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Abstract

This work introduces a framework for thermodynamically consistent, kinetic modeling and
model reduction of biochemical reaction networks.

Background. Kinetic models describe the dynamics of the concentrations and fluxes in a
biochemical reaction network by means of the network stoichiometry and the kinetic rate equa-
tions. The laws of thermodynamics constrain the possible dynamics of reaction networks and
thus constrain physically feasible kinetic models. The second law of thermodynamics demands
that the entropy production of any process is non-negative at each point in time. Additionally,
the principle of detailed balance states that all reaction fluxes vanish in thermodynamic equi-
librium, i. e. that the forward rates equal the backward rates. From these laws the generalized
Wegscheider conditions that constrain the set of possible kinetic parameters can be derived.
The Wegscheider conditions express relations between the kinetic parameters of different reac-
tions possibly belonging to different functional units. Especially for large networks, as they are
considered in computational systems biology, finding thermodynamically consistent parameters
can be difficult because the parameters may be constrained by many independent Wegscheider
conditions.

Thermodynamic Modeling. A possibility for formulating thermodynamically consistent mod-
els is the use of the chemical potentials µi of the compounds and the Gibbs reaction energies
∆Gj. In the most simple form, a thermodynamic model of a reaction network is defined by the
stoichiometric matrix N , a function c(µ) that describes the dependency of the vector of con-
centrations c on the vector of chemical potentials µ and a matrix of thermodynamic resistances
R(µ). The matrix of thermodynamic resistances R(µ) is a positive semi-definite, symmetric
matrix with R(µ) · J = −∆G where J is the vector of reaction fluxes and ∆G the vector of
Gibbs reaction energies. The symmetry and positive semi-definiteness of R(µ) guarantee the
fulfillment of the second law of thermodynamics and the principle of detailed balance. If the
stoichiometric matrix N , the derivative ∂c(µ)/∂µ or the matrix of thermodynamic resistances
R(µ) satisfy certain rank conditions, algebraic relations between the model variables hold such
that a reduced model with less compounds or reactions can be derived. Thus, this approach
allows for thermodynamically consistent modeling and model reduction. However, neither are
the concentrations proportional to the chemical potentials, nor are the Gibbs reaction ener-
gies proportional to the reaction fluxes. Even for simple systems the model equations are very
complex, and it is impractical to use this approach for larger models.
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Abstract

Thermokinetic Modeling (TKM) Formalism. Based on the thermodynamic modeling and
model reduction formalism, the thermokinetic modeling formalism (TKM) is derived. TKM is
a convenient and user-friendly formalism to build thermodynamically consistent kinetic models.
The TKM formalism is based on thermokinetic potentials ξi of compounds and thermokinetic
forces Fj of reactions. These quantities are derived from chemical potentials and Gibbs reac-
tion energies. In the case of ideal dilute solutions, thermokinetic potentials are proportional
to the corresponding concentrations: ci = Ci · ξi. The constant proportionality factors Ci
are the thermokinetic capacities of the compounds. In the case of mass-action kinetics, the
thermokinetic forces and the reaction fluxes are proportional: R̄j · Jj = Fj. The constant pro-
portionality factors R̄j are the thermokinetic resistances of the reactions. Non-ideal solutions or
complex kinetics lead to non-constant, state-dependent capacities and resistances. Each model
described by capacities and resistances is thermodynamically consistent and structurally fulfills
the Wegscheider conditions. In addition, each thermodynamically consistent, kinetic model can
be expressed by capacities and resistances. Thus, the use of these quantities provides a simple
and comprehensive way for thermodynamically consistent modeling.

Transformation and Model Reduction. Thermokinetic models can be formally represented
by a tuple of matrices and functions in a similar way as linear systems can be represented
by a tuple of the matrices A, B, C and D. Analogously, equivalence transformations for
thermokinetic models can be formulated. The concentrations and fluxes of the transformed
model are linear combinations of the original concentrations and fluxes. If the matrices and the
derivatives of the functions that describe a thermokinetic model fulfill certain rank conditions,
the model size can be reduced by suited transformation and reduction steps. In particular, the
model size can be reduced if the model contains conservation relations or stoichiometric cycles.
Further, a reduction is possible if resistances or capacities have a value of zero. Capacities of
zero correspond to quasi-stationary compounds and resistances of zero correspond to reactions
in rapid equilibrium. Due to the formal structure of thermokinetic models, model reduction
based on the rapid equilibrium assumption is particularly simple. It can be easily applied to
reaction rules as they are used to describe protein-protein interaction networks with inherent
combinatorial complexity.

Graphical Representation. The TKM formalism is similar to the modeling formalism for elec-
trical networks and an analog graphical representation is possible. Thermokinetic models can
be depicted in a diagram as a connection of basic network elements representing the compounds
and reactions. Several model reduction methods can be formulated as graphical rules, which
allow for a simple and intuitive reduction of the model size.

Oxygen Response of Escherichia coli. The TKM formalism is used to model the oxygen
response of the bacterium Escherichia coli, which is strongly determined by thermodynamic
constraints. In order to restrict the model to the relevant parameters and dynamics, model
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reduction techniques are applied. The model is able to explain the measured metabolic fluxes
and concentrations in the wild type and a regulatory mutant in dependence of the oxygen
availability. This example also shows that TKM is useful for modeling large networks.

Conclusions. TKM unifies thermodynamic and kinetic approaches for the modeling of bio-
chemical reaction networks in a natural and formally appealing way. In particular, it introduces
thermodynamic flow-force relationships into kinetic modeling. In this way, TKM guarantees
the thermodynamic consistency of the model equations. In the conventional kinetic modeling
approach, the kinetic parameters are formally attributed to reactions but not compounds. How-
ever, the equilibrium constants that, in the conventional modeling approach, are ratios of kinetic
parameters are solely determined by the thermodynamic properties of the compounds. This
finally may lead to kinetic models violating thermodynamic constraints unless the Wegschei-
der conditions are explicitly considered. TKM clearly distinguishes between the thermodynamic
parameters, i. e. the capacities, and the kinetic parameters, i. e. the resistances. Thus, TKM pro-
vides a thermodynamically consistent parameterization of kinetic models. TKM also provides
thermodynamically consistent and conveniently usable model reduction methods. Altogether,
TKM strongly simplifies the mathematical modeling of complex biochemical networks.
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Deutsche Zusammenfassung

Diese Arbeit führt eine umfassende Gruppe von Methoden zur thermodynamisch konsistenten
Modellierung und Modellreduktion biochemischer Reaktionsnetzwerke ein.

Hintergrund. Kinetische Modelle beschreiben die Dynamik von Konzentrationen und Flüs-
sen in biochemischen Reaktionsnetzwerken auf Grundlage der Netzwerkstöchiometrie und der
kinetischen Ratengleichungen. Die Gesetze der Thermodynamik beschränken die mögliche Dy-
namik von Reaktionsnetzwerken und damit auch physikalisch sinnvolle kinetische Modelle. Der
zweite Hauptsatz der Thermodynamik fordert, dass die Entropieproduktion eines jeden phy-
sikalischen Prozesses zu jedem Zeitpunkt nicht negativ ist. Zusätzlich fordert das Prinzip des
detaillierten Gleichgewichts, dass alle Reaktionsflüsse im thermodynamischen Gleichgewicht ver-
schwinden, d. h. die Vorwärtsraten gleich den Rückwärtsraten sind. Aus diesen Gesetzen lassen
sich die verallgemeinerten Wegscheiderbedingungen, die die Menge möglicher kinetischer Pa-
rameter beschränken, ableiten. Die Wegscheiderbedingungen sind Beziehungen zwischen den
kinetischen Parametern verschiedener Reaktionen, die unter Umständen zu unterschiedlichen
Funktionseinheiten des Reaktionsnetzwerks gehören. Insbesondere für große Netzwerke, wie sie
in der Systembiologie untersucht werden, ist die thermodynamisch konsistente Parametrisierung
schwierig, da die Parameterwerte durch viele unabhängige Wegscheiderbedingungen beschränkt
sein können.

Thermodynamische Modellierung. Die Verwendung der chemischen Potenziale µi der Stoffe
und der daraus abgeleiteten Gibbs-Reaktionsenergien ∆Gj bietet eine Möglichkeit zur Formu-
lierung thermodynamisch konsistenter Modelle. In der einfachsten Form ist ein thermodyna-
misches Modell eines Reaktionsnetzwerks durch die stöchiometrische Matrix N , eine Funktion
c(µ), die die Beziehung zwischen dem Vektor der Konzentrationen c und dem Vektor der che-
mischen Potenziale µ beschreibt, und durch die Matrix der thermodynamischen Widerstände
R(µ) definiert. Die Matrix der thermodynamischen Widerstände R(µ) ist eine positiv semide-
finite, symmetrische Matrix mit R(µ) · J = −∆G, wobei J der Vektor der Reaktionsflüsse und
∆G der Vektor der Gibbs-Reaktionsenergien ist. Die Symmetrie und positive Semidefinitheit
von R(µ) garantieren die Einhaltung des zweiten Hauptsatzes der Thermodynamik und des
Prinzips des detaillierten Gleichgewichts. Wenn die stöchiometrische Matrix N , die Ableitung
∂c(µ)/∂µ oder die Matrix der thermodynamischen Widerstände R(µ) gewisse Rangbedingun-
gen erfüllen, gelten algebraische Beziehungen zwischen den Modellvariablen, die es erlauben
ein reduziertes Modell mit weniger Stoffen oder Reaktionen herzuleiten. Dieser Ansatz bietet
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Deutsche Zusammenfassung

also die Möglichkeit der thermodynamisch konsistenten Modellierung und Modellreduktion. Je-
doch sind weder die Konzentrationen proportional zu den chemischen Potentialen, noch sind
die Gibbs-Reaktionsenergien proportional zu den Reaktionsraten. Schon für einfache Systeme
werden die Modellgleichungen sehr komplex und es ist kaum möglich diesen Ansatz für größere
Systeme zu benutzen.

Thermodynamisch-kinetische Modellierung (TKM). Aufbauend auf thermodynamischer
Modellierung und Modellreduktion kann der Formalismus der thermodynamisch-kinetischen
Modellierung (TKM) abgeleitet werden. TKM ist eine benutzerfreundliche Methode zur Er-
stellung thermodynamisch konsistenter Modelle. Der TKM-Formalismus basiert auf thermoki-
netischen Potenzialen ξi von Stoffen und thermokinetischen Kräften Fj von Reaktionen. Diese
Größen sind von chemischen Potenzialen und Gibbs-Reaktionsenergien abgeleitet. Im Fall von
verdünnten, idealen Mischungen sind die thermokinetischen Potenziale proportional zu den ent-
sprechenden Konzentrationen: ci = Ci · ξi. Die konstanten Proportionalitätsfaktoren Ci sind die
thermokinetischen Kapazitäten der Stoffe. Im Fall von Massenwirkungskinetiken sind die ther-
mokinetischen Kräfte und die jeweiligen Reaktionsflüsse proportional: R̄j · Jj = Fj. Die kon-
stanten Proportionalitätsfaktoren R̄j sind die thermokinetischen Widerstände der Reaktionen.
Nicht-ideale Mischungen oder komplexe Kinetiken führen zu nicht-konstanten, zustandsabhän-
gigen Kapazitäten und Widerständen. Jedes mit Kapazitäten und Widerständen formulierte
Modell ist thermodynamisch konsistent und erfüllt strukturell die Wegscheiderbedingungen.
Weiterhin kann jedes thermodynamisch konsistente, kinetische Modell in Abhängigkeit von Ka-
pazitäten und Widerständen ausgedrückt werden. Die Verwendung dieser Größen stellt eine
einfache und umfassende Möglichkeit zur thermodynamisch konsistenten Modellierung dar.

Transformation und Modellreduktion. Ähnlich wie lineare Systeme als ein Tupel von Ma-
trizen A, B, C und D dargestellt werden können, können thermokinetische Modelle formal
als ein Tupel von Matrizen und Funktionen dargestellt werden. Analog können auch Äquiva-
lenztransformationen für thermokinetische Modelle definiert werden. Die Konzentrationen und
Flüsse der transformierten Modelle sind Linearkombinationen der ursprünglichen Konzentratio-
nen und Flüsse. Wenn die Matrizen und die Ableitungen der Funktionen, die ein thermokine-
tisches Modell beschreiben, bestimmte Rangbedingungen erfüllen, kann die Modellgröße durch
entsprechende Transformations- und Reduktionsschritte verringert werden. Insbesondere kann
die Modellgröße reduziert werden, wenn das Modell Erhaltungsbeziehungen oder stöchiometri-
sche Zyklen enthält. Weiterhin ist eine Reduktion möglich, wenn Widerstände oder Kapazitäten
den Wert Null annehmen. Kapazitäten vom Wert Null beschreiben quasistationäre Stoffe und
Widerstände vom Wert Null beschreiben Reaktionen im schnellen Gleichgewicht. Aufgrund der
formalen Struktur thermokinetischer Modelle ist die auf der Annahme eines schnellen Gleichge-
wichts basierende Modellreduktion besonders einfach anwendbar. Sie kann auch auf Reaktions-
regeln angewandt werden, wie sie zur Beschreibung von Protein-Protein-Interaktionsnetzwerken
mit inhärenter kombinatorischer Komplexität eingesetzt werden.
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Grafische Darstellung. Der TKM-Formalismus ähnelt stark dem Modellierungsformalismus
für elektrische Netzwerke und eine analoge grafische Darstellung ist möglich. Thermokinetische
Modelle können als Verschaltung einfacher Netzwerkelemente, die Stoffe und Reaktionen be-
schreiben, dargestellt werden. Einige Modellreduktionsmethoden können als grafische Regeln,
die eine einfache und intuitive Modellreduktion erlauben, formuliert werden.

Sauerstoffantwort von Escherichia coli. Der TKM-Formalismus wird zur Modellierung der
Sauerstoffantwort des Bakteriums Escherichia coli, die stark durch thermodynamische Be-
schränkungen bestimmt wird, eingesetzt. Um das Modell auf die relevanten Parameter und die
relevante Dynamik zu beschränken, werden Modellreduktionsmethoden eingesetzt. Das Modell
beschreibt gemessene metabolische Flüsse und Konzentrationen im Wildtyp und in einer regula-
torischen Mutante. Dieses Beispiel zeigt zudem die Nützlichkeit von TKM für die Modellierung
großer Netzwerke.

Zusammenfassung. TKM verbindet thermodynamische und kinetische Ansätze zur Model-
lierung biochemischer Reaktionsnetzwerke in einer natürlichen und formal ansprechenden Art.
Insbesondere führt TKM thermodynamische Fluss-Kraft-Beziehungen in die kinetische Model-
lierung ein. Auf dieser Weise garantiert TKM die thermodynamische Konsistenz der Modellglei-
chungen. Im konventionellen Modellierungsformalismus werden alle kinetischen Parameter als
Eigenschaften der Reaktionen behandelt. Die Gleichgewichtskonstanten, die im konventionel-
len Modellierungsformalismus Verhältnisse von kinetischen Parametern darstellen, sind jedoch
vollständig durch die thermodynamischen Eigenschaften der Reaktionspartner bestimmt. Wenn
die Wegscheiderbedingungen nicht explizit beachtet werden, kann dies zu kinetischen Model-
len führen, die thermodynamische Gesetze verletzen. TKM unterscheidet klar zwischen den
thermodynamischen Parametern (den Kapazitäten) und den kinetischen Parametern (den Wi-
derständen). Damit stellt TKM eine thermodynamisch konsistente Parametrisierung kinetischer
Modelle zur Verfügung. Weiterhin bietet TKM Möglichkeiten zur einfachen und thermodyna-
misch konsistenten Modellreduktion. Damit vereinfacht TKM die thermodynamisch konsistente
mathematische Modellierung und Modellreduktion komplexer biochemischer Netzwerke.

17



1. Introduction

This work introduces Thermokinetic Modeling (TKM), a method for thermodynamically consis-
tent, mathematical modeling and model reduction of reaction networks. Its goal is to simplify
the mathematical modeling of the large and complex metabolic, signal transducing and regu-
latory networks that determine the behavior of cells. In order to introduce the main ideas of
this work, the next paragraphs discuss the role of systems theory and mathematical modeling
in engineering and biology. Major obstacles for kinetic modeling of biochemical networks are
identified, and strategies to overcome them are suggested. This provides the motivation for the
introduction of TKM.

Systems Theory and Engineering. Systems theory plays a pivotal role in modern engineering.
Mathematical modeling and model analysis in conjunction with computational methods allow
for solving complex analysis and design problems. Mathematical modeling allows one to gain a
deep understanding of the dynamics of a given system and to systematically analyze and design
complex systems. In particular, virtually all methods in advanced control engineering rely on
mathematical models. The hierarchical structure of engineered systems often allows for the
independent modeling of different levels of organization. For example, model-based methods
are used for the planning of management strategies for container terminals with several cranes
[109] and for the development of control strategies for single cranes [8]. These hierarchical levels
are also associated with different time scales. For example, the duration for the loading of a
single container is short compared to the time needed for the loading of several container ships
in a container terminal. At each level of detail and each time scale interesting and challenging
problems requiring tailored models arise.

Systems Theory and Biology. Similarly to classical engineering applications of systems the-
ory, the mathematical modeling of biological and biotechnological systems provides important
insight into their dynamics and allows for the systematic redesign of biological systems. For
example, models of reaction networks proved to be helpful for the genetic engineering of mi-
croorganisms into production strains (see e. g. [59, 66, 72]) and are expected to be useful for
the development of novel medical treatments [77, 91, 108].
However, the interest of systems engineering in biology is not only driven by biotechnological

applications. Among the natural sciences, biology has a special role because we may assign
functions to many biological systems. For example, the function of the central metabolism is
the supply of the cell with precursor molecules for maintenance and growth. The complexity
and robustness of the regulation of biological functions are astonishing and their understanding
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represents a challenge for systems theory and control engineering. Thus, biology can be partly
understood as a reverse engineering effort with the goal to reveal the design principles of
biological systems [29, 52, 101].
The application of systems theory to biological systems is often referred to as systems biology.

However, the term systems biology is also used for approaches that seek to characterize the
dynamics of biological systems by experimental high-throughput methods. Here, this term will
be used only in the former sense.
Similarly to engineered systems, biological systems often exhibit a pronounced modularity

and a hierarchical structure. Biological systems are organized for example hierarchically into
populations, organisms, organs, cells, biochemical pathways and enzymatic reactions. This
work focuses on the level of cellular reaction networks consisting of one or several biochemical
pathways. Cellular reaction networks are also hierarchically organized in modules [44, 84].
Two main classes of biochemical reaction networks are metabolic networks and signal trans-

duction networks. The function of metabolic networks is to transform chemical compounds into
other chemical compounds, e. g. substrates found in the environment into precursors for cellular
growth. Signal transduction networks are also based on the reaction of chemical compounds,
but their function is the transmission and processing of cellular signals; e. g. to sense stress sit-
uations and to trigger adequate responses. Both kinds of networks closely interact in a similar
way as plants and controllers interact in engineered systems. Signal transduction networks sense
the state of metabolic networks and of the environment, and their output controls metabolic
fluxes.

Modeling Biochemical Reaction Networks. The modeling of biochemical reaction networks
currently suffers from a lack of quantitative, time resolved data. While the qualitative network
structure is often known, the quantitative parameters needed for a detailed mathematical model
are largely unknown. This problem can be partly solved by the advancement of measurement
methods which is a major focus of the current experimental research. However, given the com-
plexity and variability of biochemical networks, it is unlikely that the quantitative parameters
of all biochemical reactions in medium or large sized biochemical networks can be measured
completely and unambiguously in the near future.
Therefore, we also need systems theoretical answers for the problem of the missing quantita-

tive data. It may not be necessary to experimentally determine all parameter values quantita-
tively to answer a given question or to solve a given design problem by means of a kinetic model.
To address this problem two principal approaches are possible: (1) If some parameter values are
not known, one may use a rough estimate of these values or one may study the model behavior
in a certain parameter range. Here, it is important to explicitly acknowledge the basic physical
constraints in order to avoid physically inconsistent model variants. (2) If the relevant system
dynamics is not sensitive towards the unknown parameters, one may formulate a reduced-order
model where these parameters are omitted.
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Constraints on the Network Dynamics. The stoichiometry of biochemical networks deter-
mines the possible mass and energy flows in the system. It was shown that these structural
and thermodynamic constraints determine key aspects of the network’s functionality [34, 97].
This fact is exploited by the constraint-based modeling approach that mainly considers fluxes in
quasi-stationary metabolic networks [85]. In fact, constraint-based modeling is one of the most
successful systems biological approaches for biotechnological applications.
In the conventional kinetic modeling formalism that seeks to describe the dynamics of con-

centrations and fluxes in reaction networks, the thermodynamic constraints take the form of
equality constraints relating the equilibrium constants of different reactions. These constraints
are the so-called generalized Wegscheider conditions [45, 92]. Example 2.59 (p. 36) will show
that in a genome-scale metabolic network the number of independent Wegscheider conditions
is about 20% of the number of reactions. About 50% of the reactions participate in at least
one Wegscheider condition. In many cases the Wegscheider conditions relate parameters of dif-
ferent functional units. The constraints on signal transduction networks that are based on the
interaction of proteins are even stronger. In Example 2.60 (p. 37), every reaction participates
in at least one Wegscheider condition. Already in moderate sized signal transduction networks,
the number of independent Wegscheider conditions is about 70% of the number of reactions.
This high number of Wegscheider conditions makes the correct parameterization of models in
the traditional kinetic modeling formalism difficult. This task is complicated by the fact that
the reaction parameters coupled by the Wegscheider conditions may lie in different modules
of the network. For this reason, the development of a method for the explicit and systematic
consideration of the basic thermodynamic constraints in kinetic, dynamic modeling is promising
[26, 31, 32, 106].

Reduced-Order Modeling. Engineered systems can and have to be modeled on different levels
of detail because their modular structure and the different associated time scales necessitate a
certain degree of encapsulation. Modeling usually does not start at the most detailed, physically
accessible level but is adapted to the problem under consideration. For example, it would be a
very difficult problem to study the management of a container terminal by a model considering
the oscillations of the loads of the single cranes. What matters for the management planning
are not the parameters that characterize the details of the oscillations of a crane cable but the
average time needed by a crane for the processing of a container. Similarly, by exploiting the
hierarchical structure of biochemical networks it should be possible to develop models that are
tailored for a specific research question or design task. These models contain a limited number
of parameters that can be assessed experimentally. A common objection to this approach is
that the parameters and variables in such models are composite quantities and not minimal in a
physical sense. For this reason, it is believed that it is preferable to first build a detailed model
and to perform model reduction rather than reduced-order modeling. However, it is important
to see that the usage of the terms ‘reduced’ as opposed to ‘detailed’ makes only sense for the
comparison of models. There is no ultimate detailed master model of a system. The fact that a
model “is an approximation does not necessarily detract from its usefulness because all models
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are approximations. Essentially, all models are wrong, but some are useful” [21, p. 424].

The Focus of This Work. Above two major challenges for kinetic modeling were identified:
(1) the explicit incorporation of basic thermodynamic constraints and (2) a reduced-order mod-
eling approach that allows one to restrict the model to the important parameters. The TKM
approach addresses both problems.
The theory of irreversible thermodynamics associates every storage variable of a system with

an intensive variable [23, 41, 55]. For example, the electrical charge is associated with voltage,
volume is associated with pressure, energy is associated with temperature and mass storages
are associated with chemical potentials. Gradients of intensive variables define thermodynamic
forces that drive fluxes. In a similar way, mechanical forces drive velocity changes. A flux
and the associated force have the same direction. Because of their importance, the intensive
variables are directly used in dynamic modeling. Models of electrical systems are formulated
in terms of voltages, models of mechanical systems use mechanical forces and models of hy-
drodynamic systems use pressures. This is convenient because fluxes in such systems are often
approximately proportional to the according forces. For example, in an Ohmic resistance the
electrical current and the voltage difference is proportional and for constant mass mechanical
force and acceleration are proportional. An exception are chemical reaction networks. The
chemical potentials are rarely used directly for dynamic modeling. The reason for this is that
the reaction fluxes usually are not proportional to the chemical potential gradients. Thus, ki-
netic models are usually formulated in terms of concentrations only. This would be analogous to
a modeling formalism for electrical networks that uses charges, but does not refer to electrical
voltages. The TKM formalism provides an alternative system of forces that is better suited
for kinetic modeling than chemical potential differences. In this way, it avoids the problems
that arise from the neglect of the chemical potentials in kinetic modeling and guarantees the
thermodynamic feasibility of the resulting model equations.
The use of potential variables simplifies the application of the rapid-equilibrium assumption

for reduced-order modeling. If a flux is very sensitive towards its force, a small perturbation
from the equilibrium position leads to a large flux that counteracts the perturbation. Then one
can often approximate the system by assuming a vanishing force. This reduces the order of the
problem. For example, if the electrical resistance between two junctions is small, already a small
voltage difference leads to a large flux. As a consequence, the voltages in both junctions are
most of the time approximately equal and thus a single variable can be used to approximately
describe both voltages. Another example is the rigid body assumption in mechanics. By
neglecting the elasticity between two or more points of a body, one can simplify the model
equations. The rapid equilibrium assumption is very important for the modeling of biochemical
networks. It is used to derive approximate rate laws for complex reaction mechanisms, for
example for enzymatic reactions [94]. It is also applied to simplify models of pathways [38],
but its application is hindered by the somewhat complex calculations that are necessary for its
application. Since TKM introduces potential variables, the application of the rapid equilibrium
assumption is heavily simplified compared to conventional kinetic modeling. Besides the rapid
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equilibrium assumption, this work discusses further powerful methods for model reduction and
reduced-order modeling of TK models.
The main results are presented in a formal way that allows for the implementation of the

developed methods in computer programs. This is essential because the use of the thermokinetic
modeling and model reduction methods is in particular interesting for large networks. The
developed methods were implemented in the mathematical programming language Mathematica
[104].

The Structure of This Work. This work develops a thermokinetic framework for mathemat-
ical modeling and model reduction of reaction networks. Whereas the first four chapters are
concerned with the introduction of the general concepts, the following chapters develop prac-
tical and convenient methods for the application of these concepts. A reader who is mainly
interested in the application of the methods can focus on the chapters five to nine.
At suited places, the development of the thermokinetic approach is interrupted by excursuses.

They describe the application of the approach to problems where its applicability is not obvious
but useful.

Chapter 2 Preliminaries and Notation introduces some basic concepts and the notation
needed throughout the work. Chapter 3 Thermodynamic Modeling introduces a formal way
for the formulation of kinetic models in terms of chemical potentials. Based on this formalism,
Chapter 4 Transformation and Reduction discusses several possibilities for the transformation
and reduction of thermodynamic models. The goal of the Chapters 3 and 4 is to systemati-
cally and rigorously introduce a general theory for the thermodynamically consistent modeling
and model reduction. Chapter 5 Thermokinetic Modeling then derives a new, much more con-
venient modeling and reduction formalism by replacing chemical potentials by thermokinetic
potentials. Chapter 6 Model Reduction of Reaction Equations shows that the relevant methods
can be applied to a list of reaction equations. It also shows that for the reduction it is not
necessary to write down the detailed model equations. This stresses the modular nature of the
reduction methods and allows for reduced-order modeling as opposed to a pure model reduction.
Chapter 7 Graphical Representation of TK-Models works out a graphical way to represent and
manipulate thermokinetic models that is motivated by the graphical representation of electrical
networks.
Chapter 8 Modeling the Redox Regulation of Escherichia coli introduces a thermokinetic

model of the oxygen response of the bacterium Escherichia coli and compares its results to
available experimental data. Thereby it demonstrates the use of TKM for the modeling of a
large example network.
Finally, Chapter 9 Comparison to Other Approaches reviews several other methods for consid-

ering thermodynamic constraints in mathematical modeling of reaction networks and compares
them with TKM.
Appendix A describes a prototypical modeling and model reduction computer tool for thermo-

kinetic models.
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2. Notations and Preliminaries

This chapter collects basics from different fields that are needed later on. Its task is to shortly
introduce a few concepts and to fix the notation. It is by no means supposed to be a complete,
self-contained introduction to the used concepts.
The first section is concerned with linear algebra. In particular, it introduces two mathemat-

ical operations that will simplify the notation of TKM models. The second section introduces
the notation used for the description of reaction networks.

2.1. Linear Algebra and Matrix Operations

Definition 2.1 (Identity, one and zero matrix). By In we denote the n×n identity matrix and
by 1n1×n2 and 0n1×n2 the n1 × n2 matrices where all elements are 1 and 0, respectively. The
subscripts of the matrices 0n1×n2 , 1n1×n2 and In will be suppressed if their dimensions are clear
from the context.

2.1.1. Linear Equation Systems

A matrix A ∈ Rn1×n2 defines two spaces: the linear span and the null space of A, which are
introduced in the following two definitions.

Definition 2.2 (Linear span). The linear span of a matrix A ∈ Rn1×n2 is the space spanned by
the columns of A:

span(A) = {x ∈ Rn1 : x = A x̃ with x̃ ∈ Rn2}.

The linear span is also called the column space of A.

Definition 2.3 (Null space). The null space of a matrix A ∈ Rn1×n2 is the set of vectors
mapped to 0 by this matrix:

null(A) = {x ∈ Rn2 : Ax = 0}.

Corollary 2.4 (Orthogonal complement). The space null(A) is the orthogonal complement of
span(AT ). This means, that if x ∈ span(AT ) and y ∈ null(A), then xT y = 0. Further it holds
that Rn1 is spanned by the union of the vectors of span(A) and null(AT ).

The columns of A contain a basis of span(A). The basis of null(A) is given by the kernel
matrix:
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Definition 2.5 (Kernel matrix). A kernel matrix B ∈ Rn2×(n2−rank(A)) of a matrix A ∈ Rn1×n2

is a matrix of full rank, i. e. rank(B) = n2 − rank(A), with

null(A) = span(B)

or equivalently

AB = 0.

§ 2.6 (Non-uniqueness of kernel matrix). The kernel matrix B is not unique. In particular,
every B Λ with a quadratic matrix Λ of full rank is also a kernel matrix. A kernel matrix can
be computed for example by Gauss elimination.

The columns of a kernel matrix span all homogeneous solutions of a linear equation system.
It can be used to parameterize the solution set of a homogeneous linear equation system:

Corollary 2.7 (Homogeneous linear equation system). The set implicitly given by the homo-
geneous linear equation Ax = 0 can be parameterized by x = B x̃ where B is a kernel matrix
with AB = 0 and x̃ ∈ Rn2−rank(A) are the free parameters.

The kernel matrix defines the homogeneous solutions. Similarly, we can define pseudoinverses
that are matrices that yield particular solutions to inhomogeneous problems:

Definition 2.8 (Λ-inverse). Let A ∈ Rn1×n2 with rank(A) = n1 ≤ n2 and Λ ∈ Rn2×n2 with
rank(Λ) = n2. The matrix invΛ(A) ∈ Rn2×n1 is the Λ-inverse of A, respectively. It is defined
by:

invΛ(A) = Λ−1AT (AΛ−1AT )−1.

For some applications of the Λ-inverse the choice of Λ does not play any role. In such cases,
the subscript Λ is suppressed.

§ 2.9 (Possible generalizations). The matrix AΛ−1AT is invertible, because A has full row
rank, i. e. rank(A) = n1. The above given formulas for the Λ-inverse rely on the existence of
this inverse. The definitions can be extended to the case rank(A) < n1 [83]. This, however, is
not needed in this work.

Corollary 2.10 (Pseudoinverse). The matrix invΛ(A) is a right inverse of A. This means
A invΛ(A) = I. In particular, the matrix invI(A) is the Moore-Penrose inverse of A. If n1 = n2,
then invΛ(A) = A−1 for any invertible matrix Λ.

Corollary 2.11 (Inhomogeneous linear equation system). Let x = invΛ(A) b with x ∈ Rn2,
b ∈ Rn1. Then x is a solution of Ax = b with x ∈ span(Λ−1AT ).
A parameterization of the set defined by Ax = b is given by x = invΛ(A) b + B x̃. Here,

Λ ∈ Rn2×n2 is an arbitrary, invertible matrix, B is a kernel matrix of A and x̃ ∈ Rn2−rank(A) is
the vector of free parameters.
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2.1.2. Linear Operations in Logarithmic Scale

The thesis uses two non-standard binary operations on matrices, the Hadamard product and
the lin-log product. Both operations are non-linear, but can be seen to be linear in a logarithmic
scale. The following paragraphs introduce the notation and shortly discuss the properties of
the products.

Here and throughout the thesis we will use log(A) and exp(A) to denote the natural element-
wise logarithm and exponential function of a matrix A, respectively. Thus, log(A) and exp(A)

do not denote matrix logarithm and exponential.

Definition 2.12 (Element-wise logarithm and exponential). Let A be an n1×n2 -matrix, then
C = log(A) and D = exp(A) are n1 × n2-matrices defined by

Ci1i2 = log(Ai1i2), Di1i2 = exp(Ai1i2) (2.1)

with i1 = 1 . . . n1 and i2 = 1 . . . n2.

Example 2.13. log
(
(a1, a2)

)
=
(
log(a1), log(a2)

)
.

Definition 2.14 (Hadamard product). The Hadamard product of two matrices A and B with
equal dimensions n1 × n2 is the element-wise product of A and B:

C = A ◦B with Ci1i2 = Ai1i2 Bi1i2

with i1 = 1 . . . n1 , i2 = 1 . . . n2 and C ∈ Rn1×n2 [83].

Example 2.15. (a1, a2) ◦ (b1, b2) = (a1 b1, a2 b2).

Corollary 2.16 (Logarithmic scale). If the element-wise logarithms of the matrices A and B
are defined, the Hadamard product is equivalent to matrix summation in logarithmic scale

log(A ◦B) = log(A) + log(B).

Definition 2.17 (Lin-log product). The lin-log product C ∈ Rn1×n3 of two matrices A ∈ Rn1×n2

and B ∈ Rn2×n3 is defined by

C = A#B with Ci1i3 =

n2∏
i2=1

B
Ai1i2
i2i3

for i1 = 1 . . . n1 and i3 = 1 . . . n3.

Example 2.18. (a1, a2)#(b1, b2)T = ba1
1 ba2

2 .

The term ‘lin-log product’ refers to the fact that it can be understood as a normal matrix
product (inner product) in logarithmic scale of the second matrix.
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Corollary 2.19 (Logarithmic scale). The lin-log product is equivalent to a matrix multiplication
in logarithmic scale of the second matrix:

log(A#B) = A log(B).

§ 2.20. The lin-log product may be complex or undefined if Bi2i3 ≤ 0. If we use the lin-log
product, we implicitly assume that it exists and is real.

Definition 2.21 (Priorities of Hadamard and lin-log product). To avoid the extensive use of
brackets we define that the lin-log product has a higher priority than the Hadamard product
and both have higher priority than addition:

A1 ◦B1#C1 + A2 ◦B2#C2 = (A1 ◦ (B1#C1)) + (A2 ◦ (B2#C2)).

