experiments between
the two models could hardly be detected (data not
shown).

3. Model equations for the in vivo system

To describe the overall systemin vivo, the model was
extended with equations for the mRNA (state variable
RNA)

RNA: (nucleotides)rir> RNA * degradation (20)

and the dynamical equations for the proteldp-
FABC (KdpF), total KdpD (Kdp D), and totalKdpE
(KdpEg)

KdpFABC: (amino acids)r’—@l KdpF X degradation
(21)

. . k i
KdpD: (amino f:\Clds)r’—l>2 KdpDg =% degradation

(unpublished information). This istaken into accountin
equations (22) and (23). The existence of a putative ter-
minator was analyzed but could not be detected (data
not shown). However, different molecule numbers of
the transport system, sensor kinase and response regu-
lator are expected although they are co-regulated. This
is considered by different values for the translation ef-
ficiency.

Since it is assumed that the concentration of nu-
cleotides and amino acids are not limiting, the rate
laws r;- andry, do not depend on the monomer con-
centration. To describe transcription efficiency based
on the interaction of a number of response regulators a
new method that was introduced previously was used to
calculate the rate of mMRNA synthesis (see Section
3.1). To describe translation efficiency the following
approach is used:
ra; = kqg, RNA, (24)
while for protein degradation a first order law with pa-
rameterk, is used.

3.1. Brief summary of the modeling approach to
describe transcription initiation

(22) The method is based on the hierarchical structure
. . k . -
KdpE: (amino aads)r’—’? KdpEg, =% degradation of th regu_la_tory network anq calgulates the. tran
scription efficiency by neglecting unimportant inter-
(23) actions between regulator proteins and DNA-binding
| Structural Genes | Regulatory Genes \
I | I
—f A | B [c] D [E -
K* Transport System Sensor Kinase ~ Response
Regulator
Transcript kdpDE
Transcript kdpFABC é

Fig. 5. Schematic representation of kipFABCDEegulon. Th&kdpDEoperon is transcribed from its own promoter. UnkigpFABGinducing
conditions a transcrigtddpFABCis formed, and the transcription kfipDEis enhanced, probably by a read-through effect.
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sites(Kremling and Gilles, 2001 5ince the RNA poly- Parametek,, was estimated based on data on mRNA
merase is essential for transcription, it represents the synthesis fronk. coli (Bremer and Dennis, 1987)
cellular or top level while other regulator proteins have The dynamical equations fdtdpD? and KdpE?

a special function (or are more specific) in metabolism, read:

they are e.g. activators or inhibitors for the expression dkdpD?

of specific genes. These regulator proteins are there- P —k_1 KdpD? ADP — ky KdpD? KdpE
fore assigned to further levels in the hierarchy. The

hierarchical model structure allows a signal transduc- + k1 KdpD ATP +k_ KdpD KdpE?
tion from the top to the lowest level but not vice versa. (31)

Therefore, some interactions of the proteins are ne-
glected which leads to a simpler model structure in dKdpE?
comparison to a complete model, including all interac- ~— gy
tions.

The model used here assumes that the amount of
RNA polymerase and the concentration of thiactor Note thatEgs. (14) and (1pare similar tcEgs. (31) and
are constant entities. Therefore, a basic activity of the (32) except for usingkdp E? inSteadepE? on the
RNA polymerase is considered by stgtéthe value is right side. Explanation in Section 4.
fixed). The interaction of the regulator with the DNA-

binding sites enhances RNA polymerase activity (state 3.2, parameter estimation and results

¥). The equations to derive an expression foare

given in theAppendix A The following equation will The measured time course for the mRNA concentra-
hold for the rate of MRNA synthesis.: tion shows an interesting unexpected dynarfig(6).
After reaching a maximum at 10 min mRNA decreases

= —k_» KdpD KdpE? — k3 KdpE? KdpD

+ ko KdpD? KdpE (32)

rir = kir Y DNAo. (25) until a new steady-state is reached after approximatly

The rate of transcription is proportional to the RNA 40 min. Since_ the current strupture of the mo.del is not

polymerase activity and the number of templates. able to describe Fhe observation, a hypothesis was for-
The O.D.E.s for the in vivo system read: mulated to describe the measured data: the decrease of

the mRNA concentration could only be explained when

dRNA — a reset is assumed. Since the model does not include
d kar ¥ DNAo — (ke + 1) RNA (26) the participation of a functional transporter in any way
it is assumed here, that the transport df kns medi-
dKdpD, ated byKdpFABCcounteracts the stimulus. Since no
g~ u2RNA— (ka + 1)So (27) information on possible detailed mechanisms is avail-
able, an empirical black-box approach is ug€id. 7
dKiPEo — kys RNA — (kg + 11)Ro (28)  showsan extended scheme used to describe the mRNA
t dynamics.
dKdpF For the black box the following mathematical
T ky1 RNA — (kg + w)F, (29) expression is used: assuming that the stimulus enters

the system by the dephosphorylation of the response
wherep. is the specific growth rate during the experi- regulator (parametets), an increase of the intracel-
ment. lular K+ concentration mediated by thetKuptake
The concentration of the mRNA was determined by systemKdpFABCshould increase this parameter with
Northern blot analysis. Therefore, an additional equa- increasing transporter concentration resulting in a
tion for MRNA" (state variable RNA) was used to  dephosphorylation oKdpE. This is described by the
relate the measured quantity to the mRNA concentra- following equation:

tion. KdpF

=y 33
"KdpF + K, (33)

RNA™ = k,, RNA (30) 3
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Fig. 6. Experimental and simulation results of the extended in vivo system. (A) Time course of mRNles represent an experiment

under K* limiting conditions, solid line represents the simulation result; crosses represent an experiment during uninduced conditions, dashed
line represents the simulation result. (B) Time course of prokepFABC Solid lines: simulation results undertKlimiting conditions,

circles: experimental data undertKimiting conditions. (C) Time course of simulated sensor kinase. (D) Time course of simulated re-
sponse regulator. Solid line represents the entire concentration of the response regulator, dashed line represents the phosphorylated respons
regulator.

wherek;, and K, represent adjustable parameters. The were estimated, while the parameters for DNA bind-
second putative input via the phosphorylation of the ing were fixed to the values estimated for the in vitro
sensor kinase is not considered further. Paranigtisr system. For the in vivo system measurements for the
taken as a constant. sensor kinase and response regulator were not avail-
Based on the available in vivo experimental data, able and estimation of all parameters of the two-
parameters for the expression velocity could be de- component unit seems not feasible. Paraméterand
termined by least-square parameter fit (MATLRB k_» are therfore taken out of the list of parameters that
However, simulation studies with the in vitro param- were estimated while they are fixed to empirical val-
eters lead to unrealistic results. Therefore, parame- ues. Since data are only available for the amount of
ters of autophosphorylation and phosphoryl transfer protein KdpFABCthe following assumption is made:
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free DNA
sensor kinase response regulator]
D
ADP = deEI - gene expression
\/ total total
( I R2 I R3 KdpFABC KdpE  KdpD
ATP A i O OO

Carpy=——" (k) |

two — component signal transduction J
black box

Fig. 7. The extended reaction mechanism for the two-component system. The model describes the expression of thédpfea&ias
KdpD and KdpE The total amount of sensor kinase and response regulator are now further inputs in the two-component module. Due to

unexpected dynamics of the mRNA a black box model is introduced describing a possible feedback from the transporter to the two-component
module.

the number of molecules dfdpE have a fixed ratio In Fig. 6 simulation and experimental results are
ra = 0.26 to the number of molecules &dpFABG shown for a K concentratior g+ = 0.02mM in the
i.e. the concentration of the response regulator is as- medium (parameters ifable 3 the values for ATP and
sumed to bea times the concentration €dpFABC ADP are chosen to be 2 mM and 0.2 mM, respectively).

The ratio between sensor kinase and response regulaThe time course of the mRNA and protefapFABC
tor is 1/30 (Polarek et al., 19928 unpublished own is reproduced with the model very well. To calculate
results). the basal activity of the promoter, represented by pa-

protein KdpFABC (UM)

10° 10* . 10° 10"
K™ (mM)

Fig. 8. Experimental data and simulation predictionKaipFABCunder different stress situations. Plotted are steady-state values aginst K
concentration. Squares: experimental data of steady-state values, closed circle: final Gatip=Ad8 Ctaken fromFig. 6, solid line represents
simulation results.
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Table 3
Parameters for the in vivo data set

In vivo parameters

k1 = 248.39 1/luM DNAg = 0.0054uMP
k_1=10"*1/hpM2 ¥ =0.0017

k2 =5789.3 1/luM «=0.008

k_» =0.041 1/huM? ATP = 2mM°

K, =0.0667uM?24 ADP =0.2mM’

k, = 2000 1/8 k.=28.871/h
kq1=1150 1/h kg =1.511/h

kg2 =10 1/h ky3 =300 1/h

ky = 9982.5 1/luM K = 0.04uM?

ky =6.97 10° w=0.51/1f

Parameters were estimated with a least-square algorfgammy(rical
valuesPintracellular concentrationSexperimentaldtaken from the
in vitro experiment®taken from(Bremer and Dennis, 198)7)

rameten) in the model, the mRNA was measured also
during uninduced conditions (see alsig. 6 left hand
side). The value obtainegl; = 0.0017, is comparable
to a value obtained for the lac operfifremling et al.,
2001)

To evaluate the quality of the model, the steady-
state concentration of the uptake systedpFABCwas
determined experimentally and compared to simula-
tion predictions under different stress conditions. In the
model the value fok;, is increased proportional to the
increase of the stimulus concentratiop+ according
to the formula:
ki = k) K- (34)

Cx+
wherek?, ¢%., represent the conditions given for the
experiment irFig. 6.

Fig. 8 compares the experimental and simulation
results. A remarkable similarity of both curves was ob-
served. Increasing the'Kconcentration in the medium
to 1 mM results in a shut off of gene transcription while
for higher K™ concentrations a minor change of the
steady-state values was observed.

4. Discussion

In this contribution a complete signal transduction
pathway inE. colistarting from the sensory element to

e thesignaltransduction pathway is very short, it com-
prises only two elements;

e the signal transduction pathway could be recon-
structed in vitro and is therefore accessible for mea-
surements under two conditions (in the presence and
absence of DNA fragments);

¢ the cellularresponse, i.e. the number of molecules of
KdpFABCcould be measured in vivo as well as the
amount ofkdpFABCmRNA under different stress
conditions.

A mathematical model was set up to describe the
experimental results. The model has a rather simple
structure: temporary complexes between ATP and sen-
sor kinase or between sensor kinase and response reg-
ulator were neglected to reduce the number of un-
known or uncertain parameters. Parameters were es-
timated based on a number of experiments. For most
experiments a good agreement between simulation and
measurement data was achieved. For concentrations of
K™ between 0.5 mik c(;(+ < 5mM the residuals are
larger. This is based on the fact, that these measure-
ments were not used in the fitting procedure described
above.

The in vitro experiments have shown a very low
degree of phosphorylation. This might be due to two
reasons: the ATP concentration used in the experiments
didn’t match intracellular conditions. IRig. 4the de-
gree of phosphorylation is extrapolated to represent in-
tracellular conditions. A degree of phosphorylation of
nearly 50% could be achieved. On the other hand, as
can be seen ifrig. 3 the amount of DNA shifts the
equilibrium to the phosphorylated component. How-
ever, in an intracellular environment the number of
binding sites for the response regulator is rather low
and therefore could not result in a higher degree of
phosphorylation.

Model reduction is always a powerful tool to reduce
the degree of freedom in dynamical systems. Here, we
applied the singular perturbation approach to show that
different time hierarchies appear in the system under
investigation. The analysis led to a system with O.D.E.s
coupled with (implicit) algebraic equations, i.e. the dy-
namics of the binding of the response regulator is a
“mirror” of the dynamics of the autophosphorylation

the cellular response is under investigation. For several and phosphoryl transfer.
reasons the Kdp system was chosen as an ideal test In Kremling et al. (2000we proposed a general

system:

framework to decompose metabolic and regulatory net-
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works into functional units. Functional units are repre- used for an experimental design to evaluate this hypoth-
senting submodels with limited autonomy. One of the esis. For this purpose a mutant strain, defective in the
aspects under investigation considers signal transduc-uptake of K- via the KdpFABC system will be used.
tion and describes the process of transcription initiation When the hypothesis is correct a monotone increase of
in Kremling et al. (2000described with a modeling  the mRNA concentration is expected.
object called “coordinator” with an input/output rela- Parameter values estimated in the in vitro case led
tion. The aim of the decomposition is the definition to unrealistic results in the in vivo case. This is mainly
of a set of submodels with fixed attributes which are based on the fact that in vitro the phosphorylation de-
the basis for a computer tool that support the modeler gree ofKdpEwas very low (0.5%). Parameters used for
in setting up complex mode(&remling et al., 2001) in vitro case therefore lead to a very slow accumulation
Based on the analysis of the proposed mathematical of the mRNA in contrast to the observed experimental
model for the two-component system a reduced model results shown irFig. 6. Hence, some of the parame-
comprising algebraic equations and O.D.E.s was de- ters had to be identified again. For the parameter fit,
veloped. The reduced model consists out of two sub- two experiments with low and high¥Kconcentration
models which are connected in both directions in the were used. Simulation results of the response regula-
in vitro case: submodel 1 describes the signal trans- tor at a low K" concentration showed that that degree
duction to activate the response regulator while sub- of phosphorylation reaches nearly 100% at the very
model 2 describes the interaction of the activated re- beginning of the experimenf{g. 6), and reaches a
sponse regulator with the DNA control sequence. An- steady value of approximately 5%. A high degree of
alyzing the system in vivo shows however, that both phosphorylation seems to be necessary for a quick re-
units can be linked in a one-way direction. This is sponse to environmental conditions. Based on the re-
based on the fact that the in vivo amount of the DNA- sults, a steady-state characteristic curve was predicted
binding site is very small in comparison to the DNA  with the model and finally compared with experimen-
amount used in vitro. This leads to the observation tal results Fig. 8). Here, also a good agreement was
that the concentration oKdpE? and of deE? in achieved.
the reduced model are nearly equal, i.e. only a mi-  Two-component signal transduction is one of the
nor number of molecules is bound to the DNA. A important mechanisms for bacteria to sense their en-
decomposition of a more complex signal transduc- vironment and to respond to altered conditions. The
tion pathway for catabolite repression was shown in present study gives some insights into the dynamics of
(Kremling et al., 200Q)However, in this paper the de-  such systems and can be used as starting conditions for
composition was based on biologically motivated cri- other systems.
teria. Here, we show that there is also a theoretical
basis that will allow the separation in different sub-
models. Acknowledgements
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(16,17). They are extended in the following way:

1
a K

2
KdpEP? DNA

1
Kp (+

KdpE? = KdpE? ; + 2

(A1)
1
DNA0=DNAf<1+>
K
KdpEP3 DNA ¢ 1
— L 1+ =), (A2
Ky ( +01K> (A-2)

where parametek = (1 — )/ represents the basal
activity of the RNA polymerase and paramedes an
amplification factor. Transcription can occur if RNA
polymerase is active alone or together with the acti-
vator. Hence, the fractiogr of occupied promoter is

given by:
<1+ )

A.2. Reconstruction of the KdpD/KdpE signal
transduction cascade in vitro

p2
a Kp

DNA
K - DNAg

V= (A.3)

We reconstructed the complete signal transduction
cascade of th&dpD/KdpEsystem in vitro. Purified
KdpD (Jung et al., 1997)n proteoliposomes and
purified KdpE (Heermann et al., 2003)n a ratio
of 1 to 4pM were mixed with 10QuM DNA com-
prising the DNA-binding site oKdpE (Sugiura et
al., 1992)in buffer (50 mM Tris/HCI pH, 7.5, 10%
glycerol (v/v), 0.5M NaCl, 2mM dithiotreitol). The
double-stranded DNA fragments comprising the
KdpEbinding sites were obtained by annealing of two
complementary oligonucleotides. The upper strand
sequence (from’go 3) has the following sequence:
5-CATTTTTATACTTTTTTTACACCCCGCCCG-3
The reaction was started by addition of 300
[y-32P]ATP (0.476 Ci/mmol), §M ADP (ratio of 1 to
12.5, reflecting the ratio in living cells), and 1M
MgCl,. At the times indicated, samples were taken and
the reactions were stopped by addition of an equal vol-
ume of 2x concentrated sodium dodecyl sulfate (SDS)
sample buffe(Laemmli, 1970)In each case, samples
were immediately subjected to SDS polyacrylamide
gel electrophoresi@.aemmli, 1970) Gels were dried,
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exposure of the gels to a phosphor screen, and the im-
ages were analyzed with a Phosphorimager Sl system
(Molecular Dynamics) usingf-32P]ATP as a standard.

In parallel, the phosphorylation degree KdipE ~ P

was determined in a gel-free detection system. This
method consists of direct spotting of the phosphory-
lated sample on nitrocellulose after removakopD~

P (ultracentrifugation) and/f32]P ATP (gelfiltration).

A.3. Quantification of the produced KdpFABC
complex

Expression okdpFABCwas measured at the trans-
lational level by quantitative Western blot analyds.
coli K-12 cells were grown at 37C in phosphate-
buffered minimal mediumEpstein and Kim, 1971)
containing 10 mM K- until the mid-exponential phase,
filtered and resuspended in pre-warmed medium of
lower KT concentration (0.02 mM K), and harvested
at the indicated time. To measure the amount of
KdpFABCcomplex in steady state, cells were grown
in minimal media containing the indicated*Kcon-
centrations, and harvested at an absorbance100
at 600nm. Cells were resuspended in SDS sample
buffer and subjected to SDS—polyacrylamide gel elec-
trophoresigLaemmli, 1970) Quantification ofKdp-
FABC was basically performed following the proto-
col developed for lactose permedSain et al., 1996)
Briefly, proteins were electro-blotted to a nitrocellu-
lose membrane. Blots were then blocked with 5% (w/v)
bovine serum albumin (BSA) in 20 mM Tris/HCI (pH
7.5)/0.15 M NaCl (buffer A) for 1 h. Anti-KdpB anti-
body was added at a final dilution of 1:5000, and incu-
bation was continued for 1 h. After washing with buffer
A, 123-protein A (Amersham Biosciences) was added
at afinal dilution of 1:5000, and incubation was contin-
ued for 1 h. After washing thoroughly, the membrane
was exposed to a phosphor screen. Known amounts
of purified KdpFABCcomplex were used to obtain a
standard curve. The amountidpFABCcomplex was
then quantified using the Phosphorlmager Sl system
(Molecular Dynamics) by comparison to the standard
curve.

A.4. Quantification of kdpFABC mRNA

For quantification of the producédpFABOMRNA

the amount of radio-labeled proteins was detected by under K"-limiting conditions,E. coli K-12 cells were
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grown at 37 C in phosphate-buffered minimal medium
(Epstein and Kim, 1971¢ontaining 10 mM K- until

the mid-exponential phase, filtered, and subsequently

resuspended in medium of lowertKconcentration
(0.02 mM K*) or the same medium as before (10 mM
KT). At the indicated times, cells were harvested
and the RNA was prepared according(fiba et al.,
1981) For quantitative Northern blot analysis, 20

of RNA from each sample was separated by elec-
trophoresis in 1.2% (w/v) agarose-1.1 M formalde-
hyde gels in MOPS (morpholinepropanesulfonic acid)
buffer. Equal loading of samples onto the gel was ver-
ified by ethidium bromide staining of the rRNA in a
separate gel. RNA was transferred to Hybond-N ny-
lon membrane (Amersham Biosciences) by upward
capillary action. Hybridization was performed follow-
ing a standard protocdlSambrock et al., 1989)s-

ing y-32P-radio-labeled dCTP PCR fragments as spe-
cific probes for kdpA (nt 1009 to 1794). Radioactivity
was quantified with the Phosphorimager Sl (Molecular
Dynamics).
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Abstract

A hallmark of systems biology is the interdisciplinary approach to the complexity
of biological systems, in which mathematical modeling constitutes an important
part. Here, we use the example of sugar metabolism in the simple bacterium
Escherichia coli and its associated control to illustrate the process of model de-
velopment. Even for this well-characterized biological system, a close interaction
between experimentation and theoretical analysis revealed novel, unexpected fea-
tures. Additionally, the example shows how concepts from engineering sciences
can facilitate the formal investigation of biological networks. More generally, we
argue that analogies between complex biological and technical systems such as
modular structures and common design principles provide crystallization points
for fruitful research in both domains.

(111 words)



1 Systems Biology: An Interdisciplinary Ap-
proach

For the past 30 years, it has been characteristic for biology to be qualitative and
descriptive, directed towards the understanding of the molecular detail. However,
for the understanding of complex system properties like optimal control, adap-
tation and memory, both the systems components and their interactions have
to be considered. Primarily the new 'omic technologies now make the complete
determination of biological systems a realistic goal (Selinger et al., 2003). As
a result, biology moves from the focus on few components to the study of net-
works of molecular interactions that give rise to complex physiological functions
(Alm and Arkin, 2003). Systems biology adopts this holistic view on biological
function. However, several characteristics distinguish it from, and extend bioin-
formatics approaches to network analysis. A hallmark of many cellular networks,
such as the intricate networks in cellular regulation, is that they respond dynam-
ically towards extra- and intracellular conditions and signals. Only by means
of a quantitative description of the systems’ constituents and interactions, the
resulting behavior can be understood in terms of the quantitative dynamics.

Achieving this goal furthermore requires a theory-based approach to the com-
plexity not understandable by intuition alone. Mathematical modeling of com-
plex biological systems plays a central role in systems biology because it allows
for a formalized treatment of biological networks in the computer, using tools
from mathematics and systems sciences (Tyson et al., 2001; Kitano, 2002b). Ide-
ally, mathematical modeling requires and entails a precise representation of the
knowledge on the system, and of hypotheses for unknown mechanisms. It allows
one to apply formal methods of analysis. Mainly these two characteristics are
expected to lead to a deepened understanding of the biological systems under
consideration (Endy and Brent, 2001; Gilman and Arkin, 2002). Consequently,
the efforts directed towards a quantitative, system-level understanding in biology
rely on an interdisciplinary approach combining concepts from biology, informa-
tion sciences and systems engineering. A central objective of systems biology
is finally to develop virtual representations of cells and organisms. These rep-
resentations should allow for computer experiments similar to experiments with
real biological systems. Thereby the way for a predictive biology can be paved,
which will enhance, for instance, the understanding and the treatment of human
diseases (Stelling et al., 2001; Kitano, 2002a). There are already some exam-
ples of systems biological approaches that successfully couple experimental and
theoretical approaches. They cover a broad spectrum of organisms and systems
(www.siliconcell.net). The analysis of bacterial chemotaxis can be regarded as
a paradigm of such an approach. The extensive experimental and theoretical
analysis has helped substantially in the understanding of the system (Barkai and



Leibler, 1997). Currently, however, the knowledge on virtually any biological
system does not permit to detail a complete list of parts, interactions and mech-
anisms, on which 'true’ mathematical representations could be built. Instead,
despite considerable progress in high—throughput experimentation, the resulting
networks are still incomplete and bear inaccuracies (von Mering et al., 2002).
Under these circumstance, an often encountered argument is that theoretical
analysis should await an — in some sense — complete biological knowledge before
becoming meaningful. We and others, however, argue that only an iterative cy-
cle of experimentation and theory will be able to fulfill the promises of systems
biology. Experiments generate data and hypotheses, subsequent mathematical
modeling allows to assess the compatibility of both, and to derive novel or al-

ternative explanations that can be evaluated in new experiments (Stelling et al.,
2001; Kitano, 2002b).

"Traditional’ biology integrates new findings into cartoons of pathways or regula-
tory networks, or uses new knowledge to revise these representations. Similarly,
mathematical models are 'work in progress’ (Lee et al., 2003). In this process,
however, unbiased predictions from formal representations can reveal unexpected
properties of, or critical components in biological systems as in a recent experi-
mental and theoretical analysis of the Wnt signaling pathway (Lee et al., 2003).
In another case, mathematical modeling suggested a bistable trigger as a core
element of cell cycle regulation a long time before an experimental confirma-
tion of the mechanism was obtained (Novak and Tyson, 1993; Pomerening et al.,
2003; Sha et al., 2003). Here, we use the control of sugar uptake in the simple
bacterium Fscherichia coli to show that an iterative cycle of experimentation
and model development can yield deeper insight into apparently well-understood
systems. In particular, our background in engineering sciences provides concepts
and methods for this study. We will focus the discussion of recent developments
and future challenges in systems biology on potential (further) contributions that
engineering could make to understand complex biological systems.

2 Model set-up

Starting point of every model developing procedure is the biological knowledge
available from literature or text books. For FEscherichia coli, knowledge on
metabolism as well as for genetic regulation is rich and especially the lactose
operon and its control has been investigated for a long time. Starting with the
pioneering work of Jacques Monod who proposed the concept of defining operons
as a sequence of genes that were expressed in a coordinated manner, current re-
search in molecular biology has revealed a number of further strategies of cellular
systems to adapt very efficiently to alterations of environmental conditions. Here,



we used the lactose metabolism, i.e. the uptake of lactose and its break down
to precursors, as an origin for the model set up presented. In successive steps
we extend the model to cope with further environmental situations like different
carbon sources to show how the individual pathways are organized to fulfill their
physiological task and how the cells arrange the interaction of different pathways
on a higher level of control. This approach differs from previous studies and
modeling efforts on the PTS mainly in that it aims to an understanding of the
interactions of genetic regulation and metabolism. Previous approaches mainly
delt with small subsystems covering either only metabolic reactions or only ge-
netic regulation. A very seminal example is the work of Rohwer et al.(Rohwer
et al., 2000) who set up a detailed kinetic model of the PTS phosphorylation
chain. This model gives interesting insights into the effects of complex forma-
tion, molecular crowding and flux response coefficients of these reactions but as
the system is uncoupled from metabolism and genetic regulation it is not suitable
for the understanding of the coupling of both levels.

2.1 Environment — the liquid phase

Considering a bio-reactor, the environment of the cells is described with the
concentration of the carbon source S in the liquid phase. Since below, the focus is
on the cellular interior, the overall biomass X is taken as the macroscopic variable.
Growth of the biomass is coupled to the uptake of the carbon sources via yield
coefficient Y and uptake rate r . The uptake rates are functions of concentration
of substrate in the bio-reactor and the concentration of the respective transport
system which is located in the cytoplasmic membrane. For one substrate the
respective equations read for a batch process:

X = e X
S = —r-mg-X (1)

with the specific growth rate p is given by 1 = Yxr and mg is the molecular weight
of the carbon source (fluxes are given in [gmol/g DW h] and concentrations in
the liquid phase are given in [g/]]). The equations in (1) are very general and are
widely used in bioprocess engineering, since they describe the overall behavior
of the biomass and the substrate in a simple manner. To describe the uptake
reactions in a more detailed way, biological knowledge on the individual pathways
has to be incorporated. As an example, the lactose pathway is considered in the
following.



2.2 Lactose pathway

Lactose is taken up via the lactose permease LacY (gene lacY). The permease
works as a symporter, i.e. for every molecule lactose that is taken up, some
molecules of H* is also taken up from the medium. Intracellular lactose is split
into glucose and galactose by the [-galactosidase enzyme LacZ (gene lacZ). One
by-product of this reaction is allolactose, the natural inducer of the lactose operon.
If allolactose is present inside the cell, it deactivates the lactose repressor Lacl,
which blocks the binding of the RNA polymerase and therefore prevents the
synthesis of the mRNA. A further transcription factor, Crp, which is activated
by cAMP, activates the transcription of the operon. As can be seen in Figure 1
the lactose pathway represents a loop with positive return. The more allolactose
is present, the more protein can be synthesized. With increasing amounts of the
respective enzymes, allolactose is also degraded faster and a steady-state can be
reached. From the scheme, it becomes also clear that the initial conditions for all
components could not be zero, if the system should be inducible. If lactose is not
present in the medium, a few molecules are necessarily available in each cell and
will allow induction by lactose. In Figure 1 the modeling objects for the lactose

"Lacl lactose
O Lacl e V‘ transport
[, Allolactose || Lactose Allg |
m Lactose --{—— v
I ‘ LacZ----»~ I
O mona .t
[MBNA o Glucose
RNA Polymerase Galactose (Laczb
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Figure 1: Lactose uptake and metabolism. Left: Schematic diagram of lactose
induction. Right: Representation of the sub-model with modeling objects.

pathway are shown. For the enzymatic reactions simple Michaelis-Menten type
kinetics are used. To describe the transcription efficiency, a reasonable approach
is the choice of the fraction of free promoter binding sites with respect to all
available promoter binding sites for the lactose operon. In comparison to the
model equation system (1) the uptake of the carbohydrate is described more
realistic since the synthesis of the transport system is included, which leads to a
short delay of uptake.



2.3 Glucose uptake

To extend the scheme for a further carbohydrate, here glucose, knowledge on
the transport system on the metabolic and genetic level is incorporated. A very
important experimental observation is diauxic growth, if glucose and lactose are
provided at the same time in the bio-reactor. Therefore, the model must be set
up in such a way, that this behavior is reproduced. Starting with metabolism,
besides the uptake reactions (Figure 2), which comprise four proteins, glycolytic
reactions are also included, since the energy for the transport comes from phos-
phoenolpyruvate (PEP). Glucose is taken up by the phosphoenolpyruvate de-
pendent glucose phosphotransferase system (PTS). In a sequence of five steps,
the high energy bond is translocated to the incoming substrate that appears in
its phosphorylated form inside the cell. Connecting both pathways only on the
metabolic level, does not lead to the required behavior in a simulation study.
Therefore, knowledge on the genetic level of control has to be included also.
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Figure 2: Schematic representation of the glucose PTS. Inputs are the entire
concentrations of EI, HPr, EITA, EIICB, PEP, pyruvate, and extracellular
glucose. Important outputs are the phosphorylated and unphosphorylated
forms of EITA. These two conformations are measured in several experiments.
Solid lines represent metabolic reactions and dashed lines signal outputs of
the PTS. Dash-dot lines represents metabolic flux in case of no PTS transport
system. Since PEP is also converted by the pyruvate kinase reaction (gene
pyk) to pyruvate, the degree of phosphorylation is strongly influenced by PEP
and pyruvate, even if the PTS is not active (after Kremling et al. (2004)).

Initially, knowledge on genetic regulation was restricted to a cAMP-Crp depen-
dent induction of the gene ptsG which codes for the actual transport system
EIICB®". Transcription factor Crp is called a global transcription factor since
it is involved in the expression of nearly 200 genes. C Since the lactose operon
is also under control of cAMP-Crp the question arose, in which way the local



control by Lacl and the global control via Crp have to be modeled. Years ago,
Lee and Bailey (1984ab) proposed a method where the transcription efficiency n
is proportional to the fraction ¥p of occupied promoters. The influence of an in-
hibitor, e.g. a repressor, blocking the promoter is taken into account with 1 —1p
which represents the free sites. Activators are taken into account by parameter
« in the term (14 at4). For the transcription efficiency the following equation
holds according to the method of Lee and Bailey

n =vp (1 — g) (1 + atha). (2)

The proposed method is limited to the consideration of single operons. To be more
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Figure 3: Hierarchical set up of the genetic regulation network. Signals are
transduced from the top level to the lower level but not vice versa. The lowest
level represents individual pathways, the second level represents global tran-
scription factors while the highest level is reserved for the RNA polymerase.

flexible and to allow model extensions in a very simple way, we proposed a new
method with focus on the hierarchical set up of the genetic regulation (Krem-
ling and Gilles, 2001). For this method, the transcription factors are assigned
to different levels in the hierarchy. The lowest level is represented by individ-
ual pathways, e.g. the lactose repressor Lacl which is involved only in lactose
metabolism. The second level is represented by global transcription factors, e.g.



Crp, which control a number of pathways. The highest level is reserved for the
RNA polymerase which is involved in nearly all transcription processes (Figure 3).

As far as we have described the details of metabolism and genetic control, the pic-
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Figure 4: Interaction between the PTS and the lactose pathway. Left:
Schematic diagram. Right: Modeling objects.

' PEP
Cya/CAMP [ P~ElIA T
(] )

Glucose

ture is not yet completed and simulation results does not show a diauxic growth
behavior. The missing link between both pathways is the interaction between the
PTS, here output protein EITA (gene crr) and (i) the lactose permease and (ii)
the activation of the cAMP generating enzyme adenylate cyclase CyaA. In the fol-
lowing, both effects are analyzed in a detailed way (Figure 4). Protein EITA®' is
expected to be in either of two states: phosphorylated or unphosphorylated. It is
known that unphosphorylated EITA!® is able to inhibit the lactose permease (as
well as some more enzymes in different carbohydrate uptake pathways). This is
referred to as “inducer exclusion” since it prevents the entry of the substrates. On
the other hand the phosphorylated form of EIIA is able to activate CyaA and
therefore activates the synthesis of cAMP. However, the degree of phosphoryla-
tion of EITA®' depends on a number of input variables as can be seen in Figure 2.
In the case that the PTS is not active, the degree of phosphorylation depends
only on the concentration of PEP and pyruvate (Kremling et al., 2004). Different
PEP and pyruvate concentrations resulting in different EITA“' phosphorylation
states have already been demonstrated for varying growth substrates indicating
that this imput is the most important one (Hogema et al., 1998). Another ma-
jor input is the dephosphorylation of the PTS proteins by incoming substrates.
Model analysis by dynamical simulation studies with the proposed model struc-
ture gives interesting insights in the dynamics of the intracellular components.
We started with a batch experiment where glucose and lactose are provided from
the beginning. Figure 5 shows the time course of selected state variables (all
model equations and parameters are summarized in (Kremling et al., 2001)). As
expected glucose is taken up while lactose is not. After the run out of glucose,



the PTS protein EIIA%Ic shows a very quick switch from the unphosphorylated
to the phosphorylated form. This abolishes the inhibition of the lactose perme-
ase and furthermore leads to an activation of gene expression by the cAMP-Crp
complex. cAMP is very low during the glucose uptake and rises in the lactose
phase as a consequence of the degree of phosphorylation of EIIA®lc. For the
simulation it was assumed that some molecules of EIICB% were available from
the beginning. Since the promoter of ptsG has a high basal activity, the con-
centration during the glucose phase remains nearly constant. However, in the
lactose phase, the concentration of EIICB rises due to the higher cAMP levels.
Since glucose is no longer available for uptake and growth, the further synthe-
sis of EIICBY seemed not to be meaningful. In fact, during the time period
when the model was developed genetic research revealed that, a so far unknown
transcription factor, Mlc (also called DgsA), is involved in the specific control of
EIICB¢ (Plumbridge, 1998). The repressor is active if no glucose is present in
the medium and leads to a shut off of gene expression during growth on lactose.
Since the detailed mechanism was unclear, a simple model for repression of the
ptsG gene (Kremling et al., 2001) shows a satisfactory behavior. This can also
be seen in Figure 5.
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Figure 5: Simulation results of selected state variables. A Biomass (solid),
extracellular glucose (dashed) and lactose (dash-dot). B EIIA. C cAMP.
D EIICB%/. Comparison of two model variants. Repression of EIICB%¢ is
not included (solid) and included with a simple model (dashed).
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2.4 More detailed description of regulatory phenomena

Comparing the simulation results of the proposed model with experimental data,
we noticed that the model was not able to reproduce the intracellular dynamics:
(i) In (Inada et al., 1996) the time course of intracellular cAMP was measured. In
an experiment using glucose and lactose as carbon sources, cAMP shows an adap-
tive behavior, i. e. after a steep rise at the end of the glucose uptake phase, the
concentration of cAMP goes back to the values observed in the glucose phase.
To reproduce this behavior, we included knowledge on the genetic control of
the proteins involved in the signal transduction pathway, Cya and Crp, respec-
tively. While Cya is negatively controlled by the cAMP-Crp complex, Crp is
auto-controlled. The proposed mechanism is rather complex: For low cAMP-Crp
concentrations transcription is inhibited while for larger concentrations an acti-
vation is proposed (Hanamura and Aiba, 1992). In Figure 6 the impact of the
model extension is shown. Now, the qualitative behavior is reproduced correctly.
(ii) The second model extension focuses on the kinetics of the inducer exclusion.

e PTS L Y L e | ]
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Figure 6: Model extension and simulation results of cAMP. The feedback
loop to the adenylate cyclase Cya leads to an adaptive behavior. Crp is auto-
controlled. This is indicated by the dashed box.

A common approach for modeling enzymatic kinetics is to use Michaelis-Menten
type kinetics. A mechanism to describe inhibition extends the simple Michaelis-
Menten equation by additional factors. A widely accepted assumption hereby
is, that the amount of inhibitor (normally a metabolite) does not change signif-
icantly during binding at the enzyme since the concentration of the enzyme is
much lower than the concentration of the metabolite. In (Rohwer et al., 1998) an
interesting experiment is described where it is shown that the proportion of the
concentration of enzyme and inhibitor is near one, depending on the experimental
design used. In our model protein EITA®¢ interacts with the lactose pathway. In-
terestingly, inhibition occurs only, if lactose is present in the medium. To include
these facts into the model, the inhibitor EITA“ (unphosphorylated) is assumed
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to be in two conformations that are in equilibrium:

K
EITAT <  FEIIA-LacY-Lace, (3)

with EIT A/ being the free form, EIIA-LacY - Lac,, being a ternary complex
of EITA, lactose permease LacY and external lactose, and K being the overall
binding affinity. In the model equations for the PTS, only the free form is used
as the driving potential.

