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Abstract: In this paper, we present a max-plus algebraic model for cyclically operated high-
throughput screening plants. A max-plus algebraic representation of the system, derived directly
from a discrete-event systems model of the predetermined globally optimal solution, contains
negative order arcs, forcing certain events in previous cycles to occur after events in the current
cycle. With respect to the cycle index, though of course not in terms of time, the model is
acausal. However, the model can be transformed into a system representation without negative
order arcs. The obtained max-plus algebraic model can then be applied as a controller to handle
unexpected deviations from the predetermined cyclic operation during runtime.
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1. INTRODUCTION

Until the early 90’s the search for new pharmaceuti-
cal ingredients was performed manually. This was an
extremely time-consuming procedure lasting for months
or even years. Through advances in robotics and high-
speed computer technology it was possible to develop
systems that are able to automatically screen thousands
of substances in a very short time. The procedure of
automatically analyzing biochemical compounds is called
high-throughput screening (HTS). Nowadays HTS systems
play an important role in the pharmaceutical industries
but they are also relevant to other fields of biology and
chemistry.

A batch subsumes all worksteps that are necessary to
analyze one set of substances. The set of substances is
aggregated on one microplate. Additional microplates may
be included in the batch to convey reagents or waste
material. The plates are automatically moved between
the resources of the HTS system, which include readers,
incubators, and pipettors. To be able to compare many
different batches of an experiment, each batch has to follow
an identical pattern within the system, in terms of timing
as well as ordering of resources. Thus, the system has to be
operated cyclically. The aim of maximizing the throughput
of the system results in an optimal scheduling problem.

A method to determine the globally optimal schedules
for cyclic systems, such as HTS systems, has been in-
troduced by Mayer and Raisch (2004). This approach is
based on discrete-event systems modeling, i.e., the system
is characterized by the occurrence of discrete changes or
events. More specifically, the model is given as a time
window precedence network. Using standard graph reduc-
tion methods, the complexity of this network can then be
reduced. The procedure ensures that the globally optimal
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solution of the scheduling system is not cut off. Another
important step in the proposed method is the transfor-
mation of the resulting mixed integer non-linear program
(MINLP) into a mixed integer linear program (MILP). Al-
though these steps decrease the complexity of the system
significantly, the scheduling problem is still too complex
to be performed online. Therefore, the algorithm is car-
ried out offline before the execution of the HTS systems
starts, i.e., it determines a static schedule. Static schedules,
however, do not perform well when deviations from the
predetermined cyclic scheme occur during runtime.

To handle such deviations, we propose a supervisory con-
trol scheme using a maz-plus algebraic model of the HTS
system. The model is based on the specific operation the
user wants to run as well as on the globally optimal cyclic
schedule determined offline. In case of a deviation from the
cyclic scheme, the supervisor generates possible actions to
be taken, i.e., the controller updates the schedule of the
HTS plant and thus ensures continuous operation.

This paper is structured as follows. Section 2 gives a brief
overview of the basic ideas of graph theory and max-
plus algebra. The different constraints for high-throughput
screening systems are explained in Section 3. It is described
how the constraints are merged into a max-plus algebraic
model of the HTS operation. In Section 4, a max-plus
algebraic control scheme introduced for cyclic systems by
Li et al. (2007) is adapted for HTS systems. Conclusions
and suggestions for future work are given in Section 5.

2. GRAPH THEORY AND MAX-PLUS ALGEBRA
2.1 Fundamentals of Graph Theory
A directed graph (or digraph) is a pair (%, E) where ¥

is the set of nodes or vertices, and £ C ¥ x ¥ is a set
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of ordered pairs of nodes, called edges or arcs. A weighted
graph is a digraph with a real number (the weight) w;; € R
assigned to each arc (v;,v;) € E. It can be represented by a
precedence matrix W € R2X" 'with R, 4, = RU{—00} and
n being the total number of nodes in the graph. The entries
of the matrix W represent the weights of arcs. If no arc
exists from node v; to node v; a weight of —oo is assigned
to wj;. If the weights wj; € R4, represent times, the
corresponding weighted digraph will also be referred to as
a time window precedence network. Then, nodes represent
events and arcs represent minimum time offsets between
the occurrence of events.

