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1. INTRODUCTION

High-throughput screening (HTS) has become a standard
technology for drug discovery in pharmaceutical indus-
tries. HTS plants are fully automated systems that are
able to analyze thousands of biochemical compounds in a
very short time.

In high-throughput screening, a batch subsumes all work-
steps that are necessary to analyze one set of substances.
Such a set consists of up to 1536 substances, which are
aggregated on one microplate. Additional microplates may
be included in the batch to convey reagents or waste ma-
terial. An HTS plant involves a fixed set of resources per-
forming liquid handling, storage, reading, plate handling
and incubation steps. For comparison reasons the sequence
and the timing of activities that have to be performed on a
batch – the single batch time scheme – has to be identical
for all batches. Cyclic operation is therefore an important
requirement.

A method to determine globally optimal schedules for
cyclic systems, such as HTS systems, has been introduced
by Mayer and Raisch (2004). This approach is based
on discrete-event systems modeling, i.e., the system is
characterized by the occurrence of discrete changes or
events. More specifically, the model is given as a time
window precedence network. Using standard graph reduc-
tion methods, the complexity of this network can then be
reduced. The procedure ensures that at least one globally
optimal solution of the scheduling problem is retained.
Another important step in the proposed method is the
transformation of the resulting mixed integer non-linear
program (MINLP) into a mixed integer linear program
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(MILP). Although these steps decrease the complexity of
the problem significantly, it is still too complex to be solved
online. Therefore, the algorithm is carried out offline before
the execution of the HTS systems starts, i.e., it determines
a static schedule. Static schedules, though, do not perform
well when deviations from the predetermined cyclic scheme
occur during runtime.

However, using the predetermined static schedule it is
possible to develop a max-plus algebraic model of the HTS
system’s operation (Brunsch and Raisch, 2009). Based on
this model, a supervisor may be designed that generates
possible actions to be taken in case of unexpected devi-
ations from the cyclic scheme. Doing so, the supervisor
updates the schedule of the HTS plant and thus ensures
its continuous operation.

In this paper the max-plus algebraic modeling and con-
trol scheme is extended to HTS plants containing multi-
capacity resources, i.e., resources that can handle more
than one activity at the same time. Such resources are
contained in many high-throughput screening plants. One
of the most common multi-capacity resources in HTS
plants is the incubator, where the biochemical substances
are allowed to bind to or react (or fail to react) with each
other.

This paper is structured as follows. Section 2 briefly
describes the fundamentals of graph theory and max-plus
algebra. The specifications for high-throughput screening
systems are explained in Section 3. Using an illustrative
example it is explained how the constraints are merged
into a max-plus algebraic model of the HTS operation
and how multi-capacity resources can be incorporated into
the model. In Section 4, the max-plus algebraic control
scheme introduced by Li et al. (2007) is extended to HTS
systems with multi-capacity resources. Conclusions and
suggestions for future work are given in Section 5.



2. GRAPH THEORY AND MAX-PLUS ALGEBRA

2.1 Fundamentals of Graph Theory

A directed graph is a pair (V , E) where V is the set of
nodes or vertices, and E ⊆ V × V is a set of ordered
pairs of nodes, called edges or arcs. A weighted directed
graph is a directed graph with a real number (the weight)
wji ∈ R assigned to each arc (vi, vj) ∈ E . All weights of
the graph can be written as a matrix W ∈ R

n×n
max, with

Rmax = R∪{−∞} and n being the total number of nodes
in the graph. If no arc exists from node vi to node vj the
corresponding entry in the matrix W is set to −∞. The
pair (V , E) is then called the precedence graph of W . If
the weights wji ∈ Rmax represent times, the respective
weighted digraph will also be referred to as a time window
precedence network. Then, nodes represent events and arcs
represent minimum time offsets between the occurrence of
events.

2.2 Max-Plus Algebra

Max-plus algebra (e.g., Baccelli et al. (2001), Heidergott
et al. (2006)) is a powerful tool for the analysis of a
certain class of discrete-event systems and provides a
compact representation of such systems. It consists of two
operations, ⊕ and ⊗, on the set Rmax = R ∪ {−∞}. The
operations are defined by: ∀a, b ∈ Rmax:

a ⊕ b := max(a, b)
a ⊗ b :=a + b.