(iii) Own measurements during the glucose/lactose diauxie experiment revealed
some interesting dynamics of the degree of phosphorylation of protein EITA“!
during the second growth phase. As shown in Figure 5 EITA®/ is in its phospho-
rylated form during growth on lactose. Our experimental observation, however,
indicates a slow rise of the unphosphorylated form for two hours and afterwards
a slow decrease. It was speculated that the splitting of intracellular lactose into
galactose and glucose and subsequent phosphorylation of intracellular glucose in
glucose 6-phosphate is involved in the dephosphorylation of EITA“. As sketched
in Figure 7 glucose has two possibilities to get phosphorylated: on the one hand,
a glucokinase phosphorylates intracellular glucose with ATP or, on the other
hand, intracellular glucose gets phosphorylated by the PTS. In the former case,
protein EITAY!® remains in the phosphorylated state while in the second case,
EITA% gets more and more dephosphorylated depending on the accumulation
of intracellular glucose.

galactose

o ‘ O / glucose

Lactose : \ Enzyme: GIk
. 4>glycoly3|s

Glc 6-P
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Figure 7: Model extension and simulation results of EITAY, During the
second growth phase, phosphorylation by either the glucokinase or the PTS is
possible. The simulation on the right side show the expected results: Flux only
via the PTS (solid line), only via the glucokinase (dashed line) or a mixture
form both possibilities (dash-dot line).
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2.5 Regulation by Mlc

The simulation shown above indicates that the PTS phosphorylates the intracel-
lular glucose. To further verify this hypothesis, experiments with mutant strains
were designed that differ only in one gene of interest (isogenic mutants). Strain
Glk™ misses the glucokinase enzyme while strain Mlc™ misses the specific repres-
sor for EIICB®! and the other PTS proteins HPr and EI. Simulation results show
that the Mlc™ strain should show lower values of EITA®! in the lactose phase since
higher levels of the PTS proteins are expected to phosphorylate EITA“/ in a more
efficient way. In Figure 8, the dynamics of protein EITA“ (unphosphorylated) is
shown. A good agreement between the simulation results and the experimental
data is observed. After fitting the parameters of the model, all experiments could

SAe) 5 10
90) 9| o © ° % ° o
o
80) 80| ° o o 80|
5 70} 70l 70
o 2 o B 60
) 3 %
g 50 (:é: 50) Qo é 50
= a0l 3 a0 E

0 1 2 4 5 6 ) 1

3
tih] tm ° tn

Figure 8: Simulation (solid line) and experimental data (circles) for three
batch experiments using wild type strain (left), Mlc™ strain (middle) and Glk~
(right). The model was fitted to the data; the experiments could be described
with one set of parameters (publication in preparation).

be described with a single set of parameters (publication in preparation). Note,
that for parameter identification experimental data for other state variables like
biomass, extracellular substrates, extracellular cAMP and LacZ was used. Fig-
ure 9 shows the time course of these state variables for the wild type strain during
the batch experiment.

2.6 Model analysis — implications for diauxic growth

The model described so far was extended step by step by incorporating pathways
for additional carbohydrates. The current version is able to describe the uptake of
six sugars, glucose, lactose, galactose, glycerol, glucose 6-phosphate, and sucrose
(E. coli wild type strain is not able to grow on sucrose; therefore a mutant strain
with a sucrose PTS was constructed and analyzed (Kremling et al., 2004)). To
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Figure 9: Simulation (solid line) and experimental data (circles) for the wild
type strain during the batch experiment. Glucose is taken up right from the
beginning while lactose is taken up in the second growth phase. Interestingly,
galactose, a product from the LacZ reaction is excreted in the medium at the
beginning of the second growth phase. When lactose runs out, E. coli uses
galactose as additional carbohydrate source. cAMP is also excreted in large
amount during the second growth phase.

fit the parameters, experiments under different environmental conditions, experi-
ments with mutant strains, and experiments with different pre-culture conditions
were performed (publication in preparation). The model has 50 state variables
and needs 300 parameters. For nearly all parameters values were found in lit-
erature. Based on a sensitivity and parameter analysis, 60 parameters could be
estimated from the experimental data.

The key elements of the model are summarized for a PTS carbohydrate and a non
PTS carbohydrate in Figure 10. The transport system are normally under dual
control. Besides a carbohydrate specific control by repressors like Lacl, GalR,
or GlyR, most systems are under control of the global regulator Crp thereby
depending on the degree of phosphorylation of the PTS protein EITA%¢, In this
case the advantages of a systems biological approach become obvious. Because
of the wealth of important and interacting regulations, metabolite concentrations
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Table 1: Summary of functional units, number of parameters and number of
estimated parameters. About 20 different experiments are used for parameter
fitting. ¢ Parameters estimated with Metabolic Flux Analysis.

module param. param. number type

name estimated of states

PTS (general) 21 9 9 ODE

PTS Gle 12 4 1 ODE

Cya 9 2 2 ODE

Crp 17 3 1 ODE

2nd Gle transporter 18 3 3 ODE

Lac transporter 16 7 4/2 ODE/ algebraic
Scr transporter 26 9 6 ODE

Gly transporter 24 5 5 ODE

Gal transporter 43 4 11/2 ODE/ algebraic
Catabolic reactions 51 11 8 ODE

Monomer synthesis 7 4943 1 ODE

Liquid phase 7 5 8 ODE

and protein states, only a quantitative systems oriented approach will help in the
understanding and will be able to identify the abilities of the system. It can also
help to identify some general properties of the system.

Diauxic growth is observed for a number of couples of carbohydrates. With the
model at hand and the simplified scheme in Figure 10 some general conclusions
could be drawn: There is no unique control circuit that leads to diauxic behavior.
Rather, diauxic growth is the result of a number of different control schemes and
kinetic parameter constellation. So, a PTS sugar does not repress the uptake
of a non PTS sugar in general. Own measurements with glucose and glucose
6-phosphate (a non PTS sugar with an uptake system that is also under control
of the cAMP-Crp complex) show that the uptake of glucose is repressed while
glucose 6-phosphate is taken up immediately. Measurement of the synthesis of the
glucose transporter EIICB®! by LacZ fusion revealed that EIICB®" is no more
synthesized although glucose is present in the medium. In (Morita et al., 2003)
it is speculated that high concentrations of glycolysis intermediates like glucose
6-phosphate or fructose 6-phosphate may be involved in the down regulation of
the EIICB' messenger RNA. With the model, simulation studies can be done to
verify the hypothesis. Figure 11 show simulation results for glucose 6-phosphate
uptake. If it is assumed that high levels of intracellular glucose 6-phosphate is
able to inhibit the synthesis of protein EIICB®! the uptake of glucose is inhibited
in the first growth phase. Since glucose 6-phosphate does not accumulate any
longer, transporter EIICB% can be synthesized again for uptake of glucose.
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Figure 10: Key elements of the carbohydrate uptake systems. rl represents
the uptake system for a non PTS sugar, r2, together with r5 the uptake system
for a PTS sugar, X and X~P represent a PTS protein, r3 glycolysis, r4 the
pyruvate kinase reaction, and r6 the drain of pyruvate (Prv). E1 and E2 are
the respective proteins for the transporter. Both are subject to control. Most
of the carbohydrate transport systems are controlled by Crp that is activated
by cAMP. In the scheme this is represented by the signal arrow coming from
a PTS representative (X~P).

3 Recent Developments and Future Challenges

The example of modeling carbohydrate uptake in F coli showed that close inter-
actions between experimentation and theoretical analysis may yield novel insight
into an ’old’ biological system. Apparently, for less well characterized cellular
systems, the question of how to best organize these interactions is of even more
relevance. Besides discussing recent developments and challenges in this aspect
of systems biology, we will broaden our view to more general principles of organi-
zation and function. In all cases, engineering sciences offer concepts and methods
that can help in understanding biology. We will draw on analogies between com-
plex biological and technical systems to illustrate this point.

3.1 Experimentation and Theory

The characterization of network components and interactions in qualitative and
quantitative terms is a prerequisite for an integrated understanding as well as
for realistic mathematical models of biological systems (Kitano, 2002b). For in-
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Figure 11: Simulation study for glucose 6-phosphate uptake. Left: In the

uncontrolled system both sugars are taken up in parallel. Right: Assuming

a feedback loop from intracellular glucose 6-phosphate to the synthesis of the

glucose uptake system, the uptake of glucose is inhibited. Biomass (solid line),

glucose (dash-dot), glucose 6-phosphate (dashed).

stance, determining all interactions between the components in an organism of
low complexity such as E. coli has been estimated to require between 50 and
40,000 microarray experiments (Selinger et al., 2003). Hence, optimizing the way
in which these experiments are conducted holds great promises for the efficiency
of systems approaches. In experimental biology, educated guesses in 'traditional’
hypothesis—driven research and, more recently, comprehensive studies using, for
instance, systematic gene knock-outs prevail. Systems engineering offers a large
body of theory for the identification problem (Ljung, 1999) that can be employed
to assess the information content of experimental data (as for the estimation of
parameters in our E. coli example), and to suggest efficient strategies for gener-
ating quantitative data. For instance, a recent study applied tools from systems
sciences to an artificial gene network in order to analyze the effect of (inherent)
stochastic fluctuations and (purpose-driven) input perturbations on the identifi-
cation of model parameters (Zak et al., 2003). We believe that, besides specific
predictions leading to new experiments once a mathematical model is available,
systematic investigations of this type can result in more general guidelines for
experimental strategies to quantitatively characterize biological networks.

Many biological systems of interest, however, are not yet amenable to this ap-
proach relying on detailed mathematical models, for instance, owing to an in-
complete and / or inaccurate knowledge on components and interactions. There,
the challenge is to derive the system’s working principles from the observable
behavior. This reverse—engineering usually entails the discrimination between a
large number of hypothetical mechanisms to infer the causal relationships. For
the analysis of gene networks, for instance, several theoretical approaches to the
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problem have been suggested. They range from boolean networks that consider
only the 'on’ and 'off” states of genes to detailed dynamical models (D’haeseleer
et al., 2000). A great challenge for the future obviously is to assess the relative
power of the methods, and their data requirements. More generally, however,
it will be crucial to find a common basis for theoretical approaches at different
resolution that are currently incompatible with each other. Only such a unifi-
cation will allow for the desired gradual transition from coarse to very detailed
representations of complex biological networks, depending on the knowledge on
the system and the specific interest of the investigator (Ideker and Lauffenburger,
2003). Here, for instance, general systems theory provides a theoretical frame-
work (Willems, 1991) that could be built upon. In brief, it regards systems (and
models as their representation) as functional entities that simply map a set of
inputs to a set of outputs. As such, it enables a general treatment of models
similar to the ideas outlined in (Selinger et al., 2003).

3.2 Modules and Hierarchies

One parallel between biological and technical systems is particularly striking and
can greatly facilitate the systems biology approach: It is increasingly accepted
that both types of systems are composed of semi-autonomous modules that per-
form a specific function. Biological modules acting as switches, triggers, ampli-
fiers, and other functional units are paralleled by similar devices in, for instance,
electrical and control engineering (Hartwell et al., 1999; Nurse, 2003). Modular-
ity in general, and these analogies in particular, have at least three important
implications for our ability to understand integrated biological systems: (i) they
allow for the decomposition of complex networks into manageable units, which
can later be re—assembled to obtain the whole picture, (ii) corresponding modu-
lar concepts for mathematical modeling and formal analysis facilitate theoretical
investigations in systems biology as illustrated by our E. coli example, and (iii)
it will be possible to draw on the large repertoire of methods and insights from
engineering sciences by elaborating common operating principles of prototypi-
cal technical and biological (sub)systems (Stelling et al., 2001; Csete and Doyle,
2002).

A major current challenge for elucidating and exploiting modularity in biology,
however, is to find objective criteria for the demarcation of modules. Several
approaches have been suggested in the literature, for instance, regarding the
dissection of complex metabolic networks into simpler modules (Schuster et al.,
1993). Most intuitively, functional units can be characterized as performing a
common physiological task and belonging to the same genetic unit and / or sig-
nal processing entity (Kremling et al., 2000). Yet, similar to the delineation of
pathways from complex interaction maps in traditional biology, in many cases
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these ‘soft’ criteria prevent an unambiguous assignment of modules. Methods
from graph theory that analyze the components (nodes) and their interactions
(links) in networks yielded statistically overrepresented ‘motifs’ in transcriptional
networks (Shen-Orr et al., 2002). A particular functionality could be assigned
to some of these recurring small networks of interactions through more detailed
dynamic analysis. For instance, a three-gene circuit termed the ‘feed—forward
motif’ specifically either accelerates or delays transcriptional responses (Man-
gan and Alon, 2003). These analyses are confined to small patterns of interac-
tions, and their role in the larger system is unclear at present. At a larger scale,
graph—theoretical approaches revealed a hierarchical ordering of modules for the
genome—wide metabolic network of E. coli (Ravasz et al., 2002). However, graph
models may be too coarse to reflect biological functionality (Arita, 2004).

Furthermore, concepts exist that explicitly take function into account from the
beginning. For instance, metabolic pathway analysis identifies the smallest func-
tional units in metabolism, but these units are usually overlapping (Rohwer et al.,
1996; Schuster et al., 2000). The search for co-regulated genes in libraries on gene
expression data obtained by microarrays showed common patterns of hierarchi-
cal modularity in different organisms, yet the resolution of individual modules
is influenced by adjustable parameters of the analysis method (Bergmann et al.,
2004). Finally, a recent proposal concerns the demarcation of modules based
on a criterion from systems theory, namely the absence of retro—activity (Saez-
Rodriguez et al., 2004). In summary, thus, albeit a multitude of methods to
analyze modularity in biological systems exists, their caveats do not allow to
conclusively specify modules — or to prove their existence. Apparent next steps
could consist in, for instance, a systematic comparison of the analysis results
for a model system. It will be tempting to develop hybrid approaches taking
into account multiple criteria for delineating modules. In addition, a hierarchical
structure of biological networks raises important, largely unaddressed questions
on the role of hierarchies in the co-ordination of cellular functions. Modular-
ity and hierarchies open new directions for the multi—level analysis of biological
systems, for which, for instance, electric circuit engineering provides suitable
paradigms (Nurse, 2003). Not only systems biology, but also engineering theory
will benefit from analogies between biological and technical systems.

3.3 Functions and Design Principles

The notion of function is a common denominator of biological and engineered
systems. In contrast, physical systems may show equally complex networks, re-
sulting in complex behavior. However, they arise without purpose, and are not
driven by evolution or voluntary engineering as for the first two classes of systems
(Hartwell et al., 1999). The crucial point here is that, to perform similar func-
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tions, biological and synthetic systems use similar design principles. Negative
feedback, for instance, serves to maintain homeostasis in both domains. Conse-
quently, translation of engineering principles into the realm of biology will have a
major impact on understanding the structure and function of complex biological
systems (Csete and Doyle, 2002). At a detailed level, two directions of future
research appear obvious. As for perfect adaptation in bacterial chemotaxis, map-
ping a complicated biological network to a well-known engineering principle —
integral feedback control in this case — may explain the observed behavior (Yi
et al., 2000). Conversely, necessary conditions for achieving a particular function
in engineered systems can guide detailed investigations in biology. For example,
methods from control theory were recently employed to provide an analytical
method for deciding whether positive feedback in biology leads to bistable switch-
ing (Angeli et al., 2004); when such a behavior is observed in vivo, 'missing links’
in the assumed circuit diagram could, hence, be identified. This kind of studies,
however, is only at the beginning. Important avenues of future research will be
to examine control-theoretical concepts such as (structural) identifiability and
controllability with respect to their applicability to biological systems.

Systems biology and engineering alike are presumably most challenged by the
need to understand and / or to optimize highly integrated systems with a large
number of interacting components. In both domains, robustness, that is, resis-
tance to perturbations and failures constitutes a prominent design goal. Some
ingredients for achieving this property such as feedback control, modularity, and
hierarchies are known in engineering, and engineered systems were highly opti-
mized in this regard (Csete and Doyle, 2002). However, it seems reasonable to
assume that evolution in biology came up with more efficient and / or alternative
solution to the problem. Hence, in our opinion, analyzing the design principles
of biology in this respect will prove beneficial both for systems biology and for
engineering. Model-based analyses of metabolic networks in bacteria already re-
vealed parts of the control logic: whereas control at the level of fluxes ensures
optimal growth for each particular situation the organism encounters (Ibarra
et al., 2002), the control of metabolic gene expression seems to trade—off the
efficiency in this situation, and the organism’s flexibility to respond to environ-
mental changes (Stelling et al., 2002). Although seemingly being at completely
different levels of abstraction, the search for design principles profoundly feeds
back on the interactions between experimentation and theory. For instance, the
insight into metabolic control was obtained by using the structure of metabolic
networks alone. Hence, theoretical investigations may help to decipher informa-
tion from well-known properties, and to indicate less rewarding, in addition to
new directions of experimental research.
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4 Conclusions

Biological complexity is the substrate for the emerging field of systems biology,
with the aim of an integrated understanding of complex biological systems as its
driving force. Beyond this, however, we believe that a main characteristic of the
systems biology approach is its interdisciplinary nature that combines methods
and concepts from biology, information sciences and engineering. In particular,
mathematical modeling of biological systems will serve to achieve the goals of
systems biology, and to help establishing a more quantitative biology. As our
example of sugar uptake in E. coli and its control showed, a close interaction
between experimental biology and computational analysis is able to establish
quantitative and predictive mathematical models. Such models can, for instance,
be employed to reveal inconsistencies in the current knowledge on a system,
assess the explanatory power of alternative hypotheses, and ultimately suggest
new experiments that verify or falsify the model predictions. We believe that
this iterative cycle, combining experimentation and theory will be essential for
the success of systems biology.

A major current challenge, thus, is to increase the efficiency of the interactions.
In this case, as for other fields that warrant more intense research, engineering
can provide well-established theoretical concepts. Analogies between complex
biological and technical systems are obvious, for instance, their modular and hi-
erarchical structure, the notion of functions that have been optimized, and the
underlying general design principles. Future research in these fields can be antic-
ipated to yield operating principles that will increase our comprehension of how
complex systems in generals are designed and perform. Moreover, for biology,
such design principles will guide detailed investigations of specific biological sys-
tems. For engineering, they can provide new paradigms (or revive old ones), for
instance, regarding the efficient control of integrated technical systems. A major
obstacle on the way to gain these potential benefits from systems biology, how-
ever, is the still existing clash of civilizations’ (Huntington, 1993) between the
sciences in biology and engineering. Finding a common language and educating
a new breed of scientists that are familiar with both fields (Lazebnik, 2002), thus,
should be a central objective of all initiatives in systems biology.
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Abstract

Background: Global control influences the regulation of many individual subsystems by
superimposed regulator proteins. A prominent example is the control of carbohydrate uptake
systems by the transcription factor Crp in Escherichia coli. A detailed understanding of the
coordination of the control of individual transporters offers possibilities to explore the potential
of microorganisms e.g. in biotechnology.

Results: An o.d.e. based mathematical model is presented that maps a physiological parameter —
the specific growth rate — to the sensor of the signal transduction unit, here a component of the
bacterial phosphotransferase system (PTS), namely ElIAC". The model describes the relation
between the growth rate and the degree of phosphorylation of EIIA <r for a number of
carbohydrates by a distinctive response curve, that differentiates between PTS transported
carbohydrates and non-PTS carbohydrates. With only a small number of kinetic parameters, the
model is able to describe a broad range of experimental steady-state and dynamical conditions.

Conclusion: The steady-state characteristic presented shows a relationship between the growth
rate and the output of the sensor system PTS. The glycolytic flux that is measured by this sensor
is a good indicator to represent the nutritional status of the cell.

Background

Mathematical models of cellular systems describing
metabolism, signal transduction and gene expression are
becoming more and more important for the understand-
ing of the underlying molecular processes. Since the earli-
est work to elucidate the molecular nature of regulatory
structures by J. Monod, the knowledge of the detailed
interactions between the components that are responsible
for carbohydrate uptake in Escherichia coli is steadily
increasing. Although current research on individual
uptake systems like glucose still reveals new players that
maybe play a role in local control [1], the knowledge of
individual uptake systems is rich and is used as a basis to

set up mathematical models to describe and analyze the
properties of the control circuits. E.g. for the lactose
uptake system in E. coli, it was shown that the autocata-
lytic action of inducer allolactose is responsible for the
existence of multi-stationarity [2]. Such nonlinear proper-
ties of sub-networks are often described and assigned to a
certain functionality of the system. The understanding of
how different stimuli of the same type - in this study car-
bohydrates - are sensed by the cells and how these differ-
ent signals are processed is still lacking. Here, we used
experimental data published by our group [3,4] to eluci-
date and characterize such a global control circuit, that is,
aregulatory scheme, that senses a physiological parameter
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like the specific growth rate and maps it to the degree of
phosphorylation of the intracellular component EITAC™,
EIIACT is a component of the phosphoenolpyruvate
(PEP): carbohydrate phosphotransferase system (PTS).
The PTS is not only a transport system for a number of car-
bohydrates but also acts as a sensory system. Sensor ele-
ments like the PTS can be seen as logic elements that
process external stimuli into intracellular signals. High
fluxes through the glycolysis, corresponding to high
growth rates result in a low degree of phosphorylation of
EITACT. At first view, this is surprising, since, assuming a
linear reaction chain, high fluxes result in high pool con-
centrations, based on the (normally) monotone depend-
ency of the reaction rate on the substrate concentration.
The PTS together with the glycolysis can now be seen as an
element that allows a transformation of high fluxes into a
low pool concentration. This is not only due to the exist-
ence of two complementary pools like EIIACT and its
phosphorylated form, but as we will show, depends
strongly on the flux distribution at the PEP node. High
fluxes through the glycolysis result in low values of the
phosphorylated form of EIIAC while low fluxes indicate a
hunger situation and the global transcription factor
cAMP - Crp is activated.

Interestingly, the relationship between growth rate and
degree of phosphorylation of EIIACT could be seen in var-
ious growth situations of the wild type strain growing on

http://www.biomedcentral.com/1752-0509/1/42

single substrates like glucose, lactose, and glycerol and for
growth on mixtures of substrates, and of a PtsG deletion
mutant strain missing ptsG, a gene that is central for glu-
cose transport.

Carbohydrate uptake by E. coli

The PTS of E. coli consist of two common cytoplasmatic
proteins, EI (enzymel) and HPr (histidine containing pro-
tein), as well as of an array of carbohydrate-specific EII
(enzymell) complexes. E.g. for glucose uptake, a phos-
phoryl group is transferred from phosphoenolpyruvate
(PEP) through EI, HPr, EIIACT, PtsG (also known as EIICB-
Gle, that is the membranstanding transport protein) and
finally to the substrate. Since all components of the PTS,
depending on their phosphorylation status, can interact
with various key regulator proteins the output of the PTS
is represented by the degree of phosphorylation of the
proteins involved in phosphoryl group transfer.

Figure 1 gives a rough sketch on the components that
influence the degree of phosphorylation of protein EIIA-
G (i) Metabolic fluxes through the glycolysis. Extracellu-
lar glucose is taken up by PtsG and enters into the cell as
glucose 6-phosphate. Other carbohydrates enter glycolysis
at the same node (e.g. galactose and lactose) or at other
nodes (e. g. glycerol at triose phosphate). The carbohy-
drates are further metabolized by glycolytic reactions. At
node PEP, the flux is subdivided. One part is converted to

Glucose ex T

Glc6P ! * 3
Galactose ex — g ersiin] - i -z :
Lactose ex y ‘ ! : |
‘ ptsG , ptsHlcrr .
Glycerol ex 1 PtsG U~ El,, HPr ., ElIA 1
— PEP PtSGO v j(acuve) » v \\0 0 0 !
cAMP.CRP
EI~P HPr~P ElA~P A A w
><K1 ><K2 ><K3 L b - | .
‘ El HPr EIIA<L; EIA- L Y Y !
Prv LK Cya CRP

| PTS ;

drain to monomers/ * S

influx from e.g. acetate rvy

inducer exclusion to carbohydrate uptake systems
Figure |

A rough scheme of the interactions of the PTS. The degree of phosphorylation of the PTS proteins is influenced by the flux
through glycolysis and the overall concentration of the proteins. The respective genes are subject to transcriptional control by
several transcriptions factors, e.g. Mlc and Crp and post-transcriptional control (not shown). The degree of phosphorylation of
EIIACT is furthermore influenced by interactions with other proteins (L) during inducer exclusion. In case of a PTS sugar, the
phosphoryl group from EIIACT is transferred to the transported sugar. E.g. glucose appears as glucose 6-phosphate inside the
cell.
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pyruvate by pyruvate kinase while the remainder part is
converted to pyruvate by the PTS. Other fluxes from or to
PEP or pyruvate are marginal and hence are not consid-
ered in this study. Fluxes from e.g. acetate uptake enter
gluconeogenesis via pyruvate or from TCA. (ii) Overall
concentration of the PTS proteins. The expression of the
pts genes (ptsHIcrr, ptsG) is subject to control by various
regulators, with Mlc and Crp being the most important
ones. Mlc is a repressor that is active if no glucose is
present in the medium. A possible mechanism of the
interaction between Mlc and EIICBC is described in [1].
Crp is a global regulator that is involved in the regulation
of a number of genes; it is activated by cAMP. cAMP is syn-
thesized from ATP by adenylate cyclase (Cya). Both pro-
teins, Crp and Cya, are subject to control by the
cAMP - Crp complex itself. Recent investigations indicate
that the ptsG transcript is subject to post-transcriptional
control by a small RNA (sRNA) regulator SgrS which is
induced at different stress conditions, e.g. glucose-phos-
phate stress. This stress occurs when cells accumulate glu-
cose G6-phosphate or the glucose analog a-methyl-
glucoside 6-phosphate and leads to the degradation of
PtsG mRNA [5-7]. (iii) Another parameter that deter-
mines the degree of phosphorylation of protein EIIAC™ is
the overall equilibrium constant K, that links the PEP/
pyruvate ratio to the degree of phosphorylation. Figure 1
considers a general case where the phosphoryl group is
transferred from PEP to EIIACT. Furthermore, EIIACT is
considered to exist in a free form and in a form bound to
a protein L involved in carbohydrate transport or metabo-
lism (lactose permease, glycerol kinase). Then, the equi-

librium constant K, can be determined as:

Ky K, K3 L+ K
Kpts | 2 1(3 m L) (1)
L
with K;, K,, K5, K; being the respective equilibrium con-
stants from the single reactions shown in Figure 1. If EIIA-
Crris bound to lactose permease or glycerol kinase, it acts
as an inhibitor that prevents uptake and/or metabolism of
the substrate, an effect that is called inducer exclusion.

The intention of this contribution is to develop a model
with a small number of state variables and parameters to
work out the basic principles for the understanding of the
sensor function. Nearly all parameters could be deter-
mined from experiments (for material and methods, [see
Additional file 1]). The core of the model describes the
mapping of the specific growth characteristics represented
by the carbohydrate uptake rates to the degree of phos-
phorylation of the PTS component EIIAC™. The kinetic
properties of the sensor which at the same time is a trans-
port system are characterized and the output of the sensor
is mapped to the rate of synthesis of genes that are under
control of transcription factor cAMP - Crp. In this way, a
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closed loop is established that precisely adjusts the respec-
tive transport protein to maintain the incoming flux. The
results are used to predict the transient behavior during
glucose/glucose 6-phosphate diauxic growth and glucose/
lactose diauxic growth. Finally, we also show that the
approach can be generalized for other main growth sub-
strates like acetate. In the end, a comparison with a corre-
sponding detailed model on catabolite repression [3] is
performed.

Results and discussion

Sensor characteristics

First, the steady-state properties of the core system, com-
prising glycolytic and PTS reactions, are analyzed. Predic-
tions with the model are performed and compared with
experimental data. Based on the molecular details, two sit-
uations are considered (Figure 2). Case A considers growth
on glycolytic substrates, that is, carbohydrates that feed
into glycolysis. This includes growth on PTS and on non-
PTS substrates. E.g. glucose enters the cell by a PTS as glu-
cose 6-phosphate, while lactose is a non-PTS substrate.
Intracellular lactose is split into glucose and galactose by
LacZ. The resulting intracellular glucose is phosphorylated
by PtsG and/or by glukokinase. Galactose, too, is further
metabolized and both enter via glucose 6-phosphate into
glycolysis. In case of lactose, EIIA¢T"mediates inducer
exclusion by binding to lactose permease. This alters the
overall equilibrium constant as described above.

r r Case A Case B
n-pts pf_f/
GIc6P Glc6P
11%
Tty X f, | O x()
hyfup (10%) gP”EP
—
PEP, via
PckA
Toyk Tots %) Tpts O
P fops ™ () XP
P Prvk  (6%) Ipig
Todh
(7%)| ", Tup
via MaeB/SfcA

Figure 2

Reactions schemes that describe the fluxes through glycolysis
and the PEP/pyruvate node. Left: Case A. Growth on glyco-
lytic PTS substrate and non-PTS substrates. State variable X
represents all PTS components. Right: Case B. Growth on
gluconeogenetic substrates. Values in parenthesis indicate
the flux distribution during growth on acetate [10] in % of
the acetate uptake. Main routes to PEP and pyruvate are via
PckA (PEP carboxykinase) and MaeB/SfcA (malate dehydro-
genase).
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The scheme simplifies the biological knowledge on
metabolism and gene expression by lumping together
reactions and components. In case A, carbohydrate uptake
is represented by reactions 7, ,, for a PTS carbohydrate
and r,,,, for a non-PTS carbohydrate. Glycolysis is simply
represented by metabolite Glc6P. The flux at node PEP is
subdivided into 7, for pyruvate kinase and 7,,.. The drain
from pyruvate (Prv) to other parts of the central metabo-
lism is represented by r,y,. Since other fluxes from or to
PEP and pyruvate are rather marginal they are not consid-
ered in the model. Proteins EI, HPr, and EITA®T of the PTS
are represented by only one component X that exists
either in the unphosphorylated form X or in the phospho-
rylated form XP. In case of a PTS carbohydrate, XP is used
for transport via , .

Case B considers gluconeogenetic substrates which feed
into TCA or into other central metabolites below the PEP/
pyruvate branch. Here, PEP and pyruvate are produced by
a number of different reactions, e.g. from the TCA or via
Acetyl CoA. Among these, PEP synthase (Pps) is active
converting pyruvate directly to PEP. For substrates that
enter TCA, two pathways are known that connect TCA and
glycolysis: PckA (PEP carboxykinase) connects oxaloace-
tate and PEP, MaeB/SfcA (malate dehydrogenase) connect
malate and pyruvate. These fluxes are represented by h; 1,
and h, r,, respectively, with h; and h, are numbers
between zero and one, representing a fraction of the
uptake rate 7,,. In a number of subsequent gluconeoge-
netic reaction steps (ry,), PEP is then converted to glucose
6-phosphate.

Based on the knowledge presented so far, a simplified
model structure is suggested that is able to simulate the
different cases proposed above.

Glycolytic substrates

As was shown in a previous study [8], the metabolic part
of the considered network reaches the steady-state very
fast. Therefore, the steady-state assumption will be used as
a starting point for model analysis. For G6P, PEP, Prv and
the protein that represents the PTS, XP, the following
equations that describe the dynamics are obtained from
the scheme:

G6P = Tumpts +Tots_up ~Tgly (2)
PEP = 21gp, =Ty ~Tis (3)
Prv= Tots +Toyle ~Tpdh (4)
XP = Tots ~Tots_up (5)
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wherer, . andr,, ,,are the systems inputs and are related
by the yield coefficients to the specific growth rate. XP is
the system output. The following conditions will hold for

the defined rates in steady-state:

Tpts = Tpts _up (6)

Taly = Tnepts + Tpis_up (7)
Todn = 2 (Tppis + Tpis_up) (8)
Toye = 2 Topts  Tpis_up 9)

The kinetics for the rate laws are kept as simple as possible
to describe the experimental data. The rate laws are
assumed as follows:

Taly = gy GOP (10)
Tpdh=kpdhpn’ (11)

Tois = Ry(PEP(X, - XP) - K,y Prv XP) (12)
Topke = Koy PEP f (PEP, ...), (13)

with X, is the overall concentration of the PTS protein. The
focus of the analysis will be on the branch point at PEP.
To elucidate the correct choice of the kinetic rate law for
the pyruvate kinase reaction, function f is introduced that
represents different model variants. Function f depends
on PEP but may also depend on different metabolites in
the network.

The steady-state concentrations can be derived from the
equations above:

G6P = . (14)
8ly
M- +r
Prv=2-1"PS PS-UP ptsk pts_up (15)
pdh
2y pis T3
PEP = w (16)
pykf
o Tpts_up
k., PEP
— pts
XP = kpdh Ta—pts +Tpts w
kpan + 2Kptskpykf P —
2t—pts F Tos_up
(17)
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The steady-state equation for PEP is given in implicit form
since it depends on function f. In the following, growth
situations on non-PTS and PTS sugars are considered sep-
arately.

Equation (17) for the non-PTS case reads

Xo
kpdh + Kptskpykf
As can be seen cleary, the choice of f has a strong influence
on the steady-state characteristics: Assuming f = 1, that is,
the pyruvate kinase reaction is modeled as a first order
reaction, XP is constant and independent from the uptake

rate. This could not be observed in the experiments (see
below). Assuming a Michaelis-Menten kinetics, that is,

XP = kpdh (18)

1
f = ———, the steady-state concentration of PEP can
K + PEP
be calculated via Equation (16):
PEP = 210—pis _ 20 —pis
koo f 1 (19)
pyk kpye ————
™ K + PEP
2Kr, —
0 ppp —— P8 (20)
kpyk - 2rn—pts

Since k,;, in this case, is the maximal reaction rate of 7,,,
PEP is an increasing monotone function in dependency
on the uptake rate r, . Interestingly, this leads to values
for XP that increase for increasing uptake rates. This result
is again contradictory to the observed experimental
results.

Equation (17) for PTS substrates reads:

_ Tpts_up
ks PEP

kpdh +2K ptskpykf

0
(21)
XP = kpdh

Differences for PTS and non-PTS substrates can be seen in
the numerator that is always smaller in case of growth on
PTS substrates. Since the denominator is always larger
than in the case of non-PTS substrates, the curve of the
PTS substrates will always be below the curves for non-
PTS substrates.

To describe the available experimental data for growth on
PTS and non-PTS substrates (Table 2 in [Additional file
1]), parameters were estimated by a least square approach.
A reasonable fit could be obtained with
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f =£,(G6P) - f,(PEP) = G6P- PEP™. (22)
Since the pyruvate kinase in E. coli is a tetramer that needs
activation from a glycolytic metabolite (in E. coli PykF is
strongly activated by fructose 1,6-bis-phosphate, that is
not included in the model, but is represented by glucose
6-phosphate instead), values for n > 1, m > 1 are analyzed.
Equation (1) relates the overall PTS constant K, to indi-
vidual reactions steps. Since measurements of proteins
that influence K, are not available, K, represents a mean
value for different situations considered in the experi-
ments. For parameter identification 31 data points are
considered, values n =2, m = 1 are fixed and values for K,,;,
and X, are taken from literature (Table 6 in the [Addi-
tional file 1]); so, four parameters are estimated: k,, k

sy
ky and kyg,.

pyk’

The standard deviation & of the measured data for the
degree of phosphorylation of EIIAC™ is estimated with the
degree of freedom df = 31 (data points) -4 (parameters):

_ 2
g = \/Z(XE—XP"”) =0.013. (23)

df

Based on the maximal value X this corresponds to 13%.
Figure 3 shows the results of the parameter estimation.
Parameter values and confidence regions are summarized
in Table 6 in [Additional file 1]. Dashed lines mark a 95%
confidence band of the simulation based on the linear-
ized system (linearized with respect to the parameters; for
details [Additional file 1]).

A robustness analysis was performed as described earlier
[8]. Instead of presenting individual sensitivities, a rank-
ing of all sensitivities

= OXP pi. (24)
based on the sensitivity matrix W with
- T
W= (w;w)lj (25)
j

with j is the index of the simulated data points was calcu-
lated. Together with a constraint, considering the deflec-

tion of the parameters Ap

(26)
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Course of the degree of phosphorylation of X in dependence on the growth rate. Since most experiments are performed with
lactose and glucose, the specific growth rate can be converted with (nearly) the same yield coefficient (on a molar basis) into an
uptake rate. Left: Growth on non-PTS carbohydrates (lactose and glycerol, wild type and mutant strain BKG47); Right: Growth
on PTS carbohydrates (glucose, wild type). Dashed lines indicate a 95% confidence interval based on the simulated and the

experimental data. The calculation is based on a linearization around the estimated parameters, therefore, it is not exptected

that all the data can be found in-between the two limits.

the maximal deviation of the trajectories can be calculated
by the eigenvectors and eigenvalues of matrix W [9]. The
eigenvector corresponding to the maximal eigenvalue is

Ap™™ . The parameter vector that leads to the maximal

max

deviation is calculated then by p (1 + Ap™™" ). Figure 4

summarizes the results. Four of the parameters are related
to enzyme concentrations (X, Ry, Ky Ryap) while the oth-
ers are kinetic parameters of the PTS reaction (k,, K)
and the pyruvate kinase reaction (m, n). Interestingly, in
the kinetic expression f of the pyruvate kinase parameter n
describing the influence of the feed-forward control (acti-
vation of the pyruvate kinase by glucose 6-phosphate)
shows maximal sensitivity in both cases. In general, the
amount of enzyme has a bigger influence than the kinetic
parameters. This will allow the cell to adjust the degree of
phosphorylation by genetic control.

Gluconeogenetic substrates
For gluconeogentic substrates the scheme according to
Figure 2, case B, is considered. The o.d.e's are:

PEP = hlrup +Tops ~Tpts ~Tglu (27)
Prv= Moty +Tois —Tops ~Thig (28)

XP =1y (29)

Rate 1, is the system input. Rate 7, is the flux from pyru-
vate to biosynthesis and r, is the rate of gluconeogenesis:

0.6f

0.4

ol

-0.2f

N

Magnitude of the eigenvector [-]

-0.4f

le)yk le)dh k;gly XIO ki;Jts K;pts m n
Figure 4

Results of the sensitivity analysis. Black bars indicate a non-
PTS substrate while white bars indicate a PTS substrate. The
size of the bars represent the level of the eigenvector of the
sensitivity matrix W that correspond to the maximal eigen-
value. Note, that for the non-PTS case, parameter k., has

zero sensitivity (ry, is zero in this case).
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Thio = kbioprv (30)

Tglu = kgluPEP (3 1)

For the rate r

ops the following simple approach is used:

Tops = RopsPTV §(Prv, ... (32)

pps
with function g representing the influence of pyruvate and
possible effectors. Together with parameters h;, h, and k,,
the rates are adjusted in such a way that data from a flux
distribution [10] can be described.The percentage fluxes
can be found in Figure 2. The steady-state equation for XP
can be rewritten as:

Xo
Prv (33)

1+K,. 2
S ppp

Simulation studies lead to the conclusion that function g
should depend on PEP that acts as an inhibitor of PEP syn-
thase. Otherwise, the degree of phosphorylation increases
with increasing uptake rate which seems, also in this case,
not to be meaningful. Indeed, literature research revealed
that PEP synthase is negatively regulated by PEP [11].
Function g used is:

1
8 = 81(PEP) 3y (Prv) = —— [Prv,
PEP

(34)

taking into account that Pps is a dimer with two possible
binding sites. A simulation study for different values of
acetate uptake/growth rates are shown in Figure 5; data are
taken from Table 3 [Additional file 1]. Another interesting
observation where the PEP/pyruvate ratio may be
involved was reported by the group of Liao [12]. They ana-
lyzed a wild type strain and a pps mutant strain when glu-
cose and acetate are provided in the medium. They
showed that the missing Pps protein has no influence on
the general physiology but shows a significant influence
on the transition time from growth on glucose to growth
on acetate. In this case the degree of phosphorylation is a
constant value:

Xo
hoky, 35
1+Kpt5 2 elu ( )
hlkbio

Liao and colleagues observed a drastic increase of the lag
phase on acetate in the mutant strain during glucose/ace-
tate diauxic growth. Our simple model predicts, that the
degree of phosphorylation is a bit smaller than the values
in the wild type strain. This confirms that Pps has nearly
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no influence on physiological parameters like the growth
rate.