Corollaries 2.16 and 2.19 often allow the application of tools from linear algebra for problems
involving the Hadamard or the lin-log product. In the following corollaries we will list a few
useful properties of these products. They can directly be derived with the help of the corollaries
mentioned above.

Corollary 2.22 (Special matrices). As can be easily shown, the following holds for a matrix
A ∈ Rn1×n2:

A ◦ 1n1×n2 = A, A ◦ 0n1×n2 = 0n1×n2

and

A#1n2×n3 = 1n1×n3 , A#0n2×n3 = 0n1×n3 .

The last expression is only defined, if A has only positive entries. It further holds that

In1#A = A, 0n3×n1#A = 1n3×n2

where the last expression is only defined, if the entries of A are different from zero.

Corollary 2.23 (Commutativity and Associativity). The Hadamard product inherits commu-
tativity and associativity from the scalar multiplication:

A ◦B = B ◦ A, (A ◦B) ◦ C = A ◦ (B ◦ C).

These properties do not hold for the lin-log product, but a law similar to associativity is valid:

(AB)#C = A#(B#C).
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Proof. Commutativity and associativity of the Hadamard product are straightforward. The
above identity for the lin-log product can be proved by applying Corollary 2.19 to both sides of
the equation. Left hand side: log((AB)#C) = AB log(C); right hand side: log(A#(B#C)) =

A log(B#C) = AB log(C).

Corollary 2.24 (Distributivity). For matrices A, B and C of appropriate dimensions the
following distributive and distributive-like laws hold:

A ◦ (B + C) = A ◦B + A ◦ C,
A#(B ◦ C) = (A#B) ◦ (A#C),

(A+B)#C = (A#C) ◦ (B#C).

Proof. The first identity follows directly from the according distributive laws for scalars. For
proving the latter two identities we apply the element-wise logarithm to both sides and simplify
the result: 1) left hand side: log(A#(B ◦ C)) = A log(B ◦ C) = A (log(B) + log(C)) =

A log(B) + A log(C); right hand side: log((A#B) ◦ (A#C)) = log(A#B) + log(A#C) =

A log(B) + A log(C). 2) left hand side: log((A + B)#C) = (A + B) log(C); right hand side:
log((A#C) ◦ (B#C)) = A log(C) +B log(C) = (A+B) log(C).

Corollary 2.25 (Partitioned matrices). Let A, B, C and D be matrices of appropriate dimen-
sions. It holds (

A B
)

#

(
C

D

)
= (A#C) ◦ (B#D).

Proof. Applying the logarithm to both sides of the equation and using Corollaries 2.16 and 2.19
proves the identity.

For solving equation systems containing the Hadamard or the lin-log product suitable defini-
tions of matrix inverses are useful.

Definition 2.26 (Hadamard inverse). Let A ∈ Rn1×n2 contain no zero entries. Then A(−1) ∈
Rn1×n2 is the Hadamard inverse of A defined by(

A(−1)
)
i1i2

= 1/Ai1i2 .

Corollary 2.27 (Hadamard equations). The matrix A(−1) is the right and left inverse of A
under the Hadamard product:

A(−1) ◦ A = A ◦ A(−1) = 1n1×n2 .

The solution of the matrix equation A ◦X = B is X = A(−1) ◦B.

Corollary 2.28 (Hadamard inverse of lin-log product). With the matrices A ∈ Rn1×n2 and
B ∈ Rn2×n3 it holds that

(A#B)(−1) = (−A)#B = A#
(
B(−1)

)
.

Proof. Applying the logarithm to both sides of the equation and using Corollary 2.16 and
− log(B) = log

(
B(−1)

)
proves the identity.
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2.2. Reaction Networks

This section introduces some basics needed for the description of reaction networks. It is limited
to the case of a homogeneous phase with clamped temperature and pressure. For the study of
many cellular reaction networks this is a realistic assumption. Heterogeneous systems consisting
of distinguishable homogeneous subsystems, e. g. cellular compartments, can be modeled by a
connection of several homogeneous models.

§ 2.29 (Notation). T [K], p [Pa] and V [L] denote temperature, pressure and volume, respec-
tively. We assume that the phase contains i0 distinguishable chemical species. Their amounts,
concentrations and chemical potentials are denoted by ni [mol], ci [mol L−1] and µi [J mol−1],
respectively. In the phase, j0 reactions take place that interconvert the i0 components. By
Jj [mol L−1 s−1] we denote the rate of the jth reaction. The above defined symbols may appear
without indices. Then they denote the respective vectors n, c, µ ∈ Ri0 and J ∈ Rj0 .

2.2.1. Stoichiometry

A reaction j interconverts the compounds according to the rule∑
i∈Ej

νE,ij Xi

j−⇀↽−
∑
i∈Pj

νP,ij Xi. (2.2)

By Ej and Pj we denote the sets of the reactants and the products of reaction j, respectively. We
distinguish the stoichiometric coefficients of reactants νE,ij > 0 and products νP,ij > 0. In this
way we can directly model autocatalytic reactions as reactions where some of the components
of Pj appear also in Ej. The overall stoichiometric coefficient is νij = νP,ij − νE,ij. It is positive
for products and negative for reactants.

§ 2.30 (Stoichiometric Matrices). The stoichiometric coefficients can be compiled into the
reactant and product stoichiometric matrices NE and NP , respectively. The stoichiometric
matrix N is the difference of the product and the reactant matrix:

(NE)ij = νE,ij, (NP )ij = νP,ij, N = NP −NE. (2.3)

§ 2.31 (Mole Balances). Using these definitions we may easily formulate the mole balances for
a closed system. They can be transformed to the concentration balances:

1

V
ṅ = N J, ċ = N J − V̇

V
c. (2.4)

For open systems additional exchange fluxes with the environment need to be considered in the
balance equations.
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2.2.2. Irreversible Thermodynamics

This section briefly introduces the aspects of irreversible thermodynamics that are needed for
modeling homogeneous, isothermal and isobaric systems. Since only liquid phases are consid-
ered, one can safely assume that on a microscopic level dissipative collisions prevail such that
the system is in local equilibrium. This means that it is possible to use quantities from classical
equilibrium thermodynamics to describe non-equilibrium states. For a thorough analysis of this
assumption see Glansdorf and Prigogine [41].
The goal of this section is to collect the relevant equations and to introduce the notation, but

not to give a self-contained introduction. For a thorough introduction the reader may refer to
Callen [23], Kaufman [55] and to Glansdorf and Prigogine [41].

2.2.2.1. Basic terms and relations

§ 2.32 (Entropy, Internal Energy and Gibbs Energy). The entropy S [J K−1], internal energy
U [J] and Gibbs energy G = U− T S + p V [J] are key quantities for the thermodynamics of
reaction networks. The changes of the extensive variables entropy, energy, volume and mole
numbers are related by the total differential

dU = T dS − p dV + µT dn or equivalently dS =
1

T
dU +

p

T
dV − µT

T
dn.

In the following, we assume that the Gibbs energy is expressed as a fundamental equation
G(T, p, n). The total differential of G(T, p, n) is

dG = −S dT + V dp+ µT dn.

Because G is homogeneous of degree one in n, i. e. G(T, p, λ n) = λG(T, p, n), we get the
Gibbs-Duhem relation

0 = S dT − V dp+ nT dµ

that is a restriction on the possible values of the intensive quantities T , p and µ. We further
get that G = µT n.

§ 2.33 (Specific Gibbs energy and entropy). In homogeneous phases with constant volume it is
of advantage to use the volume-specific quantities s = S/V and g = G/V . The specific Gibbs
energy can be expressed as a function g(T, p, c). It holds that g = µT c and

dg = −s dT + dp+ µT dc.

§ 2.34 (Production and exchange flow). The change of any extensive quantity X or specific
quantity x can be divided into a production term (P [X] and σ[x]) and an exchange term (J [X]

and j[x]) such that

Ẋ = P [X] + J [X], ẋ = σ[x] + j[x].

The production term occurs due to processes in the considered system, whereas the exchange
flow occurs due to an exchange of the system with the environment.
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§ 2.35 (Entropy and Gibbs energy production). In a closed, homogeneous system under isobaric
and isothermal conditions with constant volume, the production rates of the entropy and Gibbs
energy are given by

T P [S] = −P [G] = −µT ṅ = −µT N V J, T σ[s] = −σ[g] = −µT ċ = −µT N J.

§ 2.36 (Gibbs reaction energies). The vector of the Gibbs reaction energies is given by ∆G =

NT µ. With this we may write P [S] = −T−1 ∆GT V J and σ[s] = −T−1 ∆GT J .

2.2.2.2. The basic principles of irreversible thermodynamics

Irreversible thermodynamics of reaction networks is mainly based on two postulates: (1) The
second law of thermodynamics states that the entropy production of any process is non-negative.
On this basis, thermodynamic forces can be defined that are directed towards a state of ther-
modynamic equilibrium where all forces and the entropy production vanish. (2) The principle
of detailed balance or equivalently the principle of microscopic reversibility postulates that in
thermodynamic equilibrium all fluxes vanish.

§ 2.37 (The Second Law of Thermodynamics). The second law of thermodynamics states that
the entropy production is non-negative. For a homogeneous phases one gets:

T P [S] = −µT N V J ≥ 0.

In a isobaric and isothermal homogeneous phase one has P [G] = −T P [S] = V µT N J ≤ 0.

§ 2.38 (Thermodynamic forces). The entropy production is the product of thermodynamic
forces and fluxes. Thus, (−T−1 ∆G) = −T−1NT µ is the vector of thermodynamic forces for
the respective chemical reactions. Because we consider systems with constant temperature T ,
we may alternatively use the vector ∆µ = −∆G = −NT µ as the vector of thermodynamic
forces. The thermodynamic force ∆µj along a reaction with stoichiometric coefficients νE,ij and
νP,ij consists of a term ∆µE,j due to the reactants and a term ∆µP,j due to the products:

∆µj = −
i0∑
i=1

νij µi =
∑
i∈Ej

νE,ij µi︸ ︷︷ ︸
∆µE,j

−
∑
i∈Pj

νP,ij µi︸ ︷︷ ︸
∆µP,j

.

Definition 2.39 (Thermodynamic equilibrium). A reaction is in thermodynamic equilibrium,
if its force vanishes (i. e. ∆µj = 0). If all forces vanish simultaneously ∆µ = 0 the reaction
system is in thermodynamic equilibrium.

§ 2.40 (The principle of detailed balance and microscopic reversibility). The principle of mi-
croscopic reversibility states that in thermodynamic equilibrium any microscopic reaction event
is as frequent as its reverse event. Let J+j and J−j denote the frequency of the forward and
backward reaction events along a certain reaction coordinate. In thermodynamic equilibrium
we have that Jj = J+j − J−j = 0 and thus the overall flux Jj vanishes. This is known as the
principle of detailed balance.
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Example 2.41 (Single reaction). Consider a phase with a single reaction A + B 
 C. The
thermodynamic force is ∆µ = µA + µB − µC . The second law demands that T V −1 P [S] =

∆µJ ≥ 0. Detailed balance demands further that ∆µ = 0 ⇒ J = 0. Thus, both laws together
lead to the condition that J = γ(T, p, n) ∆µ, where γ(T, p, n) ≥ 0 is a non-negative function
of the state of the system. The function γ(T, p, n) is the thermodynamic conductance of the
reaction. The function R(T, p, n) = 1/γ(T, p, n) is the thermodynamic resistance.

§ 2.42 (Reaction system in the linear region). Near to the thermodynamic equilibrium the
relation of the vector of fluxes J and the vector of forces ∆µ in a homogeneous, isothermal,
isobaric and closed phase of constant volume can be approximated by J = Γ ∆µ where Γ is
a symmetric, positive definite matrix. The positive definiteness of Γ follows from the non-
negativity of the entropy production T V −1 P [S] = ∆µT J = ∆µT Γ ∆µ ≥ 0. The symmetry
of Γ is a consequence of Onsager’s reciprocal relations [75, 76] that are based on the principle
of detailed balance. The matrix Γ describes the conductance of the system. Thus, the matrix
R = Γ−1 is the thermodynamic resistance matrix. The matrix R is symmetric because the
inverse of a symmetric matrix is symmetric.

2.2.2.3. Chemical potentials and Gibbs formation energies

Chemical potentials are central for the thermodynamic analysis of reaction systems. Here, we
present standard approaches for their computation [55].

Definition 2.43 (Ideal mixtures). A mixture is said to be ideal if the chemical potentials follow
the law

µi = µ◦i (T, p) +R∗ T log(ni/nΣ)

where nΣ =
∑i0

i=1 ni is the overall mole number of the phase and R∗ is the ideal gas constant.
The chemical standard potential µ◦i is independent of the concentrations, but may depend on
T and p or any further intensive quantities.

In ideal mixtures, the chemical potentials depend on the overall mole number nΣ. In highly
diluted phases, where the overall mole number is mainly determined by the solvent, it can be
assumed that nΣ is constant and the relation of µi and ci simplifies.

Definition 2.44 (Ideal dilute solutions). A solution is an ideal dilute solution if the chemical
potentials of the solutes follow the law

µi = µ◦i (T, p) +R∗ T log(ci/c
◦)

where c◦ is the standard concentration, e. g. c◦ = 1 M. The chemical standard potential µ◦i is
independent of the concentrations, but may depend on T , p and further intensive quantities.
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§ 2.45 (Assumption of an ideal dilute solution). The assumption of an ideal dilute solution
is a standard assumption for (bio)chemical reaction networks. In biochemical systems, the
main source of non-ideality are ionic interactions that depend on the ionic strength I of the
solution. Because many biochemical species are pools of chemical species with a different
amount of protons, the chemical potential of biochemical species often depends on the pH-
value. If the ionic strength I and the pH can assumed to be constant and no other non-
ideal effects occur, the chemical potentials can be approximated by the quasi-ideal law µi =

µ◦i (T, p, pH, I) +R∗ T log(ci/c
◦) (see Alberty [1]).

Since chemical potentials are not easily measurable, the value of the standard potentials µ◦i
are usually not available. Instead, the Gibbs formation energies are tabulated for many chemical
compounds.

Definition 2.46 (Gibbs energies of formation). The standard Gibbs energy of formation ∆fG
◦
i

of a compound Xi is the change in Gibbs energy if one mole of Xi in its standard state (ideal
aqueous solution, ci = c◦ = 1 M) is formed from its elements in reference state (For the definition
of the reference state see Alberty [1]). The Gibbs energy of formation in an ideal dilute solution
is given by ∆fGi = ∆fG

◦
i +R∗ T log(ci/c

◦).

§ 2.47 (Tables of Gibbs formation energies). The standard Gibbs formation energies for many
important metabolites are tabulated. Alberty [1] contains tables of Gibbs formation energies for
different pH and ionic strength I for around 130 metabolites. Feist et al. [36] present a genome-
scale constraint-based model of Escherichia coli. This model contains the standard Gibbs
formation energies of around 870 metabolites that were estimated by the group contribution
method from Jankowski et al. [53], Mavrovouniotis [73].

§ 2.48 (Gibbs formation energies and chemical potentials). The chemical potentials enter the
equations of thermodynamics mainly in the form of thermodynamic forces ∆µ = −NT µ. The
thermodynamic forces are the differences of the chemical potentials of the reactants and the
products. These differences can also be computed from the Gibbs energies of formation:

∆µ = −NT µ = −NT ∆fG.

Thus, for practical purposes chemical potentials µi and Gibbs formation energies ∆fGi are
exchangeable. For the sake of simplicity we further write µ and ∆µ, even if in all practical
examples Gibbs formation energies are used.

2.2.3. Kinetic Rate Laws

Kinetic rate laws can take various non-linear forms. However, mass-action kinetics are widely
used as a basic kinetic law. It is the simplest rate law compatible with the equilibrium mass-
action law. For dilute solutions it is mechanistically underpinned by statistical mechanics.
Many complex kinetic rate laws are derived from it. Here, we consider generalized mass-action
kinetics, that are a very flexible generalization of ideal mass-action kinetics.
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Definition 2.49 (Generalized mass-action kinetics). A reaction follows a generalized mass-
action rate law [45, 89], if its reaction rate can be written as:

Jj = fj(k, c)

(
k+j

∏
i∈Ej

(
ci
c◦

)νE,ij

− k−j
∏
i∈Pj

(
ci
c◦

)νP,ij

)
(2.5)

with a constant standard concentration c◦, e. g. c◦ = 1 M. The kinetic parameters k±j have the
unit [mol L−1 s−1] and are independent of the concentrations of the reactants but may depend
on the the ionic strength I, temperature T , the pressure p, the electrical potential φ or other
intensive variables. Because we assume that these quantities are constant, these dependencies
are omitted in the notation. The unitless function fj(k, c) ≥ 0 may depend on parameters k,
concentrations c and possibly further quantities that are omitted here. If Jj can be written
with fj(k, c) = 1, we say that Jj follows an ideal mass-action law.

Example 2.50 (Reversible Michaelis-Menten kinetics). Consider the reaction A 
 B with a
reversible Michaelis-Menten kinetics: J = (k+ cA − k− cB)/(k1 + kA cA + kB cB). The flux J

follows a generalized mass-action kinetics with k+, k− and f(k, c) = (k1 + kA cA + kB cB)−1.

§ 2.51 (Thermodynamic equilibrium). According to the principle of detailed balance, the re-
action flux vanishes in thermodynamic equilibrium and we get the equilibrium constant

Keq,j =
k+j

k−j
=

∏
i∈Pj

(ceq,i/c
◦)νP,ij∏

i∈Ej
(ceq,i/c◦)νE,ij

= exp

(
−

∆G◦j
R∗ T

)
(2.6)

where ∆G◦j = −∆µ◦ =
∑

i∈Ej∪Pj
νij µ

◦
i is the standard Gibbs energy of the reaction in an ideal

dilute solution.
The above equilibrium conditions can be written in the vectorial form

log(Keq) = NT log

(
ceq
c◦

)
, Keq = NT#

(
ceq
c◦

)
(2.7)

where the logarithm has to be understood element-wise.

2.2.4. The Wegscheider Conditions

The second law of thermodynamics and the principle of detailed balance impose constraints
on possible values of the equilibrium constants. These constraints are called the Wegscheider
conditions.

§ 2.52 (Generalized Wegscheider Conditions). From Equation 2.7 one sees that the vector
log(Keq) is in the column space of NT . Equivalently this means that

BT log(Keq) = 0, BT#Keq = 1 (2.8)

where B ∈ Rj0×dj0 is a kernel matrix of N ∈ Ri0×j0 with N B = 0. These are the so-called
generalized Wegscheider conditions [45, 92]. The columns of the matrix B describe linear
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independent stoichiometric cycles in the network. Stoichiometric cycles correspond to circular
flux distributions Jcycle ∈ span(B) that have no effect on the concentrations: ċ = N Jcycle = 0.
With the lin-log product the generalized Wegscheider conditions read BT#Keq = 1. This means
that the product of the equilibrium constants along any cycle is unity:

1 =

j0∏
j=1

K
Jcycle,j

eq,j .

For example, in the simple cyclic reaction scheme A
1−⇀↽− B

2−⇀↽− C
3−⇀↽− A, the Wegscheider condition

is Keq,1Keq,2Keq,3 = 1.
Kinetic parameters of networks that contain stoichiometric cycles are constrained by the

Wegscheider conditions. A model that violates the Wegscheider conditions describes a physically
impossible system.

§ 2.53 (Equivalence of the Wegscheider conditions and the usage of chemical potentials). The
derivation of the generalized Wegscheider conditions in §2.52 shows that the observance of the
Wegscheider conditions in Eq. 2.8 and the usage of chemical potentials is equivalent. Whenever
the equilibrium constants Keq,j in a kinetic model fulfill the Wegscheider conditions in Eq. 2.8,
there exist chemical standard potentials µ◦i such that Eq. 2.6 is fulfilled and vice versa. When one
is interested in a thermodynamically consistent parameterization of a mathematical model one
has technically two possibilities: (1) choose standard potentials and compute the equilibrium
constants by Eq. 2.6 or (2) choose the equilibrium constants of a subset of the reactions and
compute the remaining equilibrium constants using Eq. 2.8.

§ 2.54 (Number of independent Wegscheider conditions). The number of independent Wegschei-
der conditions can be calculated from the dimension and the rank of N . Let N ∈ Ri0×j0 and
r = rank(N). Then di0 = i0−r is the number of conserved moieties and dj0 = j0−r = j0−i0+di0
is the number of independent cycles. This means that the network contains dj0 independent
Wegscheider conditions.

Example 2.55 (Simple stoichiometric cycle). To illustrate the above, we study a reaction
network describing the random-order complex formation of the three compounds A, B and C
(example from Ederer and Gilles [32]):

A+B
1−⇀↽− AB, AB + C

2−⇀↽− ABC,

B + C
3−⇀↽− BC, A+BC

4−⇀↽− ABC.
(2.9)

This system contains the cycle:

A+B + C
1−⇀↽− AB + C

−⇀ ↽−3 −⇀ ↽−2
A+BC

4−⇀↽− ABC.

(2.10)
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The kinetic model of the system is

ċA = −J1 − J4, ċAB = +J1 − J2,

ċB = −J1 − J3, ċBC = +J3 − J4,

ċC = −J2 − J3, ċABC = +J2 + J4

(2.11)

with ideal mass-action laws with parameters k±j for the fluxes Jj. From the second law of
thermodynamics and the principle of detailed balance it follows that the thermodynamic equi-
librium with vanishing fluxes exists: J1 = J2 = J3 = J4 = 0 . This leads to the condition that
the product of the equilibrium constants along the cycle has to be unity:

ceq,AB

ceq,A ceq,B

ceq,ABC

ceq,AB ceq,C

ceq,BC ceq,A

ceq,ABC

ceq,B ceq,C

ceq,BC
=

k+1

k−1

k+2

k−2

k−4

k+4

k−3

k+3
= 1.

(2.12)

For all other parameter combinations the model would describe a physically impossible sys-
tem because it does not contain a state of thermodynamic equilibrium with vanishing fluxes.
Because the model would never reach thermodynamic equilibrium, it would describe a physi-
cally impossible chemical perpetuum mobile. If it would be real, the permanent deviation from
equilibrium could be used to permanently perform work.

Example 2.56 (Formation of Shc-Grb2-Sos complex). The formation of protein complexes at
a scaffold as described in the example above is an ubiquitous motif in cellular signal transduc-
tion. Sos and phosphorylated Shc bind to the scaffold Grb2 during EGF signal transduction.
Kholodenko et al. [57] presented a model of EGF signaling that explicitly acknowledges the
Wegscheider conditions. Schöberl et al. [90] extended this model but varied some parameter
values without observance of detailed balance. Later, Liu et al. [71] analyzed the model of
Schöberl et al. [90] but again modified parameter values without observance of the detailed
balance constraints. This means that the latter two models describe a thermodynamically
impossible system where permanent cyclic fluxes occur.
Schöberl et al. [90] as well as Liu et al. [71] perform a sensitivity analysis. This means that

the response of the system to small changes in each single parameter is computed. Because the
parameters are not independent from each other but related by the Wegscheider conditions,
such a sensitivity analysis considers physically impossible parameter variations. Thus, the
results may be misleading.

§ 2.57 (Complete stoichiometry). The formulation of the Wegscheider conditions is only pos-
sible if the complete stoichiometry of the reactions is considered. Often ubiquitous compounds,
as for example adenosine-triphosphate ATP, adenosine-diphosphate ADP and inorganic phos-
phate P, are omitted. This is kinetically justified, if one assumes a constant concentration of
these compounds. Then, their effect can be described by omitting them from the stoichiometric
matrix N and considering their effect in the kinetic rate laws. However, the simplified stoichio-
metric matrix cannot be used for deriving the generalized Wegscheider conditions. Assume that
reaction 1 in Example 2.55 would involve the hydrolysis of ATP. Then, the true stoichiometry
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of reaction 1 is A+B+ATP 
 AB+ADP +P . If the concentrations of ATP, ADP and P are
constant, the rate law of this reaction can be written as a mass-action law with parameters k̃±1,
but these parameters depend on the concentrations of ATP, ADP and P. By clamping these
concentrations an external thermodynamic force is imposed to the system. This force prevents
the system from reaching the thermodynamic equilibrium because it drives a cyclic flux through
the network. The cycle is driven by a permanent inflow of ATP and outflow of ADP and P.
For this reason such cycles are called futile cycles. In steady state, the free energy dissipation
of the cycle is equal to the amount of chemical work needed to rephosphorylate the produced
ADP. The modified network does not anymore contain a true cycle and thus does not contain
a Wegscheider condition. The Wegscheider conditions hold only for true cycles but not for
futile cycles. The distinction of true from futile cycles requires the knowledge of the complete
stoichiometry of the reactions. However, it does not require the knowledge of all reactions in
the network because a cycle in a subnetwork is also a cycle in a larger network.

§ 2.58 (Wegscheider conditions in large networks). The generalized Wegscheider conditions
impose constraints on the physically possible parameters of kinetic models. The small Exam-
ple 2.56 showed that this is indeed an issue for the modeling of cellular reaction networks.
Larger biological networks show a high degree of flexibility and robustness and contain a large
number of partly redundant pathways [98]. In such networks, the number of reactions j0 tends
to be much greater than the number of species i0. This leads to a high dj0 = j0 − i0 + di0 and
thus to a high number of Wegscheider conditions. The next two examples demonstrate this for
signal transduction and metabolic networks.

Example 2.59 (Metabolic networks). Reed et al. [86] provide a constraint-based model of the
metabolism of E. coli K-12 iJR904. By means of this network, one can assess the importance of
the Wegscheider conditions for metabolic networks (example from Ederer and Gilles [32]). The
model iJR904 consist of i0 = 762 compounds, 931 metabolic reactions and 1 reaction describing
cell growth (j0 = 932). The stoichiometric matrix N ∈ R762×932 has r = rank(N) = 722,
i. e. the network contains dj0 = j0 − r = 210 independent Wegscheider conditions. This means
that 210/932 = 23% of the equilibrium constants are determined by Wegscheider conditions
and cannot be freely adjusted. An example is the cycle

2ADP +GTP 
 AMP + ATP +GTP 
 ADP + ATP +GDP 
 2ADP +GTP

with guanosine-diphosphate GDP and guanosine-triphosphate GTP. If the Wegscheider condi-
tions in the cycle would be violated, a permanent deviation of the ATP/ADP ratio from its
equilibrium value would occur. This cycle would provide ATP for free, i. e. without the con-
sumption of energy-rich substrates. This is a physically impossible situation. Thus, detailed
balance in such cycles is crucial for building correct and meaningful models.
Only 451 reaction, i. e. 451/932 = 48%, do not participate in any cycle and are not affected by

the Wegscheider conditions. If one of the other 52% of the equilibrium constants is changed, it is
also necessary to change the equilibrium constants of further reactions. The affected equilibrium
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constants are possibly distributed over several functional units. This makes it very difficult to
adjust the parameters of the model or to assess the effect of parameter changes because changing
certain equilibrium constants in the model may have effects on equilibrium constants of many
other reactions.

Example 2.60 (Protein-protein interaction networks). Cellular signal transduction often relies
on the interaction of proteins. The model-based analysis of signal transduction has a prominent
role in systems biology because many diseases have their roots in defects of signal transduc-
tion. A typical motif is the binding of several proteins to a scaffold protein, e. g. the binding of
extracellular hormones and intracellular signaling proteins to a transmembrane receptor. Ex-
ample 2.55 discussed a simple system where two ligands A and C bind to the scaffold B. The
present example generalizes considerations to scaffolds with more ligands. Stoichiometric cycles
occur in such protein-protein interaction networks because a given complex can originate from
a random order of association and dissociation events. We consider a scaffold protein with k

binding sites for k̃ different ligand species (example adapted from [32]). We restrict the discus-
sion to the cases where each binding site can only bind one specific ligand species, i. e. k̃ ≤ k.
If k̃ < k, one or more ligand species can bind to more than one binding site.
Since every binding site may be occupied or not occupied, the scaffold may form 2k differ-

ent complexes. Together with the free ligands we have i0 = 2k + k̃ species in the system. A
ligand may bind to the scaffold if the corresponding binding site is free. Thus, we have 2k−1

distinguishable binding reactions per binding site. For k binding sites we have j0 = 2k k/2 reac-
tions. The network contains di0 = k̃ + 1 conserved moieties. Thus, the number of independent
Wegscheider conditions is dj0 = j0 − i0 + di0 = (k/2 − 1) 2k + 1 (see §2.54, p. 34). Table 2.1
shows these numbers for different numbers of binding sites. In the table, it is assumed that
the number of ligands k̃ is equal to the number of binding sites k. The number of reactions
j0 grows much faster than the number of species i0 and the number of Wegscheider conditions
grows exponentially with the number of binding sites.
Binding site numbers k as shown in Table 2.1 are realistic for large scaffolds. To illustrate

this, we consider the protein Ste5p that plays a role in the mating response of the yeast [49].
The Ste5p dimer has at least k = 7 binding domains for k̃ = 4 ligands. Thus, we have
dj0 = 321 Wegscheider conditions for j0 = 448 different binding reactions. This means that
321/448 = 72% of the equilibrium constants can be determined if the rest of the equilibrium
constants is known. Any change of a reaction parameter in a model necessitates changes of
parameters of other reactions because every reaction participates in a cycle. The Ste5P complex
itself is only part of a larger complex. The relative number of cycles is presumably even higher
for the larger complex.

§ 2.61 (Conclusions). The Wegscheider conditions impose constraints on the physically feasible
parameters of a kinetic model. For larger models it is getting increasingly difficult to determine
consistent parameter values. Further, important model analysis tools that are based on the inde-
pendent variation of parameter values may yield misleading results. A sensitivity analysis of the
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k = k̃ 1 2 3 4 5 6 7 8 9 10 . . . k, k̃ . . .
i0 3 6 11 20 37 70 135 264 521 1034 . . . 2k + k̃ . . .
j0 1 4 12 32 80 192 448 1024 2304 5120 . . . k/2 · 2k . . .
r 1 3 7 15 31 63 127 255 511 1023 . . . 2k − 1 . . .
di0 2 3 4 5 6 7 8 9 10 11 . . . k̃ + 1 . . .
dj0 0 1 5 17 49 129 321 769 1793 4097 . . . (k/2− 1) · 2k . . .

Table 2.1.: Some numbers characterizing the binding of k̃ ligands to a scaffold with k binding
sites (see Example 2.60): Numbers of species i0, reactions j0, conserved moieties di0
and stoichiometric cycles dj0 ; r is the rank of the stoichiometric matrix. For the
numeric data, it is assumed that k = k̃.

model behavior towards independent perturbations of the parameter values is biased because the
parameter values may not change independently. Similarly, parameter identification algorithms
need to obey the Wegscheider conditions because otherwise they are likely to yield physically
impossible parameter values. The explicit consideration of the Wegscheider conditions in the
parameter identification is possible, but difficult. The Wegscheider conditions can be treated
as equality constraints on the parameters. This turns the parameter identification problem in
a constraint optimization problem that is considerably more difficult to solve. Another pos-
sibility is to distinguish between dependent and independent parameters (see e. g. Colquhoun
et al. [26]). However, these calculations need to be redone for any structural modification of
the model and lead to unintuitive dependencies of the parameters.
The Wegscheider conditions hinder the modeling of large metabolic networks in the conven-

tional kinetic modeling formalism. In contrast to that, the TKM formalism that is developed
in this work structurally guarantees the fulfillment of the Wegscheider conditions. It thus pro-
vides a possibility to avoid their explicit formulation and solution. For this reason, the TKM
formalism is expected to be especially suited for the formulation of models of large networks.
In order to prepare the introduction of the TKM formalism in Chapter 5, the Chapters 3 and

4 develop the thermodynamic formalism for modeling and model reduction.
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Kinetic models of reaction networks are usually described by kinetic rate equations Jj(k, c)
with concentrations c and kinetic parameters k. Such models disregard the existence of chem-
ical potentials µ. Thus, it is not possible to directly model the thermodynamic condition that
chemical potential differences ∆µ determine the direction of reaction fluxes. To be nevertheless
in accordance with the laws of thermodynamics, the kinetic parameters k have to obey the
Wegscheider conditions (see Section 2.2.4, p. 33). Although the observance of the Wegschei-
der conditions and the usage of chemical potentials is equivalent (see §2.53), the Wegscheider
conditions obstruct modeling and model analysis due to their ‘non-local’ nature: Wegscheider
conditions are relations between kinetic parameters of different reactions possibly distributed
over several functional modules. For this reason, parameters of a single reaction can often not
be freely varied.
From a thermodynamic point of view, it is reasonable to formulate models that explicitly

contain chemical potentials µ and chemical potential differences ∆µ. Fluxes J and driving
forces ∆µ are then related via the thermodynamic resistances R by the equation Rj Jj =

∆µj (cf. Example 2.41 and §2.42, p. 31). However, such model formulations are usually only
considered at or near equilibrium. The reason for this is the strong non-linear behavior of the
thermodynamic resistances Rj far from equilibrium.
This chapter nevertheless introduces a formal approach to thermodynamic modeling of open

reaction networks that are possibly far from equilibrium. Later, Chapter 4 shows that important
model reduction techniques can be easily applied to such models using linear transformations.
Due to its complexity this approach can be hardly used for larger networks. However, these
considerations give us valuable insight of how to develop thermodynamically consistent, reduced-
order models. In Chapter 5 the approach will be modified in order to arrive at the TKM
formalism, a more handy modeling formalism that is suited for the modeling of large networks.
We describe the dynamics of an open reaction system by its stoichiometric matrices, the

relation of concentrations c and chemical potentials µ, the state-dependent matrix of thermo-
dynamic resistances R and initial conditions. This formal representation is the basis for the
derivation of general mechanisms for manipulating these models by state space transformations
in Chapter 4. In certain cases, we are able to transform the original system description in a form
that directly allows applying model reduction techniques. Then a smaller system description
with equivalent dynamics can be derived.

For the sake of simplicity, we consider only homogeneous phases with constant temperature T ,
pressure p and volume V . Consequently, we suppress the dependency of the occurring functions
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from these quantities. Later on, we show that the approach can be extended to heterogeneous
systems consisting of homogeneous subsystems with varying volumes.

3.1. Formal Definition

This section introduces a formal definition of thermodynamic models by a tuple of matrices and
functions. Transformation and reduction of thermodynamic models can then be formulated as
manipulations of this tuple (Chapter 4).