The operation ⊕ is called addition of the max-plus algebra,
the operation ⊗ is called multiplication of the max-plus
algebra. The neutral element of max-plus addition is −∞,
also denoted as ε. The neutral element of multiplication is
0, also denoted as e.

Addition of matrices in max-plus algebra for A, B ∈ R
n×m
max

is defined by
[A ⊕ B]ji = [A]ji ⊕ [B]ji.

Multiplication of max-plus matrices A ∈ R
n×l
max and B ∈

R
l×m
max is defined by

[A ⊗ B]ji =
l
⊕

k=1

([A]jk ⊗ [B]ki) = max
k=1,...,l

{[A]jk + [B]ki} .

Similar to conventional algebra, some standard properties
such as associativity, commutativity, and distributivity of
⊗ over ⊕ hold for max-plus algebra.

Systems with (cyclic) repetition of events can be repre-
sented in max-plus algebra by:

x(k) =
⊕

q

(Aq ⊗ x(k − q)) ⊕ B ⊗ u(k)

y(k) = C ⊗ x(k),
with k ∈ Z and q ∈ {N ∪ 0}, where the vectors u(k) and
y(k) contain the earliest time instants for the occurrence
of certain input and output events in the k-th cycle. The
elements of the matrix A0 represent the minimum time
offsets between events occurring in the same cycle, while
the matrices Aq with q > 0 refer to minimum time offsets
between events in previous cycles and events in the current
cycle. If matrix A0 is acyclic, i.e., its precedence graph does

not contain any circuits, the matrix A∗
0

= I⊕A0⊕A2

0
⊕ . . .

can be determined as the finite sum A∗
0

= I ⊕ A0 ⊕ A2

0
⊕

· · · ⊕ An−1

0
, where I is the identity matrix with respect

to max-plus algebra. In this case the implicit recurrence
relation can be rewritten in an explicit form:

x(k) =
⊕

q

(A∗
0
⊗ Aq ⊗ x(k − q)) ⊕ A∗

0
⊗ B ⊗ u(k)

y(k) = C ⊗ x(k),

with k ∈ Z and q ∈ N.

3. MAX-PLUS MODEL OF HTS SYSTEMS

The specific operation the user wants to run determines
requirements for the single batch time scheme. It consists
of imax activities which are executed on m resources.
Thus, each activity i is assigned to a specific resource
Ji ∈ {1, . . . , m}. During the execution of activity i the
respective resource Ji is said to be occupied. As activities
of a batch may overlap in time, it is possible that a
batch occupies two resources at the same time. This is,
for example, the case during transfer of a microplate from
one resource to another one.

The minimal requirements for the single batch time scheme
can be modeled using time window precedence networks.
To do so, each activity i is described by three different
kinds of events, i.e., start events denoted by oi, release
events denoted by ri, and transfer events. The time win-
dow precedence network of a simple example is given in
Fig. 1.
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Fig. 1. Time window precedence network to describe
requirements for a single batch time scheme.

Often scheduling problems are illustrated by Gantt charts.
The Gantt chart of our example is given in Fig. 2. It can
be seen that the operation contains four activities, which
are executed on a total of three resources. While Reader
and Pipettor are single-capacity resources, Incubator is of
capacity three. That means that the resource Incubator
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Fig. 2. Gantt chart of the single batch time scheme

can mount a total of three microplates at the same time.
Usually Incubators are of a much higher capacity. For
simplicity and illustrative reasons, however, we will assume
the rather small capacity of three in our running example.

In general, a multi-capacity resource with capacity cap = ξ
can handle ξ activities concurrently. These concurrent
operations are executed independently from one another.



Thus, it is possible to model a multi-capacity resource
as ξ resources with capacity one, which are also called
slots and denoted by σi. However, when modeling a multi-
capacity resource as multiple single-capacity resources, it
is a-priori not possible to uniquely assign one specific
resource to every activity of every batch. Nonetheless,
it is still possible to write and solve a HTS scheduling
problem with multi-capacity resources as an MILP. Once
a globally optimal solution of the scheduling problem
has been obtained, the mapping of every activity to one
specific resource is defined.