Model predictions

With the model developed so far, model predictions can
be performed. Two cases are considered: the PEP/pyruvate
ratio and growth on different single carbon sources.

PEP/pyruvate ratio

The PEP/pyruvate ratio could be predicted in dependency
on the growth rate. Experimental data were taken from [4]
and compared to the simulation results (Figure 6). As can
be seen, the prediction fits to the data well.

Growth on single carbohydrates

To confirm that the model presented here is able to
describe the sensor system for a number of carbohydrates,
experimental data from batch experiments with different
PTS and non-PTS carbohydrates were performed and
compared with the model calculations [4]. As can be seen
in Figure 7 the experimental results are in good agreement
for a number of substrates. Except for N-acetyl-glu-
cosamine, the measured data points fit well to the predic-
tion. Note, that most of the PTS sugars use the phosphoryl
group from HPr to transport the carbohydrate into the
cell. If this is included in the calculation, the degree of
phosphorylation of EIIAC" dy;,, depends on the fraction of
phosphorylated HPr d;p,:

ElIAY dyipy (36)
EllAy  dypy + K3(1 = dppr)

dppia =

0.45f

0.4f

0.35f

0.3f

0.25f

0.2f

0.15f

Degree of phosphorylation [-]

0.1f

0.05f

0 005 01 015 02 025 0.3
H [1/h]

Figure 5

Degree of phosphorylation in dependence on the growth on
acetate. Measurements are available for four experiments
with nearly identical growth rate (errors bar is given for the
four experiments). and the mean value is plotted.
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Figure 6

Measured and simulated relationship between the PEP/pyru-
vate ratio and the specific growth rate. Solid line is for PTS
carbohydrates and the dashed line for non-PTS carbohy-
drates. Symbols respresent measured values (Table 3 in

[Additional file 1] [4]).

Since the value for Kj, the equilibrium constant for the
phosphoryl transfer HPr to EIIAC™ is approximately 1
[3,13,14], values of dg;, and d,;p, are nearly equal. There-
fore, in the model, state variable X can be used to repre-
sent HPr as well as EITACT.
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Transcription efficiency and sensor kinetics

In order to set up a closed loop, further modules have to
be characterized. First, the influence of phosphorylated
EIIACT on transcription efficiency is analyzed, afterwards
the kinetics of the PTS transport system is investigated.

Transcription efficiency

Experiments to determine the influence of the degree of
phosphorylation of EIIAC™ on the transcription efficiency
were performed with the cAMP-Crp independent pro-
moter scrKp, and the cAMP - Crp dependent promoter scrY,
[4]. As can be seen in Figure 8, the activity of the
cAMP - Crp independent promoter does not vary with the
degree of phosphorylation of EIIAC™ while the cAMP - Crp
dependent promoter shows a sigmoidal behavior in the
range below 0.6. From the data, a sigmoidal function g,
could be determined that maps the degree of phosphor-
ylation of EIIAC to the rate of protein synthesis:

xp°®

A I— (37)
XP® + K°

gr =kp +kgn

Unexpectedly, the Hill coefficient is high (n = 6) indicat-
ing a high sensitivity in a narrow range of the input.

Sensor kinetics

Experiments to determine the apparent K}, value of the
PTS transporter for different PTS carbohydrates are
reported in a number of publications [15]. In [4] experi-
mental data determining the phosphorylation levels near

1 T T 1
1 Glucosamine
PTS
2 Mannose NopTs 8 Maltose
0-9r 3 Fructose 0.9F 9 Glycerol
4 Mannitol 10 Gluconate
08r 5 N-acetyl- 0.8f 11 Arabinose 4
L glucosamine T 12 Lactose
< orp 6 Sucrose < o7f 13 Glucose 6- J
w 7 Glucose w phosphate
s o6k s 0.6k 14 Galactose |
g I
g 0.5f g 0.5f
s e
s Q.
2 o
£ o4} 2 o4t
k<] S
% 0.3f g 0.3F
[ [
it o}
o 0.2f o 0.2f
0.1f 6 0.1f
,%,7
0 . . . . . n . 0 . . . . . L .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
H[1/h] W [1/h]
Figure 7

Experimental data showing the relationship between the specific growth rate y and the degree of phosphorylation of EIIAC for
a number of different experiments performed with single carbohydrates. Left: PTS carbohydrates as indicated in the legend.
Right: non-PTS carbohydrates as indicated in the legend. Samples are taken in the mid-log phase. Error bars indicate a 95% con-
fidence interval.
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Figure 8

Relationship between the degree of phosphorylation of EIIA-
Crand promoter activity of scrY (squares, dependent from
transcription factor Crp) and scrK (circles, independent from
transcription factor Crp) [4]. The activity of the reporter
protein is taken as a measure for protein synthesis. To calcu-
late the transcription efficiency the raw data are multiplied
with the specific growth rate y. (Data from Table 3 in [Addi-
tional file 17 [4]).

these critical substrate concentrations are taken during
continuous bioreactor experiments. During the starting
phase of the continuous bioreactor experiments, the car-
bohydrate concentration drops until it becomes limiting.
This decrease is much slower than it is in batch experi-
ments, allowing for a better resolution of data in the low
carbohydrate concentration ranges. Experiments were per-
formed with the PTS substrates glucose and mannitol,
having similar K, values as determined in transport
assays. To determine the kinetic parameters of the PTS, a
two-substrate kinetics of the form

. . E Glc XP
p—p T IPSIPTCE (Gle + K gle)(XP +Kgpiap)

(38)

with enzyme concentration Eg, turnover number k.,
and binding constants K;is used. The parameters are deter-
mined from the dynamical experiments and are compared
with the experimental data (for experimental data, see
Tables in [Additional file 1]; for parameter values, see
Table 6 in [Additional file 1]). Figure 9 shows the relation-
ship between the measured residual carbohydrate concen-
trations during the bioreactor experiments and the
measured degree of phosphorylation of protein EIIAC™
together with a simulation result.
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Figure 9

Measured and simulated relationship between residual carbo-
hydrate concentrations during a continuous bioreactor
experiments and the measured degree of phosphorylation of
protein EIIAC". Values are given for glucose (circles) and
mannitol (squares). See Table 4 and 5 in [Additional file I].

Closed loop dynamics and application to diauxic growth
Finally, a model with a closed loop, comprising the core
model and individual uptake systems is set up. The model
is applied to a complex growth situation, namely growth
with a mixture of two substrates. Simulation studies for
growth on mixtures of glucose/glucose 6-phosphate and
of glucose/lactose are described.

Growth on glucose/glucose 6-phosphate

Glucose 6-phosphate represents an interesting growth
substrate. This sugar-phosphate is taken up into the cell
via the inorganic phosphate antiporter, UhpT [16] and
can afterwards enter into glycolysis without further modi-
fication. A mixture of glucose and glucose 6-phosphate is
a very interesting case because expression of both proteins
depends on the cAMP-CRP complex. UhpT has been
shown to influence cAMP levels in the cell [17]. It was
concluded that neither glucose 6-phosphate nor another
metabolite of glycolysis was directly involved in this effect
but rather the flux through UhpT itself [17]. These results
are confirmed by additional studies analyzing the effect of
glucose 6-phosphate uptake on the degree of EIIAC" phos-
phorylation and the amount of cAMP [18]. In addition, it
was shown that high intracellular Glc6P levels lead to the
degradation of the ptsG mRNA [6,7] via the small regula-
tory RNA, SgrS [5] and hence to reduced concentrations of
PtsG.

Carbohydrate transporters are inducible, that is, the
enzymes are synthesized only if the respective substrate is
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present in the medium. To take this into account the rate
of synthesis depends on Equation (37) and a second term

g}glc and g;ng, respectively, that describes induction.

Although, it is known that high levels of glucose 6-phos-
phate influence glucose uptake, in the model, no interac-
tion of glucose 6-phosphate as inhibitor of the transporter
is included, since quantitative data are hardly available
(see discussion on this topic in [17]). However, as can be
seen in Figure 10 a strong inhibition of glucose uptake
and concomitant, a decrease of the amount of the PtsG
transporter is observed during glucose 6-phosphate
uptake. To match these unexpected experimental data, an

ZUTDDDD

=
= Ul
T T

Glc 6P (solid), Glc (dashed), biomass (dash-dot)
o
Ul

http://www.biomedcentral.com/1752-0509/1/42

influence of the glucose 6-phosphate uptake system (E,)

on the rate of synthesis rsgyl,i of the glucose transporter is

formulated as a "black box" model, function gz (Equation
(43)). This is done to account for possible effects on ptsG
mRNA stability. The model introduced so far is comple-
mented with equations for the substrates GIc6P, Glc, bio-
mass B, and kinetics for the glucose 6-phosphate uptake.
The additional equations are

B=uB (39)

e o o o o o o
W N U > N ®» ©
T T T T T

Degree of phosphorylation EIIA [-]
o
o
o

0.1f o O

1.8

Relative protein concentration PtsG [-]

0 0.2 0.4 0.6 0.8 1
T[h]

Figure 10

Glucose 6phosphate/glucose diauxic growth. Top: Time course of glucose 6-phosphate, glucose and biomass. Middle: Time
course of the degree of phosphorylation of EIIAC". Bottom: Time course of the activity of the glucose transporter monitored
by a reporter gene fusion (strain LZ110). Shown are two different experiments (symbols V for experiment | and A for exper-
iment 2); here, the time was scaled to the maximal time of the experiment (7 h and 7.6 h).
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S _ Glc6P
Glc6P = _Tn—ptsB = _kngEng m
86p
(40)
Glc = Tpts_upB (41)
I.EC-I-Gp = rg/gp —(u+Kg)Egsp = klglgﬁpgT = (1 +kq)Egep
M-pts
= 11— 91~ H EGG
n-pts + Kq P
(42)
. _ glc _ _ glc _
Ecic = rgm —(u *+Kg)Egic =ka0y" "9 91 — (1 +Kg)Egic

Mots K,
2
Mots + Ko Ky +Egep

g1 — (1 +Kq)Egic/
(43)

with the specific growth rate u that is calculated with the
yield coefficients Y,¢, and Yy in dependence on the sub-
strate uptake:

H= Yg6p Topts + Yglc Tots_up: (44)
Parameters k, and k, are scaling factors and g; is taken
from Equation (37).

In the simulation (Figure 10), only the parameters for the
glucose 6-phosphate uptake and the inhibition of the glu-
cose transporter PtsG by the glucose 6-phosphate trans-
porter UhpT are fitted while all other parameters are kept
as described in the previous sections. Therefore, the time
course of the degree of phosphorylation of EIIAC" is a pre-
diction based on previous results. The time course of the
substrates in the medium hints to an inhibition of glucose
uptake during glucose 6-phosphate uptake. After con-
sumption of glucose 6-phosphate, the growth rate slows
down which results in a small increase of the degree of
phosphorylation. During subsequent growth on glucose,
the degree of phosphorylation of EIIAC is again very low.
For the experiment shown in Figure 10 the course of the
glucose transporter was not measured. Therefore, the right
plot of Figure 10 shows data from experiments with
slightly different initial conditions. To compare the
results, the time of the simulation experiment and the
time of the wet experiment are scaled. The time course of
the glucose transporter indicates that indeed the rate of
gene expression is under control and is inhibited during
growth on glucose 6-phosphate.

As described above, the cause for the down-regulation of
PtsG is not clear. To check the intracellular levels of glyco-
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lytic metabolites, a simulation is performed that compare
the experiment shown in Figure 10 with a model variant
where no interaction between the two transporters is
assumed (K;>> Eg,). As can be seen in Figure 11 the time
course of glucose 6-phosphate and PEP are nearly equal in
both experiments, indicating that these metabolites are
hardly involved in the ptsG mRNA degradation.

Growth on glucose/lactose

Finally, we simulated a diauxic growth experiment with
glucose and lactose already introduced in [3] with the
reduced model introduced here. In the reduced model,
gene expression is modeled with the characteristic curve
for the relationship of the degree of phosphorylation of
EIACT on cAMP - Crp dependent promoters. The equation
for the lactose in the medium, lactose transporter E; ,.and
for the transporter kinetics read:

. Lac
Lac = —Tjac B = Kjac Bac X0 = XP B
KIac + Lac(l + )
KignaXo

(45)

lac

Tsyn _(u + kd) Ejqc = k3 géanT ‘(H + kd)ELac

ELac

[
k3 a &r ~ (/’l + kd) ELac
Nac + KS

(46)

o
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Figure 11

Simulation results for glucose 6-phosphate (solid lines) and
PEP (dashed lines). The simulation compares two cases: the
glucose transporter PtsG is under control of the glucose 6-
phosphate transporter UhpT (black lines, corresponding to
the simulation in Figure 9) or not (grey lines). Both simula-
tion results in comparable concentrations of the two metab-
olites.
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As can be seen in the simulation in Figure 12, the time
course of LacZ (right plot) can describe the experimental
data, however, with less accuracy than the detailed model
presented in [3].

Comparison with a detailed model for catabolite
repression

A very detailed model for catabolite repression was
already introduced to describe a number of experiments
under different conditions and with different strains [3].
However, especially for PTS uptake, only high growth
rates were considered. Figure 13 compares the characteris-
tic curve for the detailed model and the reduced model,
introduced here and it can be seen, that, indeed, the
detailed model fails to describe the experimental data for

http://www.biomedcentral.com/1752-0509/1/42

a broad range of the growth rate. The detailed model was
also used to calculate a steady-state relationship for the
transcription efficiency. As can be seen in the plot, again,
for low growth rates, the detailed model fails to describe
the experimental data.

Conclusion

The paper presents evidence that a sensitive metabolic reg-
ulation at the PEP/pyruvate node results in a relationship
between the phosphorylation state of EIIAC™, an element
of the sensory system PTS, and the specific growth rate .
Under a variety of experimental conditions with a wild
type strain and a mutant strain this relationship could be
verified over a broad range of the growth rates, revealing
the signaling and kinetic characteristics of the sensor. For
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Figure 12

Glucose/lactose diauxic growth. Top: Time course of lactose, glucose and biomass. Middle: Time course of the degree of phos-
phorylation of EIIACT. Bottom: Time course of the activity of LacZ Dotted line are simulations with the original model [3] while

solid lines are simulations with the new model.
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Comparison of simulation results of the proposed model with a more detailed model [3]. Top: Characteristic curve for non-
PTS substrates. Solid line: Simulation of a batch experiment. (Figure 5 in the supplement in [3]). Values for the second growth
phase, that is, growth on lactose are plotted. Dashed line: Simulation of a continuous fermentation with different values of the
dilution rate with the model in [3]. Dotted line: Results with the proposed model. Middle: Characteristic curve for PTS sub-
strates. Dashed line: Simulation of a continuous fermentation with different values of the dilution rate with the model in [3].
Dotted line: Results with the proposed model. Bottom: Characteristic curve to describe the relationship between the degree
of phosphorylation of EIIAC" and the rate of protein synthesis. Dashed line: Simulation of a continuous fermentation with differ-
ent values of the dilution rate with the model in [3]. Dotted line: Results with the proposed model.

the analysis of the system, a mathematical model with a
small number of state variables (Table 1) was set up and
based on an initial set of experimental data, model predic-
tions were performed.

Several kinetic properties determine the degree of phos-
phorylation of the PTS protein EIIACT. According to this
study, the choice of the rate law for the pyruvate kinase is
the most important one. While all other kinetic rate laws
can be described with simple mass action rate laws, the

pyruvate kinase has to be described with a power law
kinetics. However, this choice is only true for a certain set
of experimental conditions; considering only growth of
the wild type on glucose, a simple rate law, as suggested
by [19], is capable to describe experimental data. Based on
a systems biology approach that considers different oper-
ational modi of the system and a directed stimulation of
the system with respect to these modi, the present study
shows that the simple rate law is not longer able to
describe all experimental data. The core model comprises
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Table I: Summary of the state variables of the model

State variable = Comment

B biomass

Glc6P extracellular glucose 6-phosphate

Glc extracellular glucose

Lac extracellular lactose

G6P glucose 6-phosphate; represents the metabolites in
the upper part of the glycolysis

PEP phosphoenolpyruvate

Prv pyruvate

XP represents the phosphorylated form of the PTS
proteins
(El, HPr, EIIACT)

Ecer represents uptake system for glucose 6-phosphate
(UhpT)

Ece represents uptake system for glucose (PtsG)

Eloc represents uptake system for lactose (LacY)

four reactions for glycolysis, pyruvate kinase, PTS, and
drain to monomers. Parameters were determined by fit-
ting experimental data from a wild type strain and a PtsG
mutant strain. To deconstruct the results, a robustness
analysis was performed that ranks the parameters accord-
ing to the influence on the degree of phosphorylation of
EIIACTin dependence on the growth rate. As expected, the
biggest influence for both operational modi shows
parameter n, that represents the influence of the feed-for-
ward control of glucose 6-phosphate on pyruvate kinase.
Furthermore, the overall concentration X, of enzyme EII-
ACm has a big influence while the concentration of the
other enzymes represented by kg, k., and kg, is moder-
ate and comparable to the influence of the remaining
kinetic parameters k,,, and K.

The feed-forward loop is a special motive (a regulatory
pattern that is more present than others) described in
detail for genetic systems [20]. Here, we found that this
motive is essential for the transformation of a high incom-
ing flux (high growth rate) into a low PEP/pyruvate ratio.
To verify this, the internal metabolites PEP and pyruvate
are measured. Since the errors for the procedure of the PEP
and pyruvate measurement are rather high [4], the data
shown in Figure 6 should be interpreted rather as a trend
and not as quantitative measurements. Although meas-
urements for small growth rates are not available, the
PEP/pyruvate ratio could be predicted very well for
growth rates in the range between 0.15 1/h and 0.7 1/h.

In engineering science, sensor or measurement systems
are designed in such a way that they don't influence the
system that is measured. This is called "free of retroactiv-
ity". Considering the PTS operational mode in compari-
son to the non-PTS mode the difference of the curves is
due to the transport activity of the PTS. Hence, the sensor
PTS is not free of retroactivity; however, for small growth

http://www.biomedcentral.com/1752-0509/1/42

rates, indicating a severe stress situation, the difference
between the PTS mode and the non-PTS mode is negligi-
ble.

As representative of gluconeogenetic substrates, growth
on acetate was considered. The fluxes are adjusted in such
a way that a flux distribution published previously, is
matched. Measurements of the degree of phosphorylation
of EIIACT are in good agreement with the predicted values.
The results also confirm that the Pps enzyme has only
marginal influence on growth on acetate as described by
[12]. However, the observation that a Pps mutant strain
that grows simultaneously on glucose and acetate shows
an extended lag phase could not be explained with model
set up in this study.

The transcription efficiency according to Equation (37)
revealed that the Hill-coefficient n = 6 is rather high. This
might be due to several reasons: although the signal trans-
duction pathway starting from EI and ending with Crp is
rather short, several components and processes are
involved. First CAMP is generated by the adenylate cyclase
(Cya); second cAMP interacts with Crp to activate the
transcription factor. Furthermore, transcription of Cya is
also under control of Crp leading to a feedback loop.
Since the kinetics of the individual steps are not yet char-
acterized, the rather high Hill-coefficient can be seen as an
overall measure of the sensitivity of the system. The kinet-
ics determined are used to simulate the two dynamical
experiments and a good agreement between the simula-
tion data and the experimental data could be observed.
This shows that not only the steady-state behavior can be
reproduced well but also the dynamics of the sensor/actu-
ator system.

The simplified scheme is used to analyze the growth
behavior and the dynamics of Escherichia coli during
growth on glucose/glucose 6-phosphate and on glucose/
lactose. The model has to be extended to describe the
kinetics of the transporters and the kinetics of gene expres-
sion for the relevant transporters. Since experimental data
that characterize the K. value for glucose can be found in
the literature, the respective value Ky, for the degree of
phosphorylation was determined by a simulation experi-
ment with a random bi-bi double substrate kinetics, Equa-
tion (38), and experimental data from [4]. Parameters k,,,,
and Ky, are determined by a least-square fit.

Growth on glucose/glucose 6-phosphate reveals the inter-
esting observation that the concentration of the glucose
transporter decreased during growth on glucose 6-phos-
phate. To match the experimental data, an inhibitory
effect of the glucose 6-phosphate transporter UhpT on the
glucose transporter PtsG was assumed and described with
a simple kinetics. Previous studies revealed that the ptsG
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mRNA is under control by SgrS, a small RNA. It was
shown that high levels of intracellular glucose 6-phos-
phate or fructose 6-phosphate lead to ptsG mRNA degra-
dation [6,7]. Here, the model can be used to calculate the
intracellular levels of glucose 6-phosphate and PEP in
model variants with and without control of PtsG. As
shown in Figure 11, no difference could be detected, indi-
cating that the interaction between the two transporters is
based on the activity of the glucose 6-phosphate trans-
porter as suggested in [17]. Note, that to describe the time
course of PtsG in Figure 10, three factors, namely the inhi-
bition of PtsG by UhpT, induction of ptsG and global con-
trol of PtsG synthesis by Crp were taken into account and
have to be adjusted very precisely.

A comparison with a detailed model for catabolite repres-
sion justifies the set up of the new model. Altough vali-
dated under different experimental conditons, the
detailed model fails to describe growth on PTS carbohy-
drates on a broad range of the growth rate.

The approach is based on the development of a model
with a minimal number of parameters that are necessary
to describe the observations. Although some of the
parameters have no defined mechanistic interpretation
such models will facilitate the procedure of parameter
analysis and estimation. The model is capable to simulate
a broad range of experimental conditions and is suited for
further studies on control systems on E. coli since it can be
easily extended to describe other regulatory systems.

Methods

For simulation of the algebraic system, solving the o.d.e.
system, and parameter estimation MATLAB was used.
Files to simulate the system with MATLAB and the experi-
mental data can be found on a website [21]. For the exper-
imental data, see the [Additional file 1] and a further
manuscript from our group [4].
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ABSTRACT

Motivation: In E. coli the phosphoenolpyruvate: carbohydrate phos-
photransferase system acts like a sensory element which is able to
measure the flux through glycolysis. Since the output of the sensor,
the phosphorylated form of protein EllA, is connected to the activity
of the global transcription factor Crp, the kinetic and structural proper-
ties of the system are important for the understanding of the overall
cellular behavior.

Results: A family of mathematical models is presented, varying with
respect to their degree of complexity (hnumber of reactions that are
taken into account, number of parameters) that show a structurally
and quantitatively robust behavior. The models describe a set of expe-
rimental data that relates the output of the sensor to the specific
growth rate. A central element that is responsible for the structural
robustness is a feed-forward loop in the glycolysis, namely the acti-
vation of the pyruvate kinase reaction by a metabolite of the upper
part of the glycolysis. The robustness is shown for variations of the
measured data as well as for variations of the parameters.
Availability: MATLAB files for model simulations are available on
http://iwww.mpi-magdeburg.mpg.de/people/kre/robust/

A short description of the files provided on this site can be found in
the Supporting information.

Contact: kremling@mpi-magdeburg.mpg.de

1 INTRODUCTION

In recent years, the set-up of mathematical models for leellu

systems that describe metabolism, signal transduction game

expression has become very popular and will lead to a bette

understanding of the underlying molecular processes. Tosvk
ledge on the detailed interactions between the componkeatste
responsible for carbohydrate uptakeBrcherichia coliis steadily
increasing and current research on individual uptake sysli&e for

glucose uptake via the phosphoenolpyruvate (PEP): cadvatey
phosphotransferase system (PTS) reveals new players thdiem

play a role in control of these systems (Plumbridge, 199&)wét
ver, the knowledge on individual uptake systems is alreadtyand

is used as a basis to set up mathematical models to describe a

analyze the properties of the control circuits (e.g. se¢téBbrock
et al., 2006; Mahadevan et al., 2002; Santillan and Macke94).

In previous reports (Bettenbrock et al., 2006; Kremling ket a

2007; Bettenbrock et al., 2007) we analyzed in detail a $igaas-
duction pathway that senses the metabolic statE.afoli during
carbohydrate uptake and processes the signal to activateGep

*to whom correspondence should be addressed

is a global transcription factor involved in the expressibm large
number of genes, responsible for carbohydrate uptake adata-
xis. A key element in this process is the PTS shown in Figure 1.

| glycolysis
PEP.

o AT [ e
Prv ,// ‘V \\\

\

drain to monomers

carbohydrate transporters

Fig. 1. Scheme of the PTS i&.coli. It senses the flux through glycolysis
(shown here) and is also responsible for e.g. glucose ugtaiteshown).
The output, phosphorylated EIIA, activates the synthesisAMP which
again activates transcription factor Crp. In turn, the cARIP complex is
involved in transcription regulation of most of the carbdhgte transporters
and the PTS proteins. Pyk is the pyruvate kinase.

The PTS is a transport and a sensory system at the same time.
In a sequence of four reactions a phosphoryl group is trenesfe
from metabolite PEP to protein EIfA™ (EllA is used further in the
text), the output of the sensory system. E.g. in case of gkicihe
phosphoryl group is afterwards transferred the the actaakport
protein EIICE”¢ and then to the incoming sugar. Interestingly, a
Felationship between the specific growth ratand degree of phos-
phorylation of EIIA could be seen in various growth situag@f the
wild type strain growing on single substrates like gluctsetose, or
glycerol, and also for growth on mixtures of substrates tsegema

et al. (1998) and Bettenbrock et al. (2007)).

Often sensor elements can be regarded as logic elemenfsdhat
cess external stimuli into intracellular signals. As anregke, a
NOT element with high input will result in a low response oéth
output. Circuits representing different logic elements arainly
f}ound in signaling cascades of higher cells. Here, we pteaen
ogic element that can be found in bacterial metabolismhHiigxes
through the glycolysis, corresponding to high growth raesslt in
a low degree of phosphorylation of EIIA. This is surprisisgice,
assuming a linear reaction chain, high fluxes result in higcen-
trations of the metabolites in the pathways, based on thenalty)
monotone dependency of the reaction rate from the substoate
centrations. The PTS together with the glycolysis can nowdsn
as an element that allows the transformation of high fluxés an
low metabolite concentrations.
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Robustness is the insensitivity of a selected charadte(isine
course of a component, steady-state characteristicsoriefunc-
tion to sustain growth (Stelling et al., 2002), adaptioncpre
sion (Barkai and Leibler, 1997)) with respect to changesctéraal
or internal perturbations (different environmental caiotis, muta-
tions, altered kinetic parameters, or altered model siras). For
the contribution at hand, we define a set of structural andtifaa
tive robust mathematical models as models that fulfill th¥ang
conditions:

i) the models are quantitative, that is, they describe exper
mental data (time course data or steady-state charaatsyisti
representing a cellular function with a given accuracy;

i) the models of the family differ in the number of comporgnt
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basic network feedforward loop

the number of reactions, the number of regulatory patterrnFig. 2. Basic structure of the model variants. The PTS proteins epeet

and/or in the choice of the kinetic expressions for the ieact
rates.

The paper presents a set of models that describe the depgnafen
the PTS output phosphorylated EIIA from the specific grovatie x
that is represented by the uptake rate. Often modelers afeoce
ted with the argument that a model can reproduce any expetaine
data if the parameters are fitted properly. In this contitytwe

sented only byE 11 A. Some reaction steps in the glycolysis are lumped
since the drain flux to the monomers from the precursors dserarginal
and have no influence on the results. PTS substrates andT®stbstrates
enter via glucose 6-phosphate. Drain to pentose phosphgta/@y (ppp),
biosynthesis (bio) and TCA (tca) are included as well as @déency of the
respective concentration of glycolytic enzymes from theagh rate (white
arrows withu symbol). In the models presented here, the feed-forwand loo
is realized by glucose 6-phosphate that activates pyrlkiatese, see also
ain text.

show that only those models meet the above requirements (an

are therefore members of the family) that show a certairctru
ral motif, a regulatory pattern that is more frequent thamect.
In E. coli, the pyruvate kinase reaction is activated by a metabo
lite in the upper part of glycolysis. This activation reets a
feed-forward loop. Motifs for genetic networks have beescds-
sed frequently in the past and it turns out that the feed-dovioop
is one of the most common structures in Becoli transcriptio-
nal network (Mangan et al., 2003). Here, we found that thigfrieo
essential for the robustness of the transformation of aihighming
flux (high growth rate) into a low concentrations of phospteted
ElIA. The correct adjustment of the degree of phosphomgtatf
ElIA in dependence on the glycolytic fluxes is a necessityuie s
vive: if a carbohydrate is running out (low fluxes), the céié&s to
synthesize proteins for other energy sources. This cantmnigali-
zed if a transcription factor, here, Crp is activated. Tfaee from
a physiological point of view, the correct detection of thexftlis-
tribution needs a robust network structure. The feed-fadv@op is
just such a structural element that allows broad variatidiise par-
ticipating components (here, PEP and pyruvate) but gueearthat
the glycolytic flux is correctly mapped to the sensor outpete the
phosphorylated form of EIIA. The interpretation of a feedward
loop as a a motif that guarantees robustness is a new aspibet in
discussion on design principles of cellular systems.

2 RESULTS

Figure 2 shows a scheme of the biochemical network that ®res
sible for metabolism of carbohydrates. In general, sutestranter
glycolysis at different nodes. The scheme in Figure 2, lefes
considers substrates that feed into glucose 6-phosphatefirst
glycolytic metabolite. The scheme covers the central reastof
carbohydrate metabolism. The state variableg4dré P (glucose 6-
phosphate)T' P (triose phosphate)P E P (phosphoenolpyruvate),
Prov (pyruvate), and 11 Al EITAP. EITAl EITI AP represent all
the PTS proteins. Since the reactions of the PTS are verinfesin-
parison to glycolytic reactions or gene expression (Kragét al.,

2004), the individual reactions of the PTS can be lumpedthmge

and can be described by a single equilibrium constept.. Rates
Tupnpts @NATy, pes rEepresent uptake of either a non-PTS sugar or
of a PTS sugar, respectively. Rat€S, /vio» Tppp» T'tca/bio FEPresent
fluxes from glucose 6-phosphate into pentose phosphatevagath
and biosynthesis, flux from pentose phosphate pathway bagily-t
colysis and drain to TCA and biosynthesis from PEP, respalyti
Fluxes through glycolysis are representedry;, reno, andrpyk
and it is assumed that the respective enzyme concentratépend
on the growth rateu. Rater,;s represents the rate through the
PTS. The equations for the state variables are summarizéekein
Supporting information.

A feed-forward loop, the activation of the pyruvate kinageab
metabolite from the upper part of the glycolysis is desdtilvethe
literature (Waygood and Sanwal, 1974) (right side of Figt)teThe
activator of the pyruvate kinase is fructose 1,6-bis-phasp. In the
models introduced below, fructose 1,6-bis-phosphatetigwctuded
as a state variable. Therefore, it is replaced by glucoseosghate.
This is justified since in the upper part of the glycolysis dnain to
anabolism is very small and it can be expected that the stetaty
values do not differ very much between glucose 6-phosphade a
fructose 1,6-bis-phosphate.

2.1 Sensory system

At first, the sensory system is considered and a relatiorfshithe

output of the PTS, phosphorylated EIIA, has to be derivedhéf
flux distribution at PEP is considered for the case that th& BT
present but not involved in uptake (e.g. growth on non-PTgasI
like glucose 6-phosphate, glycerol, etc.) the reactioe aitthe

reversible reactiom,.s has to be zero:

kipts PEP EITA —
ks Pro EITAP = 0

Tpts

)

pts




with reaction parameterk,.s andk_,.. Taking into account that

pts*

the PTS proteins are either phosphorylated or not, the bvera

concentration' 11 Ag is introduced:

EIIA, = EIIA + EIIAP, )

and Equation (1) is reorganized with respectibl A P:

EIIAP — LAO:

Prov
L+ Kyts pgp

PEP

_ Prv 3)
PEP
pts + Pro

EITAq

with Kpts = k,;,/kpts. In case of an active PTS, that is, the car-
bohydrate is taken up and phosphorylated by the PTS, theaene

structure of Equation (3) is also valid. The following steatate
equation will hold for PTS substrates:

Tup_pts T'pts 5 (4)
and it follows
PEE prio — e
EITAP = SR ©)
Kpts + Prv

Equations (3) and (5) are the measurement equations for the

system at hand and are central for the understanding of {heriex
mental data. Itis required that the PEP/pyruvate ratioeeses with
increasing incoming fluxes (high growth rate) to guarantdewa
output (Figure 3A). Measurements of steady-state valugshos-
phorylated EIlIA during batch experiments with differentrtwan
sources taken from Bettenbrock et al. (2007) confirm thecaabr.
Equation (5) states that the degree of phosphorylation bk Bl
always smaller for PTS sugars than for non-PTS substratethan
the difference gets small for low uptake rates.

A A
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Fig. 3. Top: According to Equation (3), a high PEP/Prv ratio corcess
to high values fort 11 AP. Measurements are taken from Bettenbrock et al.
(2007), the solid line simulates Equation (3) with,;s = 0.7. Middle: PEP
and pyruvate (Prv) concentrations as functions of the droate. Sensitive

The PEP and pyruvate concentrations in a cell are difficult tOgircture since uncertainties lead to near equal chaistitsr Bottom: PEP

measure. The techniques established for the measuremergtaf
bolites generally generate data with high errors and riglialata
about the variation of PEP and pyruvate concentrations iwitea-

sing growth rate are lacking. The PEP to pyruvate ratio inllece@

be measured indirectly via the phosphorylation level ofAE&nd

this ratio has been shown to decrease with increasing groateh
The networks shown in Figure 2 lead to two different scersattiat
are depicted in Figure 3: High growth rates require high fused
lead to increased fluxes through the pyruvate kinase. Inwsonket
without further control both, the PEP and the pyruvate cotredi-

ons have to increase with increasing growth rate (see FRB)¢o

match this requirement. In this case the PEP to pyruvate isatiery

sensitive to small fluctuations in the metabolite conceiuina and
is most probably difficult to control. On the contrary, in awetk

that is controlled via the feed-forward loop shown in FigRr@ight

plot) high fluxes can be realized by lowering the PEP coneéptr.

In this case, the pyruvate concentration increases witte@sing
growth rate while the PEP concentration decreases. Thefhigh
through the pyruvate kinase, in this case, is realized bythtiea-

tion by glucose 6-phosphate. This scenario is much lesddray
small fluctuations or uncertainties in the metabolite cotreions,
since the ratio of a decreasing metabolite (PEP) and andsicig
metabolite (pyruvate) always decreases.

and Prv concentrations as functions of the growth rate inrdreited net-
work. Robust structure since uncertainties does not chiéweg@EP/Prv ratio
very much.

In the following different model variants are introducedttleor-
respond to two cases: uncontrolled network or controllesvork
with feed-forward loop.

2.2 Model variants

The model variants that are used for this study range forailddtto
simple, but are all based on the available biological kndg#e The
models differ (i) in the kinetic expression fog;,, rpyr, andrpas,
(i) in the dependency of the enzyme concentration on theviro
rate, and (iii) in the incorporation of the drain into biofyesis.
With this approach, models of different complexity are geted
and analyzed with respect to model verification by experialen
data.

Model 1 considers all dependencies shown in Figure 2 (lef) pl
Fluxesry,,p /bior Tppp aNATcq /bi0 are 40%, 20% and 25% of the
uptake rate (Holms, 1996). Levels of enzymes depend on tite ac
vity of the transcriptional/translational machinery amdloe activity
of transcription factors. This results in different contcations of
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enzymes if the whole range of growth rates is considered. E.

diluation rate during continuous cultivation. Experimedrdata for
catalytic enzymes like in the glycolysis are, however, natilable.
To take into account possible dependencies, a simple apsdtip
was included here: The dependency of scaled glycolytic rezy
concentrations/eo from growth rateu is as follows:

05
N u+ Ky

The equation states that there is a basal level for a slowtrate

of 50% of the maximal levely. For higher growth rates, the enzyme
concentration increases with increasjmgEquation (6) represents
only one possibility to take into account growth rate deperd
enzyme levels. If experimental data will be available, appiate
functions can be used here instead the given one.

The models also differ in the choice of the kinetics for thg- gl
colysis reactionrg;,, rpyr, andrpqe,. Here, mass action law or
Michaelis-Menten kinetics are used. Model 1 is the uncdietio
network. The variants of Model 1 that are used i the analyss a
summarized in Table 1.

Model 2 represents the controlled network. In the contdbfiet-
work, the pyruvate kinase reaction is controlled by a femavérd
loop. Different rate laws are used to describe the reacttesr e.g.
one choice for pyruvate kinase is based on recent publitatioat
use a Monod-Wyman-Changeux kinetics (Bettenbrock et @062
Chassagnole et al., 2002). Variants of Model 2 that are used f
analysis are summarized in Table 1.

e

€0

105, (6)

2.3 Parameter estimation and model assessment

The objective function to fit the parameters was formulatea ardi-
nary least square problem and a standard gradient basetttaigo
asitis provided by MATLAB was used for solving. In the Intrad
tion we suggest to use a measure that allows to assess gtiaeljt
the results of the parameter estimation. Since the measumtem
error of the measurements (experimental data used areilsgscr
in detail in (Bettenbrock et al., 2006, 2007)) can hardly btedni-
ned we calculate the estimated standard deviation (oruakidean
square (Montgomery et al., 20013) Finally we relates on the
overall concentratiof® 11 A, to get a % value:

1 1
B 0 \/NT" e

o
EITAy EITAo

with residuals:;, N the number of data points amdthe number of
parameters that were used in the estimation. Experimerres pes-
formed with different substrates and substrate combinatimder
different conditions (Bettenbrock et al., 2006, 2007) avid= 45
data points are available. The number of estimated parasniste
n =4, thatis,kgy, kpyk, kpan, andk,:s are estimated.