Definition 3.1 (Thermodynamic model of a reaction system). A thermodynamic model M of
a reaction system with i0 internal compounds, j0 internal fluxes, i0,e compounds with clamped
chemical potentials µe and j0,e clamped fluxes Je is characterized by the stoichiometric matrices
N ∈ Ri0×j0 , Ne ∈ Ri0×j0,e , S ∈ Ri0,e×j0 , the functions c(µ, µe) ∈ Ri0 , R(µ, µe) ∈ Rj0×j0 and the
initial chemical potentials µ0 ∈ Ri0 . For the functions c(µ, µe) and R(µ, µe) we demand:

R(µ, µe) = RT (µ, µe), R(µ, µe) ≥ 0,(
∂c

∂µ
(µ, µe)

)
=

(
∂c

∂µ
(µ, µe)

)T
,

∂c

∂µ
(µ, µe) ≥ 0

for all µ ∈ Ri0 and µe ∈ Ri0,e . The environment is described by the clamped chemical potentials
µe(t) ∈ Ri0,e and the clamped fluxes Je(t) ∈ Rj0,e . The model equations read

ċ = N J +Ne Je, ∆µ = −NTµ− STµe, c = c(µ, µe), R(µ, µe) J = ∆µ (3.1)

with µ(0) = µ0. We formally characterize a thermodynamic model of a reaction system by the
tuple M = [N,S,Ne, c(µ, µe), R(µ, µe), µ0].

§ 3.2 (Dimensions). The quantities in the above definition have the following dimensions:
c [mol L−1], J, Je [mol L−1 s−1], µ, µe,∆µ [J mol−1] and R [J L s mol−2].

§ 3.3 (Symmetry and positive semi-definiteness of R and ∂c/∂µ). The symmetry of the ma-
trix ∂c/∂µ follows from the symmetry of the Hessian of the Gibbs energy. Its positive semi-
definiteness (∂c/∂µ ≥ 0) is related to the condition for diffusive stability. These conditions will
be discussed in Section 3.2. The symmetry of the matrix R is related to the Onsager reciprocity
relations. Its positive semi-definiteness (R ≥ 0) follows from the non-negativity of the entropy
production. These conditions are discussed in Section 3.3.

§ 3.4 (Three submodels). The model equations presented in Definition 3.1 consist of three parts:
The equations ċ = N J + Ne Je and ∆µ = −NT µ − ST µe describe the stoichiometry of the
network. The function c = c(µ, µe) describes the thermodynamic properties of the compounds.
The equation R(µ, µe) J = ∆µ describes the kinetics of the reactions.
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§ 3.5 (ODE model). The model in Definition 3.1 is formally given as a differential-algebraic
equation system. If the matrices R(µ, µe) and ∂c/∂µ are invertible, the model equations can be
easily expressed as an ordinary differential equation system:

∂c

∂µ
µ̇+

∂c

∂µe
µ̇e = −N R−1NT µ−N R−1 ST µe +Ne Je

or equivalently

µ̇ =

(
∂c

∂µ

)−1(
−N R−1NT µ−N R−1 ST µe +Ne Je −

∂c

∂µe
µ̇e

)
.

These representations of the model equations can be used as simulation equations.

Definition 3.6 (Closed and open system). If i0,e = j0,e = 0 we say that M is closed, otherwise
M describes an open system. In closed systems no mass fluxes cross the system boundary.

§ 3.7 (Systems theoretical interpretation of clamped variables). The quantities Je(t) and µe(t)
are clamped in the system. This means, they are assumed to be determined by an attached
unmodeled system. This does not mean that they are necessarily constant. Physically, these
quantities characterize the boundary conditions of the system. From a systems theoretical point
of view, they are inputs of the system. If M is closed, the model equations are autonomous.

§ 3.8 (Block diagram). Figure 3.1 shows a simplified block diagram of a thermodynamic model.
The block diagram stresses the linear aspects of the model equations. The non-linear dynamics
originate from the state dependency of the resistance matrix R(µ, µe) and the function c(µ, µe).

§ 3.9 (Clamped compounds and fluxes in reaction equations). For the rest of this thesis, external
compounds with clamped chemical potentials are indicated by brackets around the respective
compounds in the reaction equation. For example, the reaction equation A 
 B 
 (C)

indicates that the chemical potential of C is clamped. Clamped fluxes are indicated by brackets
around the flux variable in the reaction equations. The reactants or products of clamped
reactions are often not part of the model. Unmodeled reactants or products are denoted by a

zero in the reaction equation. For example, in the reaction equation 0
(Je)−−⇀↽−− A 
 B the flux Je

is clamped and has no internal reactant.

§ 3.10 (Differences to classical linear thermodynamics). If the resistance matrix R is constant,
the above definition is formally similar to a system description in linear irreversible thermody-
namics (see Haase [42], Onsager [75, 76]). However, Definition 3.1 comprises a larger model class
than is normally considered in linear irreversible thermodynamics. Linear thermodynamics is
basically a black-box theory that works with the minimal number of fluxes that is necessary to
describe the changes of the state variables. It does not require the knowledge of the underlying
physical mechanism. Thus, a flux Jj does not necessarily describe a physical process that can
be studied independently of other processes in the system. Consequently, it may be driven not
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Je

J

ċ µ

∆µ µe

Ne

N −NT

(
∂c
∂µ

)−1 1
s

R−1 −ST

Figure 3.1.: Block diagram of the equations of a thermodynamic model. The blocks represent
linear matrix multiplications. The term 1/s indicates integration over time. For
the sake of simplicity, it is assumed that c depends only on µ but not on µe. The
non-linear dependency of R and ∂c/∂µe on µ and µe is not depicted.

only by its adjoint force ∆µj, but by all other forces of the same tensorial degree. Since we are
interested in a setup allowing us to incorporate mechanistic knowledge, we will initially assume
that the stoichiometric matrix N describes thermodynamically independent processes. This
means that a flux is only driven by its adjoint forces and R is diagonal. If null(N) 6= {}, cyclic
flux distributions Jcycle ∈ null(N) that have no effect on the state c are stoichiometrically but
not thermodynamically possible, and thus the flux vector J is not minimal.

Example 3.11 (Stoichiometric cycle). The following example of a closed network will clarify
the above remark:

A
1−⇀↽− B

2−⇀↽− C
3−⇀↽− A.

Sufficiently close to equilibrium, the resistance matrix R can assumed to be constant. The
stoichiometric matrix can be compiled directly from the reaction network and the corresponding
resistance matrix is diagonal:

N =

−1 0 1

1 −1 0

0 1 −1

 , R =

R1 0 0

0 R2 0

0 0 R3

 . (3.2)

The system contains one cyclic flux distribution with J1 = J2 = J3 that does not influence ċ.
Thus, the minimal number of fluxes that is necessary to describe ċ is two (and not three) and
a model of classical linear thermodynamics would read for example:

Ñ =

−1 0

1 −1

0 1

 , R̃ =

(
R̃1 R̃12

R̃12 R̃2

)
. (3.3)

Here, J̃1 and J̃2 do not only represent the fluxes through the reactions 1 and 2, respectively,
but also through reaction 3: J̃1 = J1 − J3 and J̃2 = J2 − J3. For this reason the matrix R̃

is not diagonal. However, it has to be symmetric, in order to meet the reciprocity conditions
(see §2.42, p. 31). By a transformation and reduction step, the models in Equation 3.2 and
Equation 3.3 can be transformed into each other. This will be discussed in Corollary 4.2 (p. 52).
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3.2. Thermodynamic Submodel

The function c(µ, µe) defines the thermodynamic properties of the system. When writing down
Equation 3.1, we implicitly assumed that all chemical potentials µ are independent. In par-
ticular, we assumed that in principle arbitrary initial conditions for µ can be specified. This
section discusses under what conditions this is true. Further, it is shown that for closed systems
the Gibbs energy can be reconstructed from the function c(µ). Finally, we give expressions for
c(µ, µe) and the Gibbs energy for ideal dilute solutions.

§ 3.12 (Gibbs-Duhem equation – dependencies between intensive variables). The Gibbs-Duhem
relation (0 = S dT − V dp + nT dµ, §2.32, p. 29) is a differential form of an equation relating
intensive state variables. That means that at given T and p a system cannot attend arbitrary
chemical potentials µ. The feasible chemical potentials µ lie on an (i0 − 1)-dimensional set.
The same is true for the concentrations c. Thus, the Gibbs-Duhem equation would complicate
the further considerations because one cannot describe the composition of a phase with i0
compounds by i0 independent state variables. However, in a highly diluted solution consisting
of i0− 1 solutes and one solvent (e. g. water), concentrations and chemical potentials of solutes
can vary freely because it can be assumed that the solvent’s concentration and chemical potential
balance the Gibbs-Duhem equation. If not stated otherwise, we will always assume that the
modeled chemical potentials µ and thus also the concentrations c are independent because we
consider a diluted solution.

§ 3.13 (c(µ, µe) vs µ(c, ce)). In Definition 3.1 the function c(µ, µe) is used. Traditionally,
the relation of concentrations and chemical potentials is stated in the form µ(c, ce). Both
representations are equivalent because c and µ both characterize the composition of the system
uniquely. For our purposes, the use of functions c(µ, µe) is advantageous over µ(c, ce) because the
former allows for the easy application of the rapid equilibrium assumption for model reduction.
We will discuss this in detail later on.

§ 3.14 (Symmetry and positive semi-definiteness of ∂c/∂µ). The matrix ∂µ/∂n = ∂2G/∂n2 is
the Hessian of the Gibbs energy G(n). For this reason it is symmetric. A sufficient condition
for the local diffusive stability of an isothermal and isobaric, homogeneous phase is the positive
definiteness of the Hessian of the molar Gibbs energy: ∂2Ḡ/∂x2 > 0 with the molar Gibbs
energy Ḡ(T, p, x) = G(T, p, n)/nΣ, the vector of mole fractions of the solutes x = n/nΣ, the
total mole number nΣ =

∑i0
i=1 ni + ns and the mole number of the solvent ns (see [43, §42,

p. 161] and [41, Chapter IV, p. 47]). In a diluted solution with nΣ ≈ ns ≈ const and constant
volume, this yields ∂µ/∂c > 0 with c = n/V . Because the inverse of a symmetric and positive
definite matrix is symmetric and positive definite, the matrix ∂c/∂µ = (∂µ/∂c)−1 is symmetric
and positive definite in stable phases. As a limit case, this work also considers only semi-definite
matrices ∂c/∂µ ≥ 0.

§ 3.15 (Gibbs energy in a closed system). In a diluted solution of constant volume, the chemical
potentials µi are the partial derivatives ∂g/∂ci = ∂G/∂ni of the volume-specific Gibbs energy
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g(c) = V −1G(n) (see §2.33, p. 29). Thus, in a closed system, the function c(µ) defines a partial-
differential equation for the Gibbs energy of the compounds g(µ) in dependence of their chemical
potentials:

dg = µT dc = µT
∂c

∂µ
dµ

This equation is integrable because ∂c/∂µ is symmetric.

§ 3.16 (c(µ, µe) in ideal dilute solutions). Ideal dilute solutions (Definition 2.44, p. 31) are
characterized by

µi = µ◦i +R∗ T log(ci/c
◦)

and thus we have

ci(µi) = c◦ exp

(
−µ◦i
R∗ T

)
exp

( µi
R∗ T

)
.

The matrix ∂c/∂µ is diagonal with positive diagonal elements:

∂ci
∂µi

= c◦ exp

(
−µ◦i
R∗ T

)
exp

( µi
R∗ T

) 1

R∗ T
=

ci
R∗ T

.

§ 3.17 (Gibbs energy in ideal dilute solutions). The Gibbs energy in ideal dilute solutions g is
given by

dg =

i0∑
i=1

(µi0 +R∗ T log(ci/c
◦))︸ ︷︷ ︸

µi

dci

︸ ︷︷ ︸
dgi

,

where dgi is the change of the Gibbs energy associated with compound i. Since dgi depends
only on ci, we can integrate the summands individually. Thus, with every compound a part of
the Gibbs energy is directly associated:

gi(ci) = ci

(
µ◦i +R∗ T

(
log
( ci
c◦

)
− 1
))

, gi(µi) = c◦ exp

(
µi − µ◦i
R∗ T

)
(µi −R∗ T ).

We get

g(c) =

i0∑
i=1

gi(ci), g(µ) =

i0∑
i=1

gi(µi).

Note that these expressions are not consistent with the Euler relation g =
∑i0

i=1 µi ci, which is
a consequence of the homogeneity of G(n). In the present setting G(n) is not homogeneous
because we neglect the solvent and assume a constant overall concentration. A doubling of the
amount of only the solutes is not equivalent to the doubling of G.
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3.3. Kinetic Submodel

The equation R(µ, µe) J = ∆µ defines the kinetics of the reactions. The following subsections
show how to calculate the entropy production of the reactions and discuss the properties of
R(µ, µe). Further, they derive an explicit expression for Rj(µ, µe) of a generalized mass-action
kinetics.

3.3.1. Entropy Production

§ 3.18 (Entropy production and dissipation of Gibbs energy). The density of entropy production
σ[s] (see §2.35, p. 30) by the fluxes J is given by

T σ[s] = −σ[g] = ∆µT J = JT R(µ, µe) J = ∆µT R(µ, µe)
−1 ∆µT ≥ 0. (3.4)

The last expression is only defined if R(µ, µe) is invertible. The function σ[s] describes only
the entropy production due to the fluxes J . The overall entropy production is larger because
the clamped fluxes Je and the clamping of the chemical potentials µe also produces entropy.
However, from the information present in a thermodynamic model M , one cannot derive an
expression for this external entropy production.

§ 3.19 (Positive semi-definiteness of R(µ, µe)). The condition that the entropy production σ[s]

is always non-negative is a constraint on the resistance matrix R(µ, µe) because we have that

T σ[s] = ∆µT R(µ, µe)
−1 ∆µT ≥ 0

for all µ and µe. Positive semi-definiteness as required by Definition 3.1 is sufficient, but not
necessary for σ[s] ≥ 0. Both, ∆µ and R(µ, µe), depend on µ and µe, and thus σ[s] may be
non-negative for all µ and µe even if R(µ, µe) is not positive semi-definite for all µ and µe.
However, positive definiteness of R(µ, µe) is a reasonable assumption that is valid for all models
we will study.

§ 3.20 (Symmetry of R(µ, µe)). From Onsager’s linear, near-equilibrium theory of thermody-
namic systems we know that the resistance matrix at an equilibrium point (µeq, µe,eq) with
∆µeq = 0 is symmetric

R(µeq, µe,eq) = RT (µeq, µe,eq)

These conditions follows from the principle of microscopic reversibility [75, 76]. Symmetry of
R(µ, µe) for non-equilibrium states µ and µe is not necessary. However, we will study only
examples with a symmetric R(µ, µe).

§ 3.21 (Diagonal R(µ, µe)). If the fluxes J are thermodynamically independent, the matrix
R(µ, µe) is diagonal. This can be assumed if the fluxes J describe sufficiently elementary
processes. In particular, if the fluxes J describe elementary reactions or simple composed
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reactions, the matrix R(µ, µe) is diagonal and thus symmetric. In this case, all diagonal elements
Rj(µ, µe) have to be non-negative, which leads to R(µ, µe) ≥ 0. All models M that we will
study originate from a description with diagonal R(µ, µe). Later, we will study transformations
and reductions of these models leading to non-diagonal resistance matrices R(µ, µe). As will
be shown, positive definiteness and symmetry of R(µ, µe) is conserved under transformation
and reduction. All models that we will consider, describe on some level of detail a system of
thermodynamically independent processes. Such models have a symmetric and positive definite
resistance matrix. For this reason, we restrict our considerations to this system class.

3.3.2. Resistances of Generalized Mass-Action Kinetics

Linear flow-force relationships are only valid in the vicinity of thermodynamic equilibrium.
For systems far from equilibrium, the proportionality factor of thermodynamic force and flow
– the thermodynamic resistance – is not constant. Chemical reactions often proceed in the
non-linear region [23, Section 14.3]. In the following paragraphs we derive an expression for
the thermodynamic resistance of a generalized mass-action kinetics that is also valid far from
equilibrium. We give this resistance in dependence of the chemical potentials of reactants,
products and possible effectors.
Consider a reaction ∑

i∈E

νE,iXi 

∑
i∈P

νP,iXi.

Assume that its velocity can be described by a generalized mass-action law

J = f(k, c)

(
k+

∏
i∈E

( ci
c◦

)νE,i

− k−
∏
i∈P

( ci
c◦

)νP,i

)
(3.5)

with f(k, c) ≥ 0. The thermodynamic force

∆µ =
∑
i∈E

νE,i µi︸ ︷︷ ︸
∆µE

−
∑
i∈P

νP,i µi︸ ︷︷ ︸
∆µP

(3.6)

consists of forces exerted by the reactants ∆µE and products ∆µP . Generalized mass-action
kinetics allow the definition of equilibrium constants Keq = k+/k− that are independent of the
concentrations. Thus, kinetic laws of this kind are consistent with ideal dilute solutions with
concentration-independent standard Gibbs reaction energies ∆G◦ (see §2.51, p. 33). Assuming
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an ideal dilute solution with ci(µi) = c◦ exp((µi − µ◦i )/(R∗ T )) we get

J = f̃(k, µ)

(
k+

k̃+︷ ︸︸ ︷∏
i∈E

exp

(
−νE,i µ

◦
i

R∗ T

) FE︷ ︸︸ ︷∏
i∈E

exp
(νE,i µi
R∗ T

)
−k−

∏
i∈P

exp

(
−νP,i µ

◦
i

R∗ T

)
︸ ︷︷ ︸

k̃−

∏
i∈P

exp
(νP,i µi
R∗ T

)
︸ ︷︷ ︸

FP

)

where f̃(k, µ) = f(k, c(µ)). The equilibrium constant Keq can be computed either from J = 0

or from ∆µ = 0. The former variant leads to Keq = k+/k−, the latter leads with µi = µ◦i +

R∗ T log(ci/c
◦) to Keq = k̃−/k̃+. Since both variants are equivalent, we have that k̃ :=k+ k̃+ =

k− k̃−. Thus, we get for the thermodynamic resistance:

R =
∆µ

J
=

R∗ T

f̃(k, µ) k̃︸ ︷︷ ︸
ρ(k, µ)

∑
i∈E

νE,i µi

R∗ T
−
∑

i∈P
νP,i µi

R∗ T

exp
(∑

i∈E
νE,i µi

R∗ T

)
− exp

(∑
i∈P

νP,i µi

R∗ T

)︸ ︷︷ ︸
R◦(∆µE/(R∗ T ),∆µP /(R∗ T ))

with ∆µE and ∆µP as in §2.38 (p. 30). This is a general expression for the resistance of a
generalized mass-action kinetics. It consists of two factors: (1) R◦(∆µE/(R∗ T ),∆µP/(R

∗ T ))

describes the ideal mass action behavior and (2) ρ(k, µ) > 0 describes deviations from the
ideal mass action behavior. To simplify the notation, we introduce the ideal resistance function
R◦(xE, xP ) that describes an ideal mass action resistance.

Definition 3.22 (Ideal resistance function). The ideal resistance function R◦(xE, xP ) is given
by

R◦(xE, xP ) =
xE − xP

exp(xE)− exp(xP )
for xE 6= xP .

For xE = xP the ideal resistance is defined as the limit of the above expression:

R(xE, xP ) = lim
xE→xP

R◦(xE, xP ) = exp(−xE) = exp(−xP ) for xE = xP .

The arguments xE = ∆µE/(R
∗ T ) and xP = ∆µP/(R

∗ T ) are proportional to the thermody-
namic forces exerted by products and reactants, respectively.

Example 3.23 (Mass-action kinetics). Consider the reaction A 
 B in an ideal dilute so-
lution with an ideal mass-action kinetics: J = k+ cA/c

◦ − k− cB/c
◦. We have f̃(k, µ) = 1

and k̃ = k+ k̃+ = k+ exp(−µ◦A/(R∗ T )). The thermodynamic resistance is given by R =

ρR◦(µA/(R
∗ T ), µB/(R

∗ T )) where ρ = R∗ T/(f̃(k, µ) k̃) = R∗ T k−1
+ exp(µ◦A/(R

∗ T )) is posi-
tive and independent of µA and µB.
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Example 3.24 (Reversible Michaelis-Menten kinetics). Consider the reaction A 
 B in an
ideal dilute solution with a reversible Michaelis-Menten kinetics given by J = (k+ cA/c

◦ −
k− cB/c

◦)/(k0/c
◦ + kA cA/c

◦ + kB cB/c
◦). Its thermodynamic resistance is

R =
(
ρ0 + ρA exp

( µA
R∗ T

)
+ ρB exp

( µB
R∗ T

))
·R◦

( µA
R∗ T

,
µB
R∗ T

)
where ρ0 = ρ̂ k0, ρA = ρ̂ kA, ρB = ρ̂ kB and ρ̂ = R∗ T k−1

+ exp(µ◦A/(R
∗ T )).

§ 3.25 (Plots of ∆µ, R◦ and J◦). Even an ideal mass-action resistance depends non-linearly on
the chemical potentials of the reactants and products. To study this dependency, we consider
the functions ∆x = ∆µ/(R∗ T ) = xE − xP , R◦(xE, xP ) and an ideal mass action flux J◦ =

∆x/R◦(xE, xP ) with ρ(k, µ) = 1 in dependency of xE = ∆µE/(R
∗ T ) and xP = ∆µP/(R

∗ T )

that are proportional to the forces exerted by reactants and products. The first row of Fig-
ure 3.2 shows the contour plots of these functions for small xE and xP , i. e. the near-equilibrium
behavior. The second row shows the same functions for a larger interval of xE and xP . The
ideal resistance R◦ is symmetric with respect to the line of equilibrium with xE = xP . Only
very close to equilibrium the isolines of J◦ follow the parallel and straight isolines of ∆x. Far
from equilibrium, the form of the isolines of J◦ is dominated by the almost right-angled isolines
of R◦. This means that for xE � xP the resistance R◦ decreases and the flux J◦ increases with
growing xE, but is relatively insensitive to changes in xP . The third row shows ∆x, R◦ and J◦
over the extent of an example reaction. The linear behavior of J◦ of the example reaction in
dependence of the concentrations is produced by the interaction of a nonlinear ∆x with a non-
linear R◦. Observe that R◦ goes to infinity for low and high reaction extents, i. e. very low and
high forces ∆µ. Thus, the finite reaction rate for the limit cases is due to a division of ‘∞/∞’.
These considerations confirm that far from equilibrium the non-linearity of the thermodynamic
resistance plays a major role and usually cannot be neglected.

3.4. Extension to Heterogeneous Systems

For the sake of simplicity, the above considerations were restricted to well-mixed homoge-
neous systems of constant volume. Making this simplification we were able to describe the
system by the intensive variables µ [J mol−1] and ∆µ [J mol−1] and the volume-specific vari-
ables c [mol L−1] and J [mol L−1 s−1]. The fluxes J are related via the resistances R(µ, µe) with
dimension [J mol−2 L s] to the forces ∆µ and thus to the chemical potentials µ. The conduc-
tances (R(µ, µe))

−1 with the dimension [J−1 mol2 L−1 s−1] are volume-specific quantities.
The approach can be easily extended to heterogeneous systems consisting of several well-mixed

homogeneous subsystems with varying volume. The state of such a system can be characterized
by the vector (µ, V ) where V is the vector of the volumes of the homogeneous subsystems. Here,
chemical species occurring in more than one subsystem have a different chemical potential for
each subsystem. Instead of the specific function c(µ, µe) we need to use the extensive function
n(V, µ, µe). Instead of the specific fluxes J we need to use absolute fluxes J̆ [mol s−1]. We define
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Figure 3.2.: Plots of ∆x = ∆µ/(R∗ T ), the ideal resistance functions R◦(xE, xP ) and an ideal
mass action flux J◦ = ∆x/R◦. The black curves in the first and second row show
isolines of the functions in the xE-xP -plane. While the second row shows a larger
area of the xE-xP -plane and thus includes far-from-equilibrium situations, the first
row focuses on small xE and xP and thus shows only the near-equilibrium behavior.
The gray curve shows the trajectory of a reaction A 
 B with µ◦A = µ◦B = 0. The
parameter −1 < λ < 1 with cA = 1− λ, cB = 1 + λ describes the deviation of the
reaction from equilibrium cA,eq = cB,eq = 1. The third row shows plots of ∆x, R◦
and J◦ over λ.
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the absolute resistances R̆(V, µ, µe) [J mol−2 s] such that R̆ J̆ = ∆µ. In order to formulate an
equation for V̇ we also need the functions v(n) describing the partial molar volumes of the
system such that V̇ = v(n) ṅ. The functions v(n) can be computed from the function V (n)

by differentiation v(n) = ∂V/∂n. If the volumes V also depend on further quantities such as
e. g. the clamped potentials µe or if they are explicitly time dependent, this function has to be
adapted.
The extended model equations read

ṅ = N J̆ +Ne J̆e, V̇ = v(n) ṅ,

∆µ = −NTµ− STµe, n = n(V, µ, µe),

R̆(V, µ, µe) J̆ = ∆µ.

(3.7)

For the development of the transformation and reduction methods in the following sections,
we will assume a homogeneous phase of constant volume. The consideration of heterogeneous
systems with varying volumes only increases the complexity of notation and thus the length
and number of equations but does not introduce new relevant aspects. We will come back to
the above sketched generalized system description when discussing the implementation in the
computer algebra system Mathematica (Appendix A, p. 185).
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4. Transformation and Reduction

Transformations are an important tool in mathematical systems theory. They allow studying
systems independent of the specific choice of coordinates made during the modeling process. In
particular, transformations can be used to bring system equations to a form that allows for a
simple analysis (e. g. stability, observability, controllability) or application of certain algorithms
(e. g. model reduction, computation of minimal realization). We will see that a framework for
transformation of thermodynamic models provides the basis for model reduction.

4.1. Transformations

From a mathematical point of view, arbitrary transformations of the model variables c, J , µ
and ∆µ are possible. However, this section introduces transformations that retain the thermo-
dynamic interpretation of the model equations. In particular, this means that the transformed
equations of a thermodynamic model M can be expressed as a transformed thermodynamic
model M̂ . Model reduction methods defined on the basis of these transformations preserve the
physical interpretability and validity of the models. The following Section 4.1.1 considers linear
transformations of the model variables c, J , µ and ∆µ, i. e. the transformed model variables are
linear combinations of the original model variables. Further, Section 4.1.2 discusses translations
of the model variables, i. e. the vector of the transformed model variables is gained by adding a
constant vector to the vector of original model variables.

4.1.1. Linear Transformations

Linear transformations of concentrations c, fluxes J , chemical potentials µ and thermodynamic
forces ∆µ correspond to the pooling of concentrations and fluxes. Because the transformed
system M̂ is required to have the form of a thermodynamic model, one cannot choose arbitrary
transformation matrices. In particular, a transformation of concentrations c and fluxes J in-
duces a transformation rule for the chemical potentials µ and the thermodynamic forces ∆µ,
respectively because we require that the Gibbs energy and the entropy production are invariant
under the transformation.

§ 4.1 (Conjugated variables). Thermodynamic variables occur in conjugated pairs. An ex-
tensive or specific quantity is associated with a conjugated intensive quantity via the total
differential of the Gibbs energy. Concentrations c or mole numbers n are conjugated to chem-
ical potentials µ by dg = µT dc and dG = µT dn. Reaction fluxes J are conjugated to ther-
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4. Transformation and Reduction

modynamic forces ∆µ by σ[g] = ∆µT J . Physically meaningful transformations conserve this
structure and leave the Gibbs energy g and its production σ[g] invariant. Thus, transforma-
tion rules for conjugated variables cannot be chosen independently. Let x and φ be vectors of
conjugated variables with dg = φT dx. A linear transformation x = T x̂ leads to dg = φT T dx̂.
Thus, the variables conjugated to x̂ are φ̂ = T T φ. This means that if the concentrations are
transformed by ĉ = Tc c the chemical potentials are transformed by µ = T Tc µ̂. If the fluxes are
transformed by J = TJ Ĵ , the thermodynamic forces are transformed by ∆µ̂ = T TJ ∆µ.

Corollary 4.2 (Transformation of a thermodynamic model). Let M be a thermodynamic model
(see Definition 3.1, p. 40), and let Tc, TJ , Tc,e and TJ,e be square matrices of full rank. Then,
the solution of the system M̂ with

N̂ = TcN TJ , Ŝ = Tc,e S TJ , N̂e = TcNe TJ,e,

ĉ(µ̂, µ̂e) = Tc c(T
T
c µ̂, T

T
c,eµ̂e), R̂(µ̂, µ̂e) = T TJ R(T Tc µ̂, T

T
c,e µ̂e)TJ , µ̂0 = T T,−1

c µ0.

is equivalent to that of M with

ĉ = Tc c, T Tc µ̂ = µ, T Tc,e µ̂e = µe,

TJ Ĵ = J, ∆µ̂ = T TJ ∆µ, TJ,e Ĵe = Je.

Proof. The equivalence ofM and M̂ can be directly shown by writing down the model equations
for M (see Equation 3.1, p. 40) and transforming them with c = T−1

c ĉ, µ = T Tc µ̂, µe = T Tc,e µ̂e,
J = TJ Ĵ , ∆µ = T T,−1

J ∆µ̂ and Je = TJ,e Ĵe. The transformed equations are equivalent to the
model equations for M̂ .

The transformation preserves the properties of a thermodynamic model demanded in Defi-
nition 3.1 (p. 40). Further, the Gibbs energy and the entropy production are invariant under
transformation.

§ 4.3 (Symmetry and positive semi-definiteness of R̂ and ∂ĉ/∂µ̂). The transformed matrices
R̂ = T TJ RTJ and ∂ĉ/∂µ̂ = Tc ∂c/∂µT

T
c are symmetric and positive semi-definite because R

and ∂c/∂µ ≥ 0 are symmetric and positive semi-definite.

§ 4.4 (Entropy production). The entropy produced by the fluxes J is σ[s] = ∆µT J . The
entropy produced by the fluxes Ĵ is σ[ŝ] = ∆µ̂T Ĵ . Applying the transformation rules this is
σ[ŝ] = (T TJ ∆µ)T (T−1

J J) = ∆µT J = σ[s]. Thus, the entropy production is invariant under
transformation. This is not surprising because the transformation rules were designed such
that conjugated variable pairs transform into conjugated variable pairs. The invariance of the
entropy production is a design feature of the transformation.

§ 4.5 (Gibbs energy). An analog argumentation can be used to show that the Gibbs energy
of the original system g(c) and of the transformed system ĝ(ĉ) are equivalent: We have that
dĝ = µ̂T dĉ = (µT T−1

c ) (Tc dc) = µT dc = dg.
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Example 4.6 (Transformation). A transformation of the network model from Equation 3.2 in
Example 3.11 (p. 42) with

Tc =

1 0 0

0 1 0

1 1 1

 , TJ =
1

3

−1 1 1

−1 −2 1

2 1 1

 , (4.1)

i. e. ĉ1 = cA, ĉ2 = cB, ĉ3 = cA + cB + cc. yields

N̂ =

1 0 0

0 1 0

0 0 0

 , R̂ =
1

9

 R1 +R2 + 4R3 −R1 + 2R2 + 2R3 −R1 −R2 + 2R3

−R1 + 2R2 + 2R3 R1 + 4R2 +R3 R1 − 2R2 +R3

−R1 −R2 + 2R3 R1 − 2R2 +R3 R1 +R2 +R3

 .

Thus, the transformation diagonalizes the stoichiometric matrix N . The transformed matrix N̂
consists of an identity matrix in the upper right corner and a zero row and column at the end;
i. e. Ĵ1 = ˙̂c1, Ĵ2 = ˙̂c2 and ˙̂c3 = 0. The flux Ĵ3 causes no observable dynamics in this system. In
the transformed system, Ĵ3 can be omitted and the differential equation for ĉ3 can be replaced
by ĉ3 = ĉ3,0. Thus, transformations provide a tool to bring the system equations to a form
suited for model reduction. We will use this fact to develop model reduction techniques.

§ 4.7 (Partitioned transformation matrices – model equations). The model reduction methods
introduced in the following sections rely on the application of suited transformations of c and
J that allow one to partition the system into two subsystems. From these two subsystems,
the first forms the reduced-order system, whereas the second can be neglected. The model
equations of a system transformed with Tc,e = I, TJ,e = I and the partitioned matrices

Tc =

(
Tc,1
Tc,2

)
, TJ =

(
TJ,1 TJ,2

)
read

˙̂c1 = (Tc,1N TJ,1) Ĵ1 + (Tc,1N TJ,2) Ĵ2 + (Tc,1Ne) Je,

˙̂c2 = (Tc,2N TJ,1) Ĵ1 + (Tc,2N TJ,2) Ĵ2 + (Tc,2Ne) Je,

∆µ̂1 = −(Tc,1N TJ,1)T µ̂1 − (Tc,2N TJ,1)T µ̂2 − (S TJ,1)T µe,

∆µ̂2 = −(Tc,1N TJ,2)T µ̂1 − (Tc,2N TJ,2)T µ̂2 − (S TJ,2)T µe,

(T TJ,1RTJ,1) Ĵ1 + (T TJ,1RTJ,2) Ĵ2 = ∆µ̂1,

(T TJ,2RTJ,1) Ĵ1 + (T TJ,2RTJ,2) Ĵ2 = ∆µ̂2,

ĉ1(µ̂, µe) = Tc,1 c(T
T
c,1 µ̂1 + T Tc,2 µ̂2, µe),

ĉ2(µ̂, µe) = Tc,2 c(T
T
c,1 µ̂1 + T Tc,2 µ̂2, µe).

(4.2)

§ 4.8 (Partitioned transformation matrices – transformation rules). The following equations
explicitly give the forward and backward transformation rules for partitioned transformation
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matrices. The transformed variables can be computed from the original variables by

ĉ1 = Tc,1 c, ĉ2 = Tc,2 c, Ĵ1 = invT
Λ−1

J
(T TJ,1) J, Ĵ2 = invT

Λ−1
J

(T TJ,2) J,

∆µ̂1 =T TJ,1 ∆µ, ∆µ̂2 =T TJ,2 ∆µ, µ̂1 = invT
Λ−1

c
(Tc,1)µ, µ̂2 = invT

Λ−1
c

(Tc,2)µ.

The original variables can be computed from the transformed variables by

c= invΛ−1
c

(Tc,1) ĉ1 + invΛ−1
c

(Tc,2) ĉ2, J =TJ,1 Ĵ1 +TJ,2 Ĵ2,

∆µ= invΛ−1
J

(T TJ,1) ∆µ̂1 + invΛ−1
J

(T TJ,2) ∆µ̂2, µ= T Tc,1 µ̂1 + T Tc,2 µ̂2.

In these equations the matrices Λc and ΛJ are symmetric, invertible matrices with Tc,1 Λc T
T
c,2 = 0

and T TJ,1 ΛJ TJ,2 = 0. This means that Tc/J,1 and Tc/J,2 are orthogonal with respect to the scalar
product < x, y >= xT Λc/J y. Note that such matrices Λc/J exist because the matrices Tc and
TJ are invertible.

Proof. The above relations follow either directly from the transformation rules or can be directly
proved by using the transformation rules and Definition 2.8 (p. 24).