2.2 Max-Plus Algebra

Max-plus algebra (e.g., Baccelli et al. (2001), Heidergott
et al. (2006)) is a powerful tool for the analysis and
simulation of a certain class of discrete-event systems and
provides a compact representation of such systems. It
consists of two operations, ® and ® on the set R, ., = RU
{—0o0}. The operations are defined by: Va,b € R;q,:

a ® b=max(a,b)
a®b=a-+b.

The operation & is called addition of the max-plus algebra,
the operation ® is called multiplication of the max-plus
algebra. The neutral element of max-plus addition is —oo,
also denoted as €. The neutral element of multiplication is
0, also denoted as e.

For matrices A € R?X! and B € RU™ the matrix product
A ® B is defined by

!
[A® Blji = O ([Aljn @ [Blri) = max {[A]jx + [Blri} -

k=1

Systems without repetition of events in max-plus algebra
are represented by:

rT=A) R B u,

y=C®uw,
where the vectors v and y contain the earliest time instants
for the occurrence of certain input and output events of the
system. The elements of matrix Ay represent the minimum
time offsets between events. If the corresponding graph
does not contain any circuits, the matrix Ag is said to be
acyclic. In this case the matrix A5 = I® Ag® A2 @ ... can
be determined as A} = I® Ag® AZD--- @ AT, where T is
the identity matrix with respect to max-plus algebra. For
acyclic system matrices Ag, the implicit representation of
the system can be rewritten in an explicit form:

x=A;® B ®u,
y=C® .

For cyclically repeated systems, the max-plus model has
to be extended such that dependencies of events belonging
to different cycles can be included. For systems that
are causal with respect to the cycle index, an event of
cycle k can only depend on events of the same cycle or
previous cycles. Thus, the recurrence relation for such
cyclic systems can formally be written
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z(k) =P (A; ® x(k — q)) & B® u(k)
q
y(k) =C @ x(k),
with £ € Z and ¢ € {N U 0}. This implicit recurrence

relation can be rewritten in its explicit form if the matrix
Ap is acyclic:

2(k) =P (A5 Ag @ 2(k — ) ® A5 B @ u(k)
q
y(k) =C @ x(k),
with k € Z and ¢ € N.

3. MAX-PLUS MODEL OF HTS SYSTEMS

A HTS plant is assumed to consist of m resources. Accord-
ing to the operation the user wants to run, the sequence
of activities for a single batch is given. It consists of
imaz activities and each activity ¢ is assigned to one of
the resources, denoted by J; € {1,...,m}, where it is
executed. During the execution of activity ¢ the respective
resource J; is said to be occupied. Different activities of
a batch may overlap in time. Thus, a batch may occupy
two resources at the same time, e.g., during the transfer
from one resource to another one. However, we assume all
resources to have capacity one, i.e., no batch can allocate a
resource while this resource is occupied by another batch.

One possibility to model temporal dependencies between
events is through a time window precedence network. To
model HT'S systems as a time window precedence network
three different events have to be considered: start events o;
denoting the start of activity ¢, release events r; referring
to the end of activity 4, and transfer events which model
the transfer of a batch between two resources. A transfer
event always occurs simultaneously with a corresponding
transfer event associated with another resource. In a
corresponding graph, events are represented by nodes
which are connected by weighted arcs. The arcs represent
the temporal interdependencies. A label or weight assigned
to an arc denotes the minimum time which has to elapse
between the events connected by the arc.

In general, dependencies between activities belonging to
a single batch are called conjunctive constraints, while
dependencies between activities on each single resource are
referred to as disjunctive constraints.

3.1 Conjunctive Constraints

As mentioned before, the single batch scheme is defined by
the operation the user wants to run. The single batch time
scheme includes specifications on the sequence of activities
of a single batch as well as information on the minimal time
needed for or between activities.