The model with the best fit is Model 2b, that is, the model with
the highest complexity (Monod-Wyman-Changeux kinetiastfe
pyruvate kinase, drain fluxes to monomers as well as growtkrte
dent enzyme concentrations are considered). In generagrénts

o = 100 @)

g
Seeto et al. (2004) report on the dependency of PtsG from th8

Table 1. Summary model variants and kinetic expressions. Upper
art:  Columns describe rate of glycolysis,;,, rate of pyru-
vate kinaser,,r, pyruvate dehydrogenase,q;, growth dependent
enzyme concentrations E{), drain to biosynthesis dfain) for the
different model variants. tMonod-Wyman-Changeux kinetics:
kpyr PEP (14PEP/Kpgp)?~ 1 (14G6p/Kaey)P 2 . o .
Kppyép (<1+(PEP/KpEp)ﬁ )(1+GGP/KGG£)H2 i)L)’ *MM: Michaelis
Menten. The lower part specifies the kinetic expressiond.use

| | 7oty | royr | rpan | B[ drain |

M1 (gl |pl di yes| yes
Mla | gl |p2 di yes| yes
Milb [ g2 | p2 d2 yes| yes
Mlc [ g2 |pl di yes| yes
Mld | gl | pl dl no | yes
Mle | g1 | p2 dl no | yes
M1f [ g2 | p2 di no | yes
M2 [gl |pl* |dl yes| yes
M2a | gl |p2* |d2 yes| yes
M2b [ gl | p3 di yes| yes
M2c [ g2 | pl* |dl yes| yes
M2d [ g1 | pl* |dl no | yes
M2e | g1 | p3 dl no | yes
M2f [ gl | pl* |dl no | no

[ Kinetic expression |
gl Mass action kg1y G6p

G

g2 MM * Koty Gopt e
pl Power law kpyx PEP?
p2 Power law kpyx PEP*
pl* | Powerlaw| k. PEP? G6p?
p2* | Powerlaw| k.. PEP* Gép*
p3 Mwct

di Mass action| kpyr Pro
d2 Power law kpyr Pro?

2.4 Model analysis

In this section the sensitivity of the objective functienis analy-
zed with respect to (i) variations of the measured data andith
respect to model parameters. For the analysis one repagigent
of the model class M1 (uncontrolled network) and one represe
tative of model class M2 (controlled network) were consédeiThe
models are comparable since their structure is the sametettee
feed-forward loop. It is expected that other model varidrgbave
similarly than the representatives.

2.4.1 (i) Variations of the measured datd&ecently, we applied
a statistical procedure — the bootstrap method (Efron abdh
rani, 1993; DiCiccio and Efron, 1996) — to determine paramet

of Model 2 have better results than the models of class Modelincertainties for nonlinear systems (Joshi et al., 2006¢. fethod

1, except for Model 1c. Interestingly, Model 2f with the silegt
structure and the simplest rate laws but taking into acctheteed-
forward loop also reaches a goed/alue. Figures 5 and 6 compare
some of the model variants with experimental data.

surmounts the theoretical limitations (e.g. the Fishéorimation
matrix gives only a lower bound for the parameter variances i
case of systems that are nonlinear in parameters) by asgedhsi
uncertainties in statistics with data from finite sampleskelLa




. Model variant 1 Model variant 2

M1 Mla Mib Mic Mid Mle Mif

M2 M2a M2b M2c M2d M2e M2f

Fig. 4. Comparison ofo values according to Equation (7) for different
model variants. Models of class 2 show for almost always &bbehavior
than model of class 1.
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Fig. 5. Comparison of model variant M1a (top) and M1d with experitakn
data. Simulation: The solid line represents non-PTS sugasdashed line
PTS sugars. Experimental datal non-PTS carbohydrates ahdPTS car-
bohydrates from Bettenbrock et al. (200§). non-PTS carbohydrates and
A PTS carbohydrates from Bettenbrock et al. (2007). Numbelisate the
different carbon sources as described in the legend.

Monte-Carlo method, the bootstrap method uses stochsteats
and repeated simulations to analyze the properties of theersy
under consideration.

Briefly, the analysis is performed in such a way, that anabhiti
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Fig. 6. Comparison of model variant M2b (top) and M2e with experitaén
data. The solid line represents non-PTS sugars, the dasiecBTS sugars.
Same experimental data as in Figure 5.

assess the model quality. Due to measurement errors theti@pe
of the experiment leads to a slightly different set of d&taand the-
refore to a different set of estimated parameters anélue. The
bootstrap approach now uses a large sd8-afmes replicated expe-
rimental dateéS41, Sz, Ss - - - Sp to calculate statistical properties of
the resulting distribution of the (re)-estimated set ofgpaeters and
o values. Formal we look for

CR”[o] = f(Yu) ®)

with C'R% is a 95% confidence region efwith respect to modifi-
cation of the measured data,. The values folC'R*® can directly

be read off from the distributions shown in the following figs.
Figure 7 shows the results of the bootstrapping with reqjpatica-
surement variations for model M1 and M2. For each of the 2000
runs, every single data point was modified by adding a randuisen
(normal distribution) of 2%. As can be seen, model variantdM2
representing the controlled network shows a narroweribligton

of theo values.

2.4.2 (ii) Variations of parameters An analogous approach is
applied to determine the influence of parameter variatjoos the
o values:

CR”[o] = f(p)- ©

To calculateC' R[], the model parameters that were used for

set of experimental daté is used as a data base. Performing para-parameter estimatiorkf;,, kpan, kpts, andkyy) are altered by

meter estimation result in a first set of parameters @an@lue to

adding a random number again from a normal distribution (10%
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Fig. 7. Bootstrapping results for model M1 (top) and M2 (bottom)stdt
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gram for 2000 runs for. The upper and lower values of the confidence Fig. 8. Sensitivity ofo with respect to random parameter variations. Top:

region are 35.22%, 19.21% for M1 and 23.47%, 13.19% for M&pee-
tively.

simulating the system, and calculatisgvith Equation (7). Figure 8
reveals that the model representing the controlled systaws a
narrower distribution.

3 CONCLUSIONS

Robustness in cellular systems has been discussed venefrty)
in the last years. A prominent example is the bacterial cliari®
where an integral feedback loop is responsible for predaptation
of the system with respect to internal perturbations.

The signal flow, responsible for protein synthesis in Ehecoli
carbohydrate uptake network has been under investigatiora f
long time and several players have been described in thatlite.
Besides local control by carbohydrate specific regulatirs,glo-
bal regulator Crp is involved in transcription initiatioorfalmost all
genes in the network. Experimental data revealed a rekdtiprbet-
ween the specific growth rate Bf coliand the output of the sensor
phosphorylated EIIA of the signaling pathway. The sensasueges
the flux through the central pathways. This is realized bytevowk
structure that transforms a high flux into a low response amdbe
seen therefore as a logic element with NOT function. A nundfer
model variants are thinkable that allow a quantitative dpson of
the experimental data. Therefore, a number of differentetwdere
set up and analyzed.

Model development is always a competition between a r@alist
description, that is based on the available knowledge, aredia-
ced or simplified description, that takes into account ohly nost
important characteristics. In this contribution, the medqeesented

model M1d, bottom: model M2d. The upper and lower values efdbnfi-
dence region are 27.81%, 18.45% for M1d and 20.42%, 13.2%5%/2al,
respectively.

show a different degree of complexity based on the kinetires«
sion for the single rates or the number of reactions that alkent
into account. The idea behind this is to show that availakjee
rimental data can be described with good accuracy not onlg by
single model structure but by a whole class of models. Here, a
number of different model structures, taking into accouffeent
flux distributions, kinetic expressions and possible depenies of
the enzyme concentrations on the growth rate are set up &ed in
stigated. The analysis reveals that only those model Jaridrat
include a special motif, a feed-forward loop, can descriteedata
with high accuracy. This feature is named quantitative stiess,
since the reproduction of experimental data - here a chenstit
curve - is required. The minimal value is achieved with modei-
ant M2b ¢ = 13.19%) and the maximum with model variant M2f
(o0 = 15.2%), indicating that the model variants show nearly equal
accuracy. For the models without feed-forward loop theedéhce
is much larger (the values are between 14.9% and 23.6%, see al
Figure 4).

The analysis of the circuit reveals that the feed-forwamplis
a robust element. Small variations or disturbances wikcifthe
function of the PEP/pyruvate ratio only marginally (Figl®e We
expected that with model variants M2 it is possible to déscelso
slightly different experimental data with higher accuralegn with
model variants M1. Therefore, a bootstrap approach wasmeed
and the analysis reveals that indeed model variants M2 gitterb
results than model variants M1 (Figure 7). The 95% percest4n
val for model variant MICR% = 16% while for model variant




M2 CR% = 10.28%. To assess the influence of the parameters,

the four parameters that were estimated are randomly mddifid

o values are calculated. For Model M1d the 95% percent interva
CR% = 9.36% while for model M2dCR* = 7.17%. From
the results it could be concluded that model variants M2Juinc
ding the feed-forward loop are more appropriate to desdtilee
available data because they show better structural anditpive
characteristics than models without the loop.
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Computer tools can support and accelerate the development and implementation of first-principle
models for chemical and biological processes significantly. Several application examples illustrate
this in the contribution. Models of a biochemical reaction network, of a catalytic fixed bed reactor,
and of two chemical production processes are considered. The models are implemented in a
structured way in the process modeling tool PROMOT, whose key features are discussed. The
structuring of the models is based on a uniform structuring methodology whose main ideas are

presented as well.

1. Introduction

In chemical engineering, dynamic process models
based on conservation laws have become an indispen-
sable tool for the development of new processes and the
improvement of existing ones. In biology, the rapidly
increasing knowledge of cellular processes guides the
way for a quantitative description of cellular systems.
However, the development of realistic and predictive
models is a challenging and time-consuming task in
both sciences, for several reasons: To a large extent,
modeling consists of choosing, validating, and revising
physical model assumptions. It is an iterative process.
Virtually every model of a complex process is inadequate
at the beginning and requires a lot of refinements before
it delivers satisfactory results. Often, it is necessary that
experts from different fields share their knowledge
during the model development process. In such a case,
engineers used to differential equations, on the one
hand, and chemists and biologists thinking in qualita-
tive models, on the other hand, must find a common
language to exchange their ideas. The resulting detailed
process models typically contain a large amount of
information. Usually, they are implemented in a mono-
lithic way without much internal structuring. This
makes the understanding and debugging of the model
difficult. Existing models are not very transparent and
are hardly reusable for another modeler. Furthermore,
the implementation of complicated differential equa-
tions in a flow-sheet simulator is tedious and error
prone. Finally, in most simulation tools, it is in the
responsibility of the modeler to formulate his models
in a manner suitable for numerical treatment, for
example, to avoid a high differential index of a dif-
ferential algebraic system.

In past years, efforts have been made to support the

* To whom correspondence should be addressed. Tel.: +49
3916110 361. Fax: +49 391 6110 513. E-mail: mangold@mpi-
magdeburg.mpg.de.

T Max-Planck-Institut fiir Dynamik komplexer technischer
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# Otto-von-Guericke Universitéit Magdeburg.

§ Universitdt Stuttgart.

10.1021/ie0496434 CCC: $30.25

model development process by computer tools. The main
objectives of a modeling tool are (i) to let a user
concentrate on the physical modeling task and to relieve
him from mechanical coding work, (ii) to increase the
reusability and transparency of existing models, (iii) to
simplify the debugging process during model develop-
ment, and (iv) to provide libraries of predefined building
blocks for standard modeling tasks such as reaction
kinetics, physical properties, or transport phenomena.

In the field of chemical engineering, general structur-
ing methodologies have been proposed by several
authors.176 On the basis of these theoretical concepts,
modeling languages as well as modeling tools have been
developed.”~13 In the field of mathematical modeling of
biological systems, and especially of cellular systems,
computer tools'4~1? as well as language standards for
model formulation?® have been published.

The purpose of the present contribution is to give a
review on recent results in the field of computer-aided
modeling that have been obtained at the Max Planck
Institute in Magdeburg. These results are based on basic
research done within the joint research project SFB 412
at the University of Stuttgart.6122122 In the next section,
a general model structuring methodology will be pre-
sented that is applicable to biological as well as to
chemical engineering processes.® This method provides
the theoretical foundation for the process modeling tool
PROMOT,2:1? whose key features will be discussed in
the following section. A number of different applications
have been implemented in PROMOT, so far. In the area
of chemical engineering, this includes reactive distilla-
tion processes,?! integrated chemical production plants,?3
and model libraries for membrane reactors?* and fuel
cell systems.?5 In the field of biological cellular systems,
a very comprehensive model for the growth of the small
bacterium Escherichia coli on carbohydrates has been
developed.26:27

Three examples selected from the various applications
are presented in the last part of this contribution to
illustrate the concepts.

© 2005 American Chemical Society

Published on Web 11/18/2004
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Figure 1. Levels of process structuring for the example of a simple chemical engineering process. Each level is structured into components
and coupling elements. An elementary modeling entity on one level can be decomposed into systems of components and coupling elements

on a lower level.

2. Model Structuring Concept

The Network Theory of Chemical and Biological
Processes® proposes a way to decompose various pro-
cesses into hierarchical units in a systematic manner.
A model of a chemical plant, for example, can be
decomposed into models of process units such as reac-
tors, storage tanks, and separation units, the elemen-
tary modeling entities on the level of process units (see
Figure 1). This is the level of modularization that
standard flowsheet simulators are based on. Further,
each process unit model consists of models of thermo-
dynamic phases and therefore can be decomposed into
phase models. Models of thermodynamic phases are
elementary modeling entities on the level of phases.
Finally, a thermodynamic phase consists of storages for
mass, energy, and momentum and therefore can be
decomposed further on the level of storages.

A completely analogous hierarchical decomposition
can be made for cellular systems. However, in biology,
the focus is on the storage level. Because the biological
phase consists of hundreds of components that interact
in a biochemical reaction network, a structuring of the
storage level aims at grouping together elements with
common physiological tasks. Therefore, the modeling
concept for chemical processes is complemented in an
ideal way by considering biochemical reaction networks.

The idea of the network theory is to describe each
hierarchical level by two basic types of elements,
components and coupling elements. Components possess
a hold-up for physical quantities such as energy, mass,
and momentum. Coupling elements describe the inter-
actions and fluxes between components. Examples for
components are reactors on the level of process units,
thermodynamic phases on the level of phases, and mass
storages on the level of storages. Examples for coupling

X0 x©

@ CE(CRYCD @
J©o J©n

Figure 2. Connection of two components by a coupling element.

elements are valves on the level of process units, phase
boundaries or membranes on the level of phases, and
reactive sinks and sources on the level of storages.
Components are described by a thermodynamic state
or state vector X. The state of a component may be
changed by fluxes J, for example, fluxes of mass or
energy. The general differential equation of a component
therefore reads:

X
Pl J (D

The task of the coupling elements is to determine the
flux vectors J. In accordance with the principles of
irreversible thermodynamics, it is assumed that the flux
vector is an algebraic function of potential differences
or potential gradients. A simple example of a coupling
element is the heat flux between two phases, which is
driven by the temperature difference between the
phases. The exchange between components can be
visualized by a diagram as shown in Figure 2. The
components C and C; pass information on their states
to the coupling element CECxC). Depending on those
states, the coupling element computes the flux vector
and returns the result to the two components. This
establishes a bidirectional signal transfer between
components and coupling elements.

2.1. Example: Well-Mixed System. A simple ex-
ample may illustrate this structuring concept on the
level of storages. A CSTR with a single isothermal
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Figure 3. Structuring of a well-mixed reactive phase on the level of phases and on the level of storages.

reactive phase and constant volume is considered (see
Figure 3). The component mass balances for this system
read

dp; .
VE = J[m)] @=1,..,NC) (2)

JIm] = Vvir(p) M; + JYm] + J%m]  (3)
Ogr

In egs 2 and 3, V is the volume of the reactive phase,
NC is the number of components, r is the reaction rate,
p; is the partial density of component ¢, M; is its molar
mass, and v; is a stoichiometric coefficient. JV[m;] and
J@[m,] denote external component mass fluxes into the
phase. The structured representation of the reactive
phase on the level of storages is shown in the lower part
of Figure 3. The phase consists of NC component mass
storages. The component mass storages provide infor-
mation on the partial densities p;. They contain the mass
balances in the general form (2). The mass fluxes J[m;]
on the right-hand side of (2) are signal inputs for the
component mass storages. They are determined by
adding up the fluxes JV[m;] and J?[m;] across the
phase boundary, on the one hand, and the mass fluxes
caused by chemical reaction inside the phase, on the
other hand. The mass fluxes caused by chemical reac-
tion are the output of the reactive coupling element og.
This coupling element needs the partial densities p; as
signal inputs, because the reaction rate r depends on
those values. Therefore, or establishes a coupling
between the different component mass storages.

On the level of phases, the reactive phase is an
elementary component with the mass fluxes JV[m;] and
J@[m,] as signal inputs and the partial densities p; as
signal outputs.

The structuring concept illustrated here for well-
mixed systems can be extended in a straightforward
manner to other classes of chemical processes. This was
described in detail in previous publications for distrib-

uted and particulate systems?2 as well as for electro-
chemical processes.2®

2.2. Extensions of the Concept to the Structur-
ing of Biological Models. In the context of biological
models, the overall aim is to provide a framework for
modeling cellular systems that will serve as a basis for
software tools. These tools should support model setup
as well as model analysis. The focus is on the biochemi-
cal reaction network, which represents the storage level
introduced above. The modeling concept is based on the
analysis of the available knowledge on (i) metabolism,
that is, the part of the biochemical reaction network that
is responsible for the breakdown of the nutrients and
the synthesis of the macromolecules, and (ii) signal-
transduction systems, that is, the part of the biochemi-
cal reaction network that senses the environmental
conditions and translates the extracellular stimulus into
an intracellular signal. The procedure of decomposing
the biochemical network thus has to be based on the
molecular structure of the units that have to be defined
in such a way that a cellular unit is represented by an
equivalent mathematical submodel. This modular ap-
proach is a new feature in the modeling of cellular
systems and guarantees a high transparency for biolo-
gists and engineers.

Analogous to the approach in chemical engineering,
the basis of the framework is the definition of a complete
but finite set of elementary modeling objects. They
should be disjunct with respect to the biological knowl-
edge they comprise to prevent overlapping. In the
biological framework, components are represented by
small metabolites such as sugars and amino acids, and
macromolecules such as proteins or DNA. Coupling
elements are represented by biochemical reactions.
Here, two types have to be distinguished: enzymatic
reactions and polymerization processes. Enzymatic
reactions are responsible for uptake and breakdown of
nutrients. Hundreds of enzymes are active inside a cell
and show therefore a high substrate specificity. Polym-
erization processes are rather slow processes in com-
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parison to enzyme-catalyzed reactions. For instance, the
transcription of the genetic information on the DNA into
RNA and the translation of the RNA into proteins are
typical polymerization processes.

Because the enzymatic and the polymerization pro-
cesses are controlled by signal-transduction systems, a
further class, the signal transformers, is introduced.
Signal transformers process signals on different levels.
As an example, gene expression, that is, transcription
and translation, is considered. Here, the information
from different transcription factors (specialized proteins)
that are involved in the process has to be modeled in
such a way that the expression efficiency, that is, the
rate at which the protein is synthesized, can be calcu-
lated. The elementary modeling objects defined so far
are summarized in Figure 4.

The increasing knowledge about the interconnection
between different biological pathways allows the devel-
opment of increasingly complex models. These models
offer a highly detailed picture of metabolic, signal
transduction, and regulatory networks, but the proper-
ties of these systems as a whole become difficult to
grasp. The definition of functional units, that is, the
aggregation of elementary modeling objects to higher
structured units, might help to unravel this complexity.
Once units are found, they are systematically analyzed
and classified, creating a library of units that can be
reused. This simplifies the setup of models because
many parts of biological networks appear recurrently.

Two completely different approaches are considered
to define the units. The first approach defines the units
according to three biologically motivated criteria:2® (i)
A common physiological task. All elements of a func-
tional unit contribute to the same physiological task.
Easily recognizable examples are the specific catabolic
pathways for individual carbohydrates, or the biosyn-
thetic pathways for the different amino acids, nucle-
otides, and cofactors from their precursors. (ii) Common
genetic units. The genes for all enzymes of a functional
unit are organized in genetical units, that is, units that
are expressed in a coordinated manner. (iii) A common
signal-transduction network. All elements of a func-
tional unit are interconnected within a common signal-
transduction system. The signal flow over the unit
border (“cross-talk”) is small as compared to the infor-
mation exchange within the unit, such that the coordi-

nated response to a common stimulus helps to identify
the members of a unit. The second approach delimits
functional units from a theoretical point of view. An
interesting criterion might be elements without retroac-
tive effects, because they could be considered indepen-
dently and analyzed by the means of system theory.
Different models, starting from very simple models to
models for complex signal-transduction systems, were
analyzed, and functional units were defined.2930

On the basis of the studies on the carbohydrate
uptake in the bacterium Escherichia coli, a number of
functional units could be defined and were implemented
in the PROMOT environment.!?

3. The Modeling Tool PROMOT

Models of chemical and biological systems that are
structured and constructed according to the aforemen-
tioned modeling concept can be implemented in the
Process Modeling Tool.'2 This tool allows the construc-
tion of structured models via a graphical user interface
and with a modeling language. The final models are
transformed into a differential-algebraic equation set,
which can be analyzed in the simulation environment
Diva3! or in Matlab.3? In the following section, the
construction of models in this tool and some aspects of
the model processing will be elaborated.

3.1. Modeling Elements. In the previous sections,
a systematic approach for structuring models of chemi-
cal and biological systems was summarized. The com-
ponents and coupling elements of this approach are
implemented as modules in PROMOT. As an example,
we use a model of a regulated metabolic pathway (see
Figure 5), which is modeled on the level of storages. The
whole pathway is represented by a module in PROMOT,
an encapsulated entity containing a mathematical
description of its behavior. This module is composed of
submodules that represent storages (ellipses), reactions
(squares with arrows), and signal-transformers (rect-
angles). This module is part of a larger model, describing
the regulated carbohydrate uptake of E. coli (see section
4.1).

The submodules in the figure are instances of other
module-classes; for example, the elements lac und allo
are instances of the module-class storage-intra-x. The
interface of the module is represented by terminals
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(smaller squares on the outer edges of the module).
Terminals are connection-points that contain a group
of named variables and can be linked with other
compatible terminals on the next higher level of the
aggregation hierarchy. A terminal can represent flows
of mass, energy, momentum, or signals. In biological
systems, terminals represent mass flows (e.g., the
terminal of lac) or concentrations of substances acting
as signals. Terminals of submodules can be propagated
as terminals of the containing module; for example, the
left terminal a of r_lac is propagated as t_lace for the
whole lactose module.

Users of PROMOT can build composed modules such
as lactose by selecting module-classes on the left of the
window shown in Figure 5 and placing them as sub-
modules into the working-area on the right. Submodules
can be parametrized with appropriate initial values and
parameter settings and can be connected using their
terminals. Two or more compatible terminals can be
connected with links. Terminals are considered compat-
ible, if each of them contains a set of variables with the
same names. The generation of coupling equations for
a link is shown in more detail in Figure 6.

PROMOT allows one to distinguish variables for
potentials (e.g., ¢ in Figure 6) and fluxes (e.g., 7) in the
set of interface variables. When linking terminals,
coupling relations are established between all variables
in the set of connected terminals that have the same
name. The flux variables sum up to zero in one link,
whereas the potentials of all connected terminals are
set equal. In the example, all ¢’s are potentials, whereas
all 7s are fluxes. This connection-method allows for a
flexible and extensible setup of network-like modules,

because additional modules can be easily added without
changing the interface of the modules already present.

Elementary modules like r_lac contain local variables
and model equations defined by the user with the Model
Definition Language (MDL)!2 of PROMOT. The r_lac
module in Figure 6 calculates a reaction rate r using
the kinetic law f. To allow connections to the module
interface, variables are assigned to the different termi-
nals. In Figure 6, this is shown for ¢, and r,. Although
PROMOT allows for the construction of models out of
encapsulated modules, the modeling scheme is equation-
based and the equations are fully transparent. Users
can add their own modules with special equations or
extend models from a library with their own equations
and libraries. In general, modules can contain a linear-
implicit differential—algebraic equation set which reads

B(,x,p) x = f(t,x,p) 4)
In eq 4, x’s are the state variables, p’s are model
parameters, B is a possibly singular and state-depend-
ent descriptor matrix, and f’s are nonlinear functions
for the calculation of the right-hand sides of the equa-
tions. Important for equations in the field of chemical
engineering is the possibility to use arrays of variables,
equations, and also modules for the efficient modeling
of repeated elements in plant models (see also the
column models in section 4.3.1).

When chemical engineering systems are modeled,
purely continuous models are often not sufficient,
because discontinuities in the model equations as well
as discrete controllers have to be described. Therefore,
PROMOT employs a concept of hybrid modeling which
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Figure 7. Model of a tank with overflow, using a Petri net for
switching the weir equation.

uses an additional Petri net3? to describe the discrete
part of the model. The places of the Petri net represent
discrete model states, and the transitions describe
changes of the discrete state that can be triggered by
changes in the continuous variables. On the other hand,
the current state of the Petri net (i.e., the marked
places) changes the equation system locally through
conditional equations or by changing characteristic
parameter-values. The concept of Petri nets has been
chosen in favor of the simpler state machines®* because
it allows one to describe parallel and synchronized
discrete behavior, which is necessary for more complex
control programs. As a very simple example, the model-
ing of a tank with an overflow is shown in Figure 7.
The Petri net switches between Full and Not_Full
depending on the current height A of the liquid in the
tank. The weir equation for the overflow J,[n] is a
conditional equation, because it is only active as long
as Full is marked and the liquid reaches the overflow.
More sophisticated examples of hybrid models with
coupled discrete and continuous parts are presented in
the reactor model of section 4.3.2.

3.2. Model Processing. All modeling entities in
PROMOT are organized in a specialization hierarchy
with multiple inheritance. The modeler can therefore
use object-oriented implementation techniques such as
abstraction and polymorphism to describe his modules.
This becomes especially helpful when implementing
general modeling libraries. In this case, general model
elements such as balance equations and property cor-
relations can be implemented in reusable superclasses.
For a specific application, general modules can be
extended and specialized by deriving subclasses that
inherit all general parts and add application-specific
equations and parameters. Examples for the use of
object-oriented libraries are given in the next sections.

The structured and object-oriented view of a model
is particularly effective for model formulation and
manipulation. On the other hand, the numerical solu-
tion can be carried out more efficiently with the plain
equations. Therefore, all further operations are carried
out using a global DAE that is obtained from all local
equations from the different modules and the coupling
equations generated by links. Another issue is related
to the numerical solution: Due to the structured way
of modeling that generates coupling relations, and
because the elements in model-libraries tend to be
implemented in a general way, often using some extra
equations, models typically contain a large number of
simple algebraic equations. Before generating simula-
tion code, PROMOT therefore analyzes and optimizes
the system of equations. For this purpose, the incidence
matrix of the equations is computed and an algorithm

proposed by Tarjan3> is used to transform this matrix
to block-lower-triangular form. Explicit algebraic equa-
tions can be identified in this matrix and are symboli-
cally transformed into a sequence of explicit assign-
ments to intermediate variables. These assignments can
be calculated in the simulation code without involving
the numerical equation solver, which improves simula-
tion performance. In this process of optimization, also
repeated calculations of constant expressions and un-
used variables are removed from the model. The pre-
processing step is not only useful for optimizing the
efficiency of the numerical solution, but it also unveils
structural inconsistencies (e.g., singularities) of the
equation system. If such conditions occur, the user is
provided with debugging information for detecting the
error in the model structure quickly. Finally, the equa-
tion system is transformed into simulation code using
the Code-Generator3® for Diva.

4. Applications

In this section, application examples for the structur-
ing methodology and the modeling tool PROMOT are
presented. Guided by the hierarchical modeling concept,
examples for the formulation on the storage level, on
the level of phases, and on the level of process units will
be discussed.

The example on the level of storages is chosen from
biology. The carbohydrate uptake of bacteria is consid-
ered. The challenge here is to structure a huge reaction
network into smaller functional units to understand the
various interactions between the reaction steps. In this
sense, the biological example has some similarity to
chemical engineering systems with complex reaction
kinetics such as combustion processes.

The example on the level of phases is an arrangement
of thermally coupled fixed bed reactors. Spatially dis-
tributed models of thermodynamic phases have to be
coupled in this case. The objective of the structuring on
the level of phases is in this case to support the design
and analysis of a novel integrated process.

On the level of process units, models of two chemical
production processes are presented. It is shown that
many of the modules defined for one process can be
reused for modeling of the other process. Furthermore,
the question of iterative refinement of process unit
models is addressed. In many cases, it is reasonable to
start with very simple process unit models, and to
gradually increase the level of model detail of selected
apparatuses during the model development process.
This can be done conveniently by applying a top-down
modeling strategy, that is, by building up a hierarchy
of more and more detailed models of a certain process
unit. In addition, the second production process serves
as an example for the modeling of discrete events using
PROMOT.

4.1. Application Example on the Level of Stor-
ages: Nutrient Uptake of a Bacterium. An interest-
ing example for model setup of a biological system is
concerned with the question of nutrient uptake. The
control of the carbohydrate uptake in bacteria has been
investigated for a long time. Starting with the pioneer-
ing work of Monod,3” a number of components were
detected that are responsible for the coordination of
sugar uptake. It is widely accepted that the phospho-
transferase system (PTS) is one of the important
modules in the signal-transduction machinery of bac-
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Figure 8. Survey of all submodules of the model.2” The global
signal-transduction unit comprises the PTS module, the synthesis
of the second messenger cAMP, and the binding of the regulator
protein Crp to the respective binding sites.

teria. The PTS represents a transport system (in mi-
crobiology, a protein that is membranstanding and
transports components from the extracellular environ-
ment into the cell is named a transport system), and at
the same time it is part of a signal-transduction system
responsible for carbon catabolite repression.3® Catabolite
repression means the dominance of one carbohydrate
uptake system over another one. If two sugars, for
example, glucose and lactose, are present in the me-
dium, glucose is taken up first while lactose is taken
up only after the depletion of glucose. The connections
of all submodules are shown in Figure 8. The lactose
pathway is shown in detail in Figure 5. As can be seen,
protein EITA and its phosphorylated form P~EIIA are
the main output signals of the PTS. The output signal
Y from the Crp submodule describes the transcription
efficiency of the genes and operons under control of Crp.
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The glucose and the lactose pathway are connected to
the liquid phase, which is represented by Glcex and
Lacex. Both pathways feed into the central catabolic
pathways. The entire model comprises 30 state vari-
ables.26:27

The PTS controls via output EIIA the lactose path-
way. EIIA is an inhibitor of the lactose transport
protein. Providing both sugars at the very beginning of
a batch experiment, glucose is taken up immediately,
while lactose is taken up after glucose has run out
(Figure 9). During the second growth phase, galactose
is excreted in large amounts in the medium. The enzyme
for splitting intracellular lactose, LacZ, is synthesized
first in the second growth phase. Protein EIIA, the
output of the PTS, shows an interesting dynamical
behavior. After glucose has run out, EIIA switches very
fast to the phosphorylated form and returns slowly back.
This is based on the fact that the PTS is active during
glucose uptake in the first growth phase and is active
also during the second growth phase due to the splitting
of intracellular lactose into intracellular galactose and
glucose. The intracellular glucose is also phosphorylated
by the PTS.

The model is available in the PROMOT/Diva environ-
ment.1® Parameters are estimated using a number of
experiments with different mixtures of carbon sources
and mutant strains. The mutant strains differ only in
one single gene. This strategy allows one to analyze the
influence of different proteins in an isolated way and
to estimate parameters from the time courses.

4.2. Application Example on the Level of
Phases: Autothermal Fixed Bed Reactor. An ex-
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Figure 9. Time course of simulation results (solid lines) and experimental data (symbols) for a selected experiment with the wild-type
strain LJ110 (after??). Glucose is taken up immediately, while the uptake of lactose is repressed. This is referred to as diauxic growth.
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Figure 10. Autothermal reactor concept: Two catalytic fixed bed
reactors coupled thermally by cocurrent heat exchange. White and
black arrows indicate different mass fluxes.

ample from chemical engineering may serve to illustrate
the structuring concept on the level of phases. An
autothermal reactor concept is considered. The purpose
of an autothermal reactor is to carry out weakly
exothermic reactions without providing external heating
energy. This can be achieved by integrating heat
exchange and chemical reaction in one apparatus.?®
Dynamically operated autothermal reactors make use
of the fact that a creeping reaction front in a catalytic
fixed bed causes an overadiabatic temperature rise.*0
In the well-known reverse-flow reactor,*! the creeping
reaction front is generated by a periodic flow reversal,
that is, in a forced periodic operation mode. Alterna-

connecting pipe

(internal
boundary condition)

tively, it is also possible to design a reactor in such a
way that the creeping reaction fronts and the resulting
overadiabatic temperature rise are created by autono-
mous periodic oscillations without any external forc-
ing.4243 A reactor concept of this kind will be modeled
in the following.

The reactor is divided into two reactor lines with
separate inlets and outlets (see Figure 10). Each reactor
line consists of two catalytic fixed beds in series. The
first bed is jacketed by a gas channel that establishes a
cocurrent heat exchange. The second bed is insulated
toward the environment. The reactants enter the heat
exchanger section, flow through the insulated section,
and leave the reactor via the gas channel of the other
reactor line. In this way, a thermal feedback is estab-
lished between the two reactor lines. This feedback can
be used to generate circulating reaction fronts in the
arrangement: A hot spot caused by a creeping reaction
front in one of the reactor lines triggers a new reaction
front in the other line when reaching the gas channel.
For a simple oxidation reaction of first order, it can be
shown that two types of autonomous periodic solutions
coexist under certain operation conditions: a symmetric
solution with a creeping reaction front in each of the
reactor lines, and an asymmetric solution, where alter-
nately one reactor line contains a reaction front and the
other is in an extinguished state.*3

A spatially distributed one-dimensional dynamic model
for this process has been implemented in PROMOT.
Figure 11 shows the top level structuring of the model.
On this level, the two reactor lines are components in
the nomenclature of the network theory. They are
connected to reservoirs representing the inlet and outlet
tanks of the system. The coupling between the two
reactor lines is done by coupling elements describing
the following internal boundary conditions between the
two distributed systems: Continuity is assumed for the
compositions and the temperatures on both sides of the
boundary. Mass and energy conservation gives further

axial wall insulation
(wall boundary conditions)

tanks

inlet | [||| g d
|

Figure 11. Structure of the fixed bed reactor model on the top level (from a screenshot of the PROMOT GUI).
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Figure 12. Structure of the fixed bed reactor model on the level of phases (from a screenshot of the PROMOT GUI).

conditions for the fluxes across the internal boundary.
Further coupling elements are needed to define heat
fluxes to the reactor walls that enter the boundary
conditions for the energy balance of the walls. As can
be seen in Figure 11, the connection between two
modules is always bidirectional with one signal line
passing the information on the state vector and one
signal line passing the information on the fluxes.

The models of the two reactor lines can be decomposed
into models of interacting thermodynamic phases, as is
shown in Figure 12. The spatially distributed phases
of the fixed beds, the gas channels, and the reactor walls
are the components on this level. The coupling elements
in Figure 12 define the internal boundary conditions
between axially coupled phases, on one hand, and the
radial heat exchange between fixed bed, gas channel,
and reactor walls, on the other hand. The structuring
makes changes of the model very easy. For example,
one might want to add mass exchange to the heat
exchange between the fixed bed and gas channel. This
can be done by replacing the heat exchange coupling
elements by membrane modules, as described in a
previous publication.?* The models of the distributed
phases consist internally of components and coupling
elements on the level of storages,?22* similar to the
biological example in the previous section.

A simulation result obtained by the described model
is shown in Figure 13. The total oxidation of ethane is
considered. Under suitable inlet temperatures, inlet
compositions, and flow rates, an autonomous periodic
oscillation with creeping reaction fronts develops. At
time #1, the front stretches from the heated bed to the
inlet of the insulated bed. At later times to, ..., t4, the
front moves into the insulated bed. At time ¢5, the hot
spot reaches the gas channel and ignites a new reaction
front in the heated bed of the other reactor line. This
marks the beginning of a new periodic cycle.

4.3. Application Examples on the Level of Pro-
cess Units. In many chemical engineering processes,
two-phase systems play an important role. In particular,
vapor—liquid systems, as encountered for example in
distillation or many reactive separation processes, are
predominant in the area of thermal separation of fluid
mixtures. While a rigorous description of the underlying
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Figure 13. Spatial profiles of the gas temperature 7', the ethane
mass fraction gc,n,, and the wall temperature Twan in autonomous
periodic operation at time points ¢, i = 1, ..., 5.

heat and mass transfer processes in vapor—liquid
systems would require detailed rate-based models,
assuming thermodynamic equilibrium between the two
phases is often appropriate and sufficient for many
applications.

Therefore, a library of generic two-phase models
assuming thermodynamic equilibrium between the two
bulk phases has been implemented in PROMOT. This
library contains generic, reusable models on the level
of process units. One of the most general modeling
entities in this context is a simple generic nonreactive
two-phase model. It constitutes, for the given purposes,
the simplest model formulation. As such, it serves as
the superclass in a hierarchy of two-phase models. More
specific two-phase models, as required, for example, for
feed trays or reactive trays in distillation columns, are
subsequently obtained by applying a top-down modeling
strategy. This approach corresponds to an iterative
refinement of existing models using the object-oriented
concept of inheritance. A reactive tray, for instance, is
straightforward implemented as a specialization of a
nonreactive tray, that is, as a subclass of the more
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Figure 15. Transient behavior of the reactive-distillation column from an initial profile (denoted by dots) to a new steady state, following

a 30% increase in main feed flow.

general tray, by just adding the reaction terms in the
material and energy balances.

By virtue of a well-defined hierarchical structuring
concept,?® the major advantage of the library is its
reusability. This is shown in what follows by means of
two industrial application examples, which have both

been modeled relying on exactly the same basic two-
phase model library.

4.3.1. Butyl Acetate Production Process. The
plant for the production of butyl acetate depicted in
Figure 14 serves as a first example for the application
of our model library.
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Figure 16. Simplified flowsheet of the process for the production of acetic acid via methanol carbonylation.