In HTS it is of utmost importance that every single batch
is executed in an identical time scheme. This constraint
cannot be satisfied, if a multi-capacity resource is split
into multiple single-capacity resources, because the same
activities of different batches may now be executed on
different resources (slots). It is possible, however, to solve
this problem by combining several batches into one super-
batch. If a HTS plant contains a multi-capacity resource
with cap = ξ, such a super-batch consists of ξ consecu-
tive single-batch time schemes. The resulting super-batch
time scheme can then be repeated without violating the
constraints imposed on HTS systems.

Note that if there exists more than one multi-capacity
resource in the system, the number of single batches
constituting the super-batch is the least common multiple
of all capacities of all resources. Formally, if there are m
resources in the system the number of single batches ξ
forming the super-batch can be determined by

ξ = lcm
i=1,...,m

(capi).

However, dealing with multi-capacity resources in this
way may increase the complexity of the max-plus model
significantly. If for example the HTS plant contains one
resource of capacity capi = 50, one resource with capj = 3
and one multi-capacity resource with capk = 70 the
resulting super-batch would consist of ξ = 1, 050 batches.
Given that for each batch several hundred activities may
have to be executed the (single) super-batch time scheme
may easily exceed 100, 000 activities.

Fortunately, it is possible to incorporate multi-capacity re-
sources into the max-plus algebraic model without forming
a super-batch. This approach is neither dependent on the
number of higher capacity resources in the system nor on
their capacity and will be shown in Section 3.2.

3.1 Conjunctive Constraints

In general, requirements for minimal time offsets between
events of a single batch time scheme are called conjunc-
tive constraints and are predefined by the user, i.e., the
operation the user wants to run. Thus, the time window
precedence network shown in Fig. 1 contains all con-
junctive constraints necessary to describe the processing
operation of a single batch. It is possible to decrease the
complexity, i.e., the number of nodes, of the graph using
standard graph reduction methods. The reduced graph for
the example from Fig. 1, denoted by Gc, is shown in Fig. 3.
It contains only nodes representing start and release events
of the different activities, which were renamed x1 to x8.
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Fig. 3. Graph of conjunctive constraints Gc.

The information contained in the reduced conjunctive
graph Gc can be summarized in a matrix Ac. For our
example, Ac ∈ R

8×8

max is
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Clearly, Gc is the precedence graph of Ac. Using the
precedence matrix Ac, a max-plus algebraic system of the
single batch requirements can be written as

x = Ac ⊗ x, (1)
where x refers to the earliest possible time instants of each
activity’s start and end events. By definition, the single
batch time scheme does not contain any circuits, thus,
matrix Ac is acyclic.

3.2 Disjunctive Constraints

Disjunctive constraints describe the temporal dependen-
cies between activities (in all batches) which are executed
on a specific resource. In particular, these constraints im-
pose restrictions such that activities are prohibited to start
as long as the corresponding resource is fully loaded. They
also ensure that deadlocks will not occur during runtime.
Note that the sequence of activities on a resource, which is
part of the disjunctive constraints, is a result of the offline
optimization procedure.

In general, every resource κ has its own set of disjunctive
constraints which can be modeled as so called disjunctive
graphs. Given that the system consists of m resources, we
will obtain m disjunctive graphs Gdκ

, κ = 1, . . . , m. To
denote dependencies between events in different batches
standard precedence graphs are extended by marked arcs.
A marked arc connecting an event to an event in a
subsequent batch is indicated by a “/”. Similarly, a marked
arc connecting an event to an event in a previous batch
is indicated by a “◦” on the arc. The number of “/”
or “◦” symbols, respectively, on a marked arc represents
its order q, i.e., the difference in batch numbers for the
corresponding events.

Depending on the capacity of the resource the disjunctive
constraints may differ. Therefore, the approach for single-
capacity resources is discussed first before we will deal with
the disjunctive constraints for multi-capacity resources.



Single-Capacity Resources: We will describe the disjunc-
tive constraints in detail for one resource. For all other
single-capacity resources the procedure can be used in the
same manner.

i = 4i = 2 i = 2 i = 2i = 4 i = 4

Reader

ρ − 2 ρ − 1batch ρ ρ + 1 ρ + 2

Fig. 4. Sequence of activities performed on Reader.