§ 4.9 (Computation of Tc/J,1/2 and Λc/J). The above form of the transformation rules is es-
pecially suited for the use of partitioned transformations for model reduction. The original
system is partitioned into a reduced system (subscript 1) and a negligible system (subscript
2). The transformation matrices can be determined in three steps: (1) define Tc/J,2 based on
the knowledge of the negligible dynamics, (2) choose arbitrary invertible matrices Λc and ΛJ ,
e. g. Λc = ΛJ = I; (3) compute Tc,1 as a left kernel matrix of Λc T

T
c,2 with Tc,1 Λc T

T
c,2 = 0

and compute TJ,1 as a right kernel matrix of T TJ,2 ΛJ with T TJ,2 ΛJ TJ,1 = 0. Details of how to
determine Tc/J,2 are given later, when discussing several model reduction methods.

4.1.2. Translations

Besides the linear transformation of the model variables, it is partly possibly to translate the
vector of model variables by adding another vector. This is discussed in the following sections.

4.1.2.1. Translation of the Chemical Potentials

Chemical potentials can be translated by certain vectors. The details are given in the following
corollary.

Corollary 4.10 (Translation of the chemical potentials). Let M be a thermodynamic model
(see Definition 3.1, p. 40), and let δµ ∈ Ri0 and δµe ∈ Ri0,e be vectors with NT δµ+ST δµe = 0.
Then, the solution of the system M̂ with

N̂ = N, Ŝ = S, N̂e = Ne,

ĉ(µ̂, µ̂e) = c(µ̂− δµ, µ̂e − δµe), R̂(µ̂, µ̂e) = R(µ̂− δµ, µ̂e − δµe), µ̂0 = µ0 − δµ
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is equivalent to that of M with

ĉ = c, µ̂ = µ+ δµ, µ̂e = µe + δµe,

Ĵ = J, ∆µ̂ = ∆µ, Ĵe = Je.

Proof. Write down the model equations of M . Now replace µ = µ̂− δµ and µe = µ̂e− δµe. This
immediately leads to the functions ĉ(µ̂, µ̂e) and R̂(µ̂, µ̂e) and the matrices N̂ , Ŝ and N̂e. To
establish the identity of the thermodynamic forces we write: ∆µ̂ = −NT µ− ST µe −NT δµ−
ST δµe = −NT µ− ST µe = ∆µ.

§ 4.11 (Invariance of the entropy production). The entropy production of the internal fluxes J
is invariant under a translation of the chemical potentials because σ[ŝ] = ∆µ̂T Ĵ = ∆µJ = σ[s].

§ 4.12 (Change of the reference state). Information on the absolute values of the chemical
potentials is usually not available. Only differences of chemical potentials along reactions,
i. e. thermodynamic forces, are measurable. Thus, the available tables give chemical poten-
tials with respect to a chosen reference state (cf. Section 2.2.2.3, p. 31). The above described
procedure for translation of the chemical potentials is equivalent to a change of this reference
state.

§ 4.13 (Gibbs energy). The Gibbs energy is not invariant under translation of the chemical
potentials. We have dĝ = µ̂T dĉ = µT dc + δµT dc = dg + δµT dc. For constant δµ and suited
initial conditions, an integration of this partial differential equation yields ĝ = g + δµT c.

Example 4.14. Consider the closed system consisting of one reaction A 
 B in an ideal dilute
solution with

cA(µA) = c◦ exp

(
µA − µ◦A
R∗ T

)
, cB(µB) = c◦ exp

(
µB − µ◦B
R∗ T

)
.

We have NT = (−1, 1) and thus we can translate the chemical potentials by δµT = d · (1, 1).
We choose d = −µ◦A, i. e. µ̂A = µA − µ◦A and µ̂B = µB − µ◦A, and get

ĉA(µ̂A) = c◦ exp

(
µ̂A
R∗ T

)
, ĉB(µ̂B) = c◦ exp

(
µ̂B − (µ◦B − µ◦A)

R∗ T

)
.

Thus, we transformed the system into an equivalent representation with µ̂◦A = 0. The trans-
formed Gibbs energy is given by

dĝ = (µA − µ◦A)︸ ︷︷ ︸
µ̂A

dcA + (µB − µ◦A)︸ ︷︷ ︸
µ̂B

dcB = µA dcA + µB dcB︸ ︷︷ ︸
dg

−µ◦A (dcA + dcB).
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4.1.2.2. Translation of the Fluxes

The translation of the chemical potentials is only constrained by the stoichiometric matrices N
and S. However, possible translations of the fluxes depend on the stoichiometric matrices N
and Ne and on the resistance matrix R.

Corollary 4.15 (Translation of the fluxes). Let M be a thermodynamic model (see Defi-
nition 3.1, p. 40) and let δJ ∈ Rj0, δJe ∈ Rj0,e be vectors with N δJ + Ne δJe = 0 and
R(µ, µe) δJ = 0 for all µ and µe. The solution of the system M̂ with

N̂ = N, Ŝ = S, N̂e = Ne,

ĉ(µ̂, µ̂e) = c(µ̂, µ̂e), R̂(µ̂, µ̂e) = R(µ̂, µ̂e), µ̂0 = µ0

is equivalent to that of M with

ĉ = c, µ̂ = µ, µ̂e = µe,

Ĵ = J + δJ, ∆µ̂ = ∆µ, Ĵe = Je + δJe.

Proof. Write down the model equations of M . Now replace J = Ĵ − δJ and Je = Ĵe − δJe.
It immediately follows that ċ = N Ĵ + Ne Ĵe − N δJ − Ne δJe = ˙̂c and ∆µ = R (Ĵ − δJ) =

R̂ Ĵ = ∆µ̂. Thus, the translation of the fluxes does not have effects on other model variables
or functions.

§ 4.16 (Invariance of the entropy production and the Gibbs energy). The entropy production of
the fluxes J is invariant under translation of the fluxes because σ[ŝ] = ∆µ̂T R̂∆µ̂ = ∆µR∆µ =

σ[s]. The Gibbs energy is also invariant because dĝ = µ̂T dĉ = µ dc = dg.

§ 4.17 (Possible non-uniqueness of the fluxes). If R is not singular, no translations of J but only
of Je are possible. If R and N share parts of their null space, J can be arbitrarily translated by
a translation vector in the intersection of these null spaces (N δJ = 0, RδJ = 0 with δJe = 0).
This translation does not change any of the functions or matrices in the network description.
This means that in such cases the fluxes J are not uniquely determined by the model equations.
This will be discussed in detail in Section 4.2.2.2 that studies systems with singular resistance
matrices R.

Example 4.18 (Translation of fluxes). Consider a system with the reaction equation 0
(Je)−−⇀↽−−

A
R=0−−⇀↽−− (B) and the function cA = cA(µA, µB). We have that N = −1, S = 1, Ne = 1 and

R = 0. According to the above corollary any translation with δJ = δJe is valid. A resistance
of R = 0 means that 0 = RJ = ∆µ = µA − µe,B and thus µA = µe,B. Thus, we have that
cA = cA(µe,B, µe,B). This means that µA, cA and ∆µ are determined solely by R = 0 and µe,B.
For a constant µe,B it follows from cA = cA(µB,e, µe,B) that ċA = 0. Since ċA = Je − J , this
means that J = Je. However, since the fluxes J and Je do no enter the equations for µA, cA or
∆µ, their value can be arbitrarily translated with Ĵ = J + δJ and Ĵe = Je + δJe.

§ 4.19 (Time-variant translation). The above introduced translation of fluxes does not require
that δJ and δJe are constant. In fact, they may be arbitrary functions of time.
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4.1.2.3. Translation of the Forces

The vector of the forces ∆µ is uniquely determined by ∆µ = RJ = −NT µ−ST µe. Thus, any
translation of ∆µ would lead to a change of the model variables J , µ and µe. Thus, it is not
possible to formulate a transformed thermodynamic model where the transformed forces are
the original forces plus a translation vector and the other model variables are unchanged. For
this reason, a translation of the thermodynamic forces ∆µ is not possible.

4.1.2.4. Translation of the Concentrations

Concentrations c can be translated by an arbitrary, constant translation vector δc ∈ Ri0 . The
transformed variables are ĉ = c + δc, µ̂ = µ, Ĵ = J and ∆µ̂ = ∆µ. The transformed ther-
modynamic system is characterized by N̂ = N , Ŝ = S, N̂e = Ne, ĉ(µ̂, µ̂e) = c(µ̂, µ̂e) + δc,
R̂(µ̂, µ̂e) = R(µ̂, µ̂e) and µ̂0 = µ0. In a thermodynamic system according to Definition 3.1
(p. 40) the fluxes are determined by the equation R(µ, µe) J = ∆µ. This equation depends
solely on the chemical potentials µ = µ̂ but not on the concentrations c. For this reason the
fluxes and the change of the concentrations are invariant (J = Ĵ , ċ = ˙̂c) under a translation of
the concentrations. The translation of the concentrations is not used in this thesis but is only
included here for completeness.

4.2. Model Reduction

This section shows how transformations of thermodynamic models can be used to reduce a
thermodynamic model to an equivalent lower dimensional model. The basic idea is to use
partitioned transformation matrices as in §4.7 (p. 53) in order to bring the system to a form
where the second subsystem can be neglected or directly solved. Cases where a lossless reduction
is possible are characterized by rank deficiencies of certain matrices. We will also discuss how
these methods can be used to gain approximately reduced models.
The first subsection Reduction of the Stoichiometric Submodel deals with a reduction of

conservation relations and stoichiometric cycles that are characterized by the left and right null
space of the stoichiometric matrices, respectively (cf. Example 4.6, p. 53). The subsections
Reduction of the Thermodynamic Submodel and Reduction of the Kinetic Submodel discuss
degenerated systems with singular ∂c/∂µ and R(µ), respectively. The section Reduction of the
Boundary Conditions explains a possibility to reduce the number of clamped chemical potentials
and fluxes.

§ 4.20 (General procedure and notation). The reduction methods introduced in the follow-
ing sections are based on the transformation of an original thermodynamic model M with a
partitioned transformation matrix into a model M̂ . The two parts of the transformed model
M̂ are indicated by subscripts. For example, the vector µ̂ is partitioned into two subvectors
µ̂T = (µ̂T1 , µ̂

T
2 ). The partitioned transformation matrices are chosen such that the subsystem

2 has a simple form and its generic solution can be computed. Substituting the solution of
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subsystem 2 in subsystem 1 yields the reduced system M̃ . Thus, the variables of subsystem 1

and of M̃ are equal; for example µ̃ = µ1.

4.2.1. Reduction of the Stoichiometric Submodel

Conservation relations and stoichiometric cycles are related to the left and right null space of the
stoichiometric matrices, respectively. Consider the mole balances of a thermodynamic model

ċ = N J +Ne Je.

Let b ∈ null([N,Ne]
T ), then for all flux vectors J and Je the conservation relation bT c = const

holds. Conservation relations define an invariant manifold in the concentration space, and thus
the system can be reduced to this manifold. The reduced system contains less components.
Let b ∈ null(N), then the effect of a certain flux distribution J on the change of concentrations

ċ is indistinguishable from the effect of a flux distribution J + b. Thus, with respect to the
concentrations c, the flux vector is redundant and the dynamics of the original system can be
described by a reduced system with less fluxes.

4.2.1.1. Reduction of Conservation Relations

We transform the concentrations c by a partitioned transformation such that ĉ2 is a constant
quantity ( ˙̂c2 = 0) and thus ĉ2(µ̂1, µ̂2, µ̂e) = ĉ2,0. We solve this algebraic equation in order to gain
a function µ̂2(µ̂1, µ̂e). Finally, after applying this function to all occurrences of µ̂2 in the first
subsystem, we consider the first subsystem independently from the second subsystem. Thus, we
gain a reduced description of the original system. The following corollary discusses the details
of this procedure.

Corollary 4.21 (Reduction of conservation relations). Let M be a thermodynamic model (see
Definition 3.1, p. 40). Let Tc = [T Tc,1, T

T
c,2]T be a square and invertible matrix with Tc,2N = 0 and

Tc,2Ne = 0. Assume that the matrix Tc,2 ∂c/∂µT Tc,2 is invertible for all µ ∈ Ri0 and µe ∈ Ri0,e.
Let M̃ be a thermodynamic model with

Ñ = Tc,1N, c̃(µ̃, µe) = Tc,1 c(T
T
c,1 µ̃+ T Tc,2 µ̂2(µ̃, µe), µe),

S̃ = S, R̃(µ̃, µe) = R(T Tc,1 µ̃+ T Tc,2 µ̂2(µ̃, µe), µe),

Ñe = Tc,1Ne, µ̃0 = invT
Λ−1

c
(Tc,1)µ0

where µ̂2(µ̃, µe) is a solution of

Tc,2 c(T
T
c,1 µ̃+ T Tc,2 µ̂2, µe) = Tc,2 c(µ0, µe,0)

and Λc is a symmetric, invertible matrix with Tc,1 Λc T
T
c,2 = 0. Then, a solution of M can be

reconstructed from a solution of the reduced system M̃ by

c = T−1
c

(
c̃

Tc,2 c(µ0, µe,0)

)
, µ = T Tc,1 µ̃+ T Tc,2 µ̂2(µ̃, µe),

J = J̃ , ∆µ = ∆µ̃.
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Proof. TransformM with ĉ = Tc c (cf. §4.7, p. 53). The first subsystem (subscript 1) corresponds
to the reduced system M̃ . Observe that ˙̂c2 = 0 and thus ĉ2 = Tc,2 c(µ0, µe,0). From this we can
compute a function µ̂2(µ̂1, µe) by solving the equation Tc,2 c(T Tc,1 µ̂1+T Tc,2 µ̂2, µe) = Tc,2 c(µ0, µe,0).
If the solution exists, it is locally unique because the matrix Tc,2 ∂c/∂µT Tc,2 is invertible. This
follows from the Inverse Function Theorem. If Tc,2 ∂c/∂µT Tc,2 would be singular for all µ and
µe, the model equations would not determine a locally unique trajectory for µ̂2. If the function
µ̂2(µ̂1, µe) does not exist or is not globally unique, the trajectory of M does not exist or is not
unique, respectively. The possible non-uniqueness of the chemical potentials will be discussed
in §4.44 (p. 66). With the function µ̂2(µ̂1, µe) we get µ = T Tc,1 µ̂1 + T Tc,2 µ̂2(µ̂1, µe). We use this
relation to derive the functions R̂(µ̂1, µe) and ĉ1(µ̂1, µe). Observe that the first part of the
equations (ĉ1, µ̂1) can now be considered independently of the second (ĉ2, µ̂2) and that ĉ2 and
µ̂2 can be reconstructed from ĉ1 and µ̂1. Thus, the subsystem M̂1 is a reduced version of M̂ .
Replacing the subscript 1 with a tilde (M̃ = M̂1) yields the expressions given in the corollary.
The initial value for the reduced chemical potentials µ̂1,0 = µ̃1,0 follows from the relations given
in §4.8 (p. 53). The state variables of the original system can be reconstructed by using the
inverse transformation matrix T−1

c , ĉ2 = Tc,2 c(µ0, µe,0) and the function µ̂2(µ̃, µe).

§ 4.22 (Symmetry and positive semi-definiteness of R̃ and ∂c̃/∂µ̃). The matrices R̃ and ∂c̃/∂µ̃
of the reduced model are symmetric and positive semi-definite.

Proof. The resistance matrices of the reduced system and of the original system are equal
at corresponding state and input vectors: R̃(µ̃, µe) = R(T Tc,1 µ̃ + T Tc,2 µ̂2(µ̃, µe)). Thus, R̃ is
symmetric and positive semi-definite.
Differentiating the expression for c̃(µ̃, µe) in Corollary 4.21 yields for the derivative of c̃(µ̃, µe)

that ∂c̃/∂µ̃ = Tc,1 ∂c/∂µT
T
c,1 + Tc,1 ∂c/∂µT

T
c,2 ∂µ̂2/∂µ̃. The total differential of the conservation

relations in Corollary 4.21 is Tc,2 ∂c/∂µT Tc,1 dµ̃+Tc,2 ∂c/∂µT
T
c,2 dµ̂2 = 0. This leads to ∂µ̂2/∂µ̃ =

−(Tc,2 ∂c/∂µT
T
c,2)−1 Tc,2 ∂c/∂µT

T
c,1. Combining these results yields:

∂c̃/∂µ̃ = Tc,1 (∂c/∂µ− ∂c/∂µT Tc,2 (Tc,2 ∂c/∂µT
T
c,2)−1 Tc,2 ∂c/∂µ)︸ ︷︷ ︸

L

T Tc,1.

Because the matrix L is symmetric, the derivative ∂c̃/∂µ̃ is symmetric.
If L is positive semi-definite, the derivative ∂c̃/∂µ̃ is positive semi-definite. However, from the

expression for L given above it is not obvious if L is positive semi-definite. For this reason, an
alternative expression for L that allows to prove its positive semi-definiteness is derived. Assume
initially that ∂c/∂µ is positive definite. Then, the matrices W = Tc,1 Λc (∂c/∂µ)−1 and Z =

[W T , T Tc,2] can be defined. Let L′ be the matrix L′ = Λc T
T
c,1 (Tc,1 Λc (∂c/∂µ)−1 Λc T

T
c,1)−1 Tc,1 Λc.

The matrices L′ and L are equal because Z is a invertible matrix and LZ = L′ Z = (Λc T
T
c,1, 0).

In this representation, it can be seen easily now that the matrix L′ = L is symmetric and
positive definite. In the limit case where ∂c/∂µ is only positive semi-definite, the limit of L
may also be only positive semi-definite.
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§ 4.23 (Computation of Tc,1, Tc,2 and Λc). Let Y be a matrix with full rank and with

span(Y ) =
⋂

µ∈Ri0 ,µe∈Ri0,e

span

(
∂c

∂µ
(µ, µe)

)
.

In all cases considered in this thesis, the matrix ∂c/∂µ is diagonal (e. g. in an ideal dilute
solution) or the result of a linear transformation of a system with a diagonal matrix ∂c/∂µ.
Then, the column space span(∂c/∂µ) is independent of µ and µe, and one may choose Y =

∂c/∂µ(µ∗, µ∗e) with an arbitrary state vector µ∗ and input vector µ∗e. If ∂c/∂µ is invertible,
then Y can be chosen to be the identity matrix (Y = I). If ∂c/∂µ is diagonal, then Y can
be chosen to be a diagonal matrix with diagonal elements Yii = 1 if ∂ci/∂µi 6= 0 and Yii = 0

if ∂ci/∂µi = 0 for i = 1 . . . i0. With the matrix Y defined above, the matrix Y T ∂c/∂µY

has always full rank. Using the matrix Y , the matrices Tc,1, Tc,2 and Λc with the properties
demanded in Corollary 4.21 can be gained easily by computing kernel matrices: (1) Compute a
kernel matrix X with X Y T N = 0 and X Y T Ne = 0. The choice Tc,2 = X Y T guarantees that
Tc,2N = 0, Tc,2Ne = 0 and that Tc,2 ∂c/∂µT Tc,2 = X Y T ∂c/∂µY XT has full rank. (2) Choose
an arbitrary symmetric and invertible Λc, e. g. Λc = I. (3) Compute Tc,1 as a right kernel matrix
of T Tc,2 Λc with T Tc,2 Λc Tc,1 = 0.

§ 4.24 (Non-linear equation). The reduction involves the solution of the non-linear equation
Tc,2 c(µ0, µe,0) = Tc,2 c(T

T
c,1 µ̂1 +T Tc,2 µ̂2, µe). Thus, the computational complexity of the reduction

of conservation relations may be large.

§ 4.25 (Invariance of the entropy production). The entropy production of the internal fluxes J
is invariant under the above described reduction method: σ[s̃] = ∆µ̃T J̃ = ∆µT J = σ[s].

§ 4.26 (Invariance of the Gibbs energy). For dĉ2 = Tc,2 dc = 0, the differential of the Gibbs
energy is invariant under the above described reduction method: dg = µT dc = (dµ̃T Tc,1 +

dµ̂2 Tc,2) dc = dµ̃T dc̃. The information on the dependency of the Gibbs energy on the change
of the concentration of the conserved moiety dĉ2 = Tc,2 dc is lost during the reduction process.

Example 4.27 (Reduction of a conservation relation). Consider a reaction A 
 B with mass-
action kinetics in an ideal dilute solution in a closed system:

N =

(
−1

1

)
, c(µ) =

(
c◦ exp((µA − µ◦A)/(R∗ T ))

c◦ exp((µB − µ◦B)/(R∗ T ))

)
, R(µ) = ρR◦(µA/(R

∗ T ), µB/(R
∗ T )).

The system contains the conservation relation cA + cB = const. We choose the transformation
matrices for the reduction as

Tc,1 =
(
−1 1

)
, Tc,2 =

(
1 1

)
with Λc = I. The variable ĉ2 = cA+cB is the concentration of the conserved moiety. The variable
ĉ1 = cB − cA describes the difference of the concentrations of B and A. Although ĉ1 may be
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negative, it is a concentration in the sense of Definition 3.1 (p. 40). We have µA = −µ̂1 + µ̂2

and µB = µ̂1 + µ̂2. From the conservation relation we get the following dependency of µ̂1 and
µ̂2:

cA,0 + cB,0 = c◦ exp((−µ̂1 + µ̂2 − µ◦A)/(R∗ T )) + c◦ exp((µ̂1 + µ̂2 − µ◦B)/(R∗ T )).

Solving this equation for µ̂2 and replacing µ̃ = µ̂1 yields

µ̂2(µ̃) = R∗ T log

(
cA,0 + cB,0

c◦
·

1

exp((−µ̃− µ◦A)/(R∗ T )) + exp((µ̃− µ◦B)/(R∗ T ))

)
.

Substituting this expression into c̃ = ĉ1 = −cA + cB with ci = c◦ exp((µi−µ◦i )/(R∗ T )) and into
R = ρR◦(µA/(R

∗ T ), µB/(R
∗ T )) yields the transformed functions

c̃(µ̃) = (c◦A + c◦B) ·
− exp((−µ̃− µ◦A)/(R∗ T )) + exp((+µ̃− µ◦B)/(R∗ T ))

+ exp((−µ̃− µ◦A)/(R∗ T )) + exp((+µ̃− µ◦B)/(R∗ T ))

and

R̂(µ̃) = ρR◦(−µ̃+ µ̂2(µ̃), µ̃+ µ̂2(µ̃)).

Thus, the original system with two compounds and simple functions c(µ) and R(µ) can be
reduced to one with one compound but more complex functions c̃(µ̃) and R̃(µ̃).

4.2.1.2. Reduction of Stoichiometric Cycles

The reduction of stoichiometric cycles reduces the number of fluxes. It proceeds analogously to
the reduction of conservation relations. While the reduction of conservation relations is based
on the left null space of the stoichiometric matrices, the reduction of stoichiometric cycles uses
the right null space.
We transform the fluxes J by a partitioning transformation such that ∆µ̂2 = 0 and such that

Ĵ2 vanishes from the mole balances.

Corollary 4.28 (Reduction of cycles). Let M be a thermodynamic model (see Definition 3.1,
p. 40) and let TJ = [TJ,1, TJ,2] be a square and invertible matrix with N TJ,2 = 0 and S TJ,2 = 0.
Assume that the matrix T TJ,2R(µ, µe)T

T
J,2 is invertible for all µ ∈ Ri0 and µe ∈ Ri0,e. Let ΛJ be a

symmetric, invertible matrix with T TJ,2 ΛJ TJ,1 = 0. Then, a trajectory of M can be reconstructed
from a trajectory of the reduced system M̃ with

Ñ = N TJ,1, S̃ = S TJ,1, Ñe = Ne, c̃(µ̃, µe) = c(µ̃, µe), µ̃0 = µ0,

R̃(µ̃, µe) = (T TJ,1R(µ̃, µe)TJ,1)− (T TJ,1R(µ̃, µe)TJ,2) (T TJ,2R(µ̃, µe)TJ,2)−1 (T TJ,2R(µ̃, µe)TJ,1)

where

c = c̃, µ = µ̃,

J = (TJ,1 − TJ,2 (T TJ,2RTJ,2)−1 (T TJ,2RTJ,1)) J̃ , ∆µ = invΛ−1
J

(T TJ,1) ∆µ̃.
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Proof. TransformM with J = TJ Ĵ (see §4.7, p. 53). Observe that ∆µ̂2 = 0. Because T TJ,2RTJ,2
is invertible, we can solve the equation T TJ,2RTJ,1 Ĵ1 + T TJ,2RTJ,2 Ĵ2 = ∆µ̂2 = 0 for Ĵ2 and
get Ĵ2 = −(T TJ,2RTJ,2)−1 (T TJ,2RTJ,1) Ĵ1. If T TJ,2RTJ,2 would be singular, the model equation
would not uniquely determine the fluxes Ĵ2. The possible non-uniqueness of the fluxes will
be discussed in Corollary 4.71 (p. 76). Entering the Ĵ2 computed above into the equation
T TJ,1RTJ,1 Ĵ1 + T TJ,1RTJ,2 Ĵ2 = ∆µ̂1 yields

(T TJ,1R(µ̃, µe)TJ,1)− (T TJ,1R(µ̃, µe)TJ,2) (T TJ,2R(µ̃, µe)TJ,2)−1 (T TJ,2R(µ̃, µe)TJ,1)︸ ︷︷ ︸
R̃

Ĵ1︸︷︷︸
J̃

= ∆µ̂1︸︷︷︸
∆µ̃

.

The formulas for the reconstruction of the original variables from the reduced ones follow from
the expressions given in §4.8 (p. 53).

§ 4.29 (Symmetry and positive semi-definiteness of R̃ and ∂c̃/∂µ̃). The matrices R̃ and ∂c̃/∂µ̃
of the reduced model are symmetric and positive semi-definite.

Proof. The derivative ∂c̃/∂µ̃ is symmetric and positive semi-definite because c̃(µ̃, µe) = c(µ̃, µe)

and ∂c/∂µ is symmetric and positive semi-definite.
The symmetry of R̃ is obvious from the expression given in Corollary 4.28.
The resistance matrix R̃ resulting from the reduction of stoichiometric cycles and the deriva-

tive ∂c̃/∂µ̃ resulting from the reduction of conservation relations (see §4.22, p. 59) have the same
structure. For this reason, the proof of the positive semi-definiteness of R̃ is completely analog
to the proof of the positive semi-definiteness of ∂c̃/∂µ̃ in §4.22 (p. 59).

§ 4.30 (Computation of TJ,1, TJ,2 and ΛJ). Let Y be a matrix with full rank and with

span(Y ) =
⋂

µ∈Ri0 ,µe∈Ri0,e

span (R(µ, µe)) .

In all cases considered in this thesis, the matrix R is diagonal or the result of a linear transfor-
mation of a system with a diagonal matrix R. Then, the column space span(R) is independent
of µ and µe, and one may choose Y = R(µ∗, µ∗e) with an arbitrary state vector µ∗ and input
vector µ∗e. If R is invertible, then Y can be chosen to be the identity matrix (Y = I). If R
is diagonal, then Y can be chosen to be a diagonal matrix with diagonal elements Yii = 1 if
Rii 6= 0 and Yii = 0 if Rii = 0 for i = 1 . . . i0. With the matrix Y defined above, the matrix
Y T RY has always full rank. Using the matrix Y , the matrices TJ,1, TJ,2 and ΛJ with the
properties demanded in Corollary 4.28 can be gained easily by computing kernel matrices: (1)
Compute a kernel matrix X with N Y X = 0 and S Y X = 0. The choice TJ,2 = Y X guarantees
that N TJ,2 = 0, S TJ,2 = 0 and that T TJ,2RTJ,2 = XT Y T RY X has full rank. (2) Choose an
arbitrary invertible, symmetric ΛJ , e. g. ΛJ = I. (3) Compute TJ,1 as a right kernel matrix of
T TJ,2 ΛJ with T TJ,2 ΛJ TJ,1 = 0.

§ 4.31 (Invariance of entropy production). The entropy production is invariant under the above
described reduction method: σ[s̃] = σ[s].
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Proof. Using the equations for the reconstruction of the original states given in Corollary 4.28
we get for σ[s] = ∆µT JT :

σ[s] = ∆µ̃T (T TJ,1 ΛJ TJ,1)−1 T TJ,1 ΛJ (TJ,1 − TJ,2 (T TJ,2RTJ,2)−1 (T TJ,2RTJ,1))︸ ︷︷ ︸
I

J̃ = σ[s̃].

§ 4.32 (Invariance of the Gibbs energy). The differential of the Gibbs energy is invariant under
the above described reduction method: dg = µT dc = µ̃T dc̃ = dg̃.

Example 4.33. The network in Example 3.11 (Equation 3.2, p. 42) contains a stoichiometric
cycle. The matrices

TJ,1 =

1 0

0 1

0 0

 , TJ,2 =

1

1

1

 , ΛJ =

+1 −1 0

−1 0 1

0 1 1


fulfill the conditions T TJ,2 ΛJ TJ,1 = 0 and N TJ,2 = 0. Here, TJ,1 is chosen such that J̃1 = J1 and
J̃2 = J2. This leads to the given matrix ΛJ . A reduction with these matrices yields a system
with

Ñ =

−1 0

1 −1

0 1

 , R̃ =
1

R1 +R2 +R3

(
R1 (R2 +R3) −R1R2

−R1R2 R2 (R1 +R3)

)
.

This system contains a minimal number of fluxes and corresponds to the system given in Equa-
tion 3.3 (p. 42).

4.2.2. Reduction of the Thermodynamic and the Kinetic Submodel

The stoichiometric reduction methods discussed in the previous section rely on rank deficiencies
of the stoichiometric matrices. Further reduction methods are applicable for models with a
singular derivative ∂c/∂µ or a singular resistance matrix R. Then, the system contains algebraic
relations that can be used to derive a reduced formulation of the system. These reduction
methods are equivalent to the quasi-steady state and rapid equilibrium assumptions that are
often used to derive kinetic laws for enzyme-catalyzed reactions.

4.2.2.1. Reduction of the Thermodynamic Submodel

For ∂c/∂µe µ̇e = 0, the concentration change ċ = ∂c/∂µ µ̇ is constrained to the column space
of ∂c/∂µ. If the derivative ∂c/∂µ of the function c(µ, µe) gets singular, certain concentration
changes ċ are impossible. Concentration changes ċ that are not in span(∂c/∂µ) would correspond
to an infinite change of the chemical potentials µ̇. This means that infinite thermodynamic
forces would counteract the concentration change. In consequence, such concentration changes
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cannot occur and the fluxes that produce and consume the respective compounds are always
equal. This case is equivalent to the classical quasi-steady state assumption for concentrations
that, for example, is applied when deriving the Michaelis-Menten kinetics (see [45, 94]). If
∂c/∂µ is singular and ∂c/∂µe µe 6= 0, the concentration change ċ is restricted to the linear set
span(∂c/∂µ)− ∂c/∂µe µ̇e and similar considerations can be made to reduce the system.

§ 4.34 (Singular ∂c/∂µ). In an ideal dilute solution we have ci = c◦ exp((µi − µ◦i )/(R
∗ T )).

The matrix ∂c/∂µ is diagonal with diagonal elements ∂ci/∂µi = ci/(R
∗ T ) (see §3.16, p. 44).

For ci > 0 the matrix ∂c/∂µ is always invertible. If one or several concentrations ci are very
small compared to the fluxes, one can approximate ci(µi) = 0 for all occurring µi. Then ∂c/∂µ
can be approximated by a singular matrix. The corresponding chemical potentials µi are no
longer in a one to one relationship to the concentrations ci because the functions ci(µi) = 0 are
not invertible. Although the concentrations have a constant value of zero, the corresponding
chemical potentials may vary. The assumption of small concentrations is also the basis of the
classical quasi-steady state assumption in the conventional kinetic modeling formalism. Thus,
the assumption of a singular ∂c/∂µ implies the quasi-steady state assumption in the classical
approach to kinetic modeling.

Example 4.35 (Singular ∂c/∂µ). Consider the network X
J1−⇀↽− A

J2−⇀↽− Y . The compound A

is very unstable. This means that A is very reactive and µ◦A is very large, such that we can
approximate cA(µ) = 0. This leads to ∂cA/∂µA = 0 and thus to ċA = J1 − J2 = 0. The
singularity of ∂c/∂µ leads to a linear, algebraic constraint on the fluxes that is equivalent to
the assumption of a quasi-stationary cA.

Before developing the main corollary of this section that allows the reduction of the thermo-
dynamic submodel, we have to discuss the existence and uniqueness of solutions with singular
∂c/∂µ.

Corollary 4.36 (Existence of a solution). Let M be a thermodynamic model with a positive
semi-definite ∂c/∂µ. A necessary condition on the inputs µe and Je for the existence of a
solution at µ, µe and Je is

Ne Je −
∂c

∂µe
µ̇e ∈ span

(
∂c

∂µ
,N

)
.

Proof. Due to the equation ċ = N J +Ne Je we have that Ne Je − ∂c/∂µe µ̇e = ∂c/∂µ µ̇−N J .
Thus, for any inputs Je and µe that do not fulfill the given condition, the system equation
ċ = N J +Ne Je cannot be fulfilled.

Definition 4.37 (Thermodynamically conflict-free networks). A thermodynamic system M

with

span

(
Ne,

∂c

∂µe

)
⊆ span

(
∂c

∂µ
,N

)
.

for all µ and µe is called thermodynamically conflict-free.
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§ 4.38 (Interpretation). If a thermodynamic model is thermodynamically conflict-free, the con-
dition for the existence of the solution given in Corollary 4.36 is always fulfilled. However, the
condition in Corollary 4.36 is only necessary for the existence of a solution. For example, it
guarantees that the clamped fluxes Je can stoichiometrically be balanced by the internal fluxes
J . It does not guarantee that these fluxes can be realized with the given functions R(µ, µe) and
c(µ, µe).

Example 4.39 (Conflicts of clamped fluxes Je and the quasi-steady state assumption). Corol-
lary 4.36 means that the quasi-steady state assumption may lead to conflicts with clamped

fluxes. An example will clarify this. Consider the system 0
(Je)−−⇀↽−− A

J1−⇀↽− B with the functions
cA(µ, µe) = 0 and cB(µ, µe) = 0 and a clamped flux Je 6= 0. We have Ne = (1, 0)T , N = (−1, 1)T

and ∂c/∂µ = 0. Thus, the necessary condition for the existence of a solution given in Corol-
lary 4.36 is only fulfilled for Je = 0. Due to cA = cB = 0, we have that ċA = ċB = 0 for all times
t. Because we have also that ċA = Je − J1 and ċB = J1, we get the constraints Je = J1 = 0.
Thus, the system equations are not solvable for a Je 6= 0.