In this continuously operated process,** liquid n-
butanol and acetic acetic are fed to column k1 and react
in the stripping section of the column to the products
butyl acetate and water according to the reversible
esterification reaction

CH,COOH + CH,(CH,),0H <
CH,COO(CH,);CH, + H,0

which occurs in the liquid phase and is homogeneously
catalyzed by means of a strong acid. The more volatile
water is boiled up and removed from the reactive
section, thus allowing almost total conversion of reac-
tants. At the top of the rectifying section, a vapor
mixture rich in water is obtained, which is completely
condensed in condenser k1_cond, and the condensate
is collected in a decanter dec where a liquid—liquid
phase split occurs. The organic phase rich in the ester
is recycled to column k1, while the aqueous phase is fed
to the stripping column k2 for further purification.
Thanks to the formation of an azeotrope in column k2,
almost pure water can be withdrawn as the bottoms
product, while the reactants are recycled to column k1
via the decanter.

The bottoms stream of column k1 is fed to the
distillation column k3 in which an almost pure bottom
product is obtained. The second major recycle of the
process from the top of column k2 back to column k1
serves for the recovery of unreacted educts.

As depicted in Figure 14, a complete column model
is obtained by aggregating individual trays. Similarly,
the overall flowsheet model of the complete plant is
generated by aggregating and connecting the individual
process units by means of the graphical editor in
PROMOT.

Figure 15 shows the response of the reactive-distil-
lation column k1 when a disturbance occurs in the main
feed flow to the plant. The transition from an initial
column profile (indicated by the dots in Figure 15) to a
new a steady-state profile following an increase of 30%
in feed flow is displayed. Figure 15a illustrates the
temperature dynamics after the perturbation. While the
rectifying section of the column cools, the temperature
increases slightly in the trays near the bottom, as a
consequence of the increased concentration of heavy
boiling butyl acetate, as shown in Figure 15b.

4.3.2. Production of Acetic Acid. Based on the
same library of process unit models used for modeling
the butyl acetate process, the process of acetic acid
production via methanol carbonylation*> depicted in

Initial condition

pure
vapor

pure
liquid

vapor-liquid

equilibrium
Yr>0 <1

Figure 17. Petri net implementation of discrete events in the

acetic acid reactor. Depending on the operating conditions, the

reactor is either a pure liquid (y* < 0), a vapor—liquid (0 < y* <

1), or a pure vapor (y* > 1) system.

Figure 16 was modeled and implemented in PROMOT.
The entire plant basically consists of two main parts:
The reaction system contains a continuous synthesis
reactor with evaporative cooling, in which the liquid
reactant methanol and the gaseous reactant carbon
monooxide form acetic acid according to the exothermic
carbonylation reaction

CH,0H + CO — CH,;COOH,
AHg = —138.6 kd/mol (5)

In addition, an adiabatic flash separator (F) serves for
the recovery of the rhodium-based catalyst, which, as
being essentially nonvolatile, is completely recycled to
the reactor.

The vapor product stream from the flash is fed to the
liquid separation system, the second main part of the
overall process. This part basically consists of two
distillation columns that serve for the purification of the
product acetic acid as well as for the recovery of the inert
components methyl iodide (the promotor for the cata-
lyst) and solvent water.

Both main parts of the plant are integrated via a
couple of recycle streams from the separation section
back to the reaction section.

A particular challenge in modeling the reactor stems
from potential phase changes: Although the reactor is
in two-phase vapor—liquid equilibrium under standard
operating conditions, a disturbance accompanied by a
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Figure 18. Implicit discrete events in the reactor following disturbances.

decrease in temperature may cause the system to switch
to the purely liquid regime. As explained in section 3,
PROMOT offers the possibility to model and efficiently
implement such implicit discrete events using Petri
nets.

Figure 17 shows the Petri net used to perform the
potential switches in the acetic acid synthesis reactor.
Without going into modeling details, let us note that a,
potentially fictitious, vapor fraction y* determines the
thermodynamic state of the system. That is, the real
vapor fraction 1, defined as the ratio of the molar holdup
of the vapor phase n" to the overall molar reactor holdup
n' +n",y:=n"/n"+n", coincides with y* in the two-
phase regime (v = y* for y* € [0, 1]); it is zero in the
pure liquid regime (y* < 0) and equal to one in the case
of a pure vapor system (y* > 1). Depending on the value
of y*, the Petri net performs the switches between the
different regimes of the system.

Figure 18 illustrates the response of the acetic acid
plant after a temporary failure of the feed preheater,
which under normal operating conditions is used to
control the reactor temperature. The failure leads to a
drop in reactor temperature that is accompanied by a
drop in reactor vapor fraction up to the point that the
system is no longer at boiling conditions (i.e., the
implicit discrete event y* < 0 is triggered), and the
vapor flow rate leaving the reactor becomes zero. Once
the preheater works again, the temperature controller
drives the system back to the desired steady-state
operating conditions in the two-phase regime (y* = 0).

Summarizing, we can say that, on the basis of our
library of process units models and the modeling
strategy explained in detail in a previous publication,?3
the modeling of large plants can be managed by a single
modeler within a reasonable amount of time. Above all,
employing a top-down modeling approach as opposed
to a pure bottom-up strategy has been identified to be
particularly effective whenever quick refinements of an
existing model are required.

5. Conclusions

Computer assistance during the model development
process can accelerate the modeling process and improve
the quality of the resulting models. Three key compo-
nents have been identified for the successful application

of computer-aided modeling: (i) A structuring method-
ology is needed that permits a uniform, consistent, and
systematic way to formulate different kinds of process
models. (ii) A software tool must be available that is
able to convert the structured model information into
running program code suitable for numerical analysis
in some flow-sheet simulator. (iii) A model library must
exist that is based on the theoretical concepts of model
structuring and that is implemented in the modeling
tool. The model library must be comprehensive enough
to enable a user to create his/her own model from
predefined building blocks.

The work reported in this contribution addresses all
of the three fields. The network theory provides a well-
developed structuring methodology that is applicable to
different types of process models, as the examples from
biology and chemical engineering show. The process
modeling tool PROMOT permits a direct realization of
the theoretical structuring concept. It is able to handle
models of high order and complexity. Using its object
oriented modeling language, modeling experts can
implement new models very efficiently. Due to its
graphical user interface, PROMOT is also a tool that
can be used conveniently by nonspecialists in the area
of process modeling. The feasibility of the structuring
approach and of the modeling concept could be demon-
strated for quite different applications in the area of
systems biology and chemical engineering. Currently,
the database of models implemented in PROMOT is
increasing, and the software is used more and more in
the framework of ongoing research projects.

Future challenges will be extensions of the concepts
and the tools to more complicated models, especially
distributed systems with multiple dimensions. An ex-
ample is coupled systems involving fluid dynamics and
property coordinates, as they become more and more
important for biological and chemical engineering ap-
plications.

Acknowledgment

The financial support of the Deutsche Forschungsge-
meinschaft in the framework of joint research Projects
FOR 447 and SFB 412 is gratefully acknowledged.



Literature Cited

(1) Stephanopoulos, G.; Henning, G.; Leone, H. MODEL.LA.
A modeling language for process engineering. I. The formal
framework. Comput. Chem. Eng. 1990, 14, 813.

(2) Ponton, J.; Gawthrop, P. Systematic construction of dynamic
models for phase equilibrium processes. Comput. Chem. Eng. 1991,
15, 803.

(3) Perkins, J.; Sargent, R.; Vazquez-Roman, R.; Cho, J. Com-
puter generation of process models. Comput. Chem. Eng. 1996,
20, 635.

(4) Marquardt, W. Trends in computer aided modeling. Comput.
Chem. Eng. 1996, 20, 591.

(5) Preisig, H. Computer-aided modelling: two paradigms on
control. Comput. Chem. Eng. (Suppl.) 1996, S981.

(6) Gilles, E. D. Network theory for chemical processes. Chem.
Eng. Technol. 1998, 21, 121.

(7) Stephanopoulos, G.; Henning, G.; Leone, H. MODEL.LA.
A modeling language for process engineering. II. Multifaceted
modeling of processing systems. Comput. Chem. Eng. 1990, 14,
847.

(8) Andersson, M. Omola—An object-oriented language for
model representation. Ph.D. Thesis, Lund Institute of Technology,
1990.

(9) Mattson, S.; Elmquist, H.; Otter, M. Physical system
modeling with Modelica. Control Eng. Pract. 1998, 6, 501.

(10) Jensen, A.; Gani, R. A computer aided modeling system.
Comput. Chem. Eng. (Suppl.) 1999, 23, S673.

(11) Westerweele, M.; Preisig, H.; Weiss, M. Concept and design
of Modeller, a computer-aided modelling tool. Comput. Chem. Eng.
(Suppl.) 1999, S751.

(12) Trankle, F.; Zeitz, M.; Ginkel, M.; Gilles, E. D. ProMot: A
modeling tool for chemical processes. Math. Comput. Modell.
Dynam. Syst. 2000, 6, 283.

(13) Bogusch, R.; Marquardt, W. Computer-aided process mod-
eling with ModKit. Comput. Chem. Eng. 2001, 25, 963.

(14) Mendes, P. Biochemistry by numbers: simulation of
biochemical pathways with GEPASI 3. Trends Biochem. Sci. 1997,
22, 361.

(15) Sauro, H. M. Jarnac: a system for interactive metabolic
analysis. In Animating the Cellular Map, 9th International Bio-
ThermoKinetics Meeting; Hofmeyr, J.-H. S., Rohwer, J. M., Snoep,
J. L., Eds.; Stellenbosch University Press: South Africa, 2000.

(16) Schaff, J.; Fink, C. C.; Slepchenko, B.; Carson, J. H.; Loew,
L. M. A general computational framework for modeling cellular
structure and function. Biophys. J. 1997, 73, 1135.

(17) Goryanin, I.; Hodgman, T.; Selkov, E. Mathematical
simulation and analysis of cellular metabolism and regulation.
Bioinformatics 1999, 15, 749.

(18) Tomita, M.; Hashimoto, K.; Takahashi, K.; Shimizu, T. S.;
Matsuzaki, Y.; Miyoshi, F.; Saito, K.; Tanida, S.; Yugi, K.; Venter,
J. G.; Hutchison, C. A. E-CELL: software environment for whole-
cell simulation. Bioinformatics 1999, 15, 72.

(19) Ginkel, M.; Kremling, A.; Nutsch, T.; Rehner, R.; Gilles,
E. D. Modular modeling of cellular systems with ProMoT/Diva.
Bioinformatics 2003, 19, 1169.

(20) Hucka, M.; et al. The systems biology markup language
(SBML): a medium for representation and exchange of biochemical
network models. Bioinformatics 2003, 19, 524.

(21) Tréankle, F.; Kienle, A.; Mohl, K.; Zeitz, M.; Gilles, E. D.
Object-oriented modeling of distillation processes. Comput. Chem.
Eng. (Suppl.) 1999, 23, S743.

(22) Mangold, M.; Motz, S.; Gilles, E. D. Network theory for
the structured modelling of chemical processes. Chem. Eng. Sci.
2002, 57, 4099.

(23) Waschler, R.; Angeles-Palacios, O.; Ginkel, M.; Kienle, A.
Application of the Process Modeling Tool ProMoT to large-scale
chemical engineering processes. Proceedings of the 4th MATH-
MOD, IMACS Symposium on Mathematical Modelling, Feb 5—17,
2003; Vienna University of Technology: Vienna, Austria, 2003;
Vol. 2.

(24) Mangold, M.; Ginkel, M.; Gilles, E. D. A model library for
membrane reactors implemented in the process modelling tool
ProMoT. Comput. Chem. Eng. 2004, 28, 319.

Ind. Eng. Chem. Res., Vol. 44, No. 8, 2005 2591

(25) Hanke, R.; Mangold, M.; Sundmacher, K. Application of
hierarchical process modelling strategies to fuel cell systems —
towards a virtual fuel cell laboratory. Fuel Cells—From Funda-
mentals to Systems, 2004, accepted.

(26) Kremling, A.; Gilles, E. D. The organization of metabolic
reaction networks: II. Signal processing in hierarchical structured
functional units. Metab. Eng. 2001, 3, 138.

(27) Kremling, A.; Bettenbrock, K.; Laube, B.; Jahreis, K,;
Lengeler, J.; Gilles, E. D. The organization of metabolic reaction
networks: III. Application for diauxic growth on glucose and
lactose. Metab. Eng. 2001, 3, 362.

(28) Kremling, A.; Jahreis, K.; Lengeler, J.; Gilles, E. D. The
organization of metabolic reaction networks: A signal-oriented
approach to cellular models. Metab. Eng. 2000, 2, 190.

(29) Saez-Rodriguez, J.; Kremling, A.; Gilles, E. D. Dissecting
the Puzzle of Life: Modularization of Signal Transduction Net-
works. Comput. Chem. Eng. 2004, accepted.

(30) Saez-Rodriguez, J.; Kremling, A.; Conzelmann, H.; Betten-
brock, K.; Gilles, E. D. Modular Analysis of Signal Transduction
Networks. IEEE CSM special issue 2004, 24, 35—52.

(31) Mohl, K. D.; Spieker, A.; Kohler, R.; Gilles, E. D.; Zeitz,
M. DIVA — A simulation environment for chemical engineering
applications. ICCS Collect. Vol. Sci. Pap.; Donetsk State Techn.
University: Ukraine, 1997.

(32) Mathworks Inc., Matlab and Simulink, http:/www.math-
works.com, 2004.

(33) Andreu, D.; Pascal, J.; Valette, R. Interaction of discrete
and continuous parts of a batch process control system. Proceed-
ings of the Workshop on Analysis and Design of Event-Driven
Operations in Process Systems (ADEDOPS), London, U.K., 1995.

(34) Henzinger, T. The Theory of Hybrid Automata. Proceed-
ings of the 11th Annual IEEE Symposium on Logic in Computer
Science (LICS ’96), New Brunswick, NdJ, 1996.

(35) Tarjan, R. Depth first search and linear graph algorithms.
SIAM J. Comptg. 1972, 1, 146.

(36) Kohler, R.; Rdaumschiissel, S.; Zeitz, M. Code Generator
for Implementing Differential Algebraic Models Used in the
Process Simulation Tool DIVA. Proceedings of the 15th IMACS
World Congress, Berlin, 1997.

(87) Monod, J. Recherches sur la croissance des cultures bac-
terienne; Herrmann: Paris, 1942.

(38) Postma, P. W.; Lengeler, J. W.; Jacobson, G. R. Phospho-
enolpyruvate: carbohydrate phosphotransferase systems of bac-
teria. Microbiol. Rev. 1993, 57, 543.

(39) Kolios, G.; Frauhammer, J.; Eigenberger, G. Autothermal
fixed-bed reactor concepts. Chem. Eng. Sci. 2000, 55, 5945.

(40) Wicke, E.; Vortmeyer, D. Ziindzonen heterogener Reak-
tionen in gasdurchstromten Kornerschichten. Z. Elektrochem.
1959, 63, 145.

(41) Matros, Y. Catalytic Processes under Unsteady-State Con-
ditions; Elsevier: Amsterdam, 1989.

(42) Lauschke, G.; Gilles, E. D. Circulating reaction zones in a
packed-bed loop reactor. Chem. Eng. Sci. 1994, 49, 5359.

(43) Mangold, M.; Klose, F.; Gilles, E. D. Dynamic behavior of
a counter-current fixed-bed reactor with sustained oscillations. In
European Symposium on Computer Aided Process Engineering—
ESCAPE-10; Pierucci, S., Ed.; Elsevier: Amsterdam, 2000.

(44) Hartig, H.; Regner, H. Verfahrenstechnische Auslegung
einer Veresterungskolone. Chem.-Ing.-Tech. 1971, 18, 1001.

(45) Waschler, R.; Kienle, A.; Anoprienko, A.; Osipova, T.
Dynamic Plantwide Modelling, Flowsheet Simulation and Non-
linear Analysis of an Industrial Production Plant. In European
Symposium on Computer Aided Process Engineering—12—ESCAPE-
12, The Hague, The Netherlands, May 26—29, 2002; Grievink, J.,
van Schijndel, J., Eds.; Elsevier: Amsterdam, 2002.

Received for review April 30, 2004
Revised manuscript received September 29, 2004
Accepted September 30, 2004

IE0496434



By Julio Saez-Rodriguez, Andreas Kremling,
Holger Conzelmann, Katja Bettenbrock,
and Ernst Dieter Gilles

Modular Analysis of Signal
Transduction Networks

How engineering tools can be applied
to the analysis of cellular machinery

he study of detailed models for intracellular networks has
become popular in recent years. New experimental tech-
niques provide significant amounts of data that can be
used to develop detailed models of intracellular net-
works, including signal transduction pathways. In the
simplest case, the two-component system, the signaling
system consists of two elements: a sensor that detects environmental
changes and a regulatory element that influences the transcription of
selected genes. In higher cells, however, signal transduction networks
nvolve components that are embedded in feedback loops and interact with
ch other. The number of elements involved and their complicated nonlinear
teractions give rise to a picture of significant complexity.

Applying system-theoretic tools to biological systems has attracted increasing
erest, leading to the emergence of the field of systems biology [1]. In particular,
-a decomposition into smaller units or modules, as well as the subsequent analysis of
the resulting elements, has been proposed as a useful tool for shedding light on the
rationale of signaling networks [2]. How these modules should be defined, however,
remains an open question {3]. Furthermore, thorough systems-theory-oriented analy-
ses of signaling networks based on their modularity are still scarce.

This article is organized as follows. First, we describe the mechanisms that cells
have developed to process information. Second, we discuss the decomposition of sig-
naling networks into subsystems. We then present a novel criterion for defining mod-
ules based on the absence of retroactivity [4]. Some simple criteria for the analysis of
the resulting units are introduced. Finally, we apply these tools to several examples.

Cellular Signal Transduction

Cells are autonomous entities. To function as single-celled organisms or as part of a
higher multicellular organism, cells must sense their environment and must be able to
react to it. As a result, cells are equipped with a wealth of sensor systems that allow
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such as mammalian cells,
have a compartment, the
nucleus, where the DNA is
located. These organisms are
known as eukaryotes (see
Figure 1). An important ele-
ment is the operon, which is
a group of genes that lie side
by side on the DNA and are

Cytoplasm g

Expression

translated as one unit. The
resulting variations in gene
expression allow the cell to
modify its enzymatic activi-
ties and metabolism accord-
ing to the input signal. For
(0) example, the genes can

Cytoplasm

Figure 1. Simplified schemes for general signal transduction systems. (a) illustrates a two-
component system in a prokaryotic cell, and (b) illustrates a receptorcoupled signal trans-
duction system in a eukaryotic cell. Most of the signaling pathways can be described
according to these schemes, despite the high variability among them.

them to monitor external and internal states with sophisti-
cated signal-processing units that secure the optimal reac-
tion for these conditions.

Cells are typically surrounded by a plasma membrane,
which is impermeable to most chemicals and represents a
barrier necessary to maintain the autonomy of the cell and
to protect it from external stresses. Since the membrane
represents the barrier of the cell, it is the place where
external conditions are sensed. The monitoring of external
conditions is important for securing survival, especially in
the case of single-celled organisms and for communicating
with other cells, which is important for guaranteeing the
functioning of an organism. The sensing of stimuli at the
cell membrane demands the transfer of the signal to the
place of action, a process called signal transduction. The
target may be either enzymes within the cytoplasm (the
part of the cell contained within the plasma membrane) or
the DNA.

Enzymes, which are proteins that act as catalysts for
biochemical reactions, are modified (for example, by phos-
phorylation as described below) so that their catalytic
activities are increased or decreased in response to the
extracellular signal. For example, the presence of a sub-
strate can trigger a signaling pathway that leads to an
increase in the activity of the enzyme, which in turn
decomposes the substrate.

For DNA, the signal transduction process targets tran-
scription factors, which are proteins that regulate gene
expression; that is, the processes through which the infor-
mation contained within the DNA is realized into new pro-
teins. In simple organisms such as bacteria, the DNA lies
freely in the cytoplasm; these organisms are called
prokaryotes. On the other hand, cells of higher organisms,
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express enzymes that pro-
tect the cell from stress, such
as starvation or extreme tem-
perature, upon receiving a
stress signal.

In addition to the sensing and transduction of a signal,
the term signal transduction traditionally includes the
processing of signals. Correct processing is necessary to
ensure the optimal response to the set of external and
internal states the cell is facing. Branching and linkage of
signal transduction pathways, a phenomenon known as
crosstalk, are involved in signal processing. Signal pro-
cessing is also performed at the level of gene expression,
with multiple regulators modulating the expression of
one gene.

The cytoplasm is structured into different areas. A sig-
nal might therefore be limited to a certain area of the cell,
especially in eukaryotic cells. Due to crosstalk phenomena,
as well as the high number and spatial distribution of the
elements involved, signal transduction networks are too
complex to be understood by intuitive thinking [5].

Information in cellular signaling processes is general-
ly transferred by modifications of proteins leading to
changes in their activity. An essential mechanism of sig-
nal transduction is the addition of a phosphate group to
a protein, a process known as phosphorylation, which
produces a conformational change in the protein that
alters its activity. Proteins are chains of small mole-
cules known as amino acids. Phosphorylation can occur
in defined amino acids within a protein and is catalyzed
by specific enzymes, called kinases, in response to a
stimulus.

Phosphorylations can be reversed by specific enzymes
called phosphatases. The activation and inactivation of
phosphatases is also the result of signal transduction
processes. This additional control mechanism increases
the flexibility of signal transduction. There are often multi-
ple phosphorylation sites within one protein, and the
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phosphorylation state determines the activity of the pro-
tein, again enhancing flexibility. Another typical mecha-
nism used to transfer information in cells is physical
interaction between proteins. Many proteins involved in
signaling processes have sequences of
amino acids, known as domains, which
can bind to domains in other proteins,
leading to the association of molecules.
Combinations of these mechanisms are
frequently present. For example, protein-
protein interactions mediated by protein
phosphorylation are a common element
in signal transduction: a complex
between two proteins will be only
formed if the proteins are in the right
conformation, such as when one of the
proteins is in a phosphorylated state and
the other in an unphosphorylated state.

Two-Component Signal Transduction
and Phosphorelay Systems

The two-component system is regarded as the simplest
signal transduction system [6], [7]. The system is widely
used in prokaryotic signal transduction and can also be
found in eukaryotes. In general, the system is composed of
two proteins: the sensor kinase and the response regula-
tor. The sensor kinase is often an integral membrane pro-
tein with the sensor domain located outside the cell.
Sensing of a stimulus by the extracellular sensor domain
provokes a change in the conformation of the sensor
kinase. The conformational change leads to an increase in
the kinase activity of the intracellular kinase domain,
resulting in autophosphorylation. The phosphoryl group is
subsequently transferred to the receiver domain of the
response regulator. Phosphorylation results in a change of
the activity of the regulator domain. The response regula-
tor normally represents a DNA-binding protein that acti-
vates gene expression in response to phosphorylation, but
it can also be an enzyme that changes its activity or regu-
lates another enzyme (see Figure 1).

The two-component signaling pathway is linear, and
this linearity yields a high specificity for signal transduc-
tion because the phosphotransfer normally occurs only
between corresponding pairs (called cognate pairs) of sen-
sor kinase and response regulator. Receiver dephosphory-
lation can be achieved by several routes. There is the
inherent instability of the phosphate that limits the
response time, but there can also be active dephosphory-
lation catalyzed by the sensor kinase. Typical examples of
this kind of system are the PhoR/PhoB and the
EnvZ/OmpR systems of the bacteria Escherichia coli (E.
coli}, as well as the KdpD/KdpE system.

In addition to these cases, researchers have identified
two-component systems that possess the same principal
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organization but contain additional modules. Referred to as
phosphorelay systems, these systems often contain addi-
tional phosphorylatable domains. These additional
domains enhance the flexibility of signal transduction and

Cells are equipped with a wealth of
sensor systems that allow them to
monitor external and internal states
with sophisticated signal-processing
units that secure the optimal reaction

for these conditions.

allow the modulation of one system through phosphoryla-
tion by another system. Different organizations with
respect to the arrangement of the different domains as
independent proteins or as part of multidomain proteins
are realized.

Not every signal transduction pathway is designed sole-
ly for its signal transduction purpose. The bacterial phos-
phoenolpyruvate-dependent phosphotransferase system
(PTS) is an example of a signal transduction pathway that
shares proteins with a metabolic pathway [8], which is a
series of enzymatic reactions involved in the synthesis or
breakdown of molecules. The metabolic property of the
PTS is the uptake and phosphorylation of carbohydrates.
Carbohydrate uptake in E. coli has been investigated for a
long time. The most prominent observation is that a mix-
ture of sugars, for example, glucose and lactose, provided
in a batch experiment are taken up sequentially: glucose is
taken up preferentially and after the depletion of glucose,
lactose is taken up. This phenomenon is due to a complex
signal transduction and control system where the PTS
plays a central role.

Receptor-Coupled Signal Transduction

Eukaryotic signal transduction pathways are often more
complex than prokaryotic ones due to a higher number of
elements and the numerous interconnections between
pathways. The activity of one pathway can be modulated
by another pathway depending on its signaling state. This
process, known as crosstalk, is mediated by proteins that
are part of more than one signaling pathway. A common
theme in eukaryotic signaling is receptor-coupled signal
transduction. Receptors are membrane proteins with a
signal recognition domain located at the outer surface of
the cell. A transmembrane domain couples the signal
recognition domain to the intracellular transmitter
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domain. Binding of the signaling molecule krniown as a lig-
and, which may be a hormone or growth factor, to the
cell-surface receptor induces conformational changes in
the receptor, which trigger a cascade of reactions leading
to a particular cellular response [9] (see Figure 1).

An important family of receptors are the receptor tyro-
sine kinases (RTKs), which share many elements and
mechanisms [10]. When a ligand binds an RTK, the ligand
causes pairwise binding of the receptor proteins to create
dimers, a process called dimerization, resuiting in the acti-
vation of the intracellular tyrosine kinase [10]. The kinase
can then phosphorylate either the receptor itself or a sub-
strate protein. The phosphorylated residues are binding
sites for several proteins.

\ 4

Figure 2. Modular representation of the MAPK cascade.
The cascade can be divided into three subunits correspond-
ing to the three kinases involved (MAPKKK, MAPKK, and
MAPK). A negative feedback is included as in [24]. If the
reactions are assumed to follow Michaelis-Menten kinetics,
as described in “Model Equations and Parameters,” the con-
nections between the modules are free of retroactivity [4].
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Key elements in signaling processes are the adaptor
proteins, which have no enzymatic activity but have differ-
ent domains that allow them to bind to other proteins [10].
The formation of these complexes brings together different
proteins, allowing the interaction between certain ele-
ments and, hence, initiating signaling pathways. The activi-
ty of the complex can be reduced by dephosphorylation of
the phosphotyrosine residues due to specific phos-
phatases. Adaptor proteins also play an important role in
crosstalk phenomena among pathways. For example, an
adaptor protein that has been phosphorylated by complex
A might bind to complex B, inducing a conformation of the
receptor complex B, thus changing the activity of B.

In these pathways the signal can be amplified: one or
two molecules of ligand are needed for the formation of
one receptor complex, and since the receptor complex is
stable as long as the ligand molecule is bound, the corre-
sponding enzymes are active for a long period of time and
thus are able to produce high amounts of activated signal-
ing molecules.

Downstream of the activated receptor complex there
are two main possibilities for the intracellular transmission
of the signal: the synthesis of second messengers or the
activation of a cascade of successive protein kinases (see
Figure 1).

Second messengers can be found in eukaryotes as well
as in prokaryotes. These signaling molecules allow the
transduction of the signal to different areas of the cell
because they are easily diffusible. Especially in eukaryotic
cells, gradients of second messengers in time and space
might be present if a signal is specific to a certain area of
the cell. Thanks to the high number of molecules and their
structure, second-messenger molecules are able to inter-
act with a diverse set of proteins.

A classic example of a cascade of kinases is the mito-
gen-activated protein kinase (MAPK) cascade. The MAPK
cascade is a set of three kinases that activate each other
sequentially, as depicted in Figure 2 and discussed below.

Modularization of Signaling Networks

As mentioned above, a decomposition into smaller ele-
ments might be an interesting approach to handle the
complexity of cellular processes and signaling phenomena.
First, functional modules, elements whose function is sepa-
rable from those of other modules, have to be defined.
Next, the modules should be thoroughly analyzed, regard-
ing properties such as transfer functions to characterize
the dynamical behavior, signal amplitude, or robustness
with respect to kinetic parameters. A successful analysis
can lead to a reduction of models if key elements can be
identified and the main properties can be reproduced with-
out having to model all the biological players. Finally, by
regrouping the modules, the properties of the system as a
whole become clearer.
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Although the modularity of biological processes is gen-
erally accepted, a distinctive criterion for defining modules
is still lacking. Different proposals, such as evolutionary

conservation, robustness, and genetic coexpression, have

been suggested [3]. We have recently introduced an alter-

native criterion for the delimitation of modules, based on

the absence of retroactlvity in the junction between differ-
ent units [4]. (see Figure 3). The so-defined modules pos-

sess the sense of independency inherent to the concept of -

functional units since the input/output behavior of a
retroactivity-free unit does not depend 9“,— what it Is con-
nected to. Additionally, systems theory provides a battery

of tools for analyzing systems free of retroactivity. The

framework we use is based on network theory [11], which

can be conveniently applied to bio!oglcaf systems [12].

Using network theory, the different cases of absence of
retroactivity can be represented and analyzed [4].

In the analysis of signaling networks, special atten-

tion should be paid to their dynamic behavior since the

biological response is often determined by the transient;

characteristics of the output signal, such as signaling
time and signal dutation, rather than steady-state prop-

erties [5]. Therefore, the classical steady-state analysis .
of such systems, though 'useful, might not provide suffi-
cient insight into the properties of signaling pathways ‘

Recently, Heinrich and colleagues [13] have comprehen-

sively analyzed kinase-phosphatase cascades from a

theoretical point of view. The analysis Is based on the

signal amplitude S, the signaling time 7, and the signaf"
duration 6. For the output y{t) of a module, these para-

meters can be calculated numerically according to [13}
by means of . .

f ty@ydr
f y(:)dt'

/ Yty
T

The deﬂnitions of r and 6 are analogous to the mean value' :

and ‘standard deviation ofa statistical distribution, respec-

tive[y Therefore, T and 0 represent the average time m:f
activate the output element and the average time during
which this output component is activated respectively S

gives the relationship between the total amount of output '

signal, the area under the curve, and the duration 9 of the
signal; hence providing a measurement of the average con-

centration of the output element [13]. These parameters

are reasonable but if the output signal does not return to
zero after a certain time (known In blology as adaptation),
then r and @ tend to infinity. Since the signal does not
return to zero in some of the examples discussed here,
another parameter; denoted by 139, is used to measure

August 2004

how fast a system responds. The parameter g is defined
as the time at which 90% of the maximal output signal is
reached, and, hence; can be more generally applied. The
parameter 1y g was determined numerically based on the
simulation data. Additionally; if the signal does not return
to the basal level, the signal amplitude S depends on the
simulation time: If the system reaches a steady state differ-
ent from zero, it can easily be demonstrated that, as time
tends to infinity, § converges to the steady-state value
multiplied by +/3. Therefore, when the output signal does
not return to zero, we have computed the parameters for
time tending to infinity.

Another useful parameter is the Hill coefﬂcxent The Hill
equation [14] describes enzyme kinetics and is deﬁned as

__ FaxX
h
Ko s+ P
where r is the reaction rate, x is the substrate concentra-

tion, rmax is the maximal reaction rate, Ky 5 is the concen-
tration of substrate for which r = ryay/2 and can be

(1;;

,considered the threshold value, and / is the Hill coeffi~

cient. If h =1, then the curve is. hyperbollc and is known
as the Mlchaelis-Menten equaﬁon, as described in *“Model
Equations and Pa:ameters,” Iih > 1, then the curve shows

a sigmoidal form, a situation known as ultrasensitivity

[15]. The higher the Hill coeificient, the more the curve
tends to a step-form response. The Hill coefficient Is thus
a measurement of the ultrasensitivity and can be more
generally applied to quantlfy the sigmoidity of the
input/output behavior of a system, where in (1) x is the'
lnput and r s the output oi the module or anothet vari-

,abIe of interest. The Hill coefficient can be estimated as

log81/(log($o 9/50.1)), where S(}g and S are the sub-

' strate concentration values where r 15 90% and IO% of the

maximum (rma), respectively [ 15}

Figure 3. Schematic representatzon of the conceptof -
retroactivity. If the submodule A, of the module A mﬂuences
the submodule B, of the module B (solzd line) but the module
B; does not directly influence A; (dashed line), then the con-

nection between A and B is free of retroactivity. A feedback

path from another part of B to A (dashed-dotted line) does
not change the input/output behavior of module B but
restricts the range of possible values for the input u.
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Two-Component Signal Transduction
Two-component systems are frequently used by bacteria
to sense environmental conditions. As described above,
these systems consist of a sensor kinase and a response
regulator. Upon perception of a stimulus, the input domain
of the sensor kinase modulates the signaling activity of its
transmitter domain, resulting in autophosphorylation with
the help of adenosine triphosphate (ATP). The phosphoryl
group is then transferred to the response regulator, which
activates the output to trigger the response.

According to the criterion of absence of retroactivity,
the system can be subdivided into two modules, shown in
Figure 4 [4]. Module 1 describes the activation of the sen-
sor protein and the phosphoryl transfer to the regulator
protein. Module 2 describes the binding of the activated
regulator to the respective DNA binding site and the
process of gene expression: transcription and translation.
In the simplest case, sensor activation and phosphoryl
transfer in module 1 can be described by a set of two reac-
tions; in reaction Rl the input stimulus enhances the
kinase activity, which causes autophosphorylation of the
sensor kinase S by ATP. In reaction R2 the phosphoryl
group is transferred to the response-regulator K. Here, the
phosphorylated response-regulator R” contains the active
output domain. Although it is known that during enzymatic
activities proteins form a number of temporary complexes,
the kinetic reactions are kept simple to reduce the number
of unknown and uncertain parameters. Hence, the model is
defined by

kKt
Rl:  ATP+S = ADP+SP

and

[
R2: SP+ R k'i S + RP.

The respective rates are summarized in “Model Equations
and Parameters.” In the model, the stimulus is considered
by changes in the parameter X} modeled by

kkaiu, (2)

where u is a constant input, which is dimensionless. To
turn off the system efficiently, the phosphoryl group is
taken away in a dephosphorylation reaction R3. Here, two
model variants are possible: a) the phosphoryl group is
hydrolyzed by an additional enzyme possessing phos-
phatase activity, or b) the sensor kinase itself acts as the
phosphatase. The latter is the case for a number of two-
component systems in E. coli, for example, the KdpD/E
system responsible for potassium uptake [16]. It is
assumed that the dephosphorylation step is irreversible.
The additional equations are given by

LE

R3a: RP =X R+ P

and
R3b: RP+S 2 R4+ S+ P

The concentration of the phosphorylated response regu-

ki lator R” represents the output of the first module. In
) DNA Binding Site
S RP v Gene Expression (Module 2
ADP : :
Input Transcription Res
ponse Sensor
(Stimuius) | ”’{ R1 ( ] A2 l H3 o Regulator Kinase  Protein
@ " w - -
A
i {
Two-Component Signal Transduction (Module 1) ; ;
! i
f # Response Regulator i |
; SensorKinase T T T T TTTTommemommes !

Figure 4. Decomposition of the signal transduction pathway and gene expression of the two-component system as in [4].
The boxes represent reactions, and the ellipses represent compounds. The input of module 1 is an extracellular signal, such
as the concentration of a nutrient or ion. The output of module 1, which is the input of module 2, is the phosphorvlated
response regulator RP. The output of module 2 is the target protein. The dashed lines indicate possible positive feedback by

the sensor kinase and response regulator.

August 2004

IEEE Control Systems Magazine 41



module 2 the binding of the phosphorylated regulator to
the DNA binding site is described by

ks
R4: nRP + DNA; k;:: RDNA,
-8
where n is the number of molecules that bind to the DNA.

The amount of the regulator DNS complex (RDNA) mea-
sures the rate of mRNA synthesis. In a further step, the

Information in cellular signaling

processes is generally transferred by
modifications of proteins leading to

changes in their activity.

mRNA is translated to protein Pr, the target protein. The
two polymerization steps are connected in cascade, where
the mRNA serves as an information input to the second
polymerization step. The reaction equations have the form

Tor

(nucleotides) — RNA

ray
w—n

R5: degradation

and

. Le I
(amino acids) —

R6: pr 2 degradation,

where the rate of transcription is ry, the rate of mRNA
degradation is ry, the rate of translation is ry, and the
rate of protein degradation is ryy. Reaction rates, para-

meters describing experimental data [17], and the differ-

ential equations are summarized in “Model Equations
and Parameters.”

Dznamics and Steady-State
Characteristics
In the first step, module 1 is under investigation. Two
model variants are considered here; namely, model 1
describes the step of dephosphorylation with the rate
law ry,, while model 2 uses the rate
law r3p. The signaling time 139 and
the signal amplitude S; are calculated
as described above. For model 1, the
parameter Ep is chosen to be
Ey = Sy, the total concentration of
the sensor kinase, to allow a compar-
ison between the two model variants.
Figure 5 shows the signaling time
and signal amplitude of both models
as a function of the input. Model 2,
which is always slower than model 1, traverses a maximum
in the signaling time near the inflection point of the signal
amplitude. Interestingly, this characteristic is not observed
for model 1. These differences can be explained by the
amount of enzyme that is available for dephosphorylation:
since the enzyme concentration for model 1 is constant
and always higher than in model 2 (Ey = Sy = S) the
steady state is reached earlier but at the expense of high
values of R”, and, thus, the signaling amplitude is always
lower for all input values. However, in model 2 the conver-
sion of S into S” not only increases the phosphorylation of
R but also decreases the enzyme § available for dephos-
phorylation. Therefore, the rise of the signaling amplitude
is steeper for model 2 than for model 1.
For both models the Hill coefficient is determined
according to (1); model 1 and model 2

have Hill coefficients 1.0 and 1.98,

0.35 respectively. In comparison with

030 l 0.30 o model 1, an advantage of the model 2

0.25 i s 025 / circuit is the switchlike behavior for

= 0.20 i g 20 ] higher input values, which allows the

2 0.5 ;b 3 0.15 ! cell to respond with higher sensitivity
= ool ~ =7 Y g ) / in a certain input range.