For the resource Reader (κ = 2) of our example, the
resource allocation is given as a Gantt chart in Fig. 4.
It can be seen that two different activities are executed on
this resource. Activity i = 2 of a batch ρ is immediately
followed by activity i = 4 of batch ρ − 2 which itself is
then followed by activity i = 2 of batch ρ + 1. Thus the
disjunctive graph for this resource consists of one arc of
order q = −2, one arc of order q = 3 and two zero order
arcs. The corresponding extended precedence graph Gd2

is
shown in Fig. 5.
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Fig. 5. Extended precedence graph of the disjunctive
constraints on resource Reader.

Similar to conjunctive graphs, the information provided
by disjunctive graphs Gdκ can be written as a max-plus
algebraic system

x(k) =
⊕

q

(

Adκ(q) ⊗ x(k − q)
)

, q, k ∈ Z, (2)

where x is the vector containing the earliest time instants
for start and release events of all activities and q represents
the order of arcs. More precisely, the matrix Adκ(q) ∈ R

n×n
max

encodes all arcs of order q within the disjunctive graph of
resource κ.

Multi-Capacity Resources: For multi-capacity resources
the aforementioned approach cannot be applied directly.
Fig. 6 shows the Gantt chart of the multi-capacity resource
Incubator (κ = 3), which is of capacity three. As in the
Gantt-chart in Fig. 4, the sequence of activities is the
outcome of an offline optimization procedure. Activities
can be executed independently on the slots σ1, σ2, σ3. Due

ρ − 2 ρ − 1batch ρ ρ + 1 ρ + 2 ρ + 3 ρ + 4

σ3

σ2

σ1

Fig. 6. Sequence of activities performed on Incubator.

to this independent operation it is possible to determine a
set of disjunctive constraints for every slot of the resource.
It turns out that at least one of the globally optimal solu-
tions determined offline exhibits an identical sequencing of
activities on each slot of a multi-capacity resource. Hence
the set of disjunctive constraints is identical for every slot
of a multi-capacity resource. For our example the resulting
extended precedence graph of the disjunctive constraints
for each slot of resource Incubator is shown in Fig. 7.

x6x5 62

0

Fig. 7. Extended precedence graph of the disjunctive
constraints on each slot of resource Incubator.

As a consequence, the disjunctive constraints for a multi-
capacity resource are completely described by the disjunc-
tive constraints for one of its slots. Note that the capacity
of the resource can be easily deduced from the precedence
graph describing the disjunctive constraints of a slot. More
precisely, the capacity is identical to the sum of the orders
of all arcs within the disjunctive graph for the slot. Thus,
for the resource Incubator (κ = 3) the sum of the orders of
all arcs in Fig. 7 is three. For the resource Reader (κ = 2)
adding the orders of arcs provides cap2 = 2.

It is obvious that the graphs for the slots can also be
written in the form (2).

3.3 Model of HTS Systems

Finally, all the obtained graphs, i.e., one conjunctive
graph and m disjunctive graphs (one for each resource
independent of its capacity) can be merged. This will result
in an extended precedence graph Gsys. For our example
this graph is shown in Fig. 8. The max-plus representation
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Fig. 8. Extended precedence graph Gsys.

of this graph can be directly derived by merging the max-
plus representations of the conjunctive and disjunctive
constraints, i.e., Eq. (1) and Eq. (2). Furthermore, it is
possible to include a control input to the system, modeling
the possibility to delay the occurrence of events. This
is important, if disturbances cause deviations from the
previously determined optimal policy and online control
becomes necessary to quickly recover the desired cyclic
scheme.

If all events can be delayed independently, introducing
control is equivalent to adding (in the max-plus sense) a
control vector u(k) to give



x(k) =

(

Ac ⊕
(

m
⊕

κ=1

Adκ(0)

))

︸ ︷︷ ︸

A(0)

x(k)

⊕

⎛

⎜

⎜

⎜

⎜

⎝

⊕

q �=0

(

m
⊕

κ=1

Adκ(q)

)

︸ ︷︷ ︸

A(q)

x(k − q)

⎞

⎟

⎟

⎟

⎟

⎠

⊕ u(k),

(3)

with q, k ∈ Z.