§ 4.40 (Resolving conflicts). Conflicts of the inputs Je and µe with the quasi-steady state
assumption occur if the system is not thermodynamically conflict-free. There are two pos-
sibilities for resolving possible conflicts: (1) Unclamping of a flux means to move a column
of the matrix Ne to the matrix N . Thus, the space span(∂c/∂µ,N) gets larger and the
space span(Ne, ∂c/∂µe) gets smaller. (2) If ∂c/∂µ is diagonal, one may set a state func-
tion ci(µ, µe) to a non-singular value, i. e. ∂ci/∂µi 6= 0. Then, the space span(∂c/∂µ,N)

gets larger, but the space span(Ne, ∂c/∂µe) does not change. Thus, by correcting the model
in these ways, one eventually arrives at a structurally conflict-free system description with
span(Ne, ∂c/∂µe) ⊆ span(∂c/∂µ,N). Then, no conflicts are possible.

Example 4.41 (Resolving conflicts of Je). In Example 4.39, a solution exists only for Je =

0. This means that the system description imposes constraints on possible inputs Je. Such
constraints are not consistent with the usual systems-theoretical paradigm that inputs can be
chosen independently of each other and independently of the state of the system. Most likely
such models occur only due to modeling errors since the assumption of an independent clamping
of two rigidly coupled variables is contradictory. Such situations can be easily resolved by either
(1) unclamping one of the affected fluxes or (2) choosing a function ci(µ, µe) with a non-zero
∂c/∂µ for one of the affected compounds. Which of these possibilities is more appropriate
depends on the observed system dynamics. We discuss both possibilities for the Example 4.39:
(1) An unclamping of Je can be performed by extending the system to (X)

J2−⇀↽− A
J1−⇀↽− B. The

compound X has a clamped potential µe,X . The reaction flux J2 replaces the clamped reaction
flux Je of the original Example 4.39. The flux J2 is no longer a input of the system but an
internal flux. Since cA = cB = 0, ċA = J2 − J1 = 0 and ċB = J1 = 0 we get J1 = J2 = 0 and
with RJ = ∆µ we get ∆µ = 0 and µA = µB = µX . Thus, the solution of the modified system
exists. (2) Alternatively, we may also introduce a non-singular function for either cA or cB. For
example, we may use the functions cA(µ, µe) = c◦ exp((µA − µ◦A)/(R∗ T )) and cB(µ, µe) = 0.
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Because ċB = J1 = 0 we get the constraint J1 = 0. For the compound A, we get the equation
ċA = Je−J1 = Je, which can be solved to cA = cA,0 +

∫ t
0
Je dt. Thus, the solution of the modified

system exists.

§ 4.42 (Consistent initial conditions). As discussed above, we get algebraic constraints on
the fluxes J , if ∂c/∂µ does not have full rank. Since R(µ, µe) J = ∆µ, this directly leads to
constraints for the chemical potentials µ and in particular also for the initial chemical potentials
µ0. Multiplying the equation ċ = ∂c/∂µ µ̇+ ∂c/∂µe µ̇e = N J +Ne Je with a kernel matrix Tc,2
with Tc,2 ∂c/∂µ = 0 we get

Tc,2
∂c

∂µe
µ̇e = Tc,2N (R(µ, µe))

−1 (−NTµ− STµe)︸ ︷︷ ︸
J

+Tc,2Ne Je (4.3)

Valid chemical potentials µ and initial conditions µ0 have to lie in the set defined by this
equation. Since this equation is non-linear, it can be rather hard for the modeler to manually find
suited initial conditions. Usually consistent initial conditions have to be computed numerically.

Example 4.43. Consider the network (A)
1−⇀↽− B

2−⇀↽− C
3−⇀↽− (D) where cB(µ, µe) = 0 and

cC(µ, µe) = c◦ exp((µC − µ◦C)/(R∗ T )). We have that J1 = J2 because cB = 0 and thus
ċB = J1 − J2 = 0. Assuming mass-action kinetics we get the equation

(µe,A − µB)/R1(µ, µe) = (µB − µC)/R2(µ, µe).

where

R1 = ρ1R◦(µe,A/(R
∗ T ), µB/(R

∗ T )), R2 = ρ2R◦(µB/(R
∗ T ), µC/(R

∗ T ))

and R◦ is the ideal resistance function (see Definition 3.22, p. 47). We can solve this equation
to

µB = R∗ T log

(
exp

(
µC

R∗ T

)
ρ1 + exp

( µe,A

R∗ T

)
ρ2

ρ1 + ρ2

)
.

Thus, the chemical potential of B is determined by the chemical potentials of A and C. In
particular, µB is between µA and µC . For ρ1 → 0, we have µB → µA and for ρ2 → 0, we have
µB → µC .

§ 4.44 (Existence and uniqueness of the chemical potentials). Equation 4.3 is an equation for the
chemical potentials. If this equation has no solution, no vector µ exists that is consistent with
the thermodynamic model. If the network is not thermodynamically conflict-free such situations
occur for almost all inputs µe and Je (see Example 4.39). Nevertheless, in a thermodynamically
conflict-free network the existence of a solution is not guaranteed either. The equation can also
have more than one solution. Then, the trajectory of the model equations is not unique. The
following examples illustrate such cases.
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Example 4.45 (Non-existing solution in a thermodynamically conflict-free model). Consider

a system 0
(Je)−−⇀↽−− A

J−⇀↽− (B) with the clamped quantities Je and µe,B. Assume the function
cA(µA) = 0 and the resistance

R =
(
ρ0 + ρA exp

( µA
R∗ T

)
+ ρB exp

( µB
R∗ T

))
·R◦

( µA
R∗ T

,
µB
R∗ T

)
The given resistance realizes a reversible Michaelis-Menten kinetics (see Example 3.24, p. 48).
We have N = −1, Ne = 1, S = 1 and ∂c/∂µ = 0. This leads to the constraint J = Je.
The system is thermodynamically conflict-free because from a stoichiometric view point J can
balance Je. However, it cannot balance high fluxes Je because the flux J saturates for high
chemical potentials of A. Equation 4.3 for the example system reads

0 = −
exp

(
µA

R∗ T

)
− exp

( µe,B

R∗ T

)
µA

R∗ T
− µe,B

R∗ T

(
ρ0 + ρA exp

( µA
R∗ T

)
+ ρB exp

( µe,B
R∗ T

))−1

︸ ︷︷ ︸
R−1

(µA − µe,B) + Je.

This can be solved to

µA = R∗ T log

(
ρ0 Je + (ρB Je + 1) exp

( µe,B

R∗ T

)
1− Je ρA

)
.

A real solution for µA only exists if −ξB/(ρ0 + ρB ξB) < Je < ρ−1
A where ξB = exp(µe,B/(R

∗ T )),
i. e. if Je is between the minimal and maximal value of J .

Example 4.46 (Infinitely many solutions). Consider the system A + (C) 
 B + (D) with
R > 0. It contains a conservation relation cA + cB = cA,0 + cB,0. Thus, its steady state
depends on the initial concentrations. The steady state is characterized by ċA = −ċB = −J =

0 and thus ∆µ = µe,C − µe,D + µA − µB = 0. This equation only defines the difference
µA− µB. By using the conservation relation cA(µ, µe) + cB(µ, µe) = cA,0 + cB,0 we can uniquely
compute the steady state potentials µA and µB. Now, assume a quasi-steady state for A and
B with cA(µ, µe) = 0 and cB(µ, µe) = 0. We have again that ċA = −ċB = −J = 0 and thus
∆µ = µe,C − µe,D + µA − µB = 0. However, this equation cannot be solved uniquely since
the conservation relation is trivially fulfilled. Thus, by using the quasi-steady state assumption
with ci(µ, µe) = 0 for all concentrations in a conservation relation, we lose the uniqueness of the
corresponding chemical potentials. Since other parts of the model may depend on the value of
these potentials, such a model cannot be easily simulated.

Example 4.47 (Finitely many solutions – Edelstein system). Consider the system consisting
of the reactions

(A) +X
1−⇀↽− 2X, X

2−⇀↽− (B)
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µX [kJ mol−1]

J1 [mM h−1]

J2 [mM h−1]

10

30

-2-4-6 0 2 4

T = 298.15 K

ρ1 = 1 h mM−1 kJ mol−1

ρ2,0 = 0.08 h mM−1 kJ mol−1

ρ2,X = 0.08 h mM−1 kJ mol−1

ρ2,B = 0.08 h mM−1 kJ mol−1

µe,A = 5 kJ mol−1

µe,B = −3 kJ mol−1

Figure 4.1.: Multiple quasi-steady states of the Edelstein system (Example 4.47). The quasi-
steady state condition ċX = J1 − J2 = 0 is fulfilled for three values of µX . The two
black dots correspond to statically stable points, whereas the gray dot corresponds
to a statically unstable point.

(adapted from Edelstein [30]). Reaction 1 and 2 are modeled with mass-action and Michaelis-
Menten kinetics, respectively:

R1 = ρ1R◦

(
µe,A + µX
R∗ T

,
2µX
R∗ T

)
,

R2 = R◦

( µX
R∗ T

,
µe,B
R∗ T

) (
ρ2,0 + ρ2,X exp

( µX
R∗ T

)
+ ρ2,B exp

( µe,B
R∗ T

))
.

We assume a quasi-steady state with cX(µ, µe) = 0. Then, for certain parameters and inputs,
equation Equation 4.3 has three solutions. Figure 4.1 shows a plot of the fluxes J1 and J2

over µX for specific parameter values. The quasi-steady state condition ċX = J1 − J2 = 0 is
fulfilled at three distinct values of µX . Thus, the thermodynamic system has three distinct
solutions. In this example, the stability of the three distinct solutions can be determined by
a simple consideration. If a small fluctuation increases cX and thus µX , the difference J1 − J2

is negative for the lower and upper steady state, but positive for the one between. Thus, the
fluxes counteract a fluctuation at the lower and the upper state, but amplify a fluctuation of
the middle state. Thus, the middle steady state is unstable, but the upper and the lower steady
state are stable. This means that the model trajectory is not unique because two different stable
quasi-steady states of cX exist.

§ 4.48 (Assumption of a constant span(∂c/∂µ)). For the formulation of the corollaries that
describe the reduction method we assume that the span and thus also the null space of ∂c/∂µ
is constant. In ideal dilute solutions where ∂c/∂µ is diagonal and all concentrations are strictly
greater than zero, we have span(∂c/∂µ) = Ri0 and the condition is obviously fulfilled. If a
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compound, say Xi0 , is reactive its diagonal entry is small and can be neglected. In this case,
the space span(∂c/∂µ) = span(e1 . . . ei0−1) where ei is the ith unit vector is also constant. If
a system with a constant span(∂c/∂µ) is linearly transformed (see Corollary 4.2, p. 52) then
the the transformed space span(∂ĉ/∂µ̂) = span(Tc ∂ĉ/∂µ̂ T

T
c ) is also constant. Thus, although

∂c/∂µ is not constant, the space spanned by the columns of ∂c/∂µ is usually constant and a
kernel matrix Tc,2 exists with Tc,2 ∂c/∂µ = 0 for all µ and µe.

Corollary 4.49 (Quasi-steady state assumption – simplified version). Let M be a thermody-
namic model (see Definition 3.1, p. 40) and let TJ = [TJ,1, TJ,2] and T Tc = [T Tc,1, T

T
c,2] be invertible

matrices with

Tc,2
∂c

∂µ
= 0, Tc,2

∂c

∂µe
= 0, Tc,2Ne = 0, Tc,2N TJ,1 = 0, Tc,2N TJ,2 = I

for all µ and µe. Then, a trajectory of M can be reconstructed from a trajectory of the reduced
system M̃ with

Ñ = Tc,1N TJ,1, S̃ = S TJ,1, Ñe = Tc,1Ne, µ̃0 = invT
Λ−1

c
(Tc,1)µ0,

R̃(µ̃, µe) = T TJ,1R(T Tc,1 µ̃+ T Tc,2 µ̂2(µ̃, µe), µe)TJ,1, c̃(µ̃, µe) = Tc,1 c(T
T
c,1 µ̃, µe)

where µ̂2(µ̃, µe) is a solution of

0 = Tc,2N (R(T Tc,1 µ̃+ T Tc,2 µ̂2))−1 (−NT (T Tc,1 µ̃+ T Tc,2 µ̂2)− STµe)

and Λc is a symmetric, invertible matrix with Tc,1 Λc T
T
c,2 = 0. The variables of the original

system and the reduced system are related by

µ = T Tc,1 µ̃+ T Tc,2 µ̂2(µ̃, µe), c = c(T Tc,1 µ̃, µe),

∆µ = −NT µ− ST µe, J = TJ,1 J̃ .

Proof. Transform M with the given partitioned matrices Tc and TJ (see §4.7, p. 53). The
system M1 corresponds to the reduced system M̃ . Premultiplying the equation ċ = ∂c/∂µ µ̇ +

∂c/∂µe µ̇e = N J + Ne Je with Tc,2 yields Tc,2N J = 0. With J = R−1 · (−NT µ − ST µe)

and µ = T Tc,1 µ̂1 + T Tc,2 µ̂2 we get the expression defining the relation µ̂2(µ̃, µe). Substituting
J = TJ,1 Ĵ1 + TJ,2 Ĵ2 in Tc,2N J = 0 yields Ĵ2 = 0. Now, the reduced model equations and
the expressions for the reconstruction of the original from the reduced variables directly follow
from §4.7 and §4.8 (p. 53). The result is simplified by using the relation c(T Tc,1 µ̃+ T Tc,2 µ̂2, µe) =

c(T Tc,1 µ̃, µe) that follows from ∂c/∂µT Tc,2 = 0.

§ 4.50 (Generalization). The assumptions that Tc,2 ∂c/∂µe = 0 and Tc,2Ne = 0 in the above
corollary mean that the quasi-stationary compounds are not directly influenced by clamped
fluxes or potentials. These assumptions simplify the formulation of the corollary because they
lead to Ĵ2 = 0. If Tc,2 ∂c/∂µe 6= 0 and Tc,2Ne 6= 0 premultiplying ċ = ∂c/∂µ µ̇ + ∂c/∂µe µ̇e =

N J+Ne Je with Tc,2 and substituting J = TJ,1 Ĵ1+TJ,2 Ĵ2 yields Ĵ2 = Tc,2 ∂c/∂µe µ̇e−Tc,2Ne Je 6=
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0. The reduction method in the above corollary relies on the condition that Ĵ2 = 0 but it can
be generalized. The generalized method that is introduced in the next corollary extends the
vector of clamped potentials and clamped fluxes. The additional clamped fluxes are the fluxes
associated with a change of the clamped chemical potentials µ̇e and the additional clamped
potentials are the potentials that are associated with the clamping of the fluxes Je.

Corollary 4.51 (Quasi-steady state assumption). Let M be a thermodynamic model (see Def-
inition 3.1, p. 40) and let TJ = [TJ,1, TJ,2] and T Tc = [T Tc,1, T

T
c,2] be invertible matrices with

Tc,2
∂c

∂µ
= 0, Tc,2N TJ,1 = 0, Tc,2N TJ,2 = I

for all possible µ. Then, a trajectory of M can be reconstructed from a trajectory of the reduced
system M̃ with

Ñ = Tc,1N TJ,1, S̃T = (T TJ,1 S
T , I), µ̃0 = invT

Λ−1
c

(Tc,1)µ0,

Ñe =
(
Tc,1 (I −N TJ,2 Tc,2)Ne, Tc,1N TJ,2 Tc,2

)
R̃(µ̃, µe, µ̇e, Je) = T TJ,1R(T Tc,1 µ̃+ T Tc,2 µ̂2(µ̃, µe, µ̇e, Je))TJ,1, c̃(µ̃, µe) = Tc,1 c(T

T
c,1 µ̃, µe)

where µ̂2(µ̃, µe, µ̇e, Je) is a solution of

Tc,2
∂c

∂µe
µ̇e = Tc,2N (R(T Tc,1 µ̃+ T Tc,2 µ̂2))−1 (−NT (T Tc,1 µ̃+ T Tc,2 µ̂2)− STµe) + Tc,2Ne Je,

Λc is a symmetric, invertible matrix with Tc,1 Λc T
T
c,2 = 0 and

µ̃e =

(
µe

T TJ,1RTJ,2 Tc,2 (Ne Je − ∂c
∂µe

µ̇e)

)
, J̃e =

(
Je

∂c
∂µe

µ̇e

)

The variables of the original system and the reduced system are related by

µ = T Tc,1 µ̃+ T Tc,2 µ̂2, c = c(T Tc,1 µ̃, µe),

∆µ = −NT µ− ST µe, J = TJ,1 J̃ + TJ,2 Tc,2 (∂c/∂µe µ̇e −Ne Je).

Proof. TransformM with the given partitioned matrices Tc and TJ (see §4.7, p. 53). As discussed
in §4.50 we get Ĵ2 = Tc,2 (∂c/∂µe µ̇e−Ne Je). With this one can verify that the model equations
for the subsystem M1 with subscript 1 are equivalent to the model equations of the reduced
system M̃ with ∆µ̃ = ∆µ̂1 − (T TJ,1RTJ,2) Ĵ2. The result is simplified by using the relation
c(T Tc,1 µ̃+ T Tc,2 µ̂2, µe) = c(T Tc,1 µ̃, µe) that follows from ∂c/∂µT Tc,2 = 0.

§ 4.52 (Symmetry and positive semi-definiteness of R̃ and ∂c̃/∂µ̃). The matrices R̃ = T TJ,1RTJ,2
and ∂c̃/∂µ̃ = Tc,1 ∂c/∂µT

T
c,1 are symmetric and positive semi-definite if R and ∂c/∂µ are sym-

metric and positive semi-definite.
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§ 4.53 (Computation of Tc,1/2, TJ,1/2 and Λc). Suited transformation matrices can be computed
by the following steps: (1) compute Tc,2 as a left kernel matrix of ∂c/∂µ with Tc,2 ∂c/∂µ = 0; (2)
choose an arbitrary invertible Λc, e. g. Λc = I; (3) compute T Tc,1 as a right kernel matrix of Tc,2 Λc

with Tc,2 Λc T
T
c,1 = 0; (4) compute TJ,1 as a right kernel matrix of Tc,2N with Tc,2N TJ,1 = 0; (5)

compute TJ,2 such that Tc,2N TJ,2 = I, e. g. TJ,2 = inv(Tc,2N). Step (5) can only be conducted
if Tc,2N has full row rank.

§ 4.54 (The condition Tc,2N TJ,2 = I). If the matrix Tc,2N does not have full row rank, the
Corollaries 4.49 and 4.51 are not applicable because they require the existence of a matrix TJ,2
with Tc,2N TJ,2 = I. If the matrix Tc,2N does not have full row rank, a conserved moiety of N
is completely in a quasi-steady state. In this case, either no trajectories exist (cf. Corollary 4.36,
p. 64, and Example 4.39, p. 65) or the trajectories are not unique (cf. Example 4.46, p. 67). The
formulation of a reduction method does not make sense for such degenerated cases.

Example 4.55 (Reduction of the thermodynamic submodel). Consider the network 0
(Je)−−⇀↽−−

X2
J2−⇀↽− X1

J1−⇀↽− (A) with cX2(µ, µe) = 0 and cX1 = c◦ exp((µ1 − µ◦1)/(R∗ T )). The matrices
describing the system are

R =

(
R1 R12

R12 R2

)
, N =

(
−1 1

0 −1

)
, Ne =

(
0

1

)
, S =

(
1 0

)
.

For the sake of simplicity we assume that the resistance matrix is constant. With this non-
diagonal resistance matrix the fluxes are defined by J1 = (−R12 ∆µ2 + R2 ∆µ1)/(R1R2 − R2

12)

and J2 = (−R12 ∆µ1+R1 ∆µ2)/(R1R2−R2
12). We apply Corollary 4.49 (p. 69) with Tc,1 = (1, 0),

Λc = I, Tc,2 = (0, 1), T TJ,1 = (1, 0) and T TJ,2 = (0,−1). We get µ̃ = µ̂1 = µX1 and µ̂2 = µX2 .
The chemical potential µ̂2 = µX2 is given by the equation 0 = −J2 + Je = −(−R12 ∆µ1 +

R1 ∆µ2)/(R1R2−R2
12) + Je that can be solved to µ̂2 = µ̃+R2 Je−R12R

−1
1 (R12 Je− µ̃+ µe,A).

The reduced system matrices are Ñ = −1, Ñe = (1, 0,−1), S̃ = 1 and R̃ = R1. The new input
vectors are J̃Te = (Je, 0, 0) and µ̃Te = (µe,A,−R12 Je). The new clamped fluxes introduced by the
reduction are zero and can be omitted. The reduced system contains an additional clamped
potential −R12 Je that depends on the clamped flux Je. Due to the quasi-steady state of X2 the
flux via reaction 2 is effectively clamped: J2 = Je. Because the resistance matrix R contains
off-diagonal elements, the clamped flux Je has a direct influence on reaction 1. This influence
can be modeled by introducing an additional clamped potential. Usually the resistance matrix
is diagonal, i. e. R12 = 0. Then, an extension of the clamped vectors is not necessary since the
additional inputs are zero. In this cases the reduced system corresponds to the reaction network

0
Je−⇀↽− X̃1

J̃−⇀↽− (A).

§ 4.56 (Transformation of the entropy production). The entropy production of the internal
fluxes is not invariant under the above described reduction method. In Example 4.55 with
R12 = 0, the original entropy production is σ[s] = (µX2 − µX1) J2 + (µX1 − µe,A) J1 whereas
in the reduced system it is σ[s̃] = (µ̃ − µe,A) J̃ = (µX1 − µe,A) J1 ≤ σ[s]. The reason for this
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difference is that certain fluxes (in the example J2) are directly determined by the boundary
conditions and thus lose their status as internal fluxes.

§ 4.57 (Invariance of the Gibbs energy). The Gibbs energy is invariant under the reduction in
Corollaries 4.49 and 4.51: dg = µT dc = (µ̃T Tc,1 + µ̂T2 Tc,2) dc = µ̃T Tc,1 dc = µ̃T dc̃ = dg̃ because
Tc,2 dc = 0.

Example 4.58 (Michaelis-Menten kinetics). Example 4.46 (p. 67) shows that the solution of
a thermodynamic model is not unique if all compounds Xi in a conservation relation are in
quasi-steady state. In this case no matrix TJ,2 with Tc,2N TJ,2 = I exists (see §4.54, p. 71).
However, such a situation occurs when deriving enzyme kinetics where the free enzyme and
the enzyme complexes are quasi-stationary. Such cases can be treated by first applying a
reduction of conservation relations (see Corollary 4.21, p. 58) to the original system with a
non-singular ∂c/∂µ. In the resulting, reduced system, one approximates ∂c/∂µ by a singular
matrix and applies Corollary 4.49 (p. 69) or Corollary 4.51 (p. 70) to reduce the system. We
will demonstrate this procedure by means of an example.
Consider the reaction system (A) + E

J1−⇀↽− EA
J2−⇀↽− (B) + E that describes the overall re-

action A 
 B catalyzed by the enzyme E. The compounds are in an ideal dilute solu-
tion ci = c◦ exp((µi − µ◦i )/(R

∗ T )) for i ∈ {E,EA}. The two reactions can be described
by mass-action kinetics, i. e. the resistance matrix is diagonal with diagonal elements R1 =

ρ1R◦((µA + µE)/(R∗ T ), µEA/(R
∗ T )) and R2 = ρ2R◦(µEA/(R

∗ T ), (µB + µE)/(R∗ T )). With
cT = (cE, cEA)T and µe = (µe,A, µe,B) the stoichiometric matrices are

N =

(
−1 +1

+1 −1

)
, S =

(
−1 0

0 1

)
.

We apply Corollary 4.21 (p. 58) with Tc,2 = (1, 1) and Tc,1 = (0, 1). This yields µE = µ̂2 and
µEA = µ̃+ µ̂2. The conservation relation

cE + cEA = c◦ exp((µ̂2 − µ◦E)/(R∗ T )) + c◦ exp((µ̃+ µ̂2 − µ◦EA)/(R∗ T )) = ctotE = const

can be solved to

µ̂2(µ̃, µe) = R∗ T log

(
ctotE /c

◦

exp(−µ◦E/(R∗ T )) + exp((µ̃− µ◦EA)/(R∗ T ))

)
.

Substituting these results into the equations c̃ = cEA and R̃1 = R1 and R̃2 = R2 yields

c̃(µ̃, µe) = ctotE
exp((µ̃− µ◦EA)/(R∗ T ))

exp((−µ◦E)/(R∗ T )) + exp((µ̃− µ◦EA)/(R∗ T ))

and

R̃1(µ̃, µe) = ρ1 ·
c◦

ctotE
·
(

exp

(
−µ◦E
R∗ T

)
+ exp

(
µ̃− µ◦EA
R∗ T

))
·R◦

(
µe,A
R∗ T

,
µ̃

R∗ T

)
,

R̃2(µ̃, µe) = ρ2 ·
c◦

ctotE
·
(

exp

(
−µ◦E
R∗ T

)
+ exp

(
µ̃− µ◦EA
R∗ T

))
·R◦

(
µ̃

R∗ T
,
µe,B
R∗ T

)
.
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The reduced stoichiometric matrices are Ñ = Tc,1N = (−1, 1) and S̃ = S. The reduced system

can be written as a reaction equation (A)
J1−⇀↽− ẼA

J2−⇀↽− (B) where ẼA symbolizes the compound
with concentration c̃ = cEA and chemical potential µ̃.
Above we used the conservation relation cE + cEA = ctotE = const to reduce the system. Now,

we assume that the total enzyme concentration ctotE is very small such that we may approximate
c̃(µ̃, µe) = 0 and thus ∂c̃/∂µ̃ = 0. We apply Corollary 4.49 (p. 69) with Tc,1 = (), Tc,2 = 1,
TJ,1 = (1, 1)T and TJ,2 = (0, 1)T . Thus, the reduced system does not contain an internal
compound ˜̃N = (). The matrix ˜̃S = S̃ TJ,1 = (−1, 1)T describes the reduced stoichiometry
(A) 
 (B). The quasi-steady state condition is

0 = (µe,A − µ̃)/R̃1(µ̃, µe,A)︸ ︷︷ ︸
J1

− (µ̃− µe,B)/R̃2(µ̃, µe,A)︸ ︷︷ ︸
J2

and can be solved to

µ̃ = R∗ T log

(
ρ1 exp(µB/(R

∗ T )) + ρ2 exp(µA/(R
∗ T ))

ρ1 + ρ2

)
.

Computing the reduced resistance ˜̃R(µe) yields

˜̃R(µe) = T TJ,1 R̃ TJ,1 = R̃1 + R̃2 =

=

( ρ0︷ ︸︸ ︷
(ρ1 + ρ2)

c◦

ctotE
exp

(
−µ◦E
R∗ T

)
+

ρA︷ ︸︸ ︷
ρ2

c◦

ctotE
exp

(
−µ◦EA
R∗ T

)
exp

( µe,A
R∗ T

)
+ ρ1

c◦

ctotE
exp

(
−µ◦EA
R∗ T

)
︸ ︷︷ ︸

ρB

exp
( µe,B
R∗ T

))
·R◦

( µe,A
R∗ T

,
µe,B
R∗ T

)

This resistance is equivalent to the resistance of a reversible Michaelis-Menten kinetics that was
derived in Example 3.24 (p. 48).

4.2.2.2. Reduction of the Kinetic Submodel

If the thermodynamic resistance matrix R(µ, µe) gets singular, forces ∆µ in the null space of
R(µ, µe) would lead to infinite fluxes J that counteract the forces. For this reason such forces
∆µ do not occur. Thermodynamic forces ∆µ lie in the column space of the resistance matrix
R since ∆µ = RJ . If the resistance matrix R is singular, the forces ∆µ and thus also the
potentials µ only can lie in a subspace of Rj0 and Ri0 , respectively. These constraints can be
used to reduce the model. A singular resistance matrix is equivalent to the rapid-equilibrium
assumption of the reaction fluxes in the null space of R(µ, µe).

§ 4.59 (Singular resistance matrix). For generalized mass-action kinetics, the resistance matrix
R is diagonal and the diagonal elements Rj are strictly positive. Thus, R cannot be singular.
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However, if some reactions proceed rapidly compared to others, i. e. their resistance Rj is very
low, the matrix R will be nearly singular and can be approximated by a singular resistance
matrix where certain diagonal elements are zero. If a diagonal element of the resistance matrix
is zero, the corresponding force vanishes since ∆µj = Rj Jj = 0. This means that the reactants
and products of reaction j are in thermodynamic equilibrium. However, the flux Jj is not
zero. The assumption of a singular resistance matrix is equivalent to the rapid-equilibrium
assumption in the traditional kinetic modeling approach.

We first discuss the existence and uniqueness of the solution of a system with singular re-
sistance matrix. Then, we give a method to reduce models with singular resistance matrices
R.

§ 4.60 (Column and row space of R(µ, µe)). In an ideal dilute solution with mass-action kinetics,
the resistance matrix R is diagonal and all diagonal elements are positive and thus span(R) =

Rj0 . Since the resistance matrix R is diagonal, its row space and column space are equal:
span(R) = span(RT ). If the kinetic constants of a reaction, say reaction j0, are very large
(k±j0 → ∞), the resistance is very low (Rj0 → 0). In the limit the column space loses one
dimension and we have span(R) = span(e1, . . . , ej0−1), where ej are the coordinate vectors
of Rj0 . Although in general R is a function of µ and µe, the column space of R is usually
independent of µ and µe. This means that span(R(µ, µe)) = span(R(µ′, µ′e)) for all µ, µe, µ′ and
µ′e. If a system with a constant span(R(µ, µe)) is linearly transformed (see Corollary 4.2, p. 52)
then the transformed space span(R̂) = span(T TJ RTJ) is also constant. A constant column
space of R is a common property and strongly simplifies the computations because we can use
methods from linear algebra to study such problems. In particular, we can determine a constant
kernel matrix TJ,2 of R(µ, µe) with R(µ, µe)TJ,2 = 0 and use this kernel matrix to compute the
reduced systems. In the following paragraphs we will only consider matrices R(µ, µe) with a
constant column space.

Corollary 4.61 (Existence of solution). Let M be a thermodynamic system with a singular
R(µ, µe). A necessary condition for the existence of a solution at µ and µe is that

ST µe ∈ span(R(µ, µe), N
T ).

Proof. Due to the equation RJ = ∆µ = −NT µ − ST µe we have that ST µe = −RJ − NT µ.
This means that the vector ST µe lies in span(R(µ, µe), N

T ). Thus, for any pair µ and µe that
does not fulfill the given condition the equation RJ = ∆µ cannot be fulfilled.

Example 4.62 (Conflicts among clamped potentials µe). Corollary 4.61 states that one cannot
have rapid-equilibrium between clamped potentials that are not in equilibrium. An example will
clarify this. Consider a system that contains the reactions (A) 
 B 
 (C) with the resistances
R1 = R2 = 0. Assume that the chemical potentials of A and C are clamped and not equal
µe,A 6= µe,C . Then, the equations Rj Jj = ∆µj read 0 = µe,A − µB and 0 = µB − µe,C . Thus,
the assumption R1 = R2 = 0 physically contradicts the assumption µe,A 6= µe,C . Consequently,
the corresponding model equations do not have a solution.
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Example 4.63 (Resolving conflicts of µe). In the above example a solution only exists for
µe,A = µe,C . However, the clamped chemical potentials are inputs of the system. A system
description that imposes constraints on the inputs is not consistent with the usual systems-
theoretical paradigm that inputs can be chosen in principle independently of each other. Most
likely such models only occur due to modeling errors since the assumption of an independent
clamping of two rigidly coupled variables is contradictory. Such situations can be easily resolved
by either (1) unclamping one of the affected potentials or (2) setting one resistance Rj(µ, µe) in
the conflicting pathway to a strictly positive value. Which one is more appropriate depends on
the observed system dynamics. In the example this means that (1) e. g. µC is unclamped or (2)
e. g. reaction 1 is not assumed to be in rapid equilibrium (R1 > 0). In the case (1) the equality
µe,A = µC is enforced by the rapid-equilibrium conditions. In case (2) no equality condition
between µe,A and µe,C exists.

Definition 4.64 (Kinetically conflict-free networks). A thermodynamic system M with

span(ST ) ⊆ span(R(µ, µe), N
T )

for all µ and µe is called kinetically conflict-free since then the necessary condition from Corol-
lary 4.61 for the existence of a solution is structurally fulfilled.

§ 4.65 (Resolving conflicts). Conflicts occur if span(ST ) ⊃ span(R(µ, µe), N
T ), i. e. if the system

is not kinetically conflict-free. As is discussed in the example, there are two possibilities for
resolving possible conflicts: (1) Unclamping of potentials means to move a row of the matrix S
to the matrix N . Thus, the space span(R(µ, µe), N

T ) gets larger and the space span(ST ) gets
smaller. (2) If one sets resistances Rj of reactions in a conflicting pathway to strictly positive
values, the span(R(µ, µe), N

T ) gets larger, but the space span(ST ) does not change. Thus, by
correcting the model in these ways, one eventually arrives at a structurally conflict-free system
description with span(ST ) ⊆ span(R(µ, µe), N

T ).

§ 4.66 (Assumption of non-conflicting µe). We discussed above that systems with conflicts
between clamped chemical potentials coupled by rapid-equilibrium assumptions are physically
meaningless. In a thermodynamic model M such conflicts can be easily resolved. Thus, for
further analysis we may assume that no conflicts between clamped variables and the rapid-
equilibrium assumption occur and that the system is kinetically conflict free. Because we
assume a constant column space of R(µ, µe), this assumption is equivalent to the assumption
that for every value of the clamped potentials µe the equation

R(µ, µe) J +NT µ+ STµe = 0

has at least one solution (J, µ).

§ 4.67 (Consistent initial conditions µ0 and µe,0). We discussed above that Corollary 4.61
restricts the combination of rapid-equilibrium assumptions and the clamping of chemical po-
tentials. It also restricts possible initial conditions. If the relation given in Corollary 4.61 is
violated by the initial conditions µ0 and µe,0, no solution starting at µ0 and µe,0 exists.
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Example 4.68. Consider the network A
1−⇀↽− B

2−⇀↽− C with R1 > 0 and rapid equilibrium for
reaction 2 (R2 = 0). This means that µB = µC . Thus, we cannot have initial conditions
µB,0 6= µC,0.

§ 4.69 (Choice of initial conditions). The consistency conditions for initial chemical potentials
µ0 form a linear equation system. Thus, from a mathematical point of view, it is not difficult
to choose consistent initial conditions. However, it may be rather tedious since the consistency
conditions depend on the clamped potentials µe,0 and on the null space of the resistance matrix
R. Both properties typically change during the modeling process or even from simulation to
simulation. Often a modeler does not want to spend too much effort in the choice of initial
conditions. An implementation of the model reduction method should support the computation
of consistent initial conditions from user-supplied, potentially inconsistent initial conditions. In
the following paragraph, we develop an easily automatable method for the computation of
consistent initial conditions.