To illustrate the modeling of HTS systems, we will intro-
duce a simple example. The considered process of a single
batch consists of four activities executed on a total of three
resources. The specific operation defined by the user is
given as a time window precedence network consisting of
start events, release events and transfer events (Fig. 1). For
graphical representation the system can also be illustrated
as a Gantt chart (Fig. 2), in which it can easily be seen
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Fig. 1. Time window precedence network of single batch
time scheme.

that resource 1 is revisited by each batch, in particular,
the activities ¢ = 1 and ¢ = 4 of each batch are executed
on resource 1. The time window precedence network of the
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Fig. 2. Gantt chart of a single batch example.

system specification is quite large, however, it is possible
to reduce the complexity of the model, i.e., the number of
nodes, by introducing transfer times, omitting redundant
arcs and merging events which occur concurrently.

The resulting graph, shown in Fig. 3, is referred to as the
conjunctive graph and denoted by G.. As can be seen in

Fig. 3. Conjunctive graph G..

Fig. 3, the reduced graph consists only of the start and
release events of every activity. The precedence matrix
corresponding to G. is denoted by A.. Furthermore, the
conjunctive graph corresponds to the (max-plus) algebraic
system:

z(k) = Ac ® z(k), (1)
where the vector x(k) contains the earliest possible times
for the k-th occurrence of each activity’s start and release
events. In our example, the vector is defined by =z =
[01,71,02,79,03,73,04,74]T. By definition, the conjunctive
graph does not contain any circuits and thus the matrix
A, is acyclic.

3.2 Disjunctive Constraints

The disjunctive constraints describe the sequences of activ-
ities on each resource. They can be modeled as disjunctive
graphs Gg,.,x = 1...,m, where m represents the total
number of resources in the system. Disjunctive constraints
may contain dependencies between activities which do not
necessarily have to belong to the same batch. To denote
dependencies between events of different batches, marked
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arcs are added to the conventional notation of precedence
graphs.

An arc marked with a single “/” is said to be of first order.
A first order arc connecting event ¢ with event j denotes
the dependencies between the two events belonging to
subsequent batches. More precisely, a first order arc with
weight wj; is to be interpreted as x;(k) > x;(k — 1) + wy;.
Higher order arcs may also be necessary to represent the
sequence of activities. Additionally, since some activities
of a batch may be executed prior to some activities of
a previous batch, arcs of negative order may be neces-
sary. The symbols for marked arcs are given in Table 1.
Formally, any arc of order ¢, connecting node 7 with j, can

Table 1. Notation of marked arcs.

MARKING  ORDER OF ARC ALGEBRAIC EXPRESSION
none 0 xj(k) > xi(k) +wjs
/ 1 z;(k) > (k= 1) + wji
// 2 z;(k) > xi(k —2) + wji
o —1 :L‘j(k)Z:):i(k+1)+wji

-2 xj(k) > xi(k+2) +wy;

be described by (4,4)(?), q € Z. The algebraic expression of
this arc results in x;(k) > z;(k — ¢) + w;; with ¢,k € Z.

Using marked arcs, it is possible to model the sequence
and timing of activities on each resource (Geyer (2004)).
The sequence and timing are determined by the globally
optimal solution, obtained with the offline algorithm de-
veloped by Mayer and Raisch (2004). Figure 4 shows the
optimal sequence on the first resource for our example. It
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Fig. 4. Gantt chart of activities executed on resource 1.

can be seen that the first activity of batch p is followed
by the fourth activity of batch p — 1 and this activity is
then followed by the first activity of batch p + 1. Thus
the disjunctive graph for resource one consists of an arc
of order ¢ = —1, an arc of order ¢ = 2, and two zero
order arcs. The resulting disjunctive graph G, is shown
in Figure 5. Note that in disjunctive graphs only start and
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Fig. 5. Disjunctive graph Gg,

release events of activities are considered. Transfer events
are not relevant for disjunctive constraints, i.e., transfer
events are only necessary to model dependencies between
activities executed on different resources.

Similarly, the disjunctive graphs for resource two and three
can be determined. Since only one activity of a batch is
executed on each of these resources their corresponding
disjunctive graphs contain only one first order arc and one



arc of zeroth order between start and release event of the
activity.

After determining the disjunctive graphs they can be
written as a max-plus algebraic expression. Considering
the different orders of arcs, each disjunctive graph Gq,., x =
1,...,m, can be represented by

2(k) =P (Aa, @2k —q), ¢.k€Z,  (2)
q
where x is the vector of the start and release events of all
activities and ¢ denotes the order of arcs. Thus, the matrix
Aq, (q) encodes all arcs of g-th order within the disjunctive
graph of resource k.