In general Equation (3) contains matrices Adκ(q) with q <
0. These matrices refer to negative order dependencies in
the precedence graph of the complete system. In Fig. 8 the
arc connecting node x4 to node x7 is of order q = −2. Such
negative order arcs represent acausalities with respect to
the cycle index k (though, of course, not with respect
to absolute time). For further analysis it is advantageous
to reformulate the system such that it does not contain
negative order arcs.

It has been shown in (Brunsch and Raisch, 2009) that
this can be done using the γ-transform combined with
a “relabeling procedure”. The resulting transformation is
not unique but, according to Geyer (2004), it is always
possible to find a transformation matrix which provides
the desired result for implementable specifications.

For our example, one possible transformed system graph
G̃sys is shown in Fig. 9. The resulting transformed system
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Fig. 9. Transformed extended precedence graph G̃sys.

vector x̃(k) ∈ R
n
max contains events which do not neces-

sarily belong to the same batch.

Corresponding to the graph G̃sys the (transformed) max-
plus recurrence relation (3) of the HTS system can be
written as

x̃(k) =
⊕

q

(

Ã(q) ⊗ x̃(k − q)
)

⊕ ũ(k), (4)

with k ∈ Z, q ∈ N0. Acyclicity of A(0) is preserved by the
transformation. Therefore (4) can be written in explicit
form:

x̃(k) =
⊕

q

(

Ã∗
(0)

Ã(q) ⊗ x̃(k − q)
)

⊕ Ã∗
(0)

ũ(k), (5)

with Ã∗
(0)

= I⊕ Ã(0)⊕ Ã2

(0)
⊕ . . .⊕ Ãn−1

(0)
, and k ∈ Z, q ∈ N.

By extending the vector x̃, the higher order system (5)

can then be rewritten as an explicit recurrence relation of
order one.

Returning to our example, the transformed system con-
tains arcs of order 0, 1, and 2. Thus, Equation (5) can be
written as
x̃(k) = Ã∗

(0)
Ã(1)x̃(k − 1) ⊕ Ã∗

(0)
Ã(2)x̃(k − 2) ⊕ Ã∗

(0)
ũ(k).

To obtain a first order recurrence relation, we define
x̂(k) = [x̃T (k) x̃T (k−1)]T . Then, the resulting recurrence
relation of our example is

x̂(k) = Â ⊗ x̂(k − 1) ⊕ B̂ ⊗ ũ(k), (6)
with

Â =
[

Ã∗
(0)

Ã(1) Ã∗
(0)

Ã(2)

I E
]

and B̂ =
[

Ã∗
(0)

E
]

,

where E refers to the zero matrix with respect to max-plus
algebra.

Recall that our max-plus model represents a relaxation
of the globally optimal offline solution: it contains the
optimal sequences of activities on resources and slots; it
contains minimum time requirements but does not reflect
the optimal single batch time scheme. The purpose of this
relaxation is to provide degrees of freedom (delay of events)
to react to unforeseen disturbances. In the disturbance-free
case, the optimal offline solution can be easily recovered
from the max-plus model (6) by computing the eigenvalue
and the eigenvector(s) of Â. The eigenvalue corresponds
to the minimal cycle time and the eigenvector(s) to the
optimal time scheme(s).

In the following, we will show, how the max-plus algebraic
model (6) can be used as a supervisor that performs
online control of the HTS plant in of case unforeseen
disturbances.

4. CONTROL OF HTS SYSTEMS

Real-time scheduling problems for multiple resource sys-
tems are known to be NP-hard problems (Carpenter et al.,
2004). Therefore, we propose to perform the (time consum-
ing) calculation of the optimal solution of the scheduling
problem offline and to use this result as a basis for the
online control of HTS systems. Online control is restricted
to the delay of certain events. Its task is to make sure that
the HTS system returns to the predetermined cyclic sched-
ule at least as fast as the standard right-shift rescheduling
policy (Vieira et al., 2003) without changing the order of
activities on the resources.