§ 4.70 (Computing consistent initial conditions from inconsistent initial conditions). Systems
with initial conditions that are not near the thermodynamic equilibrium of the rapid reactions
undergo rapid relaxation dynamics. In the short relaxation time, the fast fluxes go to equilibrium
and the effect of the slow and the clamped fluxes is negligible. Let TJ,2 be a kernel matrix of R
with RTJ,2 = 0. The rows of TJ,2 span the space of rapid fluxes. During the relaxation time of
the rapid fluxes we can neglect the slow fluxes and we have J ∈ span(TJ,2). We further neglect
the clamped fluxes and thus get ċ ∈ span(N TJ,2). During the relaxation time the conservation
relation Tc,1 c = Tc,1 c0 holds. Here, Tc,1 is a left kernel matrix of N TJ,2 with Tc,1N TJ,2 = 0.
Let µ′0 and µ0 be the user-specified, inconsistent initial conditions and the adapted, consistent
initial conditions, respectively. From the invariance of the conservation relations, we have that
Tc,1 c(µ0, µe,0) = Tc,1 c(µ

′
0, µe,0). From RJ = ∆µ we conclude further that consistent initial

conditions fulfill the equilibrium condition T TJ,2 ∆µ = −T TJ,2 ST µe,0 − T TJ,2NT µ0 = 0. These two
equations allow the numerical computation of consistent initial conditions µ0 from user-defined,
inconsistent initial conditions µ′0.

Corollary 4.71 (Possible non-uniqueness of the fluxes J). Let M be a thermodynamic system
with a singular R(µ, µe) and let

X = null(R) ∩ null(N) 6= {0}.

Let ∆J(t) be an arbitrary trajectory in X, i. e. ∆J(t) ∈ X for all t. Further, let c(t), µ(t), ∆µ(t)

and J(t) be a solution of M for given inputs µe(t) and Je(t). Then, the trajectory characterized
by c(t), µ(t), ∆µ(t) and J(t) + ∆J(t) is also a solution of M for the inputs µe(t) and Je(t).

Proof. The fluxes J enter the model equations in the mole balances ċ = N J +Ne Je and in the
kinetic equations RJ = ∆µ. Both equations are independent of ∆J(t):

ċ = N (J + ∆J) +NT
e Je = N J +NT

e Je

∆µ = R (J + ∆J) = RJ.
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Thus, if the flux vector J fulfills these two equations, the flux vector J + ∆J also fulfills the
equations.

Example 4.72 (Non-unique fluxes). The case discussed in Corollary 4.71 occurs if all reactions
in a stoichiometric cycle have resistance 0. Consider a system with the reactions

J1−⇀↽−
J4−⇀↽−





(Je)−−⇀↽−−
J2J3

A B (D)

C

0

Assume that the resistance matrix is constant and diagonal with diagonal elements R1, R2, R3

and R4. For the sake of simplicity we only consider the steady state. In steady state, we have that
Je = J1−J3 = J1−J2 = J4. Stoichiometrically possible flux distributions are linear combinations
of the two flux distributions JTa = Je (1, 0, 0, 1) and JTb = Je (0,−1,−1, 1) with J = xa Ja+xb Jb
and xa + xb = 1. Their relative contributions xa and xb to the flux distribution depend on
the resistances. We have that R1 J1 = R1 Je xa = µA − µB, R2 J2 = −R2 Je xb = µB − µC and
R3 J3 = −R3 Je xb = µC − µA. Summing up the latter two equations and dividing the result by
the first equation yields (R2 +R3) Je xb = µA−µB and xa/xb = (R2 +R3)/R1, respectively. The
lower the resistance R1, the more the flux distribution Ja via reaction 1 is favored. The lower
resistances R2 and R3, the more the flux distribution Jb via reactions 2 and 3 is favored. If the
resistances along the cycle are zero R1 = R2 = R3 = 0, the ratio xa/xb is undetermined and
the model equations do not uniquely determine the fluxes J1, J2 and J3. However, the model
equations uniquely determine J4 = Je. They also uniquely determine µA, µB and µC and thus
cA, cB and cC . From R4 J4 = µB − µe,D and J4 = Je we get µB = µe,D + R4 Je. With the
equilibrium conditions this leads to µA = µB = µC = µe,D +R4 Je. Thus, the non-uniqueness is
limited to the fluxes J1, J2 and J3.

§ 4.73 (Feasibility of non-unique fluxes). In the above example, we could not determine the
ratio xa/xb for R1 = R2 = R3 = 0 . Thus, from a mathematical point of view, all xa and
xb with xa + xb = 1 define valid flux distributions. However, if we acknowledge the fact that
zero resistances are a limit case with Rj = ρj ε with ρj > 0 and ε → 0, we get the additional
condition that the ratio xa/xb = (R2 + R3)/R1 = (ρ2 + ρ3)/ρ1 is positive. Thus, xa and xb are
restricted to 0 < xa, xb < 1. This means that further physical constraints for non-unique fluxes
exist that are not modeled by the equations with Ri = 0. This thesis does not further explore
these constraints since for simulation one usually will either avoid situations with non-unique
fluxes or ignore their values.

§ 4.74 (Model-reduction of non-unique J). The reduction method that is presented below can
deal with thermodynamic models with non-unique fluxes J . The reduced-order model has a
unique solution. However, the reconstruction of the original fluxes J from the reduced fluxes J̃
is not unique.

§ 4.75 (Models with non-unique J). Corollary 4.71 and Example 4.72 show that it is problematic
to set all resistances along a cycle to zero. Then, the model equations do not contain information
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about the relative contributions of the different, stoichiometrically equivalent pathways through
the network. However, the non-uniqueness is limited to the fluxes J . Since the different possible
fluxes have the same stoichiometric effect, concentrations c, potentials µ and forces ∆µ can be
uniquely determined. Such a non-uniqueness of some model variables is unusual, but is not
necessarily problematic. Consider a network function, e. g. the production of a precursor, that
can be performed by two stoichiometrically equivalent pathways. Then, the network contains
a cycle. If the reactions in both pathways are fast compared to the time scale of interest,
the rapid-equilibrium assumption can be used. Then, the relative contributions of the two
alternative pathways to the production of the precursor cannot be determined. However, the
overall precursor production can be uniquely computed. This non-uniqueness is acceptable if
the contributions of the respective pathways are not in the focus of interest.

§ 4.76 (Avoiding non-unique fluxes J). A modeler can avoid situations with non-unique fluxes
J by removing one reaction in the cycle, or equivalently setting the resistance of one reaction in
the cycle to a strictly positive value. Then, only one branch of the cycle is used. If the relative
contributions of the different branches of the cycle are of importance, the rapid-equilibrium
assumption cannot be used for all reactions in the cycle, but one needs to assign positive values
to at least one resistance in every branch of the cycle.

§ 4.77 (Model reduction). For model reduction we transform the system with a partitioning
transformation of concentrations and fluxes into a form where ∆µ̂2 = 0 and where µ̂2 only
depends on the clamped potentials µe. Then, the equations of the second subsystem can be
easily solved and the subsystem with subscript 1 forms the reduced model. The details are
discussed in the following corollary.

Corollary 4.78 (Rapid equilibrium assumption). Let M be a kinetically conflict-free thermody-
namic model (see Definition 3.1, p. 40 and Definition 4.64, p.75). Further, let TJ = [TJ,1, TJ,2],
T Tc = [T Tc,1, T

T
c,2], Λc and ΛJ be square and invertible matrices with

RTJ,2 = 0, Tc,1N TJ,2 = 0, rank(Tc,2N TJ,2) = rank(Tc,2), Tc,1 Λc T
T
c,2 = 0, T TJ,1 ΛJ TJ,2 = 0.

Then, the dynamics of M can be reconstructed from the dynamics of the reduced system M̃ with

Ñ = Tc,1N TJ,1, S̃ = S (TJ,1 − TJ,2 inv(Tc,2N TJ,2)Tc,2N TJ,1),

Ñe = Tc,1Ne, µ̃0 = invT
Λ−1

c
(Tc,1)µ0,

c̃(µ̃, µe) = Tc,1 c(µ, µe), R̃(µ̃, µe) = T TJ,1R(µ, µe)TJ,1

where

c = c(µ, µe), µ = T Tc,1 µ̃− T Tc,2 invT (Tc,2N TJ,2)T TJ,2 S
T µe

J = TJ,1 J̃ + TJ,2 Ĵ2, ∆µ = invΛ−1
J

(T TJ,1) ∆µ̃

and

Ĵ2 = inv(Tc,2N TJ,2)Tc,2 (ċ−N TJ,1J̃ −Ne Je) + ∆Ĵ2

with any ∆Ĵ2(t) ∈ null(Tc,2N TJ,2).
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Proof. TransformM with the given partitioned matrices Tc and TJ (see §4.7, p. 53). The system
M1 with subscript 1 corresponds to the reduced system M̃ . The corresponding model equations
are

˙̂c1 = (Tc,1N TJ,1) Ĵ1 +(Tc,1Ne) Je,
˙̂c2 = (Tc,2N TJ,1) Ĵ1 +(Tc,2N TJ,2) Ĵ2 +(Tc,2Ne) Je,

∆µ̂1 =−(Tc,1N TJ,1)T µ̂1 −(Tc,2N TJ,1)T µ̂2−(S TJ,1)T µe,

∆µ̂2 = −(Tc,2N TJ,2)T µ̂2−(S TJ,2)T µe,

∆µ̂1 = (T TJ,1RTJ,1) Ĵ1,

∆µ̂2 = 0,

ĉ1(µ̂, µe) = Tc,1 c(T
T
c,1 µ̂1 + T Tc,2 µ̂2, µe),

ĉ2(µ̂, µe) = Tc,2 c(T
T
c,1 µ̂1 + T Tc,2 µ̂2, µe).

(4.4)

Thus, we get a linear relation

0 = ∆µ̂2 = (Tc,2N TJ,2)T µ̂2 + (S TJ,2)T µe (4.5)

of µ̂2 and µe. Because the system is kinetically conflict-free the equation RJ = −NT µ− STµe
has at least one solution µ (§4.66, p. 75). Premultiplying this equation with T TJ,2 and substituting
µ = T Tc,1 µ̃+T Tc,2 µ̂2 leads to Equation 4.5. This means that the solution vector µ̂2 of Equation 4.5
exists for every µe. The solution µ̂2 of this equation is unique because Tc,2N TJ,2 has full row-
rank. Premultiplying the equation with invTΛ(Tc,2N TJ,2) with a positive definite and symmetric
matrix Λ yields the solution

µ̂2 = − invTΛ(Tc,2N TJ,2)T TJ,2 S
T µe.

Because the solution is unique, it is independent of the choice of Λ and the subscript Λ can
suppressed. Using this result we get

∆µ̂1 = − (Tc,1N TJ,1)T︸ ︷︷ ︸
ÑT

µ̂1 − (−(Tc,2N TJ,1)T invT (Tc,2N TJ,2)T TJ,2 S
T + T TJ,1 S

T )︸ ︷︷ ︸
S̃T

µe

With these equations and using §4.8 (p. 53), the derivation of the reduced model M̃ is straight-
forward. As we already discussed before, the reconstruction of the fluxes J from the reduced
fluxes J̃ may not be unique. We can reconstruct the fluxes Ĵ2 from the balance equations
˙̂c2 = . . . in Equation 4.4. If the matrix Tc,2N TJ,2 is not quadratic, the solution is not unique.
The expression for the reconstruction of Ĵ2 that is given above can be easily derived using
Corollary 2.11 (p. 24).

§ 4.79 (Computational complexity of the reduction). The model reduction of systems with a
singular resistance matrix requires only basic operations from linear algebra (matrix multiplica-
tion and inversion). The reduction does not involve the solution of non-linear equations. Thus,
the application of the reduction method can be easily automated.
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§ 4.80 (Computation of transformation matrices). Suited matrices TJ,1, TJ,2, Tc,1, Tc,2, Λc and
ΛJ can be gained easily by computing kernel matrices and inverses: (1) Compute TJ,2 as a kernel
matrix of R with RTJ,2 = 0. If R is diagonal TJ,2 consists of unit vectors ej for every flux j
with Rjj = 0. (2) Choose an arbitrary invertible, symmetric ΛJ , e. g. ΛJ = I; compute TJ,1 as
a right kernel matrix of T TJ,2 ΛJ with T TJ,2 ΛJ TJ,1 = 0. (3) Compute Tc,1 as a left kernel matrix
of N TJ,2 with Tc,1N TJ,2 = 0. (4) Choose an arbitrary invertible, symmetric Λc, e. g. Λc = I;
compute T Tc,2 as a right kernel matrix of Tc,1 Λc with Tc,1 Λc T

T
c,2 = 0.

Since Tc,1 is constructed as a left kernel matrix of N TJ,2, the row space of Tc,1 is equal to the
left null space of N TJ,2. Since the rows of Tc,1 and Tc,2 form a basis of Ri0 , the row space of Tc,2
does not contain vectors in the left null space of N TJ,2. Thus, the matrices constructed above
fulfill the rank condition: rank(Tc,2N TJ,2) = rank(Tc,2).
If N TJ,2 has full column rank, the fluxes in the system are unique. In this case it is most con-

venient to compute Tc,2 as a left inverse of N TJ,2 with Tc,2N TJ,2 = I, i. e. Tc,2 = invTΛc
(T TJ,2N

T ).
Then, the reduced model equations and the relations for reconstruction of the original variables
get much easier than in the general form given in the corollary.

§ 4.81 (c(µ, µe) vs µ(c, ce)). Definition 3.1 (p. 40) uses the function c(µ, µe) to describe the
relation of the chemical potentials µ and the concentrations c. Alternatively, one could express
this relation by a function µ(c, ce). The following considerations show that the use of the
function c(µ, µe) is advantageous with respect to the rapid-equilibrium assumption. For the
sake of simplicity, the considerations are restricted to closed systems with µe = ().
The rapid-equilibrium conditions T TJ,2∆µ = −T TJ,2NT µ = 0 are linear in the chemical po-

tentials and thus their solution µ = T Tc,1 µ̃ is straightforward. Using this result, one can easily
express the relation of the concentrations and chemical potentials in the reduced system by
c̃(µ̃) = Tc,1 c(T

T
c,1 µ̃). In contrast, the rapid-equilibrium conditions are non-linear in the concen-

tration T TJ,2 ∆µ = −T TJ,2NT µ(c) = 0. For this reason, a parameterization c(c̃) of the solution
set of this equation with independent parameters c̃ cannot be determined easily. This means
that the rapid equilibrium assumption is more difficult to perform when using the function µ(c)

instead of c(µ) to express the relation of c and µ. For this reason, Definition 3.1 (p. 40) uses
the function c(µ, µe).

§ 4.82 (Invariance of entropy production). The entropy production is invariant under the above
described reduction. With the expressions for the reconstruction of the original variables (see
Corollary 4.78) we get

σ[s] = ∆µT J = ∆µ̃T invT
Λ−1

J
(T TJ,1) (TJ,1 J̃ + TJ,2 Ĵ2) = ∆µ̃T J̃ = σ[s̃].

§ 4.83 (Transformation of the Gibbs energy). The differential of the Gibbs energy is not in-
variant under the above described reduction: dg = µT dc = (µ̃T Tc,1 + dµTe M) dc = µ̃T Tc,1 dc+

dµTe M dc = µ̃T dc̃ + dµTe M dc = dg̃ + dµTe M dc with M = S TJ,2 inv(Tc,2N TJ,2)Tc,2. The dif-
ference occurs because the reduction removes internal compounds that are in rapid-equilibrium
with external compounds.
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4. Transformation and Reduction

Example 4.84. Consider the network X1
J1−⇀↽− X2

J2−⇀↽− X3 with ci(µi) = c◦ exp((µi−µ◦i )/(R∗ T )),
R1(µ) > 0 and R2(µ) = 0. The network is characterized by

N =

−1 0

+1 −1

0 1

 , R(µ, µe) =

(
R1(µ, µe) 0

0 0

)
.

The model can be reduced by the matrices

TJ,1 =

(
1

0

)
, TJ,2 =

(
0

1

)
, Tc,1 =

(
1 0 0

0 1 1

)
, Tc,2 =

(
0 1 −1

)
with Λc = I and ΛJ = I. This leads to µ1 = µ̃1, µ2 = µ̃2 and µ3 = µ̃2. The reduced model is
characterized by

Ñ =

(
−1

+1

)
, R̃(µ̃, µe) = R1(µ̃, µe),

(
c̃1(µ̃, µe)

c̃2(µ̃, µe)

)
=

(
c1(µ̃1)

c2(µ̃2) + c3(µ̃2)

)
.

This reduced model corresponds to a network X̃1
J̃−⇀↽− X̃2 where c̃1 = c1 and c̃2 = c2 + c3 is a pool

of X2 and X3.

4.2.3. Reduction of the Boundary Conditions

The methods for the translation of the chemical potentials (Corollary 4.10, p. 54) and the fluxes
(Corollary 4.15, p. 56) provide us with a possibility to reduce the size of the matrices S and Ne

that describe the boundary conditions of the system.

4.2.3.1. Reduction of Clamped Potentials

In certain systems with constant clamped chemical potentials, we may reduce the number of
columns of the matrix S and thus the number of clamped potentials µe by a suited translation
of the chemical potentials. Clamped chemical potentials model the boundary conditions of
open systems. One can distinguish between two kinds of clamped potentials. (1) The system
A + (ATP ) 
 B + (ADP ) + (P ) can reach thermodynamic equilibrium (∆µ = µA − µB +

µe,ATP −µe,ADP −µe,P = 0) for all values of µe,ATP , µe,ADP and µe,P . (2) In contrast the system
consisting of the reactions A + (ATP ) 
 B + (ADP ) + (P ) and A 
 B realizes a futile cycle
that will not reach thermodynamic equilibrium for µe,ATP −µe,ADP −µe,P 6= 0. The first system
class behaves similar to a closed system and thus its model can be reduced to a closed system
described by the reaction equation Ã 
 B̃. In a large system, clamped chemical potentials of
both types may occur. The following corollary describes how such systems can be treated. This
is helpful to remove ubiquitous compounds as for example water or protons from the system
description.
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4. Transformation and Reduction

Corollary 4.85 (Reduction of clamped potentials). Let M be a thermodynamic model (see
Definition 3.1, p. 40) with ST = (ST1 , S

T
2 ), µTe = (µTe,1, µ

T
e,2), and µe,2 = const. Let δµ and δµe,1

be constant vectors with NT δµ + ST1 δµe,1 + ST2 µe,2 = 0. Then, the solution of M and of a
system M̃ with

Ñ = N, S̃ = S1, Ñe = Ne,

c̃(µ̃, µ̃e) = c(µ̃− δµ, (µ̃e − δµe,1, µe,2)), R̃(µ̃, µ̃e) = R(µ̃− δµ, (µ̃e − δµe,1, µe,2)), µ̃0 = µ0 + δµ

are equivalent. The solutions ofM can be reconstructed from the solution of M̃ with the following
equations:

c = c̃ µ = µ̃− δµ, J = J̃ , ∆µ = ∆µ̃ µe,1 = µ̃e − δµe,1.

Proof. Apply Corollary 4.10 (p 54) with the translations δµ and δµTe = (δµe,1,−µe,2). Then, we
have µ̂e,2 = 0, which can be omitted.

Example 4.86. Consider a system A + (X) 
 B with ci = c◦ exp((µi − µ◦i /(R
∗ T ))) and

constant µe,X . We have NT = (−1, 1) and S = −1. We set S1 = () and S2 = −1 and get the
condition −δµA + δµB − µe,X = 0. We choose δµB = 0 and get δµA = −µe,X . The reduced
system is Ã 
 B̃ with c̃i = c◦ exp((µ̃i − µ̃◦i )/(R∗ T )), µ̃◦A = µ◦A − µe,X and µ̃◦B = µ◦B. Observe
that in the example the reduced system is closed, but the original system is open because the
clamped potential of X is reduced from the system.

§ 4.87 (Entropy production, Gibbs energy). Being a pure translation of chemical potentials,
the above reduction method preserves the entropy production, but not the Gibbs energy of the
internal compounds: dg̃ = µ̃T dc̃ = µT dc+ δµT dc = dg+ δµT dc. With suited initial conditions
this can be integrated to g̃ = g + δµT c.

§ 4.88 (Legendre Transformation). Alberty [1, 2, 3] suggests the use of Legendre transforms of
the Gibbs energy as a convenient way to study the thermodynamics of systems at constant pH
(µH+ = const), water activity (µH2O = const), ATP-ADP-energy gradient (µATP , µADP = const)
or with a constant chemical potential of other compounds. Thus, the use of Legendre transforms
and of Corollary 4.85 is equivalent because both provide a way to remove compounds with a
constant clamped potential from the system description. In order to understand the relation of
Corollary 4.85 to the use of Legendre transforms, it is instructive to consider the total Gibbs
energy of the internal and external compounds gtot. For the sake of simplicity, we assume
that µe,2 ∈ R1 and µe,1 = (). Then, gtot is defined by dgtot = µT dc + µe,2 dce,2 where ce,2 is
the concentration of the clamped compound. The total Gibbs energy of the reduced system
is given by dg̃tot = µ̃T dc̃ = dgtot + δµT dc − µTe,2 dce,2. Let a ∈ Ri0 be a vector such that
NT a + STe,2 = 0. Then, a possible choice for the translation vector is δµ = −a µe,2 and one
gets dg̃tot = dgtot − µe,2 (aT dc + dce,2). Note that the expression cc = aT c + ce,2 describes a
conserved moiety of the system defined by the stoichiometric matrices N and Se,2. For constant
µe,2, it follows from dg̃tot = dgtot − µe,2 dcc that g̃tot = gtot − µe,2 cc. In this representation, one
sees that g̃tot is a Legendre transform of gtot (see [1–3, 23]). This means that the application of
Corollary 4.85 is equivalent to the use of a Legendre transform of the Gibbs energy.
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4. Transformation and Reduction

4.2.3.2. Reduction of Clamped Fluxes

Similarly to the reduction of the size of S by a translation of chemical potentials, we also may
reduce the number of columns of Ne by a translation of fluxes. This is equivalent to the pooling
of clamped fluxes.

Corollary 4.89. Let M be a thermodynamic model (see Definition 3.1, p. 40) with a partitioned
matrix Ne = (Ne,1, Ne,2) and vector JTe = (JTe,1, J

T
e,2). Let δJ and δJe,1 be vectors with N δJ +

Ne,1 δJe,1 +Ne,2 Je,2 = 0 and RδJ = 0. Then, the solution of M and of a system M̃ with

Ñ = N, S̃ = S, Ñe = Ne,1,

c̃(µ̃, µ̃e) = c(µ̃, µ̃e), R̃(µ̃, µ̃e) = R(µ̃, µ̃e), µ̃0 = µ0

are equivalent. The solutions ofM can be reconstructed from the solution of M̃ with the following
equations:

c = c̃ µ = µ̃, J = J̃ − δJ, ∆µ = ∆µ̃, Je,1 = J̃e − δJe,1.

Proof. Apply Corollary 4.15 (p. 56) with the translations δJ and δJTe = (δJe,1,−Je,2). Then,
we have Ĵe,2 = 0, which can be omitted.

Example 4.90 (Non-singular R). Consider a system with 0
(Je,1)−−−⇀↽−−− A and 0

(Je,2)−−−⇀↽−−− A. Then, we
have Ne = (1, 1). We set Ne,1 = 1 and Ne,2 = 1. Thus, we have δJe,1 = −Je,2. The reduced

system is 0
J̃e,1−−⇀↽−− A with J̃e,1 = Je,1 +Je,2. Thus, in this case, the reduction method is equivalent

to a simple pooling of clamped fluxes.

Example 4.91 (Singular R). Consider a system with 0
(Je)−−⇀↽−− A

R=0−−⇀↽−− (B) (see Example 4.18,
p. 56). We have that N = −1, Ne = 1, S = 1 and R = 0 and choose Ne,1 = () and Ne,2 = 1.
Thus, we have δJ = Je. The reduced system is A

R=0−−⇀↽−− (B). In this example, an open system
could be reduced to a closed system. By applying Corollary 4.78 (p. 78) we could further reduce
the system.

§ 4.92 (Entropy production, Gibbs energy). Being a pure translation of fluxes, the above
reduction method preserves the entropy production and the Gibbs energy (see §4.16, p. 56).

4.3. Conclusions and Discussion

This chapter introduced a series of model transformation and model reduction methods for
thermodynamic models. According to Definition 3.1 (p. 40), a thermodynamic model M is
characterized by a set of matrices and functions: The stoichiometric matrix N defines how the
reaction fluxes act on the compounds. The stoichiometric matrices S and Ne define how the
clamped potentials and fluxes act on the system. These matrices model the boundary conditions
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compound based reaction based
conservation relations (Section 4.2.1.1) stoichiometric cycles (Section 4.2.1.2)
NT v = 0, NT

e v = 0 N v = 0, S v = 0

thermodynamic submodel (Section 4.2.2.1, kinetic submodel (Section 4.2.2.2,
quasi-steady state assumption) rapid- equilibrium assumption)
(∂c/∂µ) v = 0 Rv = 0

clamped potentials (Section 4.2.3.1) clamped fluxes (Section 4.2.3.2)
NT v1 + STv2 = 0 N v1 +Ne v2 = 0

Table 4.1.: Rank deficiencies of system matrices and the according reduction methods. The
reduction methods are applicable if vectors v, v1 and v2 exist such that the conditions
given in the table are fulfilled.

of the system. The resistance matrix R(µ, µe) characterizes the relation of the thermodynamic
forces and the fluxes. The thermodynamic state function c(µ, µe) gives the relation of the
chemical potentials and the concentrations. Thus, the matrix ∂c/∂µ relates the changes of
chemical potentials and concentrations.
The functions and matrices describing a thermodynamic model can be transformed into other

coordinates such that the trajectories of the transformed and of the original model are equiva-
lent. The transformation methods introduced in Section 4.1 (p. 51) are designed such that the
transformed system can be written as a thermodynamic model. Based on the transformation
methods, Section 4.2, (p. 57) derived model reduction methods. Model reduction is possible if
the matrices describing a thermodynamic model have rank deficiencies. In this way, we can
reduce the stoichiometric, kinetic and thermodynamic submodel, as well as the boundary con-
ditions. We can derive an equivalent model with smaller, full-rank matrices and less variables.
The following paragraphs compare the different model reduction methods and discuss their
practical usability.

§ 4.93 (Duality of the reduction methods). The methods for the reduction of singular network
matrices appear in pairs (see Table 4.1). One method in a pair is associated with properties
of compounds and one with properties of fluxes. The methods in a pair are partly dual to
each other, in the sense that there are similarities in their application. However, the duality is
not strong in the sense that the solution of a problem is equivalent to the solution of its dual
problem.

§ 4.94 (Application and usability of the reduction methods). Model reduction is performed for
three main reasons: (1) simplification of the simulation equations; in particular, reduction of the
numbers of state variables; (2) reduction of the number of parameters; in particular, reduction of
the badly identifiable parameters; and (3) reduction of the stiffness of the equations. However,
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reduction of the reduction of the number of reduction of computationally
state variables parameters stiffness cheap

conservation relations + - - -
stoichiometric cycles - - - -

thermodynamic submodel + + + -
kinetic submodel + + + +

clamped potentials - - - +
clamped fluxes - - - +

Table 4.2.: Comparison of the reduction methods.

these advantages have to be seen in comparison to the computational costs of the reduction.
Some of the developed reduction methods require the solution of a nonlinear equation which
can be computationally expensive. The following paragraphs discuss these critical points for
the reduction methods. The results of the discussion are collected in Table 4.2.

§ 4.95 (Reduction of the number of state variables). The state variables of the simulation equa-
tions are the chemical potentials µi or the concentrations ci (see §3.5, p. 41). The dimension of
the simulation equations depends on the number of compounds i0. The reduction of stoichio-
metric cycles lowers the number of reactions but not the number of compounds. The reduction
of conservation relations lowers the number of compounds i0 by the number of conservation
relations. The number of compounds i0 is also lowered by the reduction of the thermodynamic
and the kinetic subsystems, i. e. the quasi-steady-state and the rapid-equilibrium assumption.
The reduction of boundary conditions only lowers the number of inputs to the system.

§ 4.96 (Reduction of the number of thermodynamic and kinetic parameters). The parameters of
thermodynamic models are the stoichiometric coefficients and the parameters of the functions
c(µ, µe) and R(µ, µe). Table 4.2 only refers to the number of parameters of the functions
c(µ, µe) and R(µ, µe). The stoichiometric coefficients are usually much better known than these
parameters and thus the knowledge of thermodynamic and kinetic parameters is the limiting
factor for modeling. A reduction of the number of parameters is particularly advantageous
if one does not need to assess the parameter values of the original model to formulate the
reduced model, i. e. if one does not need a fully parameterized detailed model to derive the
reduced model. Then, one can perform reduced-order modeling rather than model reduction.
The reduction of boundary conditions and of the stoichiometric submodel lower the size of the
stoichiometric matrices and thus only the number of stoichiometric coefficients. The reduction of
the thermodynamic and the kinetic subsystems are always approximative because real systems
do not have singular matrices R and ∂c/∂µ. In natural coordinates, these matrices are diagonal
and non-singular. For the approximation of non-singular matrices R or ∂c/∂µ by singular ones,
one does not need to assess all elements of these matrices. In particular, the exact values of
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the small entries in the vector c(µ, µe) and the matrix R(µ, µe) need not to be known. It is
sufficient to know that these entries are small enough to be approximated by zero. Thus, the
methods for the reduction of the thermodynamic and the kinetic submodel provide a possibility
for reduced-order modeling because they allow the formulation of the reduced model without
quantitative knowledge of all parameters of the original model.

§ 4.97 (Reduction of the stiffness). A differential equation system is stiff if it describes dynamics
at a fast and at a slow time scale. Models of reaction networks tend to be stiff because kinetic
constants can vary over a large range. Although the matrices R and ∂c/∂µ are in real systems
always positive definite, they are often nearly singular such that the system is stiff. If it
is possible to approximate the system dynamics using singular matrices R and ∂c/∂µ, the
stiffness can be reduced by the introduced model reduction methods. Thus, the reduction of
thermodynamic and the kinetic submodel leads to a reduction of the stiffness of the equations.
The other model reduction methods do not change the stiffness of the system.

§ 4.98 (Computational costs of reduction). The methods for the reduction of the kinetic sub-
model and of the clamped potentials and fluxes only involve the solution of linear equations
with constant coefficients. For this reason, the application of these methods is computationally
cheap. To compute the reduced resistance matrix during a reduction of stoichiometric cycles,
one needs to compute the inverse of T TJ,2R(µ̃, µe)TJ,2. This computation should be performed
symbolically because R(µ̃, µe) is in general not constant. Thus, this is a problematic, compu-
tationally expensive step. The methods for the reduction of conservation relations and of the
thermodynamic submodel involve the solution of nonlinear equation systems. In the case of a
reduction of conservation relations, this system is usually uniquely solvable. For the reduction
of the thermodynamic submodel, the solution neither always exists nor is always unique. An
alternative to the symbolic solution of the non-linear equations before the simulation is the nu-
merical solution during the simulation. Then, the model equations form a differential-algebraic
equation system. This system has as many state variables as the original system, but the ap-
plication of the reduction method may nevertheless be advantageous. The reduction of the
kinetic submodel reduces the stiffness of the system and thus increases the minimal step size
for simulation. A model with conservation relations contains limit-stable eigenmodes (“poles
at zero”) and thus the Jacobian of the system is singular. This leads to problems with some
implementations of numerical analysis methods (e. g. integration with sensitivity analysis and
continuation methods). The reduced model does not contain a limit-stable eigenmode, and thus
has a non-singular Jacobian. This means that a reduction of the thermodynamic submodel and
a reduction of conservation relations may be sensible, even if the computational costs are high.

§ 4.99 (Approximation quality). The reduction of conservation relations and of the thermody-
namic and kinetic submodel decrease the number of state variables of the system. For systems
with rank-deficiencies of certain matrices (see Table 4.1) the reduced order model allows an
exact reconstruction of the dynamics of the original model. In natural systems, the respective
matrices usually do not have a rank deficiency but only are ill-conditioned. The original system
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needs to be approximated by a system with rank deficient matrices before applying these meth-
ods. This work only develops methods to derive the reduced models from the approximated,
singular models, but does not intend to predict the approximation quality. The latter problem
is in general very hard and for large, non-linear models it is impossible to develop a general
and generic method to predict the approximation quality. This is explained in the following
paragraphs.

§ 4.100 (Approximation quality – conservation relations). If open systems are considered, a
system does usually not contain real conservation relations. Substances with low production
or consumption rates whose amounts do not change considerably in the relevant time scale
are treated as conservation relations. An example for this are total enzyme concentrations in
a model that neglects enzyme synthesis and degradation. If the production and consumption
rates tend to zero, the behavior of the original model tends towards the behavior of the reduced
model. However, without a thorough analysis of the system dynamics, it is not possible to assess
the approximation quality. Depending on the sensitivity of the system, even a small production
or consumption rate could lead to a largely different system behavior. For this reason, it is not
possible to derive a generic measure for the anticipated approximation quality.