3.8 Complete Model

The overall HT'S system operated in a predetermined time-
optimal cyclic way can then be described by merging the
conjunctive and all disjunctive graphs into one extended
precedence graph Ggys. The extended precedence graph
for our HTS example is shown in Figure 6. In max-plus

Fig. 6. Extended precedence graph Gsys

algebra, this can then be written as

z(k) = (Ac ® (@ Addo))) (k)

Aoy

(3)
@ EB(EBA%@) a(k—q) | ® Bouk),

q#0 \rk=1
A

with g,k € Z. The matrix B is assumed to be the identity
matrix I and the input vector u provides the earliest
possible times for the input events.

In general, Equation (3) contains disjunctive dependencies
of negative orders, i.e., terms with ¢ < 0. Then, (3) is
acausal with respect to the cycle index k (though, of
course, not with respect to absolute time). To facilitate
further analysis, (3) can be reformulated as a causal system
specification, i.e., without negative order terms. This can
be done using the y-transform ((Baccelli et al., 2001)).

Formally, the v-transform of = is defined as

X(y)=EPak) " . (4)

kEZ
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The definition of powers in max-plus algebra is extended
to negative powers of vy by

Y4 @4" =4 and 4 @7 ~* =7 = ¢, for a,b € Z,
where the exponents are added using conventional algebra.

a

Applying (4) to (3) provides

X(y)=a() @ X(v) e U(), (5)
with A4(y) = @A(q)’yq,
qEZ
and U(y) = @u(k)wk.
kEZ

The elements of the matrix 4() can therefore be deter-
mined as max-plus polynomials

A7) = P alPye, (6)

q€Z
where a§‘§> = [A(y]ji- Since HTS models, by definition, do
not contain multiple arcs between two nodes this equation
can also be written as:

(a),.q if (g)
L Syl ifay #e
A0 ={ " 1 7

After transforming the system into the y-domain, another

transform has to be applied to remove the dependencies

of negative orders. Such dependencies are represented by

~-entries with negative powers in 4(y). We introduce

a transformation matrix 7(y) and a transformed vector

X(y) = T(v) ® X(7), e, T(M)' @ X(7) = X(9).
Substituting this into (5) results in

X)) =T(MAMNT) ' @X() @ T @U(y).  (8)

—_— —m———— ————
a(v) U(v)

The goal is to find a transformation matrix 7 such that
A(~) is devoid of entries with negative powers.

A possible choice is a diagonal matrix 7 where the diagonal
elements are powers of v, i.e.,

’7 E ...... E‘
e Yy e - ¢
T(y) = ,
. €
E  eee een £ rywﬂ

with m; € {NUO},i=1,...,n.
Obviously,

=R e

Therefore, ~

Substituting Equation (7) into this equation results in
[le]ji =T agg)'yq'y*m. (11)

Thus, to ensure that the matrix 4 is devoid of elements

with negative powers, we have to choose the non-negative
integers m;, ¢ = 1,...,n, such that

(12)

T =T 2 —q
for every element [4];; # ¢.



It can be shown, that conditions (12) can be satisfied
simultaneously if the extended precedence graph G, s does
not contain negative order circuits. This is always true for
implementable specifications (Geyer (2004)).

This procedure neither yields a unique transformation
matrix 7, nor a unique 4. However, any transformation
matrix obtained that way provides the desired result.

In a last step, it is necessary to apply the inverse ~y-
transform to the polynomial matrix

aAly) = P A", (13)

g€Ng

to provide the coefficient matrices zzl(q),q € Ng. It can
further be shown that the elements of the corresponding
state vector Z(k) and input vector @(k) are given by:

i‘,(k’) = I,(k’ — 7T7;),
ﬁz(k) = Uz(k — 7Ti),
Therefore, the vector T contains time instants of events

which do not necessarily belong to the same batch, i.e., the
events within the single batch time scheme are relabled.