' ~ » 010 ; In a second step, both module 1
0.0 I 0.08 s and module 2 are analyzed (see Fig-
0.00 0.00 ure 4). Model 2 is used for module 1.

10° 10:@:{02 10°  10f 10° 10:npu1t02 108 10t As can be seen in Figure 6, module 2
(@ (b) reaches the maximal amplitude val-
ues even with low values of the input

Figure 5. Comparison of the model variants of the two-compo

plots ilusirate the signaling time ry g and the signal amplitude S for the two-com-

ponent system for both model variants (model 1 solid, model 2

ule I. For model 2, both the signal amplitude and signaling time are higher. The
signaling time shows a maximal value corresponding to the point of inflection of

the signal amplitude.
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RP. Based on this separate analysis
of the submodels, it can be conclud-
ed that the chosen initial conditions
for module 1 are sufficient to consis-
tently reach the same target protein
concentration. Therefore, the overall

nent system. The

dashed) for mod-
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output of the system shows the same amplitude over a
wide range of input values.

Additionally, transfer functions G; were obtained by
fitting simulation data of the overall model against simple
linear functions using the MATLAB system identification
toolbox [18]. The system is linearized for a fixed stimulus
m =105, where the system is switched off as in (2), and
the initial conditions for the amount of sensor kinase and
response regulator are as shown in Table 1. For these
conditions, the modules can be described by

RP

Gi(s) = T

~0.0104
T s +992

and

Pr

0.2545 + 254.86
Gals) = o = e

s + 0.96

 DNA4; =1.3210-5umol/gDW
The denominator den of G; indicates the e 107 l/h _ - L'*.S"&# 0.593 IO“‘umoi/gDW
characteristic response time 7; ~ 0.1[1/h} =6 32, 10¢ I/ﬁﬁmdl/gDW' -
of module 1. This value is in good agreement k';z?':" 1-10-5 1/h umol/gDW S ATP =2 mnidi/éf)W -
with the 1y values determined in Figure 5. ks = 2.616.1010 1/ (}miol/gDW)z = ADP-—-: 0.082 mM. ey
The numerator in Gy reflects the dynamics k—b L 360'1/}1—»*: : e e S o .
at the beginning of the protein synthesis. By = 173104 1/H pmol/gDW- .
Since the output of module 1 is low, protein ky = 20001/h o p=2887 1h
synthesis needs time to accelerate from By = 500 Ih SEL i kdﬁﬁ.4 i H
zero to the maximal rate of synthesis. Fus — 5001 i s : u<=: 051/h .

For the example above of the KdpD/E kmf: 1200 i/h E S s

system in E. coli, it is known that the i -

Figure 6. Analysis of the module 2 of the two-component system. The plots show the steady-state values for module I and
the signal amplitude S for module 2 of the two-component system. As illustrated with the dashed line, even for low input val-
ues in module 1 the maximal signaling amplitude in module 2 is achieved. The dashed line in (a) shows the signal ampli-
tude of module 1 for a low input (u = 4), S ~ 0.004 pmol /8DW, much lower than the maximum. However, for this value, as
depicted by the dashed line in (b), the signal amplitude of the second module reaches the maximum.

amount of sensor kinase and response regulator are not
equal. Moreover, since the operon (prokaryotic operons
and genes are written in italic, whereas the corresponding
proteins are not, and the first letter is written with an ini-
tial capital letter) kdpD/E for both proteins lies adjacent to
the operon for the target protein KdpFABC, the number of
sensor kinases and response regulators can rise during the
expression of the target protein based on the read-through
effect of the RNA polymerase (expression of the sensor
and regulator together with the target protein).

Therefore, the behavior of the open loop with no read-
through effect is compared with the closed-loop behavior
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with the autocatalytic circuit based on the read-through
effect. See Figure 4 to understand which of the circuits is
more efficient and to clarify the effect of the initial condi-
tions of the sensor kinase and response regulator. For the

An analysis based on the decomposition
into modules might be a useful tool for
untangling biological complexity.

open loop, the fixed number of available sensor kinase and
response regulator molecules determines the dynamical
behavior. In Figure 7, the absolute number of initial mole-
cules, as well as the ratio r (r = 1/10, 1, 30) of response reg-
ulator to sensor kinase molecules, is varied. For a high ratio
r,high values of the signal amplitude with respect to the tar-
get protein can be reached even if the amount of sensor
kinase and response regulator are low. Low values of the
initial conditions result in large 79 values independently of
the ratio r. Remarkably, in the case of the KdpD/E two-com-
ponent signal transduction system, experimental values for
the initial number of molecules for sensor kinase and
response regulator are in the range of 5- IO”sumol/gDW
< Sp < 5-10~* umol/gDW and r = 30, where S is maximal
and rg ¢ is minimal, indicating that these values are optimal
even when no read-through effect occurs.

Finally, we analyze the robustness of the signaling time
and signal amplitude with respect to parameter changes.
Figure 8 shows the effect of the parameters Ry, Ryz, and k3.
Interestingly, the signal amplitude is not sensitive to the
translation parameters &y and k3, while the signaling time
becomes larger for low parameter values. In contrast, the

rate ky of dephosphorylation influences the signal ampli-
tude, while the signaling time is barely affected. These find-
ings are in good agreement with the findings above (see
Figure 7) that if the concentration of sensor kinase and
response regulator are low in the open-
loop system, or if the translation rate is
low in the closed-loop system, then the
signal amplitude is high when the ratio
between response regulator and sensor
kinase is high.

MAPK Cascade
MAPK is a family of kinases conserved through evolution
in eukaryotes [19]. MAPKs are activated (see Figure 2)
through a dual phosphorylation by another kinase, called
MAPK kinase (MAPKK or MKK), that in turn is activated by
an additional kinase (MAPKK kinase, or MAPKKK/MKKK).
The deactivation of these kinases is catalyzed by other
enzymes, called phosphatases. Once activated, a MAP
kinase can phosphorylate many proteins, including tran-
scription factors, which in turn regulate gene expression.
There are several families of MAPKs, with their corre-
sponding MAPKKs and MAPKKKs, and the resulting cas-
cades of reactions play a central role in signal transduction
processes in eukaryotes. In mammals, MAPKs are typically
downstream of signaling pathways that transmit the infor-
mation delivered to the cell by stimuli such as growth fac-
tors or stress and trigger essential cellular responses such
as proliferation and differentiation [19].

Dynamics and

Steady-State Characteristics

The system-theoretical properties of the MAPK cascade

have been studied extensively. The three-step structure
shown in Figure 2 allows an amplifi-

cation of the signal and, furthermore,
10 gig provides ultrasensitive input/output
9 0.40 behavior [20]. Such a sigmoidal char-
8 Z 035 acteristic curve arises due to the par-
= ! 3, 030¢ tial saturation of the enzymes as well
§§ 6 \é ggg; : as the dual phosphorylation mecha-
i B 015} nism of the kinases [20}, [21]. More-
010+ ‘ i over, the different levels add their

2 ; , ~ ggg , a4 ultrasensitivity [22].
1078 108 1ot 1078 T o108 1078 The addition of positive and negative
Sglumol/gDw} Sglimoligbw] feedback loops, which embed some
{a) by MAPK cascades, enriches the versatility

of the MAPK cascades. On the one hand,

Figure 7. Signaling time vy 9 and signal amplitude S for the two-component sys-
tem in open loop. The curves correspond to various initial conditions of the sen-
sor kinase Sy and the response regulator Ry, and the ratio v between sensor
kinase and response regulator. The initial concentration of the response regulator
Ry is calculated as Ry = rSg, where r has values 0.1 (dash-dot line), 1.0 (dashed
line), and 30 (solid line ). While the effect of r on the signaling time is negligible, r
has a strong influence on the signaling amplitude.
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negative feedback can potentially drive
the system to return to the basal state
after a transient response to a constant
input, a phenomenon known as adapta-
tion [23], and introduce sustained oscil-
lations [24]. On the other hand, the
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Figure 8. Signaling time tgo and signal amplitude S for the two-component system in closed loop. The plots show the influ-
ence of parameler variations on signaling time and signal amplitude. The signaling time and signal amplitude were first com-
puted using the parameters from Table 1 (solid line), and then the parameters ky and kyy were reduced two-fold (dashed
lines) and ten-fold (dash-dot lines). Finally, Ry was increased two-fold, with the remaining parameters as in Table 1. The
parameters Ry, Ryp show a large influence on the signaling time but show no effect on signal amplitude. The parameter ks
shows an opposite effect, since a change in ks (dotted lines) strongly influences the signal amplitude but has only a slight

effect on the signaling time.

presence of positive feedback, in combination with the ultra-
sensitivity of the MAPK cascade, can potentially give rise to a
bistable system, which can give an irreversible binary
response to a continuous stimulus [25], [26].

From the variety of models available, we have chosen
and analyzed the MAPK cascade model proposed by
Kholodenko [24]. This model is set up simply, with all of
the reactions described by Michaelis-Menten kinetics (see
“Model Equations and Parameters”™), which provides a
connection between the modules free of retroactivity, as
described in [4]. The model includes negative feedback,
as shown in Figure 2. The parameter K; determines the
strength of the feedback, where larger K; implies less
important feedback. The feedback can thus be disabled by
giving high values to K.

The parameters discussed in the introduction are com-
puted for the three modules of the MAPK cascade (MAP-
KKK, MAPKK, and MAPK) and for the whole cascade
operating in open and closed loop (see Figure 9) using
steps of different magnitude as inputs. The three modules
show ultrasensitivity, Hill coefficients of 4.0 for MAPKKK
and 6.6 for MAPKK and MAPK, due to the saturation of the
enzymes in the case of MAPKKK, and, in the case of
MAPKK and MAPK, due to the dual-phosphorylation mech-
anism and to the saturation of the enzymes [20]. Interest-
ingly, the threshold 0.085 of the cascade is close to, but

August 2004

slightly lower than, the threshold 0.103 of the first module,
meaning that the system does not need the complete acti-
vation of the first module to reach full activation. The Hill
coefficients of the subunits combine in a submultiplicative
manner [22], producing high steepness in the curve of the
total signal amplitude (Hill coefficient of 111). Additionally,
the maximal signal amplitude of the whole cascade corre-
sponds to the maximal possible signal amplitude of the
last module (see Figure 9).

The three modules and the whole cascade show a sharp
deceleration of the response around the threshold value, as
shown by the parameter r59. The peak is higher and nar-
rower for the total cascade than for the first module para-
meter (see Figure 9). Far from this peak value, the whole
cascade is, expectedly, slower than the single modules.

Additionally, the inclusion of a feedback loop decreases
the response time, but only around the peak, and a
decrease in the signal amplitude (see Figure 9).

Depending on the strength of the feedback, sustained
and damped oscillations can be observed (see Figure 10).
A bifurcation analysis shows that, over a wide range of
feedback strengths determined by the value of Ki, there is
a range of the values of the input V] for which the system
shows sustained oscillations (see Figure 10). For strong
feedback values, the oscillations disappear and the output
signal decreases to almost zero.
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Figure 9. Signaling time
.9 and signal amplitude
S for the MAPK cascade
and its subunits. (a) and
(b) show the signaling
time and signal amplitude
for the MAPK cascade
[24] without feedback
(solid black line), with
feedback (K; = 9) (solid
grey line), and of the
MAPKKK module (dashed
line). The input is uy; see
Figure 4 and text. (¢) and
(d) show the signaling
time and signal amplitude
for the MAPKK (dash-dot
line) and MAPK (dotted
line) modules. The input
is the concentration of
active MAPKKK (u3 ) and
MAPKK (u3) for the mod-
ules MAPKK and MAPK,
respectively, see Figure 4.
All the subunits show an
ultrasensitive behavior
and a peak of the signal-
ing time around the
threshold value for the
signal amplitude. The
entire cascade combines
the sigmoidity of the three
subunits, and the negative
feedback decreases the
signal amplitude.

Since the equations of the modules are simple, it is rela-
tively easy to study the dynamic behavior of the MAPK
cascade analytically for extreme input conditions. The out-
put of the module MAPKKK (see Figure 2) is [MKKKp],
which can be computed according to [24] by solving the
differential equation

d[MKKKp] _ ki [MKKK]
dt (Km1 + [MKKK}) (’1 N (%{E&f)n)
ky [MKKKp)

Ko + [MKKKp}]

Defming i :k”’k(l) and uy = H;’{I + (JMAPKPF;';?{)") we
obtain

dIMKKKp] K [MKKK] o R IMKKKp]
dt Knpi+ MKKK] ' Kpa+ [MKKKp]
= F{(IMKKK )y uy — Fs((MKKKp)). 3

It should be noted that [MKKK] and [MKKKp] are

d[MKKKp]

dt

coupled, since [MKKK]+ [MKKKp] = [MKKK®]. If the
input is low, then the conversion of MKKK into MKKKp
will be low. Since the initial concentration of MKKX is
[MKKK®} =100 nM and K, = 10nM, then [MKKK]
>> K, holds approximately, and, hence, F} can be
roughly estimated by k‘l} Additionally, since the value of
[MKKKp] is low, Fy=(ks/Ky ) [MKKKp] and (3)
implies

~ K uy — (ky/ K 2) IMKKKp).

which is a system with a first-order lag.

On the other hand, if the input value u is high,
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d[MKKKp)

Fyu »> F3. The condition [MKKK] »>> K,; 1 holds for a
certain period of time, and, hence, F} =~ k‘l}, leading to the
equation

%k?ul.
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which is an integrator. If [MKKK] >> K1 is
not satlisfied, the system behaves as an integra-
tor but with a variable gain F;. Since the output
is limited by the amount of MKKK ([MKKK')),
the system saturates at a certain time.

Analogous considerations can be applied to
the modules MAPKK and MAPK, which lead to
the same conclusion; that is, each system is an
integrator for high inputs and a proportional sys-
tem with first-order lag for low inputs (see Fig-
ures 11 and 12).

Epidermal-Growth-Factor-
Induced MAPK Cascade

The epidermal growth factor (EGF) signaling
network is perhaps the best understood cellu-

300

MAPK-PP(nM)
n
8

g

lar signaling system in mammalian cells and Y

part of what is now known is due to systems
biology {27]. The EGF receptor (EGFR) is one
of the four members of the EGFR family, which
belongs to the RTK family. Activation of the
EGFR can trigger responses that include
growth and cell migration [28). Due to the tight
connection between EGFR and cancer, as evi-
denced by the fact that EGFR is overexpressed
in many tumors, many novel cancer therapies
target EGF signaling [29],

Upon ligand binding, EGFR dimerizes and
crossphosphorylates. Once phosphorylated,
the EGF receptor can bind several proteins
leading to the formation of molecular complex-
es, which in turn trigger the MAPK pathway.
The activation of the MAPK pathway requires
the binding of the adapter molecules Gap,
Grb2, She, and Sos to the EGF receptor, build-

0,000

e e

ing a complex. The MAPK cascade can be acti-
vated by means of both an Shc-dependent
pathway and an Shc-independent pathway.
The recruitment of Sos to the membrane
allows Sos to activate Ras, which in turn acti-
vates Raf, the first element of the Raf/MEK/ERK
MAPK cascade (see Figure 13) (101, [28], [30].
This pathway, as well as others influenced
by EGF, has been modeled in {27] and
[30]-[32]. The model in {30] includes 13 com-
ponents from the EGF ligand to ERK. Since some of these
elements can interact with each other to form various com-
plexes; 94 states have to be included in the mathematical
model. This model also includes internalization, a process
in which the receptors are retrieved from the cell surface
and moved into special compartments known as endo-
somes. The role of internalized receptors is still unclear. In
the model, the EGF receptor, alone or bound to other pro-
teins, can be internalized. Once internalized, the EGFR is
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Figure 10. Oscillations in the MAPK cascade. ( a) illustrates simulation
results for the model of Kholodenko [24] varying the feedback strength;
a Ky =1d% b: Ky = 235 ¢ Ky = 9,d Ky = 6d-2, and e: K; = 1d=3. The
input is V{ = 2.5nM/s for all cases. (b) illustrates bifurcation analysis of
the MAPK cascade. The black line shows the Hopf bifurcation points as a
function of the feedback strength (K; value) and input (Vi value). Sus-
tained oscillations occur for values between both lines. The dashed line
shows the input value V; used by Kholodenko [24], for which Hopf bifur-
cations occur at Ky = 0.0532 and K; = 23.6.

still active and can bind to the same compounds as the
receptor on the surface [30]. Therefore, the inclusion of the
internalization doubles all the steps in the model.

We have decomposed the noninternalized part of the
model according to the criterion of absence of retroactivi-
ty discussed above [4], obtaining a set of modules joined
by connections free of retroactivity or having a weak
retroactivity (see Figure 13). Some of the properties of the
model are analyzed below.
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Figure 11. Comparison of the MAPK module and an ideal
integrator. The plots illustrate the response to high stimuli of
the MAPK module (solid line) and an ideal integrator
(dashed line). The integrator can reproduce the behavior of
the MAPK module for different types of stimuli. The corre-
sponding stimulus is shown in the inset figure.

namics and

Steady-State Characteristics

The signaling system shows a remarkable independence
on the concentration of the ligand, as pointed out in [30].
The amount of EGF can vary over a wide range of biologi-
cally significant values without major effect on the output
signal, the activated form of ERK. For any value higher
than approximately 0.1 nM, neither the amplitude nor the
signaling time are changed (see Figure 14). Interestingly,
the output of the module MEK depends on the concentra-
tion of the ligand (see Figure 15). Therefore, it is the ERK
module that produces independence from the ligand con-
centration. This phenomenon is due to the sigmoidal
input/output relationship of the module ERK, the Hill coef-
ficient of 2.44, and the threshold value of the ERK module
(K(')’»5 2~ 3100 molecules/cell) reached for low stimuli,
~0.007 nM. Hence, the output (ERK-PP) shows little varia-
tion for input values above 0.1 nM (see Figure 15).
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Figure 12. Comparison of the MAPK module and a system
with first-order lag. The plots illustrate the response to low
stimuli of the MAPK module (solid line) and a system with
first-order lag (dashed line). The MAPK module and the pro-
portional system behave similarly for different types of stim-
uli. The corresponding stimulus is shown in the inset figure.

Additionally, as shown in [30], the contribution of the
internalized receptors is important only for input values
below 0.1 nM, since for higher values the amplitude of
the signal for the internalized pathway is negligible (see
Figure 14).

Another point, still unclear, is the role of the adaptor
molecule She, which provides a second mechanism for
activating Ras. The Shc-dependent pathway is redundant
and seems to be preferentially used [33]. When this path-
way is disabled by setting the concentration of Shc to zero,
simulating an She knockout, a genetic defect that disables
She, the output signal is slightly lower for high EGF con-
centrations, higher than roughly 0.1 nM, and slightly high-
er for lower values, between approximately 0.01 nM and
0.1 nM. For EGF concentrations under 0.01 nM, the signal
without She is again lower, but in this case the difference is
relatively more important (see Figure 14). The system
reacts faster if Shc is present, although the difference is
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small. Therefore, Shc seems to play an important role only
at low EGF concentrations [34],

We have performed an analysis of the EGF signaling
network; based on the modules defined in {4] (see Figure
13), where we aim to reduce the model {35]. Some of the
modules, for example the module regarding the EGF
reception; can be analytically linearized: For more com-
plex modules; such as the complex formation; testing the
response: of the system to different inputs allows one to
find the linear system that best reproduces its behavior.
Linearization: provides insight into the behavior of the dif-
ferent modules; for example, the reception module
behaves as a differentiating system with a third-order lag
behavior: Due to the strong role played by the nonlineari-
ties, however, a linear system cannot completely repro-<
duce the dynamics of those modules.

Conclusions
This article introduces compelling problems of biologlcal
systems and signaling networks. Our goal has been to
show how engineering tools can be applied to the analysis
of the cellular machinery. We reviewed three examples;
which had been previously analyzed regarding their modu-
larity: [4]. We included two simple examples, two-compo-
nent signaling and MAPK cascade, and a more complicated
example, EGF signaling. An important point to discuss in
model analysis for a cellular system is the availability of
experimental data that is sufficient to verify the model
structure and mode} parameters. Although model valida-
tion is: not described here, the parameters of the models
for the two-component system [17] and EGF pathway [30}
can reproduce much experimental data. 7

An analysis based on the decomposition into modules
might be a useful tool for untangling biological complexity.
In some cases, a property of a large network can be
assigned to a certain subunit. For example, the remarkable
insensitivity of the EGF network to the input concentration
turns out to be due to the last subunit. Consequently, this
module carn be thoroughly analyzed regarding this proper-
ty. The absence of retroactivity ensures that the analysis
performed on the isolated subsystem will not be distorted
when translated into-the whole system. In the case of ERK,
there is a certain retroactivity to the module MEK, which
means that the properties of the ERK unit might be slightly
different when connected to the rest of the network: One
possible approach to analyzing the modules is to deter-
mine the values of a relevant parameter at the output of a
module as a function of the parameter at the input of this
module. This dependence provides a kind of characteristic
curve of the module, as in the case of the ERK module in
the EGF model or the gene expression module in the two-
component system. '

A major problem in the analysis of signal transduction
is the dynamic essence of signaling processes. The
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Figure 13, Representation of the EGF-induced MAPK cas-
cade. (a) is a schematic representation of the elements
involved in the EGF-induced activation of the Raf/MEK/ERK
MAPK cascade modeled in [30]. Note that the pathway fol-
lows the schema of Figure 1. (b) is a modular representation
of the noninternalized part of the EGF signaling model,
adapted from {4]. Unidirectional connections represent the
absence of retroactivity or weak retroactivity, while bidirec- .
tional connections represent retroactive connections.
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dynamics can be analyzed in terms of key dynamic para-
meters. The parameters introduced in {13], which should
maybe be slightly modified as discussed in the introduc-
tion, seem to be interesting candidates. However, biologi-
cal knowledge of the system under consideration should
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Figure 14. Signal amplitude and signaling time in the EGF-
induced MAPK cascade {30). Signal amplitude S and signal-
ing time g for a) the total output of the complete model
(thick solid black line), b) the total output of the model
without She (thick, dashed-dot grey line), ¢) the output of
the complete model due to the receptors on the surface
(thin solid black line), and d) the output of the complete
model due to the internalized receptors (thin dashed black
line) from the EGF model {30]. The internalized receptors
are important only for input values below 0.1 nM/1 (nano-
mol/liter). The adaptor molecule She accelerates the
response and increases the signal amplitude moderately for
input values below 0.01 nM/L.
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be carefully studied to choose parameters that can be
related to the biological outcome. For example, in the
case of the activation of ERK, it has been proposed that
the area under the curve of the activated ERK time
course determines the response [36]. If this parameter is
used, the results are similar to those obtained using the
signal amplitude. The only distinguishable difference is
that the area is always lower in absence of Shc, and that
the differences are more important for high values of
EGF than in the case of the signal amplitude. However,
the influence is only of about 10%.

s
E
5
E
[+
%
X
w
=
[72]
EGR [M]
(a)
x 108
o o LT T
10+ f
= }
8
i e |
35 |
£ |
a 6F}
a |
= 1
o 4
prs |
ol l
|
L

02 04 08 08 1.0 1.2 1.4 1.6 18 20 22
S MEK-PP [molec/cell] % 10*
(b)

Figure 15. Analysis of the ERK module of the EGF-induced
MAPK cascade. The signal amplitude S for the output of the
MEK module is represented as a function of the EGF concen-
tration, and the signal amplitude of the output of the ERK
module (ERK-PP} is represented as a function of the input
(MEK-PP). The dashed lines show the values for two biologi-
cally relevant input values. Despite a 100-fold difference in
the input, the difference in the output is only about 10%.
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The first module of the two-component system and
the individual modules of the MAP kinase cascade are
characterized by a transfer of phosphoryl groups. Inter-
estingly, the time constants of the modules are compa-
rable, and, for a large range of input signals, the
systems reach steady-state within a few minutes. How-
ever, if the gene expression is considered, the values of
the time constants clearly increase, due to the high
number of individual steps involved in the protein syn-
thesis. The signal amplitude cannot be easily compared
quantitatively, The systems are from completely differ-
ent cells, and even in a cell the number of components
of different signaling systems is completely different. A
more comparable parameter might be obtained by
dividing the signal amplitude by the input, which could
be interpreted as the gain of the system. Nevertheless,
the systems can be qualitatively compared and the
shape of the characteristic curves give some informa-
tion about the physiological role of the subsystem.
Both the two-component system and the MAPK cascade
models show a sigmoidal dependence of the signal
amplitude of the output with respect to the input,
which can be used to convert a continuous signal into a
digital one.

The two-component system has a Hill coefficient of two,
in the case the kinase also acts as phosphatase, Otherwise
the two-component system shows a Hill coefficient of one;
that is, a Michaelis-Menten type curve without ultrasensitiv-
ity. In the case of the MAPK cascade, the subunits have Hill
coefficients of 4, 6.6, and 6.6, respectively, showing the
whole cascade a combined value of 111, Interestingly, there
is a large peak in the signaling time of module 1 of the two-
component system, as well as in the case of the MAPK for
the whole system and for the three subunits. Remarkably,
the corresponding input values are close to the respective
threshold values of the modules (see Figures 5 and 9). This
phenomenon, though interesting from a system-theoretic
point of view, might be of little physiological relevance
since the range of values for which it takes place represents
a small region of the biologically relevant values.

Due to the increasing complexity and size of signaling
models, model reduction has became an important point in
the analysis of signaling networks [35]. In our examples, the
behavior of the systems can be reproduced with simple lin-
ear system under certain conditions. A simplification under
other conditions, where the nonlinearities play an essential
role, is more difficult. The strong nonlinearities of signaling
pathways make model reduction a complicated yet essen-
tial task for the future analysis of signaling networks.

Acknowledgments

The authors would like to thank B. Schoeberl, M. Ederer,
0. Angeles-Palacios, and J. Lindquist for their critical read-
ing of the manuscript. Work on the two-component system

August 2004

IEEE Control Systems Magazine 51

was supported by K. Jung and R. Heermann from TU Darm-
stadt and was financed in part by the Deutsche
Forschungsgemeinschaft [JU 270/4-1 (K.J.)]

References

[1] O. Wolkenhauer, “Systems biology: The reincarnation of systems
theory applied in biology?” Brief. Bioinformat., vol. 2, no. 3,
pp. 258-270, 2001,

[2] L. Hartwell, J. Hopfield, 8. Leibler, and A. Murray, “From molecular
to modular cell biology,” Nature, vol. 402, no. 6761 (Suppl), pp.
C47-C52, 1999.

[3] D. Wolf and A. Arkin, “Motifs, modules and games in bacteria,” Curr:
Opin. Microbiol., vol. 6, no. 2, pp. 125-134, 2003.

[4] J. Saez-Rodriguez, A. Kremling, and E.D. Gilles, “Dissecting the puz-
zle of life: Modularization of signal transduction networks,” Comput.
Chem. Eng., to be published.

[5] A. Asthagiri and D. Lauffenburger, “Bioengineering models of cell
signaling,” Annu. Rev. Biomed. Fng., vol. 2, pp. 31-53, 2000.

[6] J.S. Parkinson, “Signal transduction schemes of bacteria,” Cell, vol.
73, no. 5, pp. 857-871, 1993,

[7] A M. Stock, V.L. Robinson, and P.N. Goudreau, “Two-component
signal transduction,” Annu. Rev. Biochem., vol. 69, pp. 183-215, 2000.

[8] P.W. Postma, J.W. Lengeler, and G.R. Jacobson, “Phosphoenolpyru-
vate: Carbohydrate phosphotransferase systems of bacteria,” Microbio-
logicatl Rev., vol. 57, no. 3, pp. 543-594, 1993.

[91 G. Krauss, Biochemistry of Signal Transduction and Regulation. Wein-
heim, Germany: Wiley-VCH, 2003.

[10] J. Schlessinger, “Cell signaling by receptor tyrosine kinases,” Cell,
vol. 103, no. 2, pp. 211-225, 2000.

[11] E.D. Gilles, “Network theory for chemical processes,” Chem. Eng.
Technol., vol. 21, no. 2, pp. 121-132, 1998.

[12] A. Kremling, K. Kahreis, J. Lengeler, and E.D. Gilles, “The organiza-
tion of metabolic networks: A signal-oriented approach to cellular
models,” Metab. Eng., vol. 2, no. 3, pp. 190~200, 2000.

[13] R. Heinrich; B. Neel, and T. Rapoport, “Mathematical models of
protein kinase signal transduction,” Molecular Cell, vol. 9, no. 5, pp.
957-970, May 2002:

[14] LH. Segel, Enzyme Kinetics. Behavior and Analysis of Rapid Equilib-
riunm and Steady-State Enzyme Systems. New York: Wiley, 1993.

[15] A. Goldbeter and D. Koshland, “An amplified sensitivity arising
from covalent modification in biological systems,” Proc. Nat. Acad. Sci,
USA, vol. 78, no. 11, pp. 6840-6844, 1981,

[16] K. Jung and K. Altendorf, “Towards an understanding of the mole-
cular mechanisms of stimulus. perception and signal transduction by
the KdpD/KdpE system of Escherichia coli,” J. Mol. Microbiol, Biotech-
nol., vol. 4, no. 3, pp. 223-228, 2002,

[17] K. Jung, personal communication,

{18] L. Ljung, System Identification Toolbox: For Use with MATLAB. Nat-
ick, MA: MathWorks Inc., 1995,

[19] H. Schaeffer and M. Weber, *Mitogen-activated protein kinases:
Specific messages from ubiquitous messengers,” Mol. Cell. Biol, vol.
19, no. 4, pp. 2435-2444, Apr. 1999,

{20} JE.J Ferrell, “Tripping the switch fantastic: How a protein kinase
cascade can convert graded inputs into switch-like outputs,” Trends
Biochem, Sci., vol. 21, no. 12, pp. 460-466, 1996,

[21] CF. Huang and JE.Jl. Ferrell, “Ultrasensitivity in the mitogen-acti-



vated protein kinase cascade,” Proc. Nat. Acad. Sci., USA, vol. 93,
o, 19, pp. 10078-10083, 1996.

[22] LE.JL Ferrell, "How responses get more switch-like as you move
down a protein kinase cascade,” Trends. Biochem. Sci., vol. 22, no. 8,
pp. 288289, 1997,

[23] A. Asthagiri and D. Lauffenburger, “A computational study of feedback
effects on signal dynamics In a mitogen-activated protein kinase (MAPK)
pathway model,” Biotechnol Prog., vol. 17, no. 2, pp. 227-239, 2001.

{24] B.N. Kholodenko, “Negative feedback and ultrasensitivity can
bring about oscillations in the mitogen-activated protein kinase cas-
cades,” Eur. J. Biochem., vol. 267, no. 6, pp. 1583-1588, 2000.

[25] LE.L Ferrell and W. Xiong, “Bistability in cell signaling: How to
make continuous processes discontinuous, and reversible processes
irreversible,” Chaos, vol. 11, no. 1, Mar, 2001,

[26] W. Xiong and J.E.J. Ferrell, “A positive-feedback-based bistable
‘memory module’ that governs a cell fate decision,” Nature, vol. 426,
no. 69635, pp. 460-465, 2003,

[27] H. Wiley, S. Shvartsman, and D. Lauffenburger, “Computational
modeling of the EGF-receptor system: A paradigm for systems biolo-
gv,” Trends Cell. Biol., vol. 13, no. 1, pp. 43-50, 2003.

[28] A. Wells, “EGF receptor,” Int. J. Biochem. Cell Biol., vol. 31, no. 6,
pp. 637643, 1999,

{29] F. Ciardiello and G. Tortora, “Anti-epidermal growth factor
receptor drugs in cancer therapy,” Expert Opin. Investig. Drugs, vol.
L1, no. 6, pp. 755768, 2002,

{301 B. Schoeberl, C. Eichler-Jonsson, E. Gilles, and G. Muller, “Com-
putational modeling of the dynamics of the MAP kinase cascade acti-
vated by surface and internalized EGF receptors,” Nat. Biotechnol.,
vol. 20, no. 4, pp. 370--375, 2002.

[31] G. Moehren, N. Markevich, O. Demin, L. Kiyatkin, A. Goryanin,
1. Hoek, and B. Kholodenko, “Temperature dependence of the epi-
dermal growth factor receptor signaling network can be accounted
for by a kinetic model,” Biochemistry, vol. 41, no. 1, pp. 306-320,
2002.

[32] U. Bhalla and R. lyengar, “Emergent properties of networks of bio-
logical signaling pathways,” Science, vol. 283, no. 5400, pp. 381-387, Jan.
1999.

[331Y. Gong and X. Zhao, “She-dependent pathway is redundant but
dominant in MAPK cascade activation by EGF receptors: A modeling
inference,” FEBS Lett, vol. 554, no. 3, pp. 467-472, 2003.

[34] B. Schoeberl, “Mathematical modeling of signal transduction
pathways in mammalian cells at the example of the EGF induced
MAP kinase cascade and TNF receptor crosstalk,” Ph.D. dissertation,
Univ. of Stuttgart, Stuttgart, Germany, 2003.

[35] H. Conzelmann, J. Saez-Rodriguez, T. Sauter, E. Bullinger, F.
Allgéwer, and E.D. Gilles, “Reduction of mathematical models of sig-
nal transduction networks: Simulation-based approach applied to
EGF receptor signaling,” submitted for publication.

[36] A. Asthagiri, C. Reinhart, A. Horwitz, and D. Lauffenburger, “The
role of transient ERKZ signals in fibronectin- and insulin-mediated
DNA synthesis.” J. Cell. Sci, vol. 113, no. 24, pp. 4499-4510, 2000.

[37] A. Kremling and E. Gilles, "The organization of metabolic reac-
tion networks: Signal processing in hierarchical structured function-
al units,” Metab. Eng.. vol. 3, no. 2, pp. 138-150, 2001.

Julio Saez-Rodriguez (saezr@mpi-magdeburg.mpg.de)
received his chemical engineering degree from the Uni-

L
fa]

IEEE Control Systems Magazine

versity of Oviedo, Spain, in 2001. Since 2002, he has been
a research assistant at the Systems Biology group at the
Max-Planck-Institute for Dynamics of Complex Technical
Systems in Magdeburg, Germany. His research interest
focuses on the mathematical modeling and analysis of
signal transduction networks in mammalian cells. He can
be contacted at the Max-Planck-Institute for Dynamics of
Complex Technical Systems, Sandtorstr. 1, 39106 Magde-
burg, Germany.

Andreas Kremling obtained his degree in technical cyber-
netics from the University of Stuttgart, Germany, in 1992
and Ph.D. at the Institute for Systems Dynamics and Control
Theory at the University of Stuttgart in 1997. Since March
1998, he has been a scientific assistant at the Max-Planck-
Institute for Dynamics of Complex Technical Systems in
Magdeburg, Germany. His scientific interests include math-
ematical modeling, analysis, and design of biochemical
reaction networks; software tools for model setup and visu-
alization of networks; and the application of methods from
systems theory to cellular systems.

Holger Conzelmann received the Dipl-Ing. degree in control
engineering from the University of Stuttgart, Germany, in
2003. Since 2003, he has been a research assistant in the Sys-
tems Biology group at the Institute for System Dynamics and
Control Theory at the University of Stuttgart. His research
interests include mathematical modeling of signal transduc-
tion networks, model analysis, and model reduction.

Katja Bettenbrock received her M.Sc. in biology in 1993
and her Ph.D. in genetics in 1997, both from the University
of Osnabriick, Germany. In 1998, she worked at the univer-
sity hospital of Ulm in the field of medical microbiology.
She has been a member of the Systems Biology group at the
Max-Planck-Institute for Dynamics of Complex Technical
Systems since 1998. Her research interests focus on signal
transduction and metabolic regulation in bacteria.