For the control of HTS systems we propose a model-
based feedback scheme. We measure the current (and
possibly disturbed) state of the HTS plant and generate
a vector of earliest possible event times (EPETs). We
only consider disturbances that correspond to finite-time
delays of events. Breakdowns of resources will not be
considered because usually the “loss” of a specific resource
cannot be compensated by other resources. In general, the
breakdown of one or more resources will result in a stop
of the complete operation of the HTS system. However,
if the machine with a malfunction can be repaired in a
reasonable time, the repair time may be handled as a
simple delay of events.



To be able to model unforeseen delays it is necessary to
expand the max-plus model (6) with a disturbance:

x̂d(k) = Âx̂d(k − 1) ⊕ B̂ũ(k) ⊕ Sd̃(k), (7)

where x̂d(k) refers to the (possibly) disturbed system state
in cycle k. In the case of HTS systems the matrix S is
assumed to be the identity matrix, since every event may
be delayed individually. The entries of vector d̃(k), i.e., the
disturbances, are in general unknown.

The state is fed back in an online fashion, i.e., it is
updated with a high sampling frequency. The input to the
feedback controller is therefore x̂d(k, tj). The controller
then determines the input signal ũ = ũ(k, tj) ∈ R

n
max.

Inserting such an update into Eq. (7) will result in a max-
plus system which will then of course also depend on the
current update time tj , i.e.,

x̂d(k, tj) = Âx̂d(k − 1) ⊕ B̂ũ(k, tj−1) ⊕ Sd̃(k, tj), (8)

The elements of the updated input ũ(k, tj) are determined
in the following way:

• For an event that has already occurred in cycle k
(or a previous cycle), the corresponding element in
ũ(k, tj) is exactly the time instant of its occurrence.
For an event which is next to occur on a resource (or
slot), the time of its occurrence is estimated. Thus,
the input for such events is set to the value of the
corresponding element in x̂d(k, tj), i.e.,

ũi(k, tj) = x̂d,i(k, tj),
where the right hand side is determined by (8).

• For all other events, the corresponding entry in
ũ(k, tj) will be:

ũi(k, tj) = ε,

i.e., these events will not pose any restriction for the
future evolution of the system.

The overall structure of the controlled HTS system is
shown in Fig. 10.

HTS System
ũ(k, tj−1)

Feedback Control
x̂d(k, tj)

Fig. 10. Control structure.

If some (next) event i is delayed in cycle k at time
tj , the information of the delay will be contained in
the corresponding element of the input vector ũi(k, tj).
Using the max-plus algebraic model it is then possible to
determine the vector x̂d(k, ti+1). The first n elements of
this vector contain the earliest possible event times for all
events of the kth cycle.

Generally speaking, the feedback controller postpones the
occurrence of every event affected by the delay of another
event. As max-plus algebra determines the earliest possible
event times for future events, the controller postpones
events by the minimal amount of time needed to make the
schedule feasible. Consequently the controller guarantees
continuous operation of the HTS plant even if unforeseen
delays of events occur during runtime.

5. CONCLUSION AND FUTURE WORK

In this paper we propose an extension of the previously in-
troduced max-plus algebraic modeling and control scheme
(Brunsch and Raisch, 2009) for high-throughput screening
systems containing multi-capacity resources. It has been
shown how multi-capacity resources can be incorporated
into this model without increasing the dimension of the
state space of the max-plus model.

Furthermore it has been explained how the max-plus
algebraic model can be used to determine an online control
scheme for the HTS system to handle deviations of the
predetermined cyclic schedule.

As mentioned before, the deviations from the predeter-
mined cyclic scheme considered in this paper are restricted
to delays of events. Due to the lack of redundancy with
respect to resources, the permanent breakdown of a re-
source will result in a disruption of the operation of the
HTS system. If however a breakdown only affects parts of a
resource, namely only one or more slots of a multi-capacity
resource such that at least one slot remains available, the
operation of the system may (partially) continue. There-
fore, such a partial breakdown of multi-capacity resources
has to be considered.

Furthermore, the possibility of using the max-plus algebra
framework to change between two different cyclic schemes
during runtime has to be investigated.
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