(14)

Thus, we obtain an implicit recurrence relation for a time-
optimal schedule of the HTS system

i) =@ (Ag @ik — ) @a(k), (1)

with k € Z, q € Ng. Equation (15) can be rewritten in its
explicit form as A g is acyclic:

#k) =P (Ayo);x(q) ® ik — q)) o Ay i(k),  (16)
q
where A, = I@A(O)@A%O)@. . .@A"OT, andk € Z, g € N.

Returning to our HTS example, there are 14 arcs in the
graph Gy, illustrated in Figure 6, i.e., there are 14 non-¢
elements in the corresponding matrix 4(y):

[ V)

€E € €€ €€ €V
9 ¢ 3 € ¢ €€ ¢
6 ¢ € ve e e ¢
e € 12 3 ¢ € ¢
2(7)788968’786
e € € €16 6 ¢
eyt ecelde € ¢
e € €€ ¢ €13 ¢

Thus, a total of 14 constraints have to hold for a valid
transformation matrix 7

T —Tg>—2, ma—7m1 >0, mp—7m3>0, m3—7m >0
m3—Ty > —1, my—7m32>20, mg—752>0, 5 —73 >0
w5 —mg > —1, mg— 75 >0, mg—7m7r 20, mr—my>1
7T7—7T520, 7'('8—7'('720.

One possible solution meeting all constraints is 71 = mo =
g = mq = 75 = 0, mg = wy = wg = 1. Applying
the resulting transformation gives the following system
without negative order dependencies:
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EEE E E E €Y
9 3 e € € ¢ ¢
6ec ey € € ¢ ¢
K= |22 3 € ox(nain)
ce 9 e e 0¢ ¢
eec e clbye 6 ¢
€0 e e10ye ¢ ¢
ce e e ¢ €13¢
a(y)

The corresponding extended precedence graph of the ma-
trix A(+) is shown in Figure 7. Since the extended prece-
dence graph does not contain arcs of order higher than 1,

Fig. 7. Extended precedence graph ésys

the resulting recurrence relation of the HT'S system can be
written as

i(k) = Ayi(k) & Aqyz(k — 1) & a(k),
which can then be modified into its explicit representation
B(k) = A Ay 2(k — 1) @ Ay a(k), (17)
——

A

: A * A A An—1
with Afy) = 1@ Ay & Al & ... & Ay
In general, higher order arcs will also be present in ésys.
Then by extending the state vector, the system can again
be written in the form (17).

In this explicit form it is now possible to analyze the
system using max-plus algebra. For example, it is possible
to determine the eigenvalue A of A and its corresponding
eigenvector v. In max-plus algebra the eigenvalue is also
called the asymptotic growth rate, as it represents the
minimal time interval between the occurrence of the same
events in subsequent batches. Thus, the eigenvalue is the
minimal cycle time T and represents the optimal solution
of the scheduling problem.

Note that the max-plus model is a result of an offline
optimization procedure, which determines the sequence
and timing of activities on each resource. The max-plus
model is a compact representation of the earliest possible
instants of time for the occurrence of events in different
batches. In the next section, it will be shown that the
described max-plus model can be conveniently used for
online adjustments (i.e., feedback control) in case unfore-
seen disturbances make the predetermined optimal policy
impossible.



4. CONTROL OF HTS SYSTEMS

We propose a model-based feedback control system for
HTS plants. The closed loop consists of the HT'S plant, a
controller and a signal converter. The plant sends informa-
tion on its current state to the signal converter. The signal
converter translates the continuous information from the
plant into the discrete-event domain of the controller,
which contains the max-plus model of the plant and its
predetermined time-optimal schedule.

In the following, we adopt a control scheme proposed in
Li et al. (2007) for a class of cyclically repeated discrete-
event systems to max-plus models of HTS systems. In this
context, the input vector @(k) in (17) is updated in an
online fashion to provide information on the current state
of the system. We write a(k,t) = 3 (k,t), where " (k, t)
can be interpreted as a reinitialized version of the state
vector. Its elements are determined by:

e For events that have already occurred in cycle k, the
corresponding element in Z*"(k, t) is exactly the time
instant of their occurrence:

" (k,t) = 7;(k).
For events that are next to occur on each resource,
the time of their occurrence is determined by:
S

Fin (s, t) — 5 (k), for events w/o delay,
i U= 25 (k) + 34k, t), for delayed events,
where (k) is the scheduled time instant of the
occurrence of event i in cycle k and 7¢(k,t) is its
expected delay.