Ernst Dieter Gilles received his M.S. in electrical engineer-
ing and his Ph.D. from the TH Darmstadt, Germany, in 1960
and 1964, respectively. After a postdoctoral period at the
TH Darmstadt he became a professor at the Institute for
System Dynamics and Control Engineering at the University
of Stuttgart in 1968. He is the founding director of the Max
Planck Institute for Dynamics of Complex Technical Sys-
tems (1997) and an honorary professor at the University of
Magdeburg, Germany. His research interests include sys-
tems biology, network theory applied to chemical and bio-
logical processes, control engineering, and system
dynamics. He is the author of some 350 scientific publica-

tions, including several books. (=5

August 2004



Available online at www.sciencedirect.com

¥ S(HENCE@DIREOT‘ goénlf)eulijzsal
Engineering
ELSEVIER Computers and Chemical Engineering 29 (2005) 619-629

www.elsevier.com/locate/compchemeng

Dissecting the puzzle of life: modularization of signal
transduction networks

J. Saez-Rodriguez, A. KremlifigE.D. Gilles

Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany

Received 22 September 2003; received in revised form 12 January 2004
Available online 19 November 2004

Abstract

Cells have developed complex control networks which allow them to sense and response to changes in their environment. Although they have
different underlying biochemical mechanisms, signal transduction units in prokaryotes and eukaryotes fulfill similar tasks, such as switching
on or off a required process or amplifying a certain signal. The growing amount of data available allows the development of increasingly
complex models which offer a detailed picture of signaling networks, but the properties of these systems as a whole become difficult to grasp.
A sound strategy to untangle this complexity is a decomposition into smaller units or modules. How modules should be delimited, however,
remains an unanswered question. We propose that units without retroactive effects might be an interesting criterion. In this contribution, this
issue will be explored through several examples, starting with a simple two-component syB&aiéanichia colup to the complex epidermal
growth factor signaling pathway in human cells.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction (such as phosphorylations) catalyzed by other prot{@&@rey,
1995) Another common mechanism is the release of small
Cells are equipped with exquisite sensing systems which molecules called second messengers, which diffuse in the
allow them to be continously aware of the conditions in their cell and activate other proteijrauss, 2001)Interestingly,
environment and react appropriately to these conditions. Thealthough eukaryotes systems are generally more complex,
basic elements of a cellular signaling system are a sensorboth prokaryotes and eukaryotes follow the same logic. Espe-
protein, made of a receptor domain and a transmitter domain,cially in eukaryotes, enhanced computation possibilities are
and aresponse regulator, consisting of areceiver domain and achieved by inserting elements between the basic elements
regulator domaitiLengeler, 200Q)Stimulation of the sensor  described abovf_engeler, 200Q)
(normally bound to the cell membrane) leads to activation of ~ Bacteria, for example, have the capability to use a broad
the transmitter, which produces an intracellular signal. This range of nutrient sources for life. Furthermore, they are also
signal is processed by a cascade of molecules and finallyable to synthesize a number of monomers like amino acids
arrives at the receiver, which in turn activates the regulator if these are not provided in the medium. To sense their ex-
(seeFig. 1). Regulators produce a response by modulating ternal environment, bacteria often use rather simple signal
gene expression or enzyme activities. transduction systems. A paradigm of bacterial signal trans-
The key components in this transfer of information are duction is the two-component system that consists just of
proteins, which form networks and are able to perform com- two elements, the sensor kinase and the response regula-
putational tasks. Proteins can change their state by inter-tor (Hoch & Silhavy, 199%. Bacteria are also able to sense
action with other proteins or by biochemical modifications intracellular conditions. One representative is the phospho-
transferase system (PTIPdstma, Lengeler, & Jacobson,
* Corresponding author. Tel.: +49 391 6110 466; fax: +49 391 6110 526. 1993. The PTS is an uptake system for several carbohydrates
E-mail addresskremling@mpi-magdeburg.mpg.de (A. Kremling). in Escherichia coli In addition, it acts as a sensor and is

0098-1354/$ — see front matter © 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compchemeng.2004.08.035
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. . transduction & How biochemical modules should be delimited still re-
Stimulation processing response mains an unanswered question, and is a topic under intense in-
. gene vestigation. While several approaches are based on network-
stimulus ses o — . . . .
>~ I - enzyme clustering methods applied to experimental data (Riges
receptor transmitter receiver regulator & Galitski, 2003, others try to develop a suitable theoret-

ical framework for the analysis of modular networks (e.g.
Fig. 1_. General scheme _of a sig_na_l transduction_system. Adapted from Bruggeman, Westerhoff, Hoek, & Kholodenko, ZQ.OWG
Kremling et al. (2000}, with permission from Elsevier. have previously introduced thrééologically motivatectri-
teria for defining functional units: (1) common physiological

involved in the control of uptake of a number of carbohy- task (all the elements of a functional unit perform the same
drates. task, e.g. the specific catabolic pathways for individual car-

Human cells also posses a complex signaling systembohydrates), (2) common genetic units (the genes for all en-
which allows them to exchange information and thus co- zymes of a functional unit are organized in genetical units,
ordinate themselves. In most cases, the signaling processes.g. operons and modulons in bacteria) and (3) common sig-
follow the general schema described above. The binding of nal transduction network (all elements of a functional unit are
extracellular signals such as hormones or growth factors tointerconnected within a common signal transduction system
receptors results in changes in the intracellular paané- and the signal flow over the unit border is small compared to
mitter) of the receptor. The thus activated receptor transmits the information exchange within the uiremling, Jahreis,
the signal to intracellular signaling intermediates, triggering Lengeler, & Gilles, 2000)
signaling cascades which finally activate transcription factors  In this contribution, a novel criterion for the definition of
(regulatorg which move into the nucleus, changing the gene modules, namely the absence of retroactivity in the connec-
expression of the cglDownward, 2001)Essential processes tions between the modules, will be proposed. The different
like proliferation, cell development or even the suicide of the situations that can lead to a retroactivity-free connection will
cell are controlled by cell signaling. Since itis related to such be first examined by means of the network theory, and later
basic properties of the cells, defective signal processing canapplied to two signaling systems in prokaryotes (the two-
lead toimportant diseases such as cancer or diabetes, and thussmponent system and the control of carbohydrate uptake)
signaling pathways are important targets for disease therapyand two in eukaryotes (the MAPK Cascade and the EGF sig-
(Levitzki, 1996) naling network). Our approach does not intend to provide an

The high number of components involved, the complex algorithm to find modules from a set of experimental data
crosstalk phenomena among the different pathways and the(using e.g. network-clustering methods), but rather a theoret-
biophysical regulation set up a picture difficult to grasp ical framework to analyze signaling networks in a modular
(Asthagiri & Lauffenburger, 2000 A useful tool to untan- and systems-theoretical manner.
gle this complexity might be mathematical modeling. The
knowledge and amount of data available about signaling net-
works grows steadily, boosting the development of increas- 2. Modularization of signaling networks
ingly complex models. These models offer a highly detailed
picture of signaling pathways, but the properties of these sys- A suitable frame for developing modular models is pro-
tems as a whole become difficult to understand. This holistic vided by the network theory introduced Igilles (1998)
understanding is the target of the emerging discipline of sys- Systems are described as a combination of two types of ele-
tems biology(Kitano, 2002) Engineers usually fasynthesis mentary unitscomponentswhich have storages of physical
problems: design a system with certain characteristics using aquantities and@goupling elementsvhich describe the interac-
set of well-characterized elements. A system-biologist has totions between the components. These elements can be aggre-
face aranalysigproblem: understand the properties of a com- gated into a single elementary unit on a higher level, which
plex network. Therefore, the definition of functional units,i.e. can be again described by means of components and cou-
entities whose function is separable from those of other units, pling elements, leading to a hierarchical structiviafgold,
might help to analyze biological systenttgtwell, Hopfield, Motz, & Gilles, 2003. Components and coupling elements
Leibler, & Murray, 1999 since, once modules are defined, are connected by two types of vectors: potential vectors,
they could be systematically analyzed regarding propertieswhich are outputs of components and inputs of coupling
such as stability, robustness and dynamic behavior and classielements, and current vectors, which are outputs of cou-
fied, creating a library of reusable units. Once thretaively pling elements and inputs of components. For example, in
simple units are well understood, they can be re-assembleda chemical network the compounds would be the compo-
in order to analyze the emergent properties of the resulting nents, the reactions the coupling elements, potential vec-
systems, as engineers do. Furthermore, this set of reusabléors would carry information about the concentrations from
elements would simplify the set-up of models, since many the compounds to the reactions and current vectors would
parts of biological networks are found in several signal trans- bring information about the rates back to the compounds, see
duction pathways. Fig. 3a).
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The application of the network theory to biochemical sys- place by means of exchange of different substances as well as
tems leads to a modular modeling concept introduced else-by direct contact between the cells. The machinery of a cell
where(Kremling et al., 200Q)This concept is based on the can be decomposed into functional units which perform dif-
definition of a complete but finite set of elementary objects ferent functions. These biochemical pathways are connected
at the highest level of resolution. Three types of elementary by common compounds. Finally, each of these modules can
objects are defined: substance storages, substance transfornbe decomposed into molecules which interact by means of
ers and signal transformers. By aggregating these objectsmolecular interactions or reactiortsg. 2). This contribution
complex processes such as gene expression or signaling nefocuses on the last two levels of detail.
works can be describedfemling & Gilles, 2001 Kremling,
Jahreis, Lengeler, & Gilles, 20D1

One argument supporting the application of the network
theory to cellular pathways is the proposed hierarchy of bi- gjnce engineering sciences are used to working in a mod-
ological systemgKremling et al., 2000; Lengeler, 2000) y;3r manner, it is tempting to approach the definition of bio-
Actually, t_hls h'lerarchlcal str'ucture can be r_epresented Simi- ogical modules from a technical perspective. Frosystem-
larly for biological systemsHig. 2) and chemical processes.  hqqreticalpoint of view an interesting criterion might be the
If we consider a human body, we can divide it into differ- yefinition of elementsvithout retroactive effectéi.e. where

ent systems which fulfill different tasks (e.g. the digestive o the input and the output are unidirectional). Such units
system, the locomotive system, etc.), connected mainly (buty,ifj| the requisite of independence of functional units: the

not only) by blood vessels. Each of these systems can be dey, e rties of a retroactivity-free unit only depend on its input

scribed as a sum of organs connected also mainly by blooda g are independent of what is downstream of it. Importantly,

vessels. Organs are made up of several tissues, each of thegjis without retroactive effects can be relatively straightfor-
made of one type of cells. The coupling between cells takeswardly analyzed by means of system theory’s tools.

Consider the simple general schema depictdedgn3(a),
which represents one reaction (coupling elemeat)d three
compounds (componentg), B andC, involved in the reac-
tionr, according to the network theory. If one of the potential
or current vectors can be neglected, the system shows a junc-
tion free of retroactive effects. But, under which conditions
can a current vector (i.e., information about a rate) or a poten-
tial vector (information about a concentration) be neglected?
In the following we discuss some typical simple cases.

2.1. Absence of retroactivity as a criterion

respiratory
system

level of
Eysiome 2.1.1. Neglect of a potential
A potential can be neglected if the concentration of one

of the compounds, say C, does not affect the reaction rate,
which corresponds to neglect vector 1Rig. 3a). An ex-
ample is an irreversible reaction, where the product does not
affect the reaction rate. Hence, an irreversible reaction of A
and B to give C would be represented a$ig. 3b). There

are some common irreversible reactions in biochemistry, like

some types of phosphorylation reactions.

pancreas
level of organs

levelfof cells

2.1.2. Neglect of a current

A retroactive-free connection by neglect of a current is
possible if a compound influences a reaction rate, but the
reaction rate doesot influence this component (i.e., if the
vector 2 inFig. 3(a) can be neglected), leading to the system
depicted inFig. 3(c). One possibility would be if a com-
pound is consumed or produced in a reaction, but the amount
involved in the reaction is negligible compared to the total
L= amount of the compound. For example, if the concentration

g of one of the substrates is much higher than the other, say

A < B, then the amount of B consumed in the reaction will

Fig. 2. Hierarchical structure of biological systems. An analogous figure for D€ n_egligiple compared _tO the total amount of B, leading to
chemical processes can be foundiangold et al. (2002) a unidirectional connection.

phosphorylati

level of compounds
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Fig. 3. Representation of different reactions schemes according to the network theory. Dashed lines represent potential (concentration) vectors, solid thin line
current (rates) vectors, and solid thick lines the borders of the modules. (a) General case; (b) neglect of a potential; (c) neglect of a current; (d) system define
by Egs.(1) and (2) (e) system defined by E¢4); (f) same system as in (e) but with a change of varidiye= E + SE; (g) system defined by E¢5); (h)

system defined by Eqé9) and (10)

If we consider the general case where a compdais] is obtained, which is shown iRig. 3(e) and represents the
transformed intd?, by reaction with another compourkg) irreversible conversion @into P catalyzed by an enzynie
beingE regenerated in an additional step, as defined by the The reactions are normally described according to the mass

equations: action law. Defining a new variablEg = E + SE we ob-

;L 1 tain an alternative representatidrid. 3(f)). Analyzing this
E—=E @) schema we can see that a connection free of retroactivity from
and the enzyme to the reaction can be achieved if:
S+E—=SE=P+E ) (i) The reactions that influencgq but are not represented

in Fig. 3(f) are not influenced b¥, which is equivalent

we arrive at the schema depictedrigy. 3(d). The system is
highly interconnected, without unidirectional connections. If
the second step of the second reaction (B}).is considered
irreversible we obtain

S+E=SE—~P+E (3)

instead of Eq(2). The representation of the new system is
obtained by deleting the vectors 1 and ZFig. 3(d). In this

system, there is a unidirectional connection defined by the

irreversible step, but the connection betwd&tt’ andS/ P
has still retroactivity (seBig. 3d)). If, additionally,E = E’,
the system

k1 ko
S+E=SELPLE (4)

-1

to neglect the vector 1 iRig. 3(f). This is actually the
case introduced above of absence of retroactivity by an
irreversible reaction.

(ii) The dynamics of the compound SE can be neglected (i.e.,

ifdcg E/dt ~ 0, which means that the vector 2hig. 3(f)

is negligible). This approximation is known as the quasi-
steady-state assumption, and leads to the reduced system
(see for exampl&egel, 1988

S— P, (5)

following the reaction rate the classical Michaelis

Menten equation

r = = ,
Kn+S Kp+S

(6)
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where K, = (k_1 + k2)/ k1. We obtain thus a connec- As can be seen iRig. 3h) this system is still highly in-

tion free of retroactivity by absence of a current vector, terconnected.

as represented iRig. 3(g). If, additionally, the enzyme Inthe following, these criteria will be applied to several ex-

is saturated by the substraté{ <« ), thenthereaction = amples of mathematical models of signal transduction path-

rater becomes ways. Two signaling systems in bacteria (the simple two-
component system and the control of carbohydrate uptake

r=kzEp (7) system) and two in eukaryotes (the basic MAP Kinase Cas-

o ) cade and the complicated EGF Signaling Pathway in humans)
and the system can be represented &jn3(g) deleting will be considered.

the vector 1. We obtain hence an additional connection
free of retroactivity between the reactiomand the sub-

strateS ] )
3. Two-component signal transduction

The assumptionalg/dr ~ O is correct for the system de-
fined in Eq.(4) if ¢ < 1, wheree = Eg/(K,» + So) (Segel, Two-component systems are widespread in bacteria, ar-
1988) This conditionis fulfilled ifEqg <« SpandifEg <« K. chaea and plants. IBscherichia coli 30 sensor kinases and
Eo < So (much less enzyme than substrate, a usual situation32 response regulators have been found. The two interact-
in many in vitro experiments) is the usual assumption for the ing components are a sensor kinase and a response regula-
application of Michaelis Menten equation. tor (Fig. 4). Upon perception of a stimulus, the input do-
The condition Eg <« K,,, can be rewritten afok; < main of the sensor kinase modulates the signaling activity of
k2 + k_1. Sincek, is the kinetic constant for the formation of  its transmitter domain, resulting in autophosphorylation with
the complexSE andk_1 andk, the kinetic constants for the  the+y-phosphoryl group of ATP. Then, the phosphoryl group
dissociation of the compleSE (seeEq. (4), this condition is transferred to the response regulator receiver domain, re-
can be interpreted as the decompositiorS&being much sulting in an activation of the output domain(s) to trigger a
faster than the formation @E If it is assumed that the ini-  response. In most cases the response is an alteration in the
tial amount ofSEis zero, the amount @Eis always around  transcription level of an special gene or gene cluster (see e.g.
zero, holding the quasi-steady-state assumption. This situa-Parkinson, 1998r Stock, Robinson, & Goudreau, 2064y
tion is analogous to many electrical measuring devices, e.g.reviews).
a thermocouple. In a thermocouple, a difference of tempera-  Inthe simplest case the system can be described by a set of
ture generates a voltay§ewhich in turn produces a current  two reactionsKremling, Heermann, Centler, Jung, & Gilles,
through a conductor. A very high value is given to the resis- 2004
tanceR and therefore the current is very low & IR). This

current provides a measurement of the voltage that does notS = S” (12)
affect the source of the signal. In the case of an enzymatic

reaction wheréy < K,,,, the reaction rate (or the amountof S” + R = S+ R”. (12)
product) is a “measurement” of the concentration of the en-

zyme, but, sinc&y <« K, there is a high resistance against In the first reaction (Eq(11)), the stimulus enhances the
the consumption of the enzyme, which is thus not affected kinase activity that results in autophosphorylation of the sen-
by its “measuring device”. sorkinase®, S”). In the second reaction (E({.2)), the phos-

The Michaelis Menten expression (E)) is widely used phoryl group is transferred to the response reguld&pR().
for enzymatic reactions without considering whether the as- R” contains the active output domain. To turn off the system
sumptions described above are fulfilled or not. efficiently, the phosphoryl group is taken away in a dephos-

If the Eq.(1) of the general case can be neglected, but the phorylation reaction. Here, two model variants are possible:
second term of thEq. (2)can not be considered irreversible, (&) the phosphoryl group is cut off by an additional enzyme
we obtain a system defined by the equation possessing phosphatase activity or (b) the sensor kinase acts

as the dephosphorylating enzyme, leading to the addition of

S+E=SE=P+FE (8)
which, under the quasi-steady-state assumption, can be trans- )
formed into a system with a unidirectional connection by sensor kinase response regulator
neglect of a current as depictedrig. 3(c). input transmitter receiver  output
On the other hand, the neglect of the compB&in the domain  domain domain - domain

general case (Egél) and (2) leads to the system stimulus DE\I—H&P - P~AM response

ATP  ADP
E = E 9)

, Fig. 4. General scheme of a two-component signal transduction system, as
S+E=P+E. (10) in Kremling et al. (20041, with permission from Elsevier.



624 J. Saez-Rodriguez et al. / Computers and Chemical Engineering 29 (2005) 619-629

the equation pled type defined by Eq$9) and (10)(Fig. 3(h)). The ad-
RP—~ R4 P (13) ditional dephosphorylation step (Ed.3) or (14)) further in-
creases the coupling of these subsystems which should be
or hence considered as a single module. The total humber of
DNA binding sites is much smaller thak’’. Hence, as dis-
RP+S—~R+S5+P (14) cussed above, there is a unidirectional connection due to ne-

respectively. The latter is the case in a number of examples8l€ct of a current, as depicted Kig. 3(c). R — DNA and
known fromE. coli, e.g. the KdpD/KdpE system responsible MRNA influence the synthesis of RNA() and proteinu),
for the regulation of protein KdpFABC, which is a potas- respectively, bgt are not consumeq by them. This is s.|m|lar
sium uptake system. It is assumed that the dephosphoryla{0 the manner in which the enzyrisinfluences the reaction
tion is irreversible. In the model, the stimulus is a change in rate in Eq(5) (Fig. (g)). Therefore, there is a unidirectional
the reaction constant of the phosphorylatiorS¢Eq. (11)) connection due to neglect of a current. The system can thus
and, as system output, the concentration of the phosphory-be decomposed into different units free of retroactive effects,
lated response regulator is chosen. Experiments with puri-2S depicted ifig. 5.

fied enzymes of the. coliKdpD/KdpE system revealed that

the concentration of the phosphorylated response regulator4, Control of carbohydrate uptake

is very low in absence of the DNA binding si(Eremling,

Heerman, et al., 2004)Therefore, the DNA-binding step The control of the carbohydrate uptake in bacteria has been
must be included into the model, leading to the addition of under investigation for along time. Starting with the pioneer-
the equation ing work of Monod, a number of components were detected
which are responsible for the coordination of sugar uptake. It

nR"+DNA; = R—DNA, (15) is widely accepted that the phosphotransferase system (PTS)
wheren is the number of molecules which bind to the DNA IS one of the important modules in the signal transduction

binding site. machinery of bacteria. The PTS represents a transport sys-
The amount of the regulator—-DNA compleR  DNA) tem and at the same time is part of a signal transduction

is used as a measure formRNA synthesis. In a further step, theSyStem responsible for carbon catabolite represgtostma
mRNA is then translated to protein. The two polymerization €t al., 1993) Catabolite repression means the dominance of

steps are connected like a cascade: one carbohydrate uptake system over another one; if glu-
cose and lactose are present in the medium, glucose is taken
(nucleotides)—"" RNA — degradation (16)  up first while lactose is taken up only after the depletion of
(amino acids)~"! Pr — degradation 17) glucose. The_PTS covers a set of five reactions, where a phos-
phoryl group is transferred from phosphoenolpyruvate (PEP)
where the rate of transcriptiofy is a function ofR — DNA through two common intermediates, enzyme | (El, gatsé
and the rate of translationy a function of the available  and the phosphohistidine carrier protein (HPr, gets¢), to
mMRNA. the substrate-specific Ell and finally to the substrktg.(6).
If a sugar is taken up by the PTS and thereby converted to a
3.1. Modularization phosphorylated form, e.g. glucose is converted to glucose 6-

phosphate, the sugar is further metabolized; glycolysis is the
The sensor kinase and the response regulator form a systink between the transport reactions and their energy supply.
tem (Egs(11) and (12) which belongs to the strongly cou-  Metabolism of glucose 6-phosphate during glycolysis results

Q DNA binding site
SP @ gene expression
ADP ‘ | \l/ L
transcription res|
ponse sensor .
I R1 | R2 | “ R3| B regulator  kinase Protein
L Y i - OO
twocomponent signal transduction : :
) ‘ response regulator
i sensorkinase T TTTTTTTTTTTTITTTTTTmmmmmmmeees

Fig. 5. Block diagram of the two-component system and gene expressiorS&ezaRodriguez et al. (20@p004 |IEEE. The entire system can be decomposed

into units connected to each other in an unidirectional way. The output from the two-component unit is the phosphorylated form of the response regulator.
Since the genes for the sensor and the response regulator are members of the same operon as the output protein, a positive feedback loop is established (da

lines). However, the reactions inside the two-component do not influgineetly the entire concentration of the proteins and the connection is, therefore,
unidirectional.
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Induction EIICB "‘on-PTS Systems Chemotaxis and the subgequent transfer of the phosphoryl groups can t_Je
Io o7 described with a repeated sequence of the reaction given in
Gle P-EICB  gua  P-HPr g ';EP Eq. (10). This system is, analogously to the two component
N AV 4 ~v ~ ~|[v H
\ ¢ system, strongly coupled and can not be decomposed into
alcep” | Ece " Spgna S HPET S pemr” | pyruvate subunits. As can be seen Fig. 7, PEP and pyruvate are

inputs with retroactive effects, since they are involved in the
ader"jate_ metabolism; a flux through the PTS will affect the metabolism
cyclase glycolysis and, thus, alter the concentrations of both PEP and pyruvate.
The connection through EIIA to other transport systems is
Fig. 6. Scheme of the five PTS reaction. Begin and end of the relay chain arealso retroactive: EIIA binds to partner proteins (e.g. lactose
connected by glycolytic reactions. Inputs are the concentration of the external permease or glycerol kinase), inhibiting non-PTS transport
gluc_ose, PEP and pyruvatg, fror?ﬁremling, Fi_scher, Sauter, Bettenbrock, systems. The amount of EIIA complexed is not necessarily
& Gilles, 2009©, with permission from Elsevier. negligible, leading to a retroactive effect from the non-PTS
tothe PTS systems. The step to synthesize cAMP is assumed
in two moles of PEP. Beside glucose, a number of other car-to be a function of the adenylate cyclase concentration. The
bohydrates are taken up by PTSHn coli. In the case of  phosphorylated form of EIIA (REIIA) acts as an activa-
glucose, EIfc consists of the soluble EIIR" (genecrr) tor binding to the adenylate cyclase and thus shifting it to
and the membrane-bound transporter EIf&RgeneptsQ an activated form. Since the concentration offRIA is far
for glucose uptake. All proteins involved in this phosphory- larger than the cyclase concentration, the amountdtPA
lation cascade act as signaling molecules, e.g. El in chemo-bound to the enzyme can be neglected, leading to an unidirec-
taxis, HPrin glycogen metabolism, EllAininducer exclusion tional connection by neglect of a current. Since it is assumed
(inhibition of non-PTS transport systems), and the phospho- that the concentration of the binding sites is smaller than the
rylated form of EIIA in activation of the adenylate cyclase. concentration of the cCAMErp complex, the output of the
The adenylate cyclase produces the alarmone cAMP whichsystem, i.e., the binding of cCAMBrp to its corresponding
is the activator of the transcription factor Crp. Currently, over binding sites, is also regarded as unidirectional. Feedback

seventy DNA binding sites for Crp are known. loops (dashed lines ifig. 7) from the Crp module occur
because the PTS gene as well as the genes for the adenylate

4.1. Modularization cyclase and Crp itself are under control of the cAKIRD
complex.

Fig. 7summarizes the entire signal transduction unit start-
ing from the PTS and ending with the binding of the transcrip-
tion factor Crp complexed with cAMP to its corresponding 5. MAP kinase cascade
binding sites, as modeled Byemling etal. (2001)Consider-
ing the stoichiometry of the PTS, the reaction system extends  The mitogen-activated protein kinases (MAPKs) are a
the translocation of phosphoryl groups from two components, family of highly conserved enzymes (a protein kinase is an
as shown above with the two-component system, to five com- €nzyme which catalyzes the phosphorylation of a certain pro-
ponents. The first reaction, the transfer of a phosphoryl grouptein by ATP), which play a pivotal role in the transduction
form PEP to pyruvate can be described as shown if®g.  of signals in eukaryotesOhang & Karin, 200} There are
several families of MAPKSs, and at least four expressed in
mammals: ERK-1/2, JNK, p38 and ERKElfang & Karin,
signal transduction system 2001). MAPKs have different names, but they share the same

T y mechanism of activation: each MAPK (sEg. 8), is phos-

Gle ' | phorylated at two points by another kinase—hence called
Crp i MAPK kinase (MAPKK) or MAPK/ERK kinase (MEK)—

PTS - Cya S . .
P-ElIA v cAMP which is also activated through a double phosphorylation

by another kinase—called MAPKK kinase (MAPKKK) or
MEKK. There also enzymes, called phosphatases, which re-
verse these phosphorylation steps (Big 8).

Fig. 7. Scheme of the signal transduction system responsible for carbohy- In mamme_lls, MAPK Ca_lsca_des a_re involved in the re-
drate uptake irEscherichia coli adapted fromKremling et al. (20019, sponse to awide range of stimuli, ranging from growth factors
with permission from Elsevier. Inputs in the PTS are the external glucose t0 stress, which result in the regulation of essential cellular
concentration and the glycolytic intermediates PEP and pyruvate. EIIAin processes such as differentiation, cell proliferation and sur-
unphosphorylated form is responsible for inducer exclusion, while the phos- vival (Schaeffer & Weber, 1999 How MAPKSs are able to
phorylated form activates the adenylate cyclase to produce cAMP. cAMP . . . .. .

is an alarmone which activates the transcription factor Crp. Dashed lines produce speC|f|C responses to different St'_mu“ IS an issue not
mark the feedback of Crp on the transcription of its own gene, the adenylate fully understood yet. Some of the mechanisms proposed are:
cyclase, and the PTS proteins. (a) scaffold proteins, which bring together the elements of a

PEP/ I
pyruvate| ElIA -

Y \j




626 J. Saez-Rodriguez et al. / Computers and Chemical Engineering 29 (2005) 619-629

| like behavior, which allows the cell to convert a gradual input
into a binary response, is due to the double phosphorylation

«——

MAPK% mechanism of activation (s€ég. 8) and the partial saturation
) - of the kinasesKerrell, 1996; Huang & Ferrell, 1996
T~ Several MAPK cascades have been found to be em-
v bedded in feedback loops, both positive and negative (see
""APK/K‘%R } Fig. 8). A positive feedback can, together with the inherent
D) @] - i ultrasensitivity of the MAPK Cascade, produce a bistable sys-
e L tem and, if the feedback is strong enough, the system is able
v to give anirreversibleon/off response to a transient continu-
MAPK/él\ v ous stimulugFerrell, 2002) Two MAPK Cascades, the INK
SHle e (Bagowski & Ferrell, 200)L.and p42(Ferrell, 2002)MAPK
o O Cascades iXenopu®ocytes have been found to be bistable.

On the other hand, a negative feedback could introduce oscil-
lations(Kholodenko, 2000and complete adaptation, which
Fig. 8. Structure of the MAPK Cascade. The system can be decomposedmeans that for a constant Input the output S|gnal goes back

into three modules. A positive or negative feedback from the last to the first {0 the original value after a transient increagesthagiri
module can be present. & Lauffenburger, 2001

v

MAPK Cascade, thus increasing its activity and specificity,

(b) the spatial localization of signaling molecules and (c) the 6. EGF signaling pathway

temporal organizationSchaeffer & Weber, 1999 for ex-

ample, in PC12 cells, sustained ERK activation triggers cell  The epidermal growth factor receptor (EGFR) is the pro-
differentiation, whereas a transient ERK activation leads to totype of the EGFR family, a group of receptors which belong

cell proliferation(Marshall, 1995) to the tyrosine kinase receptors family (RTKs). RTKs are a
large family of receptors for different ligands such as hepa-
5.1. Modularization tocyte growth factor (HGF) and Insulin. The EGF receptor

can bind to several growth factors including EGF and Té&sF-

Considering its structure, the MAPK Cascade can be de- (Yarden, 2001)Ligand binding promotes EGFR dimeriza-
composed in three submodules corresponding to the threetion and autophosphorylation. This allows the formation of
kinases, as depicted iRig. 8 The connections between complexes formed by several signaling proteins, which ac-
the three modules belong to the type discussed above (Eqtivate many signaling pathways, including the MAPK Cas-
(4)). The assumption (i) introduced above does not hold, cade. These steps are very similar in the case of other RTKs,
because the concentration information abéye.g. MEK- and the molecules involved are to a wide range the same
PP) is needed in order to compute the dephosphorylation(Schlessinger, 2000)
steps. However, the assumption (ii) might hold, depending EGFR signaling plays an essential role in mammalian de-
on the values of the kinetic parameters and kinases concenvelopmen{Yarden, 2001)EGFR is overexpressed in a wide
trations. Some mathematical models (&gghtman & Fell, variety of human tumor@/\ells, 1999) Therefore, the EGFR
2000; Kholodenko, 20Q0that include the MAPK cascade pathway has been intensively analyzed as a drug discovery
have been set up assuming (ii), i.e., the quasi-steady-statdarget for cancer therapy and some of the resulting drugs
assumption—which implies the application of Michaelis are currently in clinical developmenEiardiello & Tortora,
Menten kinetics—while others have not (e$choeberl, 2002.
Eichler-Jonsson, Gilles, & Mler, 2003. Even if the quasi- EGFR is probably the best known receptor system, which
steady-state assumption does not hold, we think that a re-has allowed the development of several mod8lsalla &
action catalyzed by an enzyme is still a suitable point for lyengar, 1999Brightman & Fell, 2000Kholodenko, Demin,
defining modules’ borders, since the coupling is relatively Moehren, & Hoek, 1999Schoeberl et al., 20Q2recently
weak (e.g. there is no net flux), thus providing pseudo- reviewed byWiley, Shvartsman, and Lauffenburger (2003)
unidirectional connections. We have analyzed the EGF network model fr&ehoeberl

The MAPK Cascade is a paradigm of modular system: et al. (2002) which describes the activation of the ERK
through three subunits and eventually a feedback loop, theMAPK Cascade by EGF. The model includes (a) the re-
MAPK is able to perform several tasks. Probably, the most ception of EGF, (b) the formation of signaling complexes
evident property of such a three-step structure is the ampli-by interaction of several signaling proteins (namely Sos,
fication of the signalFerrell, 1996) However, the charac- Grb2 and Shc), (c) the activation of a signaling intermedi-
teristic curve of the MAPK Cascade not only shows a high ate called Ras and (d) the activation of the RaffMEK/ERK
amplification, but also a sigmoidal form, a property termed by MAPK Cascade. Furthermore, the model also includes the
Goldbeter and Koshland (198dlrasensitivity. This switch-  internalization processes, hence duplicating all the steps de-
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to the module MAPKK and the module ERK to the module MAPK (&g 8).

scribed above and increasing the complexity of the systemsubmodules, corresponding to the complex formation with

(seeFig. 9a)).

6.1. Modularization

and without the adaptor molecule Shc (§ég 9b)). These

two submodules are strongly coupled since they share sev-
eral signaling molecules. However, the output signal of both
units (compoundg35 andc25 in the model) is integrated

If we focus on the non-internalized pathway of the model into an enzymatic signal leading to a connection of the type
of Schoeberl et al. (2002}he system can be decomposed discussed above (E)). The next elements are the activa-

from a system-theoretical point of view as depicted-ig.

tion of Ras, Raf, MEK and ERK. The activations of Ras and

9(b). The first module includes the EGF reception process up Raf are strongly coupled, since Ras activates Raf through a
to the phosphorylation of the receptors. Although this phos- reaction of the type of Eq3). Therefore, it is more reason-

phorylation ¢3 in the model ofSchoeberl et al. (200R)s

able to consider Ras and Raf as a unique module, obtaining

considered a reversible step in the model, it is still a suit- three modules (Raf-Ras, MEK and ERK, $&g. Ab)) with

able point to separate units, since the effect of the backwardenzymatic outputsc@5, ¢51 anc59, respectively). The con-
term is almost negligible, and the connection is hence almostnection between Raf—~Ras and MEK modules, as well as the
free of retroactivity (data not shown). The next unit is the connection between MEK and ERK modules, belong to the
signaling complex formation. Here, we can distinguish two type defined in Eq(4) which, even if the quasi-steady-state
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assumption does not hold, are reasonable points for defin-sence of retroactivity that was proposed within this paper

ing modules’ borders, as discussed in the case of the MAPK (Schuster, Kahn, & Westerhoff, 19p3Recently, a new ex-

Cascade. tention was presented which allows one to treat modules as
black boxes, considering only the intermediates that medi-
ate interactions between modul@uggeman et al., 2002)

7. Discussion Importantly, MCA is based on a certain steady-state, which
is a reasonable assumption for metabolic networks. How-

Thanks to new high-throughput techniques, the amount of ever, signal transduction is prominently a dynamic process,
experimental data about signaling networks is growing expo- where the transient behavior determines the response. There-
nentially, leading to complex pictures of signaling pathways fore, the application of MCA to signaling phenomena, yet
whose properties are not intuitively understandable. Dividing useful, might be limited by the steady-state assumption. An
these networks in subunits might be a useful tool to tackle this additional limitation is that it provides information related
complexity, but criteria for defining modules are still lacking. to small changes in the signal, whereas signals often change
In this contribution it has been proposed that units without drastically(Bruggeman et al., 2002)
retroactive effects are reasonable modules since their prop- Model reduction might also be a helpful tool for the anal-
erties show independence from their environment. Some cri- ysis of the modules. A reduction of the complexity without
teria to find units free of retroactivity in signaling networks losing the properties which are important for the function of
were introduced and applied to several examples. The analthe modules should provide more understandable units.
ysis was performed by means of the network theory, which  Feedback loops are ubiquitous in signaling networks and
allows a clear identification of unidirectional connections due play an important role in the complex behavior of signaling
to neglect of current or potential vectors. processes. An appropriate modus operandi to unravel this

Two signaling networks of prokaryotes and two of complexity might be a stepwise analysis, investigating first
eukaryotes have been analyzed. As a first example, thethe isolated modules, then the whole system without feed-
two-component system was chosen, since it is probably theback loops and finally the complete network including the
simplest signaling system known. Next, the control of the feedback effectéSaez-Rodriguez et al., 2004)/hile some
carbohydrate uptake was considered. A part of it, the PTS emergent properties might be due to the interaction among
system, is structurally an extension of the two-component the different modules, some might be determined by a cer-
system. The additional elements and, especially, the couplingtain subsystem. MCA can also be used to analyze feedback
to the metabolism, form a complex network with many loops Kahn & Westerhoff, 1991; Kholodenko et al., 1997
retroactive effects. In eukaryotes, we first discussed the caseBy understanding thpartsand rejoining them, new insights
of the MAPK Cascade, a central element of signal transduc- into the properties of thesholesystem might be gained.
tion in higher organisms. Finally, a part of the EGF signaling
network, a complex system responsible of essential processes
in human cells, was analyzed. The examples come from very
distant organisms and seem to be very different. Remarkably,
all the cases can, however, be analyzed using similar criteria.
If other systems were analyzed, probably the same criteria
would appear again, and maybe additional criteria for
defining units without retroactive effects would arise.

Once these more manageable units are defined, the
should be thoroughly analyzed, focusing especially on the dy-
namic propertie§Saez-Rodriguez, Kremling, Conzelmann,
Bettenbrock, & Gilles, 2004 5ystems theory provides pow-
erful tools to attempt this task. Due to the absence of retroac-
tivity, the analysis performed on the isolated subsystem will
not be altered when the module is embedded in the whole
network. References
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Abstract

The presumably high potential of a holistic design approach for complex biochemical reaction networks is exemplified here for the
network of tryptophan biosynthesis from glucose, a system whose components have been investigated thoroughly before. A dynamic
model that combines the behavior of the trp operon gene expression with the metabolic network of central carbon metabolism and
tryptophan biosynthesis is investigated. This model is analyzed in terms of metabolic fluxes, metabolic control, and nonlinear
optimization. We compare two models for a wild-type strain and another model for a tryptophan producer.

An integrated optimization of the whole network leads to a significant increase in tryptophan production rate for all systems
under study. This enhancement is well above the increase that can be achieved by an optimization of subsystems. A constant ratio of
control coefficients on tryptophan synthesis rate has been identified for the models regarding or disregarding trp operon expression.
Although we found some examples where flux control coefficients even contradict the trends of enzyme activity changes in an

optimized profile, flux control can be used as an indication for enzymes that have to be taken into account in optimization.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Tryptophan synthesis; Gene expression; Central carbon metabolism; Nonlinear optimization

1. Introduction

The most attractive processes to produce the aromatic
amino acid tryptophan are enzymatic catalysis or
fermentation from precursors like indole, serine, or
anthranilic acid, and direct fermentation from carbohy-
drates (Leuchtenberger, 1996). Tryptophan is a very
important amino acid that is widely used in medicine
and also used as feed additive. In addition, other
industrially relevant substances can be derived from
tryptophan synthesis intermediates, like indigo (Ensley
et al., 1983) or the anti-influenza drug Oseltamivir
phosphate (Rasor and Voss, 2001). From an industrial
point of view, high production rates are desirable, and
by applying recombinant DNA technology, many

*Corresponding author.
E-mail address: reuss@ibvt.uni-stuttgart.de (M. Reuss).

1096-7176/$ - see front matter © 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.ymben.2004.06.003

attempts have been undertaken to improve product
quality and quantity.

Early investigations aiming at the construction of
tryptophan overproducing Escherichia coli strains (e.g.
the systematic contribution by Tribe and Pittard (1979))
concentrate on genetic modifications in the anabolic
pathways. The pathways examined are leading to
tryptophan and the common intermediate for all aromatic
amino acids, chorismate (e.g. Dell and Frost, 1993).

There have been several attempts in using a mathema-
tical description of the pathways to optimize tryptophan
production. The model of Xiu et al. (1997) considers
repression of gene expression by the regulator TrpR as
well as feedback inhibition of the enzymes in the
tryptophan synthesis pathway. The effect of the growth
rate and especially the demand of tryptophan for protein
synthesis were taken into account by the authors. They
conclude that the growth rate of the cells should be kept at
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a minimal level. Marin-Sanguino and Torres (2000) refined
the model and translated it into the S-system approach.
Based on this description they used two optimization
procedures to get a high tryptophan production rate. The
parameters changed in their contribution are related to
the efflux of tryptophan, the growth rate, the product
inhibition, and the level of tryptophan repressor. The result
of the optimization shows more than a four-fold increase of
tryptophan production rate.