§ 4.101 (Approximation quality – thermodynamic and kinetic submodel). In natural systems,
the matrices ∂c/∂µ and R are always non-singular. Thus, a reduction method based on the
assumption of singularity is always approximative. In general, it is not guaranteed that the
reduced and original models show a qualitatively similar behavior. Consider a non-singular
system Mε with a small parameter ε > 0 that tends towards a singular system M0 as ε tends to
zero. For an ideal dilute solution with mass-action kinetics, the parameter ε could be a small
resistance Rj or a small derivative ∂ci/∂µi. Let ξ(ε, t) and ξ(0, t) be the solutions of these
models with equal initial conditions ξ(ε, 0) = ξ(0, 0). Tikhonov’s Theorem (see e. g. Heinrich
and Schuster [45], Wasow [103]) gives a sufficient condition for the convergence of the solutions,
i. e. for limε→0 ξ(ε, t) = ξ(0, t). For non-linear systems the conditions of Tikhonov’s Theorem
are difficult to check since they involve the stability analysis of a non-linear system. Thus, for
models of larger systems with partly unknown parameters it is virtually impossible to prove if
the singular system behaves similar to the non-singular system as ε tends to zero.
If the conditions of Tikhonov’s Theorem are fulfilled, it is guaranteed that a nearly singular

system Mε can be approximated by a singular system M0 for ε → 0. However, the theorem
does not make any assertions concerning the approximation quality for a finite ε. Additionally,
the value of ε can usually not be experimentally assessed as small resistances Rj or small
∂ci/∂µi lead to fast dynamics. For this reason, these parameters can often not be determined
quantitatively by a measurement on a slow time scale. Measurements on a slow time scale can
only show that ε is small. Thus, even if it is possible to check the conditions of Tikhonov’s
Theorem, it is not clear if the approximation is justified. In the rare cases where the value of
the small parameter ε is known, the approximation quality can be checked after the reduction
by comparing the simulation results.
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§ 4.102 (Reduced-order modeling – quantitative and qualitative parameters). The above two
paragraphs explained why it is not possible to develop generic and computationally feasible
criteria that guarantee a good approximation quality for the reduction of the thermodynamic
and kinetic submodel of non-singular models and for the reduction of conservation relations
in open systems. Thus, the approximative model reduction techniques can normally only be
applied “blindfold”, i. e. without guarantees for the approximation quality. However, it is
important to note that this is done anyhow in any modeling work. Most biochemical species
are not elementary chemical species but pools of isomers or differentially protonated species.
For modeling purposes it is assumed that these species are in equilibrium with each other
(see Alberty [1, 2, 3]). Similarly, biochemical reactions are not elementary reaction steps but
are composed from simpler reaction steps that are connected via quasi-stationary intermediate
complexes. Thus, most if not all modeling efforts rely on an implicit, a priori reduction of
the kinetic and thermodynamic submodel. The validity of the approach is usually implicitly
assumed rather than formally checked.
From this perspective, the model parameters fall apart into qualitative and quantitative

parameters. Qualitative parameters determine if a certain resistance Rj or a certain ∂ci/µi can
be approximated by zero. The quantitative parameters are the parameters of the remaining non-
zero functions c(µ, µe) and R(µ, µe). In ideal dilute solutions with ideal mass action kinetics, the
quantitative parameters are the chemical standard potentials µ◦i and the factor ρ that occurs
in the resistance functions (see Section 3.3.2, p. 46). To describe the behavior of a system,
quantitative and qualitative parameters need to be estimated from the measurement data. The
proposed methods are not used for model reduction because there is no original model with
quantitative values for all parameters, but for reduced-order modeling.

§ 4.103 (Conclusions). Table 4.2 shows that the reduction of the kinetic submodel, i. e. the
rapid-equilibrium assumption, is the most usable and powerful reduction method. The other
methods either are intrinsically difficult to apply or do not lead to a significant simplification of
the model equations. This does not mean that an application of these methods is not reasonable
in special cases. However, we cannot expect to develop a general and scalable implementation
for the methods that involve the solution of nonlinear equations. Methods that do not reduce
the number of state variables or parameters have nevertheless their justification. For example,
a reduction of clamped potentials often simplifies the following steps because it is possible
to remove ubiquitous compounds as protons or ADP from the system. The approximative
reduction methods do no require the knowledge of the parameter values that can be reduced.
Thus, the proposed methods are reduced-order modeling methods rather than model reduction
methods.
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The previous chapter introduced a thermodynamic formalism for the mathematical modeling
of chemical reaction networks. Methods for transformation and reduction of such models were
presented. In particular, the reduction of the kinetic submodel by the rapid-equilibrium as-
sumption is a promising tool to simplify models of large networks.
However, the application of the thermodynamic formalism to real systems is difficult because

even for simple systems the mathematical expressions c(µ, µe) and R(µ, µe) are complex. The
high complexity of the model equations makes it very cumbersome to treat example systems
without the help of computers and even complicates the use of computer programs for symbolic
computations. Numerical simulation suffers from the removable singularity in the expression of
the ideal resistance function R◦ that is part of most resistances (see Definition 3.22, p. 47).
This chapter introduces the thermokinetic modeling (TKM) formalism, which is also called the

Thermodynamic-Kinetic Modeling (TKM) formalism. It is directly derived from thermodynamic
modeling and thus guarantees the thermodynamic feasibility of the model equations. However,
the model equations are much simpler. Thus, the thermokinetic formalism is much better
suited for modeling and model analysis. In the thermokinetic modeling formalism, we replace
the chemical potentials µi and the thermodynamic forces ∆µj by thermokinetic potentials ξi and
forces Fj. In the simplest case of mass-action kinetics in ideal dilute solutions, thermokinetic
potentials ξi and forces Fj are proportional to concentrations ci and fluxes Jj, respectively. This
leads to constant thermokinetic resistances and thermokinetic functions ci(ξ, ξe) that are linear
in the thermokinetic potentials ξi.
A preliminary version of the TKM formalism was published in Ederer and Gilles [32].

5.1. Thermokinetic Potentials, Forces and Resistances

Definition 5.1 (Thermokinetic potential ξi). The thermokinetic potential ξi of the compound
Xi is defined by

ξi = exp
( µi
R∗ T

)
.

Definition 5.2 (Thermokinetic capacity Ci). The thermokinetic capacity Ci of the compound
Xi is defined by Ci = ci/ξi or equivalently ci = Ci ξi.

§ 5.3 (Relation of µi and ξi). From the above definition we get directly:

µi = R∗ T log(ξi).
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In differential form we have that

dξi =
1

R∗ T
exp

( µi
R∗ T

)
dµi, dµi =

R∗ T

ξi
dξi.

§ 5.4 (Function c(ξ, ξe) vs c(µ, µe)). The information content of the functions c(µ, µe) and
c(ξ, ξe) is equal, since ξ and µ are in a one-to-one correspondence. TKM uses the function
c(ξ, ξe) instead of c(µ, µe), since this simplifies the treatment of ideal dilute solutions.

§ 5.5 (c(ξ, ξe) in ideal dilute solutions). In ideal dilute solutions with the relation µi = µ◦i +

R∗ T log(ci/c
◦) we get the function

ci(ξ, ξe) = c◦ exp

(
− µ◦i
R∗ T

)
︸ ︷︷ ︸

Ci

ξi.

Here, the thermokinetic capacity Ci is a ξ-independent constant and thus a constant parameter
of the system.

§ 5.6 (Equilibrium constants in ideal dilute solutions). Using the relation in §5.5, the equi-
librium constant of a reaction in an ideal dilute solution (see §2.51, p. 33) can be written in
dependency on the capacities Ci:

Keq,j =
k+j

k−j
= exp

(
−
∑i0

i=1 νij µ
◦
i

R∗ T

)
=

i0∏
i=1

(ceq,i
c◦

)νij

=

i0∏
i=1

(
Ci
c◦

)νij

.

In vector notation we have

Keq = exp

(
−N

T µ◦

R∗ T

)
= NT#

(ceq
c◦

)
= NT#

(
C

c◦

)
where N is the matrix of the stoichiometric coefficients νij and # denotes the lin-log product
(Definition 2.17, p. 25).

§ 5.7 (Relation of ∂c/∂µ and ∂c/∂ξ). The Jacobians of the two functions c(µ, µe) and c(ξ, ξe)
are related by

∂c

∂µ
=

1

R∗ T

∂c

∂ξ
diag(ξi),

∂c

∂ξ
= R∗ T

∂c

∂µ
diag(ξ−1

i ).

This follows directly from §5.3.

Definition 5.8 (Thermokinetic force Fj). The thermokinetic force Fj along the reaction∑
i∈Ej

νE,ij Xi 

∑
i∈Pj

νP,ij Xi

is defined as

Fj =
∏
i∈Ej

ξ
νE,ij

i︸ ︷︷ ︸
FE,j

−
∏
i∈Pj

ξ
νP,ij

i︸ ︷︷ ︸
FP,j

where FEj
and FPj

are the thermokinetic forces exerted by reactants and products, respectively.
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§ 5.9 (Relation of ∆µE/P,j and FE/P,j). The thermokinetic and thermodynamic forces exerted
by reactants and products (see §2.38, p. 30) are related by

FE,j = exp

(
∆µE,j
R∗ T

)
, ∆µE,j = R∗ T log(FE,j),

FP,j = exp

(
∆µP,j
R∗ T

)
, ∆µP,j = R∗ T log(FP,j).

In differential form we have:

dFE,j =
1

R∗ T
exp

(
∆µE,j
R∗ T

)
d∆µE,j, d∆µE,j =

R∗ T

FE,j
dFE,j,

dFP,j =
1

R∗ T
exp

(
∆µP,j
R∗ T

)
d∆µP,j, d∆µP,j =

R∗ T

FP,j
dFP,j.

These conversion formulas are equivalent to the formulas for the conversion between µi and ξi
in §5.3.

§ 5.10 (Sign of Fj). The thermokinetic force Fj has the same sign as the thermodynamic force
∆µj:

sign(Fj) = sign(∆µj).

Proof. Observe that R∗ T log(FE,j) = ∆µE,j and R∗ T log(FP,j) = ∆µP,j. Because the loga-
rithm is a monotonic function, this proves the assertion.

§ 5.11 (Relation of ∆µ and F ). The thermodynamic force ∆µj and the thermokinetic force Fj
are related via the ideal resistance function. From Definition 3.22 (p.47) it follows directly that

R∗ T ·R◦
(

∆µE,j
R∗ T

,
∆µP,j
R∗ T

)
=

∆µj
Fj

.

In matrix notation, we have that

∆µ = R∗ T R◦ F,

where R◦ is the diagonal matrix of the ideal mass-action resistances for the reactions.

§ 5.12 (Relation of F and J). With the above notation and with RJ = ∆µ, we can directly
derive that

(R∗ T R◦)
−1R︸ ︷︷ ︸

R̄

J = F.

This allows defining the thermokinetic resistance matrix R̄.
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Definition 5.13 (Thermokinetic resistances). The matrix of thermokinetic resistances R̄ is
defined by R̄ = (R∗ T R◦)

−1R where R is the matrix of thermodynamic resistances and R◦
is the diagonal matrix of the ideal mass-action resistances of the reactions. If the matrix of
thermodynamic resistances R is diagonal, the matrix of thermokinetic resistances R̄ is also di-
agonal. Then, in analogy to thermodynamic resistances (Section 3.3.2, p. 46), the thermokinetic
resistance R̄j of the reaction j is defined by R̄j = Fj/Jj or equivalently R̄j Jj = Fj.

§ 5.14 (Thermokinetic resistance of generalized mass-action kinetics). For generalized mass-
action kinetics in ideal dilute solutions, the thermokinetic resistance matrix is diagonal. Sec-
tion 3.3.2 (p. 46) derived an expression for the thermodynamic resistance of generalized mass-
action kinetics: Rj = ρj(k, µ)R◦(∆µE,j/(R

∗ T ),∆µP,j/(R
∗ T )) where ρj(k, µ) is a function that

defines the deviation from the ideal mass-action behavior. Thus, the thermokinetic resistance
is R̄j = Rj/(R

∗ T R◦(∆µE,j/(R
∗ T ),∆µP,j/(R

∗ T ))) = ρj(k, µ)/(R∗ T ). With the expression for
ρj(k, µ) given in Section 3.3.2 (p. 46) and the expression for Ci given in §5.5 (p. 90), this can be
written in dependence of the capacities Ci, the kinetic parameters k±j and the function fj(k, c):

R̄j(ξ, ξe) = k−1
+j

∏
i∈Ej

(
Ci
c◦

)−νE,ij

(fj(k, c(ξ, ξe)))
−1

= k−j
∏
i∈Pj

(
Ci
c◦

)−νP,ij

(fj(k, c(ξ, ξe)))
−1.

(5.1)

§ 5.15 (Thermokinetic resistance of ideal mass-action kinetics). For ideal mass-action kinetics
with f(c, k) = 1, the thermokinetic resistance matrix is diagonal and the diagonal elements
R̄j are constant. These constant diagonal elements are system parameters. Compared to the
use of thermodynamic resistances, the use of thermokinetic resistances strongly simplifies the
treatment of such rate laws. This is highly comfortable because the ideal mass-action law is an
elementary kinetic rate law that is widely used for the description of biochemical networks.

§ 5.16 (Thermokinetic resistance of Michaelis-Menten type kinetics). Simple enzyme-catalyzed
reactions A 
 B can often be described by the generalized mass-action law J = cE (k+ (cA/c

◦)−
k− (cB/c

◦))/(k0/c
◦ + kA cA/c

◦ + kB cB/c
◦), where k±, k0, kA and kB are kinetic parameters

and cE is the enzyme concentration (cf. Example 3.24, p. 48). Here, the function f(k, c) is
f(k, c) = cE/(k0/c

◦ + kA cA/c
◦ + kB cB/c

◦). The thermokinetic resistance can be written as
R̄ = c◦/(k+ f(k, c)CA) = (ρ0 + ρA ξA + ρB ξB)/cE where ρ0 = k−1

+ C−1
A k0, ρA = k−1

+ kA and
ρB = k−1

+ C−1
A CB kB are constant, positive system parameters. Thus, the thermokinetic resis-

tance consists of a part that is independent from the thermokinetic potentials of reactants and
products plus a linear combination of the thermokinetic potentials of reactants and products.
More complex reaction mechanisms typically lead to resistances that are polynomial in the
thermokinetic potentials. The thermokinetic resistance is typically inversely proportional to
the enzyme concentration.

Example 5.17 (Thermokinetic model). Consider a system of two reactions with A
1−⇀↽− B

2−⇀↽−
C + D. We assume an ideal dilute solution with the relation ci = exp((µi − µ◦i )/(R

∗ T ))

92



5. Thermokinetic Modeling

where the standard potentials µ◦i are constant system parameters. Ideal mass action kinet-
ics are modeled by the thermodynamic resistances R1 = ρ1R◦(µA/(R

∗ T ), µB/(R
∗ T )) and

R2 = ρ2R◦(µB/(R
∗ T ), (µC + µD)/(R∗ T )) where ρ1 and ρ2 are constant system parameters.

The thermokinetic capacities Ci are constant and given by Ci = c◦ exp(−µ◦i /(R∗ T )). The
thermokinetic resistances R̄1 = ρ1/(R

∗ T ) and R̄2 = ρ2/(R
∗ T ) are constant as well. Thus, we

get the thermokinetic model equations:

ċA = −J1, ċB = J1 − J2, ċC = ċD = J2

with

ci = Ci ξi for i ∈ {A,B,C,D}

and

R̄1 J1 = F1 = ξA − ξB, R̄2 J2 = F2 = ξB − ξC ξD.

These model equations can be simplified to the simulation equations:

CA ξ̇A =−(ξA − ξB)/R̄1,

CB ξ̇B = +(ξA − ξB)/R̄1 −(ξB − ξC ξD)/R̄2,

CC ξ̇C = CD ξ̇D = +(ξB − ξC ξD)/R̄2

with the state vector (ξA, ξB, ξC , ξD) and the system parameters CA, CB, CC , CD, R̄1 and R̄2.
This thermokinetic representation is much more simple than the corresponding thermodynamic
model.

Above we introduced thermokinetic capacities and resistances as an alternative set of param-
eters for kinetic models. The following two paragraphs discuss their relation to the traditional
mass-action parameters.

§ 5.18 (Computation of the kinetic parameters from the thermokinetic resistances and ca-
pacities). In an ideal dilute solution with generalized mass-action kinetics, the capacities Ci
are constant and the thermokinetic resistance matrix is diagonal. The diagonal elements
R̄j(k, ξ1, . . . ξi0) may depend on further system parameters k and the thermokinetic potentials
ξ. If the thermokinetic capacities and resistances of a reaction j are known, its generalized
mass-action parameters k±j and fj(p, c) can be computed by

k+j =
1

k̂

∏
i∈Ej

(
Ci
c◦

)−νE,ij

, k−j =
1

k̂

∏
i∈Pj

(
Ci
c◦

)−νP,ij

, fj(k, c) =
k̂

R̄j(k, C
−1
1 c1 . . . C

−1
i0
ci0)

where k̂ > 0 is an arbitrary positive constant. This expression results from substituting
ξi = ci/Ci into Jj = Fj/R̄j and comparing the result with a generalized mass-action kinet-
ics (Definition 2.49, p. 33). The choice k̂ = R̄j and fj(k, c) = 1 is convenient if the resistance
R̄j is constant.
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§ 5.19 (Computation of the thermokinetic resistances and capacities from the kinetic param-
eters). The thermokinetic capacities can be computed from the chemical standard potentials
Ci = c◦ exp(−µ◦i /(R∗ T )). The chemical standard potentials, or more precisely the Gibbs en-
ergies of formation, are tabulated for many important metabolites [1, 36]. However, for many
networks, e. g. for signal transduction networks, no such data is available. If a kinetic model
with generalized mass-action laws is available, the thermokinetic capacities and resistances can
be alternatively computed from the generalized mass-action parameters k±j and fj(k, c).
The thermokinetic capacities determine the equilibrium point and can be computed from

the equations in §5.6 (p. 90). For given equilibrium constants Keq,j, capacities Ci only exist
if the generalized Wegscheider conditions (see §2.52, p. 33) are fulfilled. Otherwise, the given
parameters k±j describe a physically infeasible system. If the generalized Wegscheider conditions
are fulfilled, the equation system in §5.6 contains rank(N) independent relations for i0 unknown
capacities. This system is undetermined because rank(N) < i0. For each of the di0 = i0 −
rank(N) conservation relations of the system, the modeler has one degree of freedom to choose
the capacities. Different choices lead to models that are related by a translation of chemical
potentials (Section 4.1.2.1, p. 54). If the capacities are known, the thermokinetic resistances
can be computed with Equation 5.1 (p. 92).

Example 5.20 (Model of the PTS dynamics). In the following example we derive the capacities
and resistances for a model of the Escherichia coli Phosphotransferase System (PTS) based on
the model from Rohwer et al. [87]. We use the reference concentration c◦ = 1 µM, since the
concentrations of the PTS proteins are in this order of magnitude. The model contains the
following reactions

(PEP ) + EI
k+1=1960 µM min−1

−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−
k−1=480000 µM min−1

Pyr·P ·EI
k+2=108000 µM min−1

−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−
k−2=294 µM min−1

(Pyr) + EI·P

EI·P +HPr
k+3=14000 µM min−1

−−−−−−−−−−−−⇀↽−−−−−−−−−−−−
k−3=14000 µM min−1

EI·P ·HPr
k+4=84000 µM min−1

−−−−−−−−−−−−⇀↽−−−−−−−−−−−−
k−4=3360 µM min−1

EI +HPr·P

HPr·P + IIA
k+5=21960 µM min−1

−−−−−−−−−−−−⇀↽−−−−−−−−−−−−
k−5=21960 µM min−1

HPr·P ·IIA
k+6=4392 µM min−1

−−−−−−−−−−−−⇀↽−−−−−−−−−−−−
k−6=3384 µM min−1

HPr + IIA·P

IIA·P + IICB
k+7=880 µM min−1

−−−−−−−−−−−⇀↽−−−−−−−−−−−
k−7=880 µM min−1

IIA·P ·IICB
k+8=2640 µM min−1

−−−−−−−−−−−−⇀↽−−−−−−−−−−−−
k−8=960 µM min−1

IIA+ IICB·P

IICB·P + (Glc)
k+9=260 µM min−1

−−−−−−−−−−−⇀↽−−−−−−−−−−−
k−9=389 µM min−1

IICB·P ·Glc
k+10=4800 µM min−1

−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−
k−10=5.4−3 µM min−1

IICB + (Glc·P )

where the dot “·” indicates a complex of the respective species. The reaction scheme describes
how a phosphoryl group is transferred from phosphoenol-pyruvate PEP to glucose Glc via the
proteins EI, HPr, IIA and IICB. The parameters above and below of the reaction arrows are
mass-action parameters according to Definition 2.49 (p. 33) with fj(k, c) = 1. For this reason
the forward constant k+j and the backward constant k−j have the same unit. The overall
concentrations of the four occurring proteins EI, HPr, IIA and IICB are invariant. For this
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reasons, we have four degrees of freedom in choosing the capacities of the proteins. We choose

CEI = CHPr = CIIA = CIICB = 1 µM,

since the total concentrations of these proteins are in this order of magnitude. The number
of phosphoryl groups cPEP + cPyr·P ·EI + cEI·P + cEI·P ·HPr + cHPr·P + cHPr·P ·IIA + cIIA·P +

cIIA·P ·IICB + cIICB·P + cIICB·P ·Glc + +cGlc·P is also invariant and we choose

CEI·P = 1 µM.

Further, the concentrations cPEP + cPyr and cGlc+ cGlc·P are invariant and we are free to choose
in accordance with typical concentrations:

CPyr = CGlc = 1000 µM.

Alternatively, using the expression in §5.5 (p. 90), we could compute the capacities of the
metabolites phosphoenol-pyruvate PEP , pyruvate Pyr, glucose Glc and glucose-6-phosphate
Glc·P from suited tables of Gibbs formation energies, e. g. from Alberty [1] or Feist et al. [36].
The use of such tables is preferable because this guarantees a certain standardization of the
capacities and resistances that makes them exchangeable between models (cf. Definition 2.46,
p. 32). The degrees of freedom in choosing the capacities should normally only be used for
species where no information on the Gibbs formation energies is available. For the sake of
demonstration, we choose here a different approach and use the degrees of freedom to set the
capacities of PEP and Glc.
We compute the remaining capacities from the given kinetic parameters. According to §5.6

(p. 90), we have that CPyr·P ·EI = K−1
eq,2CPyr CEI·P/c◦, where Keq,2 = k+2/k−2 is the equilib-

rium constant of reaction 2. Similarly, we have CPEP = K−1
eq,1CPyr·P ·EI C−1

EI c
◦, CEI·P ·HPr =

Keq,3CEI·P CHPr/c◦ and CHPr·P = Keq,4CEI·P ·HPr C−1
EI c

◦. Performing the same calculations
for the reactions 5 to 10 we can compute all capacities:

CPEP = 666.7 µM, CPyr·P ·EI = 2.722 µM, CPyr = 1000 µM,

CEI = 1 µM, CEI·P ·HPr = 1 µM, CEI·P = 1 µM,

CHPr = 1 µM, CHPr·P ·IIA = 25 µM, CHPr·P = 25 µM,

CIIA = 1 µM, CIIA·P ·IICB = 32.45 µM, CIIA·P = 32.45 µM,

CIICB = 1 µM, CIICB·P ·Glc = 59638.7 µM, CIICB·P = 89.23 µM,

CGlc = 1000 µM, CGlc·P = 5.301× 1010 µM.

From Equation 5.1 (p. 92) we can compute the resistances, e. g. R̄1 = k−1
+1 (c◦)2C−1

PEP C
−1
EI =

k−1
−1 c

◦C−1
Pyr·P ·EI . Thus, we have two equivalent possibilities to compute R̄1. This equality can

be used as a probe for the calculated capacities, since both expressions would yield different
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reaction coordinate

E+j

energy

∆µ◦E,j

∆µ◦P,j

E−j

µ̂j

Figure 5.1.: Energy of the species along the reaction coordinate.

results if the capacities were wrong. We get

R̄1 = 0.7653× 10−6 min µM−1, R̄2 = 3.401× 10−6 min µM−1,

R̄3 = 71.43× 10−6 min µM−1, R̄4 = 11.90× 10−6 min µM−1,

R̄5 = 1.821× 10−6 min µM−1, R̄6 = 9.107× 10−6 min µM−1,

R̄7 = 35.02× 10−6 min µM−1, R̄8 = 11.67× 10−6 min µM−1,

R̄9 = 0.0431× 10−6 min µM−1, R̄10 = 0.00349× 10−6 min µM−1.

The computed capacities and resistances spread over several orders of magnitude. Depending
on the scaling of the system, this could be a hint to a potential for model reduction. We will
discuss the reduction of this model in Example 7.10 (p. 148).

5.2. Excursus: The Theory of the Activated Complex

The theory of the activated complex provides a model for the functional dependency of the
rate of simple reactions on several intensive variables as for example the temperature or the
electrical potential [9]. It is based on the assumption that a molecular collision event needs
a certain energy to trigger a reaction event. This means that the energy of the species along
the reaction coordinate has a maximum as shown in Figure 5.1. The molecular conformation
at the energy maximum is called the activated complex. The difference of the maximal energy
and the energy of the reactants and products is called the activation energy of the forward and
backward reaction, respectively.
This excursus demonstrates how the theory of the activated complex can be applied to a

thermokinetic model. For this purpose, it first introduces the thermokinetic potential of the
thermal energy, i. e. the energy of the collisions. Treating energy as a catalyst of a reaction
directly leads to the corresponding rate laws.

§ 5.21. The total differential dS = 1/T dU + p/T dV −
∑
µi/T dni (see §2.32, p. 29) shows

that 1/T is the conjugated potential of the energy in the same way as −µi/T is the conjugated
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potential of compound Xi. This motivates the definition of a thermokinetic potential of the
energy.

Definition 5.22 (Thermokinetic potential of the energy). The thermokinetic potential of the
energy ξU is defined by

ξU = exp

(
− u◦

R∗ T

)
(5.2)

where u◦ = 1 J mol−1 is the standard energy.

§ 5.23 (Extended reaction stoichiometry). Reaction events with a collision energy lower than
the activation energy do virtually not occur. Further, collisions with high energy are very
improbable compared to collisions with low energy. For this reason, we can assume that most
reaction events occur with a collision energy near the activation energy [9]. Thus, a certain
amount of energy µ̂j is needed in a stoichiometric relation. We may write an extended reaction
equation: ∑

i∈Ej

νE,ij Xi + νU,j J mol−1︸ ︷︷ ︸
µ̂j



∑
i∈Pj

νP,ij Xi + νU,j J mol−1︸ ︷︷ ︸
µ̂j

. (5.3)

It is crucial to note that the energy µ̂j is not the reaction heat. It is the collision energy that
is needed to overcome the activation barrier. Thus, the energy µ̂ is only ‘borrowed’ from the
environment and is released after the reaction event. The energy µ̂j enters the reaction equation
as a catalyst.

§ 5.24 (Rate of a reaction with an activation barrier). For the above reaction equation, we get
the thermokinetic force F = ξ

νU,j

U

∏
Ej
ξ
νE,ij

i − ξνU,j

U

∏
Pj
ξ
νP,ij

i . In an ideal dilute solution with
Ci = c◦ exp(−µ◦i /(R∗ T )), i. e. ξi = exp(µ◦i /(R

∗ T )) ci/c
◦, and ideal mass-action kinetics with

constant resistances R̄j, the reaction rates Jj read

Jj =R̄−1
j

ξνU,j

U

∏
i∈Ej

ξ
νE,ij

i − ξνU,j

U

∏
i∈Pj

ξ
νP,ij

i

 =

= + R̄−1
j exp

(
∆µ◦E,j − µ̂j

R∗ T

)
︸ ︷︷ ︸

k+j

∏
i∈Ej

(
ci
c◦

)νE,ij

− R̄−1
j exp

(
∆µ◦P,j − µ̂j

R∗ T

)
︸ ︷︷ ︸

k−j

∏
i∈Pj

(
ci
c◦

)νP,ij

.
(5.4)

§ 5.25 (Arrhenius Law). The equations for the rate constants k±j given above are known as
Arrhenius Law. The activation energies of the forward and the backward reaction are E+j =

µ̂j − ∆µ◦E,j and E−j = µ̂j − ∆µ◦P,j, respectively (see Figure 5.1). Thus, the assumption of a
constant thermokinetic resistance for a reaction equation extended by the activation energy is
equivalent to Arrhenius Law for the temperature dependency of the reaction rate.
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§ 5.26 (Butler-Volmer Equation). The transport of charged compounds between membrane-
separated compartments with different electrical potential plays a pivotal role in the cellular
metabolism. For example, many reactions in the electron transport chain are coupled to the
transport of protons across a membrane.
The reaction coordinate of transport reactions can be associated with a spatial path through

the interface between the compartments. Thus, the activated complex occurs at a specific
electrical potential. As an example, consider the passive transport of a species A with charge
number zA from a phase (′) with electrical potential φ′ to a phase (′′) with electrical potential
φ′′. The activated complex Â occurs at the electrical potential φ̂. The activation energy falls
apart in a thermal and a electrical activation energy that both need to be considered in the
extended reaction equation:

A′ + µ̂+ zA F φ̂ 
 A′′ + µ̂+ zA F φ̂

where F is the Faraday constant. The electrochemical potential of A in an ideal dilute solution
is µA = µ◦A+zA F φ+R∗ T log(ci/c

◦) . Thus, its thermokinetic capacity is CA = c◦ exp(−(µ◦A+

zA F φ)/(R∗ T )). A constant resistance R̄ leads to a rate equation that can be written in the
form

J =R̄−1
(
ξ′A ξ

(µ̂+zA F φ̂)/u◦

U − ξ′′A ξ
(µ̂+zA F φ̂)/u◦

U

)
︸ ︷︷ ︸

F

=

+ R̄−1 exp

(
µ◦A − µ̂
R∗ T

)
exp

(
(1− α)

zA F ∆φ

R∗ T

)
︸ ︷︷ ︸

k+j

c′A
c◦

− R̄−1 exp

(
µ◦A − µ̂
R∗ T

)
exp

(
−α zA F ∆φ

R∗ T

)
︸ ︷︷ ︸

k−j

c′′A
c◦

with the electrical potential difference ∆φ = φ′ − φ′′ and the transition factor α with φ̂ =

αφ′ + (1 − α)φ′′ that determines the electrical potential of the activated complex relative to
the electrical potentials of the phases (’) and (”). This is the Butler-Volmer equation as it is
used to model electrode processes and the transport of charged species [9, 93]. Thus, simple
transport reactions can be modeled by extending the stoichiometric equations by the thermal
and electrical activation energy and assuming a constant thermokinetic resistance.

§ 5.27 (Kinetic salt effect). A major source of non-ideality in biochemical networks are ionic
interactions. This means that the chemical potentials of ions depend on the ionic strength I =

(1/2)
∑

i z
2
i ci. According to the Debye-Hückel theory, the dependency can be approximated for

small concentrations and a small ionic strength by µi = µ◦i−R∗ T Az2
i (I/c◦)1/2+R∗ T log(ci/c

◦)

with A = 0.510651 at 298.15 K [1]. The activated complex X of a reaction B + C 
 D has
the charge number zX = zD = zB + zC . Thus, the stoichiometric equation extended by the
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activation energy reads

B + C + µ̂−R∗ T A (zB + zC)2 (I/c◦)1/2 
 D + µ̂−R∗ T A (zB + zC)2 (I/c◦)1/2.

With a constant resistance R̄ this leads to

J =R̄−1
(
ξB ξC ξ

(µ̂−R∗ T A (zB+zC)2 (I/c◦)1/2)/u◦

U − ξD ξ(µ̂−R∗ T A (zB+zC)2 (I/c◦)1/2)/u◦

U

)
=

+ R̄−1 exp

(
µ◦B + µ◦C − µ̂

R∗ T

)
exp

(
−A (I/c◦)1/2 (z2

B + z2
C − (zB + zC)2)

) cB
c◦

cC
c◦

− R̄−1 exp

(
µ◦D − µ̂
R∗ T

)
cD
c◦
.

This rate equation describes the kinetic salt effect, i. e. the effect of the ionic strength on the
reaction rates, in simple reactions as described in Atkins [9].

§ 5.28 (Conclusions). The theory of the activated complex can be naturally integrated in the
TKM formalism. For this purpose, one extends the stoichiometric reaction equation by the
activation energy that acts as a catalyst. The amount of activation energy may depend on
variables as the electrical potential or the ionic strength. Then, the thermokinetic force is
formulated as if the activation energy was a further reactant with thermokinetic potential ξU .
This means that activation energy is treated as if it were a chemical compound. In the simple
situations that are considered above, a constant resistance is sufficient to describe the basic
laws used to describe the dependency of the reaction rate on the temperature, the electrical
potential and the ionic strength. Thus, TKM provides a natural and unifying way to model
these dependencies.
This method can possibly be generalized to more complex situations. For example, one could

model transport reactions between compartments of different temperature and ionic strength.
Further, one could model a coupling of mass and heat flow, by assuming that the activation
energy is acquired in one compartment but released in an other. It is beyond the scope of
this work to study if the according TKM rate laws approximate the observed kinetics in such
complex situations. In any case, the use of the TKM formalism guarantees the thermodynamic
consistency of the model.

5.3. Thermokinetic Models

Section 5.1 introduced thermokinetic potentials ξ, thermokinetic forces F and the matrix of
thermokinetic resistances R̄. These quantities contain the same information as the chemical
potentials µ, thermodynamic forces ∆µ and thermodynamic resistances R, but their handling
is much easier. This holds in particular for mass-action kinetics in ideal dilute solutions. Then,
thermokinetic potentials ξi and forces Fj are proportional to concentrations ci and fluxes Jj,
respectively. Thus, model equations in these new thermokinetic variables are much simpler than
in the original thermodynamic formulation.
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The advantage of the thermokinetic formalism gets lost if non-diagonal resistance matrices
occur, e. g. after certain transformation or reduction steps, since then the ideal resistance func-
tion R◦ that is described by a complex expression appears in the off-diagonal elements of the
resistance matrix. For this reason, the further considerations are limited to diagonal resistance
matrices. It will be discussed when and how non-diagonal matrices can be avoided during
transformation and reduction.
We reformulate our original definition of thermodynamic models (Definition 3.1, p. 40) with

thermokinetic variables. Since we consider only diagonal resistance matrices, it is sufficient to
use the vector of the diagonal elements. For the sake of simplicity, we will suppress the bar ( ·̄ )
over the thermokinetic resistances from now on. Thus, we denote the vector of thermokinetic
resistances simply by R.
The thermodynamic variables µ, ∆µE and ∆µP are proportional to the logarithm of the

thermokinetic variables ξ, FE and FP , respectively. Thus, linear operations in µ, ∆µE and ∆µP
are equivalent to lin-log operations as introduced in Section 2.1.2 (p. 25).

Definition 5.29 (Thermokinetic model (TK model) of a reaction system). A thermokinetic
model M of a reaction system with i0 internal compounds, j0 internal fluxes, i0,e compounds
with clamped thermokinetic potentials and j0,e clamped fluxes is characterized by (1) stoichio-
metric matrices NE, NP ∈ Ri0×j0 , Ne ∈ Ri0×j0,e , SE, SP ∈ Ri0,e×j0 , (2) functions c(ξ, ξe) ∈ Ri0 ,
R(ξ, ξe) ∈ Rj0 and (3) initial thermokinetic potentials ξ0 ∈ Ri0 . For the functions c(ξ, ξe) and
R(ξ, ξe) we demand:

Rj(ξ, ξe) ≥ 0,(
∂c

∂ξ
diag(ξ)

)
=

(
∂c

∂ξ
diag(ξ)

)T
,

(
diag(ξ)

∂c

∂ξ

)
≥ 0

for all ξ ∈ Ri0
+ and ξe ∈ Rie,0

+ . The environment is described by clamped thermokinetic potentials
ξe(t) ∈ Ri0,e and clamped fluxes Je(t) ∈ Rj0,e . The model equations read

ċ = N J +Ne Je, F = NT
E#ξ ◦ STE#ξe −NT

P #ξ ◦ STP#ξe, c = c(ξ, ξe), R(ξ, ξe) ◦ J = F

with N = NP − NE, S = SP − SE and ξ(0) = ξ0. We formally characterize a thermokinetic
model of a reaction system by the tuple M = [NE, NP , SE, SP , Ne, c(ξ, ξe), R(ξ, ξe), ξ0].