For all other events, the corresponding entry in
" (k,t) will be :

T (k,t) = ¢,
i.e., these events will not pose any restriction for the
future evolution of the system.

We now insert the feedback scheme described above into
(17). The resulting vector of event times in cycle k will
then of course also depend on the current update time ¢,
ie.,

Bk, t) = A&(k — 1) @ AL 3" (k, 1), (18)
with k& € Z. This max-plus model can then be used
to handle unexpected deviations from the predetermined
cyclic schedule of HTS systems. Deviations considered
in this work are delays of events, e.g., an activity takes
longer than expected. Such a delay can be crucial for the
continuous operation of the plant.

If a delay occurs at time t; during cycle k, it will first
appear in the vector 7" (k,t4). As indicated in Equation
(18), the vector Z(k,tq) can then be determined. This
vector is comprised of the time instants of the occurrences
of events in the k-th cycle. If the delay effects any future
events in cycle k, the scheduled time instants of their
occurrence is rescheduled in Z(k, t4). Furthermore, possible
delays of events in the k-th cycle may be carried over
into the next cycles. This effect can be handled through
the first part of Equation (18), where possible deviations
of previous cycles are included through the state vector
Z(k — 1). The newly determined (updated) information
on the time instants of future events can then be used to
control the plant.
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Generally speaking, after the occurrence of a delay the
max-plus controller postpones every future event by the
minimal amount of time needed to make the schedule
feasible. Doing so every constraint included in the max-
plus model is enforced. In the terms of scheduling theory
this is also referred to as a minimal right shift rescheduling
(Vieira et al., 2003). Consequently, the controller ensures
continuous operation of the HTS plant and the system
returns to a cyclic operation as fast as possible.

5. CONCLUSION AND FUTURE WORK

This contribution proposes a max-plus algebraic model
with negative order arcs for high-throughput screening
systems operated in a predetermined time-optimal cyclic
mode. It is shown how a system with negative order arcs
can be transformed into a system devoid of such arcs.
Furthermore, the control scheme introduced in Li et al.
(2007) is adapted and it is shown how the max-plus model
can be used to handle deviations of the predetermined
cyclic schedule, such as delay of events.

First results show, that the proposed model can easily be
extended to HTS systems with multi-capacity resources,
i.e., resources that can handle more than one activity at
the same time. Given a HTS system with multi-capacity
resources further deviations from the predetermined cyclic
scheme, such as partial break down of multi-capacity
resources, have to be considered.

Another aspect that will be investigated is the possibility
of using the max-plus algebra framework to change be-
tween two different cyclic schedules.

ACKNOWLEDGMENTS

The authors gratefully acknowledge funding by the Euro-
pean Community’s Seventh Framework Programme under
project DISC (Grant Agreement n. INFSO-ICT-224498).

REFERENCES

Baccelli, F., Cohen, G., Olsder, G.J., and Quadrat, J.P.
(2001). Synchronization and Linearity — An Algebra for
Discrete Event Systems. Wiley, web edition.

Geyer, F. (2004). Analyse und Optimierung zyklischer
ereignisdiskreter Systeme mit Reihenfolgealternativen.
Diploma thesis, Otto-von-Guericke-Universitdt Magde-
burg.

Heidergott, B., Olsder, G.J., and van der Woude, J.
(2006). Max Plus at Work. Princeton University Press,
Princeton, NJ, USA, 1st edition.

Li, D., Mayer, E., and Raisch, J. (2007). A new Hierarchi-
cal Control Scheme for a Class of Cyclically Repeated
Discrete-Event Systems. In Informatics in Control,
Automation and Robotics II, 227-233. Springer Nether-
lands.

Mayer, E. and Raisch, J. (2004). Time-optimal scheduling
for high throughput screening processes using cyclic
discrete event models. Mathematics and Computers in
Simulation, 66, 181-191.

Vieira, G.E., Herrmann, J.W., and Lin, E. (2003).
Rescheduling Manufacturing Systems: A Framework of
Strategies, Policies, and Methods. Journal of Schedul-
ing, 6(1), 39-62.