To summarize these and other activities (Sinha, 1988;
Koh et al., 1997; Santillan and Mackey, 2001) for
modeling and optimization of tryptophan production, it
can be stated that the investigations so far have focused
on the description of regulatory control structures inside
the tryptophan pathway itself and the interplay with the
product formation pathways of chorismate and trypto-
phan. This can be justified, since the tryptophan
pathway can be regarded as a functional unit, showing
a limited autonomy. This means that a precise stimula-
tion of the unit by altering the environment leads only to
changes in the unit under investigation, i.e. the response
of the whole cellular network is restricted to a small
part. However, it is well known from investigation of
metabolic fluxes (e.g. Varma and Palsson, 1993a, b) that
for optimization the whole network structure of the cell
has to be taken into account.

As a first step in this direction, the supply of precursor
metabolites by the central catabolic pathways comes to
the fore. There have been several approaches to improve
the supply of the tryptophan precursors, phosphoenol-
pyruvate and erythose-4-phosphate, as been reviewed by
Bongaerts et al. (2001) and Nielsen (2001). Secondly,
catabolic and anabolic parts of the network of precursor
supply and product formation have to be explored as a
whole rather than separated from each other. This
necessity can be exemplified by the following fact: while
the maximal yield of the first metabolite of tryptophan
biosynthesis, 3-deoxy-D-arabino-heptulosonate 7-phos-
phate (DAHP), is 0.86 mole DAHP from 1 mole glucose
(Liao et al., 1996), Schuster et al. (Schuster et al., 1999)
found that only 0.45mole tryptophan can be yielded
from 1 mole glucose due to the additional consumption
of phosphoenolpyruvate in the pathway of chorismate
formation.

In this contribution, we combine a mathematical
model describing the dynamics of important metabolites
of the central carbon metabolism with a model
describing in detail the regulation of #rp operon
expression, which codes the tryptophan pathway en-
zymes. The intention is to show that from a metabolic
engineering point of view the design could be improved
when the system of tryptophan biosynthesis from
glucose is optimized considering carbohydrate uptake,
precursor supply, the biosynthetic pathways, and gene
expression regulation simultaneously rather than con-
sidering isolated parts of this network.

To describe transcription of the #rp operon, two
regulator proteins have to be described. Besides the
description of the interaction between the repressor and
the operator binding site, the RNA polymerase is
necessary to start transcription. Since there is a large
number of binding sites for the RNA polymerase and
the number of binding sites for the repressor is restricted
to the number of #rp operon templates (normally
between one and two, depending on the growth rate),
a recently presented method to describe the interaction
between two or more regulator proteins with the control
sequence of the #rp operon is applied (Kremling and
Gilles, 2001). The method is based on a hierarchical view
of the regulatory network where signals are transduced
from the top level to the lower level, but not vice versa.

Consequently, we obtain a dynamic model that
combines the behavior of the #rp operon gene expression
with the metabolic network of central carbon metabo-
lism and tryptophan biosynthesis. This model is
analyzed in terms of metabolic fluxes, metabolic control,
and nonlinear optimization (Mauch et al., 2000).

2. Methods and model systems

Initial point of our investigation is the dynamic model
of Chassagnole et al. (2002) that deals with the
metabolic network of the central carbon metabolism
of E. coli wild-type strain W3110. It comprises the
phosphotransferase system (PTS) transporting glucose,
the Embden—Meyerhoff-Parnas Pathway providing
phosphoenolpyruvate, and the pentose phosphate path-
way supplying erythrose-4-phosphate. The original
model has been developed based on the measurement
of metabolites in a continuous culture that has been
perturbed by a glucose pulse. This model is expanded to
describe the shikimate pathway, synthesizing choris-
mate, and the tryptophan production pathway, each
pooled in a single reaction step. Enzyme activity in the
tryptophan production pathway is considered as dy-
namic variable in order to take gene expression into
account. Details of the differences to the model of
Chassagnole et al. that are associated with this expan-
sion are given below.

The model of gene expression accounts for both
repression and attenuation of the trp operon genes and
represents an application of a new method to describe
the interaction between two or more regulator proteins
with the control sequence of the #p operon (Kremling
and Gilles, 2001). This method is explained in the
following.

2.1. Transcription initiation

The method is based on the hierarchical structure of
the regulatory network and calculates the transcription
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efficiency by neglecting minor important interactions
betweens regulator proteins and DNA-binding sites.
Since the RNA polymerase is essential for transcription,
it represents the cellular or top level, while other
regulator proteins have a special function (or are more
specific) in metabolism, e.g. they are activators or
inhibitors for the expression of specific genes. These
regulator proteins are therefore assigned to further levels
in the hierarchy. The hierarchical model structure allows
signal transduction from the top to the lowest level but
not vice versa. Therefore, some interactions of the
proteins are neglected which leads to a simpler model
structure in comparison to a complete model, including
all interactions. In tryptophan enzyme synthesis, the trp
aporepressor Trp R is activated by excess of tryptophan:

K
Trp R+ Trp = Trp R*,

K
Trp R* + Trp = Trp R*, (1)

where Trp R™ represents the repressor occupied with
two molecules of tryptophan. Arvidson et al. (1986)
demonstrated that the two binding sites of the apo-
repressor are identical and independent, so the same
constant K| can be used for both binding steps.

According to Fig. 6 in Kremling and Gilles (2001),
cases A, B and Bl are valid for the interaction with
the control sequence of the tryptophan operon D,.
Case A denotes the formation of the initial complex by
the RNA polymerase. In cases B and B1, the competi-
tion of the repressor and the RNA polymerase for the
binding to the control sequence is described. The
equations (equations according Table 3 in Kremling
and Gilles (2001)) can be summarized as follows: the
interaction of the repressor Trp R** with the operator
site reads

- Krrp
Trp R™ + Dy, = TDyp; 2

the binding of RNA polymerase to the promotor is
described by

K@)
Dy, = D, ©)

trp?

where D,fp represents the promoter occupied with RNA
polymerase, and K() = (1 — )/. If it is assumed that
reactions (1)—(3) are very fast in comparison to the
process of enzyme synthesis, a rapid equilibrium
between the components is stated, resulting in the
following algebraic equation system for the total
amount of repressor c7,ro and the total amount of

control sequence CD()”.p:
CDOIrp = CDtrp + CD?;p + CTDlrp’

CTrpRO = CTypR + CTDIrp + CTrpR* + CTrpR** (4)

with
¢ CDtrp(l lp) - CTrpCTrpR

Dt = s CTrpR* = — 1 »

rp lﬂ K]
2 . 2

¢ CTrpCTipR c CTrpCTipR €Dy (5)

TrpR** = 5] > CTDyy = — 2 1

K K K,
1 1 P

For the model here, it is assumed that RNA
polymerase and ¢ factor do not change and  is taken
therefore as a constant parameter (¥ = 0.91 for normal
promoters according to Kremling and Gilles (2001)).
The rate of enzyme synthesis r is proportional to the
fraction of occupied promoters yy with

Cpt

= ©)
CDo,,p

To include attenuation also, a switch function is used.

Since excess of tryptophan inhibits enzyme synthesis, the

following equation is used to describe the rate of enzyme
synthesis:

|
C 9
L+ K (e, /K + c5)

Fenzyme synthesis = k‘// (7
where k indicates a rate constant of protein synthesis. It
is assumed to be in the same range as estimdted for the
lac operon (Kremling et al., 2001). The term cT, /(K +
cTrp) represents attenuation and shows a threshold like
behavior similar to a model proposed by Koh et al.
(1997). k' is estimated from the assumption that
attenuation can increase mRNA synthesis by a factor
of 10 if tryptophan concentration is low (Neidhardt et
al., 1990). The parameter K is chosen in such a way, that
the transition from low mRNA synthesis to high mRNA
synthesis takes place at a concentration of tryptophan of
about 1 to 5uM, as it is the case in the model of Koh et
al. (1997). All parameter values of the gene expression
model are summarized in Table 1.

2.2. Metabolism

In order to link this model of gene expression to the
dynamic pathway model of Chassagnole et al. (2002),

Table 1
Parameter values of the gene expression model

Parameter Value Source
oy, 5x 107 uM

CTrpRO 4 %1072 uM

K, 30 uM a

Kip 2 x 1073 uM a

k 400h™!

kq 0.6h~!

K 9 See text
K 25 uM* See text

Source a: Koh and Yap (1993).
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the following expansions have been applied to the
pathway model.

All enzymes of the tryptophan producing pathway are
pooled into one state variable, the enzyme amount in the
tryptophan pathway cgry,. This state variable is
balanced in consideration of gene expression, enzyme
degradation, and dilution:
dCE,Trp (8)

dr = T'enzyme synthesis — "'Degradation — UCE,Trp

Enzyme degradation is modeled as a first-order
reaction with respect to cg -

I'Degradation = kg CE,Trp (9)

The rate equations of chorismate synthesis, rchosynth,
and tryptophan synthesis, rrrpsynth, are extended to mass
action kinetics with respect to their substrates:

max

FChoSynth = T'ChoSynth CDAHP CPEP CNADPH. (10)
cat

FTipSynth = KTrpsynth CE.Trp CCho CPRPPCSer- (11)

As a consequence, the balance equation for phos-
phoenolpyruvate now reads

depep
dt

= FENO — 'PK — FPTS — I'PEPCxylase — 'DAHPS
— F'ChoSynth — "MurSynth — HUCPEP- (12)

FMurSynth represents the consumption of phosphoenol-
pyruvate in mureine synthesis and is assumed to be
constant.

Further balance equations have to be added for
intermediate metabolites and the product, tryptophan:

depanp
4 = 'DAHPS ~ I'Chosynth — HCDAHP, (13)
decho
~q; = "ChoSynth — ITrpSynth — Synth3 — HCChos (14)
dCTr
P
dr = I'TrpSynth — FTrpremoval — HCTrp, (15)
deprpp |
d: = I'RPPK — !'Synth4 — "'TrpSynth — UCPRPP, (16)
dCSer ) 1
T = I'SerSynth — F'TrpSynth — 'Synth5 — HCSer. ( 7)

The rates rsynih3, FSynth4, and rsynhs subsume the
consumption of chorismate, phosphoribose pyropho-
sphate, and serine, respectively, in the production of
biomass. They are assumed to be first order with respect
to their substrates. The rate of tryptophan removal
FTrpremoval 18 assumed to be first order with respect to
tryptophan and represents the drain of tryptophan, but
not exclusively in the production of biomass. For
example, tryptophan might also be excreted by the gene
products of mtr, tnaB, and aroP (Yanofsky et al., 1991).

Additionally, the inhibition of DAHPS by tryptophan
has been taken into account in the wild-type strain
models (models A and B, see below).

According to the approach of Rizzi et al. (1997)
maximal rates are estimated from a stationary flux
distribution, the concentration vector ¢ and the vector of
kinetic parameters p:

ri = r?laxf(gal_))a (18)

which results in

max __!istationary (1 9)

7 = — .
! f(gstationaryvg)

. . Cat . .
In rrrpsynin, the activity kTrpSymh is calculated in an
analogous manner as follows:

I'TrpSynth
cat _ rpSyn 20
TrpSynth — , . . ( )
pay CE,TrpCChoCPRPPCSer | gyeady state

The stationary concentration of serine is estimated to
be 0.089 mM taking into account measurements from
Piperno and Oxender (1968) and an assumed cell density
of approximately 2.2 kg wet weight per liter cell volume.
The stationary concentrations of tryptophan, choris-
mate and phosphoribose pyrophosphate are assumed to
be 0.1 mM. The stationary concentration of tryptophan
pathway enzymes is estimated from the parameters of
the gene expression model using Eq. (8) and the steady-
state condition dcg, rv,/dt = 0.

2.3. Comparison of flux distributions

We studied the impact of different flux distributions
comparing metabolic flux analysis of two wild-type
models, differing in the assumption on the cofactor
usage of isocitrate dehydrogenase, and a tryptophan
overproducing strain from the contribution of Tribe and
Pittard (1979). Model A is based on the flux distribution
from Chassagnole et al. and describes the fluxes of a
stationary, glucose-limited culture of E. coli wild-type
strain W3110 at a growth rate of 0.1h™". It is assumed
there that the cofactor of isocitrate dehydrogenase is
NAD. Whereas, model B uses NADP as cofactor of
isocitrate dehydrogenase, resulting in a NADP reduc-
tion flux parallel to the oxidative part of pentose
phosphate pathway. Model C represents the strain
NST 100 from the contribution of Tribe and Pittard
(1979). The metabolic flux analysis is carried out based
on the fluxes of glucose uptake, biomass production,
and tryptophan excretion during the exponential growth
phase. Model C also differs from the other models in the
fact that there is no synthesis of phenylalanine and
tyrosine. Since there is an unregulated copy of the rp
operon in strain NST 100, gene expression regulation is
removed in model C. In NST 100, feedback inhibition of
DAHPS by tryptophan is removed as well.

Table 2 subsumes the differences between the models
under investigation.
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Table 2
Differences between the models under investigation

Model Strain Cofactor of Gene expression
isocitrate regulated
dehydrogenase

A W3110 NAD Yes

A W3110 NAD No

B w3110 NADP Yes

C NST100 NADP No

For model C, it is furthermore assumed that there is no phenylalanine
and tyrosine production as well as no tryptophan inhibition of
DAHPS.

2.4. Design of the dynamic system

The resulting dynamic system has been explored in
terms of metabolic control analysis. The control on
tryptophan synthesis rate in models A, B, and C has
been compared.

Furthermore, tryptophan synthesis rate has been
maximized according to the optimization problem

r}[}g—z( I'TrpSynth (21)
by variation of maximal reaction rates r;"** for a set of
reactions. Different choices of design parameter sets are
explained together with the results of the corresponding
optimization.

We performed the optimization considering the
following constraints:

1 m |csteady state _steady stale|
2 Z 7,0Optimum i,Referenz <@ (22)
m steady state =

i=1 i,Referenz
1 w rmax
= <, (23)
w i=1 ri,Referenz

regarding homeostasis and total enzyme activity, re-
spectively (Mauch et al., 2000). A substantial change in
metabolite concentrations may be impedimental for
vitally important cellular functions or lead to undesired
flux diversion. Deviations of pool concentrations are
constrained here to average 30% maximum (@ = 0.3).
Total enzyme activity is constrained not to increase
(2 =1) to avoid a higher demand for total protein
production that may result in a stress situation with
unforeseeable regulatory impact. Furthermore, stability
of models A, B, and C prior to perturbation of maximal
rates has been demonstrated by an investigation of the
eigenvalues of the corresponding Jacobian. Systems with
perturbed maximal rates are simulated over a time span
of at least 10 times the maximal time constant of the
unperturbed system.

To test the uniqueness of optimization, three optimi-
zation strategies have been compared: (1) gradient

method starting from the original values of all maximal
rates, (2) gradient method starting from a tenth of the
original enzyme concentrations, thus placing enzyme
amount at the disposal from the beginning of optimiza-
tion, and (3) simulated annealing (Kirkpatrick et al.,
1983) starting from the original maximal rates.

The realization of an optimal enzyme activity
distribution necessitates a manageable number of design
parameters. Furthermore, the complexity of nonlinear
optimization increases superproportional with the num-
ber of design parameters. Therefore, we try to reduce the
number of optimized enzyme activities. Two approaches
have been applied: (1) Only a part of the network is
taken into consideration. For optimization, we consid-
ered the classical biochemical pathways glycolysis
(including glucose transport), pentose phosphate path-
way, and biosynthesis of tryptophan from DAHP. (2)
Furthermore, we reduced the set of optimized enzyme
activities based on the results of the analysis of flux
control.

3. Results

We compare two wild-type models (A and B) and the
model for the tryptophan producer NST100 from Tribe
and Pittard (1979) (C). Our focus is especially on the
interrelations between flux distribution, flux control,
and optimization potential. In this contribution, opti-
mization potential is referred to as the tryptophan
production rate after optimization related to the same
rate in the original steady state.

3.1. Flux distributions

The stationary flux distributions in the three models
are shown in Fig. 1.

In model A, all NADPH has to be generated through
the oxidative part of pentose phosphate pathway. Thus,
fluxes through G6PDH and PGDH are well above the
same fluxes in model B, where additional NADPH is
generated in the isocitrate dehydrogenase reaction.
Consequently, the fluxes in the nonoxidative part of
pentose phosphate pathway are also smaller in model B.
Flux through the lower part of glycolysis from GAP to
Pyr is smaller in model A as compared to model B. This
is also a result of the higher flux through PGDH, since
PGDH activity is connected with the loss of one carbon
atom per molecule ribulose 5-phosphate generated.

As compared to model B, there are only few fluxes in
model C that differ remarkably. Most obvious is the 10-
fold flux through tryptophan synthesis. In consequence,
the serine and PRPP supplying fluxes also increase. Due
to the higher usage of serine and PRPP in biomass
synthesis, the percentage increase of these supplying
fluxes is less pronounced. Surprisingly, the flux through
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Glucose transport

Embden-Meyerhof-Parnas-Pathway

Pentose
CATED phosphate
pathway

28/13114

Fig. 1. Metabolic network of tryptophan biosynthesis from glucose as carbon source. Molar fluxes are given as numbers next to the enzyme symbols.
They are normalized to glucose uptake flux (100). The first number results from the assumption that isocitrate dehydrogenase (ICD) uses NAD as
cofactor (Model A), for the second number NADP is assumed to be the cofactor of ICD (Model B). The third number results from flux analysis for
the strain NST100 (Tribe and Pittard, 1979) assuming NADP as cofactor of ICD (Model C). Colored metabolites represent important internal links
of the reaction network. Except for E4P and DAHP, these metabolites are displayed more than once to allow for a clearer arrangement.

chorismate synthesis did not change significantly. Thus,
according to our flux analysis, the main improvement in
the tryptophan overproducing strain NST 100 is the
successful channeling of all chorismate to tryptophan, as
well as avoiding feedback phenomena due to product
accumulation.

3.2. Effects of changes in flux distribution on control
hierarchy

The control of enzyme activities in the network on the
tryptophan production flux has been quantified by
means of flux control coefficients. These are compared
in Fig. 2 for the different flux distributions from the
previous section.

Flux control is distributed. PTS, PFK, PDH,
DAHPS, Trp, and supply with serine and PRPP are
carrying high positive control on tryptophan biosynth-
esis in the wild-type models. Among the enzymes that
are exerting negative control, GAPDH, PK, G6PDH,
PEPCxylase, and consumption of the intermediates
serine, PRPP, and chorismate are noteworthy. Thus,
high control can be associated with

(1) glucose transport: Not only the transport system PTS
itself comes into focus, but also the supply with the
co-substrate phosphoenolpyruvate (negative control
by PK and PEPCxylase), as well as removal of the
products of glucose transport (PFK removing G6P
via the very fast reaction of PGI, PDH removing
pyruvate).

(2) tryptophan biosynthesis: Especially branch point
reactions (DAHPS, Trp) exert high control, whereas
control by the reaction Cho is negligible in all
models.

(3) precursor availability: Both synthesis and consump-
tion in side reactions have to be considered.
However, side reactions that are leading to biomass
synthesis should not be reduced in order to ensure
sufficient growth.

Flux control also points at effects that are not as
easily to be explained, or even surprising, such as the
considerable negative control by GAPDH and G6PDH.

The main difference between models A and B in flux
control can be traced back to the difference in flux
distribution. Consistent with the low flux through the
oxidative part of pentose phosphate pathway, the
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Fig. 2. Flux control coefficients on tryptophan production flux.

control of tryptophan synthesis by G6PDH has
diminished. Instead, negative control by PK has
increased distinctly.

In the overproducer model C, control shifted from
tryptophan synthesis and supply of serine and PRPP to
the central carbon metabolism. The increase in trypto-
phan synthesis flux as well as the enhanced supply with
serine and PRPP release the system from restriction by
the related enzymes. Serine and PRPP synthesis now
even compete with supply of PEP and E4P and thus
exert negative control. This competition is also indicated
by the increased positive control by DAHPS, the
enzyme that is channeling PEP and E4P to tryptophan
synthesis. The release from restrictions in the biosyn-
thetic pathways is accompanied by an increase in
control by central carbon metabolism, especially by
glucose transport (PTS, but also PFK) and GAPDH.

3.3. Influence of gene expression regulation on flux
control

In the following, the impact of the gene expression
model used here on flux control has been taken into
focus. For comparison, a simplified model A’ has been
derived from model A, where the concentration of #rp
operon enzymes is assumed to be constant, and thus
gene expression regulation has been removed. In model

A, the initial concentration of tryptophan c?rp has been

= constant enzyme concentration
104 == CTrp = 0.1
m== CTyp = 0.01

Flux Control Coefficient

PTS 4
PFK
GAPDH -
PK
PDH 4
GEPDH -
RuSP
SerSynth -
RPPK -
DAHPS -
ChoSynth
TrpSynth
Trpremoval -

Fig. 3. Flux control coefficients on tryptophan production flux. Model
A’ (constant enzyme concentration, tryptophan concentration 0.1 mM)
compared to model A (gene expression model), where the tryptophan
concentration was varied.

varied, whereas it has been kept at ¢, = 0.1mM in
model A’. The initial tryptophan concentration is at the
same time the stationary concentration, since the
activity kT g, is calculated according to Eq. (20)
after assuming the initial concentration.

In Fig. 3 the flux control coefficients are compared for
models A’ and A. All control coefficients, except for the
control of tryptophan removal (Trpremoval), are
smaller in model A. Thus, in this model gene expression
has a damping influence on most control effects.
Moreover, the ratio of flux control coefficients in
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models A and A’ has the same value for all reactions
except Trpremoval. This finding stays valid if trypto-
phan concentration is varied in model A. The constant
ratio between the flux control coefficients can be
explained by the regulation of gene expression. In our
model, expression of #rp operon genes is regulated solely
by the tryptophan concentration. The tryptophan
concentration in turn depends on the fluxes through
tryptophan biosynthesis and tryptophan removal
(Trpremoval). All other reaction steps in the model
have a rather indirect impact on tryptophan concentra-
tion. They determine the concentrations of precursors
and intermediates and thus influence the rate of
tryptophan biosynthesis. Consequently, their impact
on frp operon expression is essentially coupled to the
impact of the tryptophan biosynthesis reaction.

Fig. 4 shows the ratio between flux control coefficients
on tryptophan biosynthesis in models A and A’, except
for the coefficient for tryptophan removal. The trypto-
phan concentration has been varied in model A. At high
tryptophan concentrations, the control in model A
approximates that in model A’; gene expression
influences flux control only a little. At low tryptophan
concentrations, control approximates a constant level
above the control in model A’. There are two effects that
explain the pattern of the ratio in Fig. 4. Since flux

0
c Trp
105 10+ 103 102 10 10°

ratio flux control coefficients
model A / model A’

e
109

or,

enzyme synthesis

105 OCp

-10°3 1

Elasticities

-100 4 Olbamps

trp

-10%

Fig. 4. Factor between control in model A’ (constant enzyme
concentration, tryptophan concentration 0.1 mM) and in model A
(gene expression model), where tryptophan concentration was varied.

control coefficients describe infinitesimal changes, both
effects can be traced back to elasticities towards
tryptophan concentration. In Fig. 4, the elasticities of
DAHPS rate (0rpanps/0cyp) and trp operon expression
rate (OFenzyme synthesis/OCirp) ON tryptophan concentration
in model A are also depicted. DAHPS inhibition by
tryptophan is included in both models A and A’. While
kept constant in model A’, the concentration of
tryptophan has been decreased in model A, leading to
a release of DAHPS from inhibition. Accordingly, the
flux control coefficients are larger in model A with low
tryptophan concentration than in model A’ with un-
changed tryptophan concentration.

The elasticity of #rp operon expression is negative in
the whole range of tryptophan concentrations. Thus, trp
operon gene expression indeed has a damping effect on
flux control of tryptophan synthesis. There is a
pronounced minimum of expression elasticity at a
tryptophan concentration of 0.0011 mM that can be
brought in connection with attenuation. This minimum
coincides with the global minimum of the flux control
coefficient ratio. There is a local minimum of flux
control coefficients at a tryptophan concentration of
about 0.0lmM. This minimum coincides with a
transitionally flattening trend of the gene expression
elasticity due to repression.

3.4. Optimized enzyme amount distributions

So far we have investigated the impact of flux
distribution and gene expression regulation on control
of tryptophan flux. In the strict sense, flux control
coefficients characterize infinitesimal changes in flux
caused by infinitesimal changes in enzyme activities. In
the following, we advance to a global optimization of
tryptophan flux as described in Section 2.4.

The optimization of enzyme activities leads to the
improved tryptophan production rates that are given in
Fig. 5. First, we focus on the results where only a part of
the network is taken into account as design variables for
optimization. Fig. 6 shows the assignment of enzymes to
subsystems of the network. For the following piecewise
optimization, enzyme activities inside a subsystem are
optimized, while all enzyme activities outside the
particular subsystem remain unchanged.

3.4.1. Subsystem I: glycolysis

When enzyme activities in glycolysis are optimized, an
improvement of tryptophan production rate of approxi-
mately 50% is achieved independent of the optimization
strategy. The potential of rate enhancement is approxi-
mately the same for all models, including model C,
which is the model of the overproducing strain NST 100.
We obtain nearly the same improvement when only
enzyme activities with flux control coefficients larger
than 6% are optimized. In the latter case not only the
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Fig. 5. Improvement of tryptophan production rate achieved by
optimization of enzyme activities.
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Fig. 6. Decomposition of the reaction network for choice of design
parameters in optimization. Enzymes are assigned to the three
subsystems (I) glycolysis, glucose transport, and pyruvate dehydro-
genase, (II) pentose phosphate pathway, and (III) tryptophan
biosynthesis including supply with intermediates. Reactions in black
boxes carry a flux control coefficient larger than 6% (absolute value).

improvement, but also the optimized profile of enzyme
amounts is independent of the optimization strategy.
These findings indicate that there is one global optimum.

3.4.2. Subsystem II: pentose phosphate pathway

When enzyme activities in the pentose phosphate
pathway are regarded, the optimized production rates
differ for models A, B and C. While one could achieve
an enhancement of 23% in model A, the potential
reduces to 7% in model B. This decrease in optimization

potential corresponds to the subordinate role of pentose
phosphate pathway in model B, as being indicated by
the lowered steady-state flux through G6PDH and the
decreased control on tryptophan flux by this enzyme. In
both models A and B the same improvement of
tryptophan production rate could be achieved by
deletion of G6PDH alone. In model C, however, an
increase of tryptophan production rate by 46% is
calculated. This result is also predicted when only
Ru5P activity is reduced. The higher flux to tryptophan
in the initial state leads to an accentuated role of pentose
supply that causes the higher potential for improval in
model C. Both deletion of G6PDH and reduction of
Ru5P activity were found as local optima for all models,
while the global optimum changes from deletion of
GO6PDH in models A and B to lowered Ru5P activity in
model C.

3.4.3. Subsystem III: tryptophan biosynthesis

Variation of enzyme activities in the tryptophan
biosynthesis, serine and PRPP supply, and in trypto-
phan removal yielded in a production rate that exceeds
the starting value by approximately 35%. When the only
reaction with a flux control coefficient below 6%, the
shikimate pathway reaction ChoSynth, is not considered
in the optimization, no significant increase in trypto-
phan production rate could be achieved. Since all other
reactions exert pronounced positive control on trypto-
phan flux in models A and B, the activity of ChoSynth
has to be decreased due to the constraint for total
enzyme activity. In model C, three reactions carry a flux
control coefficient above 6%: serine synthesis, PRPP
synthesis, and DAHPS. An optimization of these three
activities yields 28% improvement of tryptophan
production rate. In contrast to the results for models
A and B this enhancement is substantial, but still below
that for all enzymes in the biosynthetic group
of reactions. The existence of both reactions with
negative and positive control allows for flux improve-
ment without considering insensitive activities in the
optimization. Yet there remains a lack of improvement
due to the choice of varied activities based on flux
analysis, which underestimates the role of the trypto-
phan synthesis.
3.4.4. Combination of piecewise optimization vs.
integrated optimization

For all three models, we combined the changes in
enzyme activities found by piecewise optimization of the
three subsystems from Fig. 6. For subsystem I and 11, we
took the results, where only enzymes with control larger
than 6% are regarded. The results for subsystem III
show that in this subsystem all reactions have to be
taken into account. When all these changes in enzyme
activities are applied to the model, the tryptophan
production rate is approximately doubled, as stated in
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Fig. 7. Response on a glucose pulse according to Chassagnole et al. (2002). Comparison of model A and the respective optimized strain when all

enzymes regardless of flux control are considered as design parameters.

Fig. 5. The combined changes, however, lead to a
violation of the constraint for concentrations, and the
suggested enzyme activity profile is therefore no solution
of the optimization problem. Nevertheless, we compare
this result to optimizations where enzyme activities of all
three subsystems have been optimized at the same time.
Considering all enzymes regardless of flux control, we
found that tryptophan production rate could be
increased approximately 10-fold in models A and B.
Fig. 7 compares the response of model A and the
respective optimized strain on a glucose pulse as
described in Chassagnole et al. (2002). The investigated
optimized strain turns out to be robust enough to return
to its stationary state after this substantial perturbation.
The pulse response of the optimized strain is qualita-
tively similar to that of the wild-type strain, but with
noticeable quantitative differences.

When only reactions with a flux control coefficient
above 6% are regarded, the achievable optimized rate
reduces to 450% of that in the initial state. As it is the
case for subsystem III, Eq. (23) represents a more
demanding constraint on the amount of enzymes with
large positive flux control if insensitive reactions are not
considered, leading to a smaller flux enhancement
potential compared to the case where all enzyme
amounts are varied. In both cases, the combination of
the separately optimized parts of the network
lags behind the integrated optimization of the whole
network.

This result indicates that this complex reaction
network contains too many internal links to be
optimized by a separated investigation of its parts.
Nevertheless, a potential explanation of the difference
between separated and integrated optimization could be
provided by the optimized enzyme activities shown in
Fig. 8. In all models, the activities of enzymes in

biosynthesis, serine and PRPP supply, and tryptophan
removal are increased on the cost of enzymes in the
central carbon metabolism. This shift in activities to the
production pathways is not possible if the pathways are
optimized separately. In the central carbon metabolism,
enzymes with high control on tryptophan production
rate are found to be generally excluded from the activity
shift. Surprisingly, this also holds for GAPDH,
although it exerts a substantially negative control on
tryptophan production. This enzyme may be of sig-
nificant importance for homeostasis, keeping the con-
centrations at the initial level. Optimizations without
constraint for concentrations showed, though, that this
is not the only reason why GAPDH activity is kept at a
high level in optimization. Thus, the role of GAPDH in
the nonlinear model seems not to be identifiable by a
linearizing analysis method alone, such as metabolic
control analysis.

In contrast to the separated optimizations, not all
optimization strategies lead to the maximal improve-
ment in the integrated optimizations. The dependence of
the achieved optimum on the starting point and on the
optimization method points to the existence of local
optima.

In model C, the maximized tryptophan production
rate is 260% compared to that in the initial
state, obtained by integrative optimization of all
enzyme activities, regardless of flux control. Although
the enhancement is well below that for the wild-
type strain models A and B, this increase is remarkable
for an overproducing strain. Considering only
reactions with a flux control coefficient above 6%, the
optimized tryptophan production rate is also reaching
the maximal improvement. The activity of tryptophan
synthesis, removal, and supply of serine and PRPP
is increased to a lesser extent. This also results
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Fig. 8. Optimized enzyme activities for maximal tryptophan produc-
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in a smaller difference between the tryptophan
production rate after separated and integrated optimi-
zation of network subsystems as compared to models
A and B. Still, consideration of the network as a whole
leads to a significantly higher optimized production
rate.

4. Discussion

In the following, we discuss the improvements in
tryptophan production rate obtained by optimization.
Our focus will be on the interplay of flux distribution,
flux control, and flux optimization, as well as on the role
of gene expression regulation.

4.1. Predicted improvement potential

In all models we studied in this contribution, an
integrated optimization of the whole network leads to a
significantly higher increase in tryptophan production
rate than the collection of segregated optimizations.
Although this difference could partly be attributed to a
lack in shift of activities towards anabolism in the
segregated optimizations, this finding emphasizes the
significance of network complexity.

It is noteworthy that even for the flux distribution of
the overproducing strain NST 100 we found that the
flux to tryptophan could be increased to 260% of that in
the initial state. This enhancement has been reached in
the model without changes in network topology, such as
replacement of the PTS system for glucose transport.
This exemplifies the potential of direct optimization in
silico.

The existence of local optima points to the question
how far a sequential improvement of strains by rational
design might lead into local optima and thus suboptimal
solutions.

4.2. trp operon expression and flux control

Regulation of gene expression leads to a constant
ratio between the control of tryptophan synthesis rate in
the model where trp operon expression was regarded
and the model where it was not. Thus, while gene
expression regulation has a strong impact on tryptophan
flux itself, it does not change the hierarchy of flux
control. This scaling holds for the whole tryptophan
synthesis network and can be attributed to the fact that
in this case regulating and regulated concentration are
identical. While the situation will be different for
regulation networks, this case is not unusual for
biosynthesis pathways. The damping effect of inhibition
and gene expression regulation on flux control leads to
the obvious clue that both effects have to be eliminated
for improvement of tryptophan production.

4.3. Cross-links between flux distribution, control and
optimization

In our model, we found the following correlations
between flux distribution, flux control, and the opti-
mized enzyme activity distribution.
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Only few fluxes differ remarkably between the
two wild-type flux distributions and the flux distribution
for the overproducer NST 100. These differences
influence flux control, as well as optimization. In model
B, the alternative source of NADPH in the tricarbonic
acid cycle leads to a lowered flux through pentose
phosphate pathway, as being compared to model A.
This difference in flux distribution correlates with the
lowered control by G6PDH, as well as with the reduced
potential of rate enhancement by enzyme activity
optimization in the pentose phosphate pathway in
model B. Flux distribution in model C differs mainly
in an increased flux through tryptophan synthesis, as
well as the serine and PRPP supplying reactions. The
change in flux distribution corresponds to a shift in
control towards central carbon metabolism. The en-
hanced supply reactions, serine and PRPP synthesis,
exert negative control due to competition for precursor
molecules. In optimization, there is a reduced shift in
enzyme activity towards biosynthetic and supplying
reactions.

Furthermore, flux control might be an indication for
enzymes that have to be taken into account in
optimization. Optimization only of enzyme activities
with high absolute values of flux control coefficients is
promising in small, linear pathways which contain both
enzymes with positive and negative control. Enzymes
with low control only come into play, when the
constraint of total enzyme activity gets dominant over
the other constraints, especially for homeostasis. Such a
situation emerges, for example, if all high absolute
values of flux control coefficients are positive. For more
complex systems, the indication works better if there is
less shift between the parts that are optimized sepa-
rately. Such a shift could be quantified and integrated
into optimization using a preceding analysis, like e.g. the
determination of group flux control coefficients (Ste-
phanopoulos and Simpson, 1997), and a successive
weighting of reaction group activities.

Still, for predicting promising changes in enzyme
activity  distribution, metabolic control analysis
is no substitute for optimization of a detailed model.
There are some examples in our optimization where
flux control coefficients do not correlate with the
trends of enzyme activity changes in an optimized
profile. Especially in the wild-type models, the out-
standing shift of enzyme activities towards anabolic
reactions could not be foreseen by control analysis. In
contradiction to this shift, some of the flux control
coefficients in the central carbon metabolism are of
the same magnitude or even outrange that of the
anabolic reactions. Second, GAPDH would have been
identified as a main target for decrease of enzyme
activity by control analysis, while GAPDH is still
present in considerable activity in all optimized profiles.
In model C, control analysis would even predict a

smaller activity of serine and PRPP supplying reactions
to be advantageous, while both activities are signifi-
cantly increased in the integrated optimization of the
whole network.
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Appendix A. List of symbols and indices

CE,Trp concentration of enzymes of the trp operon
CTrpRO total concentration of trp aporepressor

Dy, free operator sites of zrp operon

D;p promoter occupied with RNA polymerase

DOy, total trp operon

K, association constant of tryptophan to
aporepressor

K,y association constant of
corepressor—aporepressor complex to DNA

k protein synthesis rate constant

kq protein degradation rate constant

kK, K parameters of threshold function for
attenuation

Dy, operator site of trp operon with associated
corepressor—aporepressor complex
TrpR unoccupied trp aporepressor

TrpR*  trp aporepressor occupied with one molecule
of tryptophan

TrpR*™  trp aporepressor occupied with two molecules
of tryptophan

u specific growth rate

V] fraction of occupied promoters taking only

~ RNA polymerase into account

Vi fraction of occupied promoters taking RNA

polymerase and Trp repressor into account

Appendix B. List of reactions and important metabolites

ALDO aldolase

Cho chorismate

ChoSynth chorismate synthesis pathway

DAHP 3-deoxy-D-arabino-heptulosonate
7-phosphate

DAHPS DAHP synthase

E4P erythrose-4-phosphate

ENO enolase

GIPAT glucose-1-phosphate adenyltransferase

G3PDH glycerol-3-phosphate dehydrogenase

Go6P glucose-6-phosphate
G6PDH glucose-6-phosphate dehydrogenase
GAP glyceraldehyde-3-phosphate
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GAPDH glyceraldehyde-3-phosphate
dehydrogenase
MetSynth methionine synthesis
MurSynth mureine synthesis
NAD diphosphopyridindinucleotide, oxidized
NADH diphosphopyridindinucleotide, reduced
NADP diphosphopyridindinucleotide-
phosphate, oxidized
NADPH diphosphopyridindinucleotide-
phosphate, reduced
PDH pyruvate dehydrogenase
PEP phosphoenolpyruvate
PEPCxylase  PEP carboxylase
PFK phosphofructokinase
PGDH 6-phosphogluconate dehydrogenase
PGI glucose-6-phosphate isomerase
PGK phosphoglycerate kinase
PGIluMu phosphoglycerate mutase
PGM phosphoglucomutase
PK pyruvate kinase
PRPP phosphoribosylpyrophosphate
PTS phosphotransferase system
Pyr pyruvate
R5PI ribosephosphate isomerase
RPPK ribosephosphate pyrophosphokinase
Ru5P ribulosephosphate epimerase
Ser serine
SerSynth serine synthesis pathway
Synth2 consumption of pyruvate
Synth3 chorismate
Synth4 PRPP
Synth5 and serine in biomass synthesis
TA transaldolase
TIS triosephosphate isomerase
TK transketolase
TKa transketolase, reaction a
TKb transketolase, reaction b
Trp, trp tryptophan
Trpremoval drain of tryptophan from the system
TrpSynth tryptophan synthesis pathway
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