§ 5.30 (Matrices NE, NP , SE and SP ). The above definition distinguishes between the stoichio-
metric matrices of reactants NE and SE and the stoichiometric matrices of products NP and SP .
The matrices N and S of the corresponding thermodynamic model are given by N = NP −NE

and S = SP −SE (see §2.30, p. 28). This distinction is necessary to formulate the thermokinetic
forces F .
The notation NE/P or SE/P will be used, Whenever an expression is valid for NE and NP or

SE and SP , respectively.
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Example 5.31. Consider the system of Example 5.17 (p. 92) withA
1−⇀↽− B

2−⇀↽− C+D and constant
thermokinetic capacities Ci and resistances Rj. The thermokinetic model of this system is given
by c(ξ, ξe) = (CA ξA, CB ξB, CC ξC , CD ξD)T , R(ξ, ξe) = (R1, R2)T and

NE =


1 0

0 1

0 0

0 0

 , NP =


0 0

1 0

0 1

0 1

 .

The matrices SE, SP and Ne are empty because the system is closed.

5.4. Transformation and Translation

The thermokinetic modeling formalism is a convenient reformulation of the thermodynamic
modeling formalism. Both formalisms are basically equivalent and the transformation and
translation methods for thermodynamic models (see Section 4.1.1, p. 51) can be applied.
Here we give the transformation and translation rules for thermokinetic models. Since we re-

strict ourselves to diagonal resistance matrices, we can only adapt methods where the occurrence
of off-diagonal elements in the resistance matrix can be avoided.
Further, this section introduces an additional transformation method, namely the translation

of stoichiometric coefficients that is specific for thermokinetic models.

5.4.1. Linear Transformation

Due to the restriction to diagonal resistance matrices, linear transformations of fluxes are not
possible. Such transformations lead to non-diagonal resistance matrices. Thus, the following
corollary considers only a transformation of concentrations.

Corollary 5.32 (Transformation of a thermokinetic model). Let M be a thermokinetic model
(see Definition 5.29, p. 100), and let Tc, Tc,e and TJ,e be square matrices of full rank. Then, the
solution of the system M̂ with

N̂E = TcNE, N̂P = TcNP ,

ŜE = Tc,e SE, ŜP = Tc,e SP ,

ĉ(ξ̂, ξ̂e) = Tc c(T
T
c #ξ̂, T Tc,e#ξ̂e), R̂(ξ̂, ξ̂e) = R(T Tc #ξ̂, T Tc,e#ξ̂e),

N̂e = TcNe TJ,e, ξ̂0 = T T,−1
c #ξ0.

is equivalent to that of M with

ĉ = Tc c, T Tc #ξ̂ = ξ, T Tc,e#ξ̂e = ξe,

Ĵ = J, F̂ = F, TJ,e Ĵe = Je.
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Proof. This transformation rule follows from the Corollary 4.2 (p. 52).

§ 5.33 (Negative stoichiometric coefficients). In natural coordinates the entries of the matrices
NE, NP , SE and SP are non-negative. After a transformation of concentrations, the entries of
the corresponding transformed matrices may be negative.

5.4.2. Translation of the Variables

Section 4.1.2 (p. 54) introduced rules for the translation of the variables c, µ and J in thermody-
namic models. Analog rules can be formulated for thermokinetic models. This section discusses
only the translation of chemical potentials because this operation is needed for an appropriate
scaling of the state variables of the simulation equations. It is equivalent to a change of the
reference state of the Gibbs formation energies.

Corollary 5.34 (Scaling of a TK model). Let M be a thermokinetic model (see Definition 5.29,
p. 100), and let δξ ∈ Ri0

+, δξe ∈ Ri0,e

+ be vectors with NT log(δξ) + ST log(δξe) = 0. Then, the
solution of the system M̂ with

N̂E/P = NE/P , ŜE/P = SE/P , N̂e = Ne,

ĉ(ξ̂, ξ̂e) = c
(
ξ̂ ◦ δξ(−1), ξ̂e ◦ δξ(−1)

e

)
, ξ̂0 = ξ0 ◦ δξ(−1)

and

R̂(ξ̂, ξ̂e) = NT
E#δξ ◦ STE#δξ ◦R

(
ξ̂ ◦ δξ(−1), ξ̂e ◦ δξ(−1)

e

)
= NT

P #δξ ◦ STP#δξ ◦R
(
ξ̂ ◦ δξ(−1), ξ̂e ◦ δξ(−1)

e

)
is equivalent to that of M with

ĉ = c, ξ̂ = ξ ◦ δξ, ξ̂e = ξe ◦ δξe,
Ĵ = J, F̂ = F, Ĵe = Je.

Proof. The proof follows the lines of the proof of Corollary 4.10 (p. 54). Write down the model
equations ofM . Now replace J = Ĵ , F = F̂ , ξ = ξ̂◦δξ(−1) and ξe = ξ̂e◦δξ(−1)

e . This immediately
leads to the functions ĉ(ξ̂, ξ̂e) and the matrices N̂E/P , ŜE/P and N̂e. To prove the expression
for R̂ we start with the equation R̂ ◦ Ĵ = F̂ and prove that it is equivalent to R ◦ J = F . The
equation R̂ ◦ Ĵ = F̂ can be expanded to

R̂︷ ︸︸ ︷
NT
E#δξ ◦ STE#δξ︸ ︷︷ ︸

δFE

◦R ◦Ĵ = F̂ = N̂T
E#ξ̂ ◦ ŜTE#ξ̂e − N̂T

P #ξ̂ ◦ ŜTP#ξ̂e

= NT
E#ξ ◦ STE#ξe ◦NT

E#δξ ◦ STE#δξe︸ ︷︷ ︸
δFE

−NT
P #ξ ◦ STP#ξe ◦NT

P #δξ ◦ STP#δξe︸ ︷︷ ︸
δFP

. (5.5)
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Due to the specific choice of δξ and δξe, we have NT
E log(δξ) + STE log(δξe) = NT

P log(δξ) +

STP log(δξe) and thus δFE = δFP . For this reason these terms cancel out and the equation
R ◦ J = F remains.

Example 5.35 (Scaling of capacities and resistances). The above corollary is often neces-
sary to numerically scale the simulation equations. Consider the single reaction of glucose-6-
phosphate to fructose-6-phosphate (g6p 
 f6p) that is catalyzed by the phosphoglucose iso-
merase. Alberty [1] gives transformed Gibbs formation energies ∆fG

′◦
i at pH = 7, T = 298.15 K,

I = 0.25 M and c◦ = 1 M:

∆fG
′◦
g6p = −1318.92 kJ mol−1, ∆fG

′◦
f6p = −1315.74 kJ mol−1.

These values may be used as chemical standard potentials µ◦i and lead to the capacities (Ci =

c◦m exp(−µ◦i /(R∗ T ))):

Cg6p = 1.160× 10231 M, Cf6p = 3.217× 10230 M.

Clearly, these values are not suited for direct use in numerical simulations. The tables from
Alberty [1] are based on the convention that chemical elements in the standard state in their
most stable form have ∆fG

′◦
i = 0. Most relevant (bio)chemical species have a rather low,

negative ∆fGi because the respective compounds are energetically more favorable than an
analogous mixture of pure elements.
Using the above corollary, we can scale the capacities to values more suited for numerical

computations. The stoichiometric matrix is NT = (−1, 1) and thus the condition for the
scaling factors is − log(δξg6p) + log(δξf6p) = 0 or equivalently δξg6p = δξf6p.
Assume that g6p has a typical concentration of 1 mM. From a numerical perspective, an

optimal value of its capacity is 1 mM because then the thermokinetic potential ξg6p that is a state
variable of the model varies around the typical value 1. We choose δξg6p = δξf6p = 1.160×10234

and get the new relation

cg6p = Cg6p δξ
−1
g6p︸ ︷︷ ︸

Ĉg6p

ξ̂g6p cf6p = Cf6p δξ
−1
f6p︸ ︷︷ ︸

Ĉf6p

ξ̂f6p

with Ĉg6p = 1 mM and Ĉf6p = 0.2773 mM. These values are moderate and thus can be used
for numerical computations.

§ 5.36. The above example shows that tables of Gibbs formation energies can be used to
determine the capacities. The standardized and widely accepted definition of the reference
state that underlies the tables of Gibbs formation energies allows for the direct exchange of
model parameters between different models. These tables should be used if they are available.
This often leads to very large capacities because most Gibbs formation energies are rather
low. To avoid numerical problems, the models can be scaled before simulation and analysis by
applying the above corollary. This scaling of the model can be performed automatically by the
modeling or simulation tool.
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5.4.3. Translation of the Stoichiometric Coefficients

The thermokinetic modeling formalism explicitly distinguishes the stoichiometric matrices of
reactants and products. In the thermodynamic modeling formalism, this distinction is not
necessary because the information is coded in the expression for the thermodynamic resistances.
For example, the ideal thermodynamic resistance function for mass-action kinetics depends on
the thermodynamic forces exerted by reactants and products ∆µE/P,j =

∑
i∈E/Pj

νE/P,ij µi,j that
depend on the stoichiometric coefficients of reactants and products (see Definition 3.22, p. 47).
The explicit introduction of NE/P and SE/P in TKM allows for a further translation operation.
Two reactions with the same overall stoichiometry may differ in their reactant and product

stoichiometry. Consider the reaction from A to B catalyzed by X. Its stoichiometry can be
described by two equivalent variants: (1) The reaction equation A + X 
 B + X shows that
X is a catalyst of the reaction. (2) The formulation A 
 B has the same overall stoichiometry
but does not refer to the catalyst X. Assume mass-action kinetics and small concentrations of
A and B such that saturation effects of the catalyst X can be neglected. Then, the kinetics of
variant (1) can be described by a constant thermokinetic resistance R1 = const, whereas the
resistance of the variant (2) is ξX-dependent in order to model the catalyzing activity of X,
i. e. R2 is proportional to ξ−1

X . From a formal point of view, both model variants are equivalent.
Depending on the context, the modeler will prefer variant (1) or (2).
In the following corollary we establish the general rules that allow transforming such different

representations into each other. These rules are based on a translation of the stoichiometric
coefficients.

Corollary 5.37 (Translation of stoichiometric coefficients). Let M be a thermokinetic model
(see Definition 5.29, p. 100) and let δN ∈ Ri0×j0 and δS ∈ Ri0,e×j0. Then, the solution of the
system M̂ with

N̂E/P = NE/P + δN, ŜE/P = SE/P + δS, N̂e = Ne,

ĉ(ξ̂, ξ̂e) = c(ξ̂, ξ̂e), R̂(ξ̂, ξ̂e) = R(ξ̂, ξ̂e) ◦ δN#ξ ◦ δS#ξe, ξ̂0 = ξ0

is equivalent to that of M with

ĉ = c, ξ̂ = ξ, ξ̂e = ξe,

Ĵ = J, F̂ = F ◦ δN#ξ ◦ δS#ξe, Ĵe = Je.

Proof. We compare the model equations of M and M̂ (see Definition 5.29, p. 100) under appli-
cation of the above transformation rules.
Since N = NP −NE = N̂ and S = SP −SE = Ŝ, the mole balance equations are equal ˙̂c = ċ.

Since ĉ = c, ξ̂ = ξ and ξ̂e = ξe, the equations ĉ = ĉ(ξ̂, ξ̂e) and c = c(ξ, ξe) are also equivalent.
Further, we have that F̂ = N̂E#ξ̂ ◦ ŜE#ξ̂e− N̂P#ξ̂ ◦ ŜP#ξ̂e = NE#ξ ◦δN#ξ ◦SE#ξe ◦δS#ξe−
NP#ξ ◦ δN#ξ ◦ SP#ξe ◦ δS#ξe = δN#ξ ◦ δS#ξ ◦ (NE#ξ ◦ SE#ξE − NP#ξ ◦ SP#ξP ) =

δN#ξ ◦ δS#ξ ◦ F . Thus, the forces follow the given transformation rule. With this result it
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follows that R̂ Ĵ = F̂ is equivalent to RJ = F . Thus, all four parts of the model equations
given in Definition 5.29 are equivalent.

Example 5.38 (Catalyzed reaction). Let the reaction A+X 
 B+X have a constant resistance
R. The species X has an overall stoichiometric coefficient of zero (νX = νX,P − νX,E = 0) and
is therefore a catalyst of the reaction. With the ordering (A,B,X), we have NT

E = (1, 0, 1) and
NT
P = (0, 1, 1). By using δNT = (0, 0,−1) we get the reaction A 
 B with N̂T

E = (1, 0, 0),
N̂T
P = (0, 1, 0) and a resistance R̂ = Rξ−1

X . Thus, the effect of the catalyst could be moved from
the stoichiometric submodel to the kinetic submodel. Observe that in the case of a constant
CX the model M̂ can be reduced, since the concentration and the thermokinetic potential of
the catalyst are constant: ξX = C−1

x cx = const. In the translated model ξX , can be treated as
a model parameter and not as a state variable.

5.5. Model Reduction

5.5.1. Reduction of the Stoichiometric Submodel

The reduction of the stoichiometric submodel relies on rank deficiencies of the stoichiometric
matrices. (see Section 4.2.1, p. 58). In the following sections, these reduction methods are
discussed for thermokinetic models.

5.5.1.1. Reduction of Conservation Relations

The following corollary for thermokinetic models is analog to Corollary 4.21 (p. 58) for ther-
modynamic models. It shows how conservation relations can be reduced from thermokinetic
models.

Corollary 5.39 (Reduction of conservation relations). Let M be a thermokinetic model (see
Definition 5.29, p. 100). Let Tc = [T Tc,1, T

T
c,2]T be a square and invertible matrix with Tc,2NE = 0,

Tc,2NP = 0 and Tc,2Ne = 0. Assume that Tc,2 ∂c/∂ξ diag(ξ)T Tc,2 is invertible for all ξ ∈ Ri0
+ and

ξe ∈ Rie,0

+ . Let M̃ be a thermokinetic model with

ÑE/P = Tc,1NE/P , S̃E/P = SE/P , Ñe = Tc,1Ne, ξ̃0 = invT
Λ−1

c
(Tc,1)#ξ0,

c̃(ξ̃, ξe) = Tc,1 c(T
T
c,1#ξ̃ ◦ T Tc,2#ξ̂2(ξ̃, ξe), ξe), R̃(ξ̃, ξe) = R(T Tc,1#ξ̃ ◦ T Tc,2#ξ̂2(ξ̃, ξe), ξe)

where ξ̂2(ξ̃, ξe) is a solution of

Tc,2 c(T
T
c,1#ξ̃ ◦ T Tc,2#ξ̂2, ξe,0) = Tc,2 c(ξ0, ξe,0)

and Λc is an invertible matrix with Tc,1 Λc T
T
c,2 = 0. Then, the dynamics of M can be recon-

structed from the dynamics of the reduced system M̃ by

c = T−1
c

(
c̃

Tc,2 c(ξ0, ξe,0)

)
, ξ = T Tc,1#ξ̃ ◦ T Tc,2#ξ̂2(ξ̃, ξe),

J = J̃ , F = F̃ .
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Proof. The proof is analog to that of Corollary 4.21. In Corollary 4.21 the condition Tc,2N = 0

guarantees that ∆µ̂ = ∆µ. Here the stronger conditions Tc,2NE = 0 and Tc,2NP = 0 guarantee
that ∆µ̂E/P = ∆µE/P which is equivalent to F̂E/P = FE/P and thus F̂ = F .

§ 5.40 (Role of the condition Tc,2NE/P = 0). Per se the conditions Tc,2NE = 0 and Tc,2NP = 0

are much stronger than the condition Tc,2N = Tc,2(NP − NE) = 0. They are hardly fulfilled
in a system in natural coordinates and do not cover all conservation relations. By means of
translation of stoichiometric coefficients (Corollary 5.37, p. 104), we can bring any system to a
form where both conditions are equivalent. A trivial solution is to choose δN = −NE. Then, the
translated matrices are N̂E = 0 and N̂P = N and the conditions Tc,2 N̂E/P = 0 and Tc,2N = 0

are equivalent. Thus, the application of the above corollary usually requires a preprocessing of
the system by a translation of stoichiometric coefficients.

Example 5.41 (Reduction of a conservation relation). Consider a reaction A 
 B with con-
stant thermokinetic capacities CA and CB and resistance R. The system contains the conser-
vation relation cA + cB = cA,0 + cB,0 = cAB,0 = const . Since NT

E = (1, 0) and NT
P = (0, 1),

there is no matrix Tc,2 6= 0 with Tc,2NE/P = 0. With Corollary 5.37 (p. 104) we translate
this system to a system with a negative stoichiometric coefficient (A − B 
 0) with resis-
tance R̂ = Rξ−1

B . Now we have that N̂T
E = (1,−1), N̂T

P = (0, 0) and we can use the matrices
Tc,2 = (1, 1) and Tc,1 = (1, 0) to reduce the conservation relation. This means that we apply
the transformation c̃1 = ĉ1 = cA and ĉ2 = cA + cB. According to the transformation rules we
get ξA = ξ̂1 ξ̂2 and ξB = ξ̂2. With ξ̃ = ξ̂1 the conservation relation reads CA ξ̃ ξ̂2 +CB ξ̂2 = cAB,0
which can be solved to ξ̂2 = cAB,0/(CA ξ̃ + CB). With this result we get the new capacity:
C̃ = c̃/ξ̂1 = (CA ξA)/ξ̃ = CA ξ̂2 = cAB,0CA/(CA ξ̃ + CB). We get the reduced system X̃ 
 0

with the resistance R̃ = R̂ = R · (CA ξ̃ + CB)/cAB,0 and the capacity C̃. The zero at the right
hand side of the reaction equation means that in the reduced system this reaction does not have
a product. Its force is F̃ = ξ̃ − 1.

5.5.1.2. Reduction of Stoichiometric Cycles

In the general case, the reduction of stoichiometric cycles (Section 4.2.1.2, p. 61) leads to a non-
diagonal resistance matrix. We will not further discuss the general reduction of stoichiometric
cycles because we restrict ourselves to diagonal resistance matrices. However, the special case
of reactions with the same stoichiometry can be treated easily in the TKM formalism. This
special case will be discussed later when considering model reduction on the level of reaction
equations (Section 6.2.2, p. 113).

5.5.2. Reduction of the Thermodynamic and the Kinetic Submodel

The reduction of the thermodynamic and the kinetic submodel as described in Section 4.2.2
(p. 63) relies on rank deficiencies of the matrices ∂c/∂µ and the thermodynamic resistance
matrix. This section discusses these cases for thermokinetic models.
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5.5.2.1. Reduction of the Thermodynamic Submodel

According to Section 4.2.2.1 (p. 63) a reduction of the thermodynamic submodel is possible if
∂c/∂µ is singular for all µ and µe. In an ideal dilute solution with ci = c◦ exp((µi−µ◦i )/(R∗ T )),
the matrix ∂c/∂µ is diagonal and limµ◦i→∞ ∂ci/∂µi = 0. Thus, ∂ci/∂µi goes to zero and ∂c/∂µ
gets singular if Ci = c◦ exp(−µ◦i /(R∗ T )) goes to zero. In real systems, this condition can only
approximately be fulfilled.
In the thermokinetic formalism, a capacity of zero (or close to zero) indicates a potential for

an (approximative) model reduction. In the general case, the reduction of the thermodynamic
submodel as described in Section 4.2.2.1 leads to a non-diagonal reduced thermodynamic resis-
tance matrix. Thus, the reduced system cannot be expressed as a thermokinetic model with a
diagonal resistance matrix. For this reason, we will not further discuss this reduction method
here.
In Section 6.3.1 (p. 113) when studying the reduction on the reaction equation and reaction

rule level, we will discuss special cases where the application of these reduction method is easily
possible.

5.5.2.2. Reduction of the Kinetic Submodel

The kinetic submodel can be reduced if the thermodynamic resistance matrix is singular (Sec-
tion 4.2.2.2, p. 73). For diagonal resistance matrices this is only the case if a diagonal element
is zero. Thus, a thermokinetic model can be reduced if some of its thermokinetic resistances
are (approximately) zero.
Corollary 4.78 (p. 78) describes the reduction of the kinetic submodel for thermodynamic

models. For the reduction one needs to choose a matrix TJ = [TJ,1, TJ,2] with certain properties.
Then, the reduced thermodynamic resistance matrix can be computed from the original resis-
tance matrix and the matrices TJ,1 and TJ,2. For any system with a diagonal resistance matrix
where some of the diagonal elements are zero it is possible to choose a matrix TJ,1, such that
the reduced system has a diagonal resistance matrix. Thus, it is possible to write the reduced
system as a thermokinetic model. The following corollary gives the details of this reduction
procedure.

Corollary 5.42 (Rapid equilibrium assumption). Let M be a kinetically conflict-free thermoki-
netic model. Let R, NE, NP , SE and SP be partitioned, such that

R =

(
R′

0

)
, NE/P =

(
N ′E/P N ′′E/P

)
, SE/P =

(
S ′E/P S ′′E/P

)
with the vector R′ ∈ Rj̃0 and the matrices N ′E, N ′P ∈ Ri0×j̃0, N ′′E, N ′′P ∈ Ri0×(j0−j̃0), S ′E, S ′P ∈
Ri0,e×j̃0 and S ′′E, S ′′P ∈ Ri0,e×(j0−j̃0). Further, let T Tc = [T Tc,1, T

T
c,2] and Λc be square and invertible

matrices with

Tc,1N
′′ = 0, rank(Tc,2N

′′) = rank(Tc,2), Tc,1 Λc T
T
c,2 = 0.
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Then, the dynamics of M can be reconstructed from the dynamics of the reduced system M̃ with

ÑE = Tc,1N
′
E, ÑP = Tc,1N

′
P ,

S̃E = S ′E − S ′′ inv(Tc,2N
′′)Tc,2N

′
E, S̃P = S ′P − S ′′ inv(Tc,2N

′′)Tc,2N
′
P ,

Ñe = Tc,1Ne, ξ̃0 = invT
Λ−1

c
(Tc,1)#ξ0,

c̃(ξ̃, ξe) = Tc,1 c(ξ, ξe), R̃(ξ̃, ξe) = R′(ξ, ξe)

where

c = c(ξ, ξe), ξ = T Tc,1#ξ̃ ◦ (−S ′′ inv(Tc,2N
′′)Tc,2)T#ξe,

JT = (J̃T , ĴT2 ), F T =
(
F̃ T 0T

)
and

Ĵ2 = inv(Tc,2N
′′)Tc,2 (ċ−N ′ J̃ −Ne Je) + ∆Ĵ2

with any ∆Ĵ2(t) ∈ null(Tc,2N
′′).

Proof. The proof follows the lines of the proof of Corollary 4.78 (p. 78). We choose the matrices
TJ,1 ∈ Rj0×j̃0 , TJ,2 ∈ Rj0×(j0−j̃0) such that TJ = [TJ,1, TJ,2] = I and ΛJ = I. Then, we have
N ′E/P = NE/P TJ,1, N ′′E/P = NE/P TJ,2, S ′E/P = SE/P TJ,1 and S ′′E/P = SE/P TJ,2. We transform
the system with Corollary 5.32 (p. 101).
The forces F̂2 = F ′′ = (Tc,1N

′′
E)T#ξ′◦(Tc,2N ′′E)T#ξ′′◦S ′′TE #ξe−(Tc,1N

′′
P )T#ξ′◦(Tc,2N ′′P )T#ξ′′◦

S ′′TP #ξe = 0 vanish because R′′ = 0. This equation simplifies to (Tc,2N
′′
E)T#ξ′′ ◦ S ′′TE #ξe −

(Tc,2N
′′
P )T#ξ′′ ◦S ′′TP #ξe = 0 because due to Tc,1N ′′ = 0 it holds (Tc,1N

′′
E)T#ξ′ = (Tc,1N

′′
P )T#ξ′.

The unique solution of the equation F ′′ = 0 is ξ′′ = (− invT (Tc,2N
′′)S ′′T )#ξe (cf. proof of Corol-

lary 4.78, p. 78). Substituting this result into the forces F ′ = (Tc,1N
′
E)T#ξ′ ◦ (Tc,2N

′
E)T#ξ′′ ◦

S ′TE #ξe − (Tc,1N
′
P )T#ξ′ ◦ (Tc,2N

′
P )T#ξ′′ ◦ S ′TP #ξe = 0 yields

F ′ =(Tc,1N
′
E)T#ξ′ ◦ (S ′E − S ′′ inv(Tc,2N

′′)Tc,2N
′
E)T#ξe

−(Tc,1N
′
P )T#ξ′ ◦ (S ′P − S ′′ inv(Tc,2N

′′)Tc,2N
′
P )T#ξe.

From this expression, one can derive the matrices S̃E/P . Observe that the result contains only
the matrices S ′′ and N ′′ but not the matrices S ′′E/P and N ′′E/P .
The other formulas in the corollary are equivalent the formulas in Corollary 4.78 (p. 78).

5.5.3. Reduction of the Boundary Conditions

Section 4.2.3 (p. 81) introduced methods for the reduction of the number of the input vectors
that define the boundary conditions in thermodynamic models. Methods to reduce the number
of clamped potentials and clamped fluxes were discussed. These methods are based on suited
translation of potentials and fluxes. Since these translation methods also apply to thermokinetic
models (see Section 5.4.2, p. 102), the reduction of boundary conditions can be directly applied
to thermokinetic models and needs not to be discussed here in detail.
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5.6. Conclusions

This chapter introduced the Thermokinetic Modeling (TKM) formalism. The TKM formalism
is derived from the thermodynamic formalism, but leads to much simpler model equations.
The complexity of the thermodynamic modeling formalism arises from the strongly nonlinear

relation of thermodynamic forces and reaction rates. Whereas thermodynamic forces scale
linearly with the logarithm of the concentrations, the rate laws of mass-action kinetics scale
linearly with products of concentrations. Therefore, the thermodynamic resistances that are
the ratio of thermodynamic forces and fluxes are described by complicated expressions.
This chapter introduced suited thermokinetic variables – namely the thermokinetic poten-

tials ξ and the thermokinetic forces F – that are derived from thermodynamic potentials and
forces. Further, it introduced thermokinetic capacities Ci that are the ratios of concentrations
and thermokinetic potentials. Analogously, the thermokinetic resistances Rj are the ratios of
thermokinetic forces and fluxes. In the standard case of mass-action kinetics in an ideal di-
lute solution, thermokinetic potentials and forces are proportional to concentrations and fluxes,
respectively. This means that capacities Ci and resistances Rj are constant system parameters.
Many of the reduction methods that were derived in Chapter 4 for thermodynamic models

apply with small modifications also to thermokinetic models. Only the reduction of stoichio-
metric cycles and the reduction of the thermodynamic submodels could not be extended to TK
models in a general way. In general, these methods inherently lead to a non-diagonal resistance
matrix. This is only a minor limitation of TKM because – as was discussed in Section 4.3 (p. 83)
– the reduction of stoichiometric cycles does not lead to a considerable reduction of the model
equations. In addition, the reduction of the thermodynamic submodel is often not possible due
to the occurring non-linear equations. Important special cases of the reduction of stoichiometric
cycles and of the thermodynamic submodel in thermokinetic models are discussed in Chapter 6.
The reduction of the kinetic submodel, i. e. the application of the rapid equilibrium assumption,
which is especially useful and simple, is applicable to TK models.
Although the thermodynamic modeling formalism is more general than the thermokinetic

modeling formalism, the practical restrictions are minor, since non-diagonal resistance matrices
usually do not occur in the kinetic modeling of reaction networks. The advantage of using TKM
is its simple and elegant parameterization of the model equations. In contrast to the conventional
kinetic modeling formalism, TKM structurally guarantees the thermodynamic consistency of
the model equations. Compared to the thermodynamic modeling, the model equations of TKM
and their handling are simple.
The methods developed in this chapter are formulated as operations on thermokinetic mod-

els. Thus, their application requires the complete formulation of the system matrices NE/P ,
SE/P , Ne and the functions c(ξ, ξe) and R(ξ, ξe) of the whole network. The derived methods are
ideally suited for the development of a computer tool for modeling and model reduction. A pro-
totypical implementation is available and described in Appendix A. The next chapter explores
the possibilities of model reduction on the reaction equation level, which allows applying the
reduction methods without explicitly building the system matrices. This simplifies modeling
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and shows the inherent modularity of the developed methods. The procedure developed in
the next chapter is particularly useful for calculations with ‘paper and pencil’ and for systems
defined by reaction rules.
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Equations

Chapters 3 and 4 developed a quite general thermodynamic modeling formalism for reaction
networks. This allowed developing algorithms for model transformation and reduction. How-
ever, due to the complexity of the occurring mathematical expressions, the thermodynamic
formalism is not suited for modeling larger networks. For this reason, Chapter 5 modified the
thermodynamic formalism in order to arrive at the thermokinetic formalism that leads to much
simpler model equations. However, the introduced model reduction methods are described for
whole models of reaction networks in the form of matrix operations. For larger networks, model
reduction as described in the previous chapters can only be done using computer programs.
This chapter introduces procedures that allow for the application of several model reduction

techniques on the level of reaction equations. This means that rules are given that describe how
to transform a set of reaction equations, with capacities and resistances to an equivalent reduced
formulation. These methods can be easily applied without using a computer program but only
with ‘paper and pencil’. They can also be applied to reaction rules as they are often used for
the description of combinatorial protein-protein interaction networks in signal transduction.

Definition 6.1 (Reaction Equations). A reaction system is defined by a list of reaction equa-
tions ∑

i∈Ej

νE,ij Xi 

∑
i∈Pj

νP,ij Xi

with stoichiometric coefficients νE/P,ij and indices i = 1 . . . i0, j = 1 . . . j0. Every reaction has a
resistance Rj(ξ) ≥ 0 and every compound Xi has a capacity Ci(ξ).

§ 6.2 (Stoichiometric coefficients). The overall stoichiometric coefficient of Xi in reaction j is
νij = −νE,ij + νP,ij. Initially, νE,ij or νP,ij are positive, but models with negative νE,ij or νP,ij
may occur during the model reduction. The overall stoichiometric coefficient νij is negative if
Xi is a reactant of reaction j and positive if it is a product.

§ 6.3 (Open vs. closed). In the previous chapters, we distinguished between closed systems and
open systems. In open systems, certain thermokinetic potentials ξi and fluxes Jj are clamped.
Thus, the system does not necessarily reach thermodynamic equilibrium, but a continuous ex-
change of matter and energy with the environment may occur. In order to treat open systems,
we introduced the external stoichiometric matrices Ne and S. This is a clear, formal way to
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include the boundary conditions. However, the goal in this chapter is to arrive at a methodol-
ogy that is not only formally appealing and thermodynamically correct, but can also be easily
applied with paper and pencil without using a computer program. A clear distinction of exter-
nal and internal fluxes and compounds throughout the computations is tedious and increases
notational complexity without adding to the comprehension. Thus, we always treat reaction
equations as if they constituted a closed system. Clamping of potentials and fluxes can be done
after the reduction steps. This is easily possible because, in the methods proposed below, fluxes
and thermokinetic potentials of reduced and original system are equal (or of course removed by
the reduction steps).

6.1. Transformations and Translations

The transformation and translation rules developed in the Sections 5.4.1 (p. 101) and 5.4.2
(p. 102) operate on whole networks rather than on single reaction equations or rules. The
translation vector depends on properties of the whole network and not on properties of single
reactions. Extensions or modifications of the network make it necessary to redo the calculations.
This means that transformation and translation cannot be applied on the reaction equation level
only.
An exception is the translation of stoichiometric coefficients (see Section 5.4.3, p. 104).

Corollary 6.4 (Translation of stoichiometric coefficients). A reaction j with stoichiometry
νE,ij and νP,ij and resistance Rj can be replaced by a reaction ĵ with ν̂E,ij = νE,ij + δνi, ν̂P,ij =

νP,ij + δνi and R̂j = Rj

∏i0
i=1 ξ

δνi
i .

Proof. This follows directly from Corollary 5.37 (p. 104).

Example 6.5. Consider the reaction A+ E 
 B + E with resistance R. Here E has the role
of a catalyst. The reaction is equivalent to the reaction A 
 B with resistance R̂ = R/ξE.

6.2. Reduction of the Stoichiometric Submodel

6.2.1. Reduction of Conservation Relations

In the traditional formalism with concentration dependent kinetic rate laws, the reduction
of conservation relations is straightforward. In TKM we seek for models with a guaranteed
thermodynamic feasibility and thus use rate laws that depend on thermokinetic potentials in a
defined way. As shown in Section 5.5.1.1 (p. 105) a reduction of conservation relations preserving
the TKM formalism is possible but requires solving nonlinear equations. Thus, we cannot expect
that this reduction technique is in general easily applicable within the framework of TKM. For
this reason, we do not seek to formulate rules for this case.
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6.2.2. Reduction of Stoichiometric Cycles

The reduction of stoichiometric cycles as discussed in Section 4.2.1.2 (p. 61) for thermodynamic
models leads to a non-diagonal resistance matrix. This cannot be accounted for in the TKM
formalism (see the discussion in Section 5.5.1.2, p. 106). However, we can give a rule for a simple
but important case.
The simplest possible stoichiometric cycle is formed by two or more reactions with the same

stoichiometry, e. g. isoenzymes. This is equivalent to a parallel connection of these reactions and
analogous to the parallel connection of electrical resistances. To treat such cases, the following
definition from electrical theory is helpful.

Definition 6.6 (Parallel resistances). The operation R1 ‖ R2 ‖ . . . ‖ Rq is defined by

(R1 ‖ R2 ‖ . . . ‖ Rq)
−1 = R−1

1 +R−1
2 + . . .+R−1

q

Corollary 6.7 (Parallel reactions). Let j = 1 . . . q be the indices of reactions with equal stoi-
chiometry (νE,i1 = . . . = νE,iq and νP,i1 = . . . = νP,iq for all i = 1 . . . i0). The q reactions can be
replaced by one reaction with the resistance R = R1 ‖ R2 ‖ . . . ‖ Rq.

Proof. Since the stoichiometry is equal the forces are equal F = F1 = . . . = Fq. Thus, the
overall flux is J = J1 + . . .+ Jq = R−1

1 F1 + . . .+R−1
q Fq = (R−1

1 + . . .+R−1
q )F = R−1 F .

Example 6.8 (Parallel reactions). Consider a system that contains two reactions A
1−⇀↽− B and

A
2−⇀↽− B. Because both reactions have equal stoichiometry, they can be replaced by A 
 B with

a resistance of

R = R1 ‖ R2 =
R1R2

R1 +R2

.

6.3. Reduction of the Thermodynamic and Kinetic Submodel

If some capacities or resistances are zero, a reduction of the model size is possible. While for
vanishing capacities we can only give rules for a special but important case, the reduction in
the case of vanishing resistances, i. e. the rapid equilibrium assumption, is a very powerful tool.

6.3.1. Reduction of the Thermodynamic Submodel

The reduction of the thermodynamic submodel for a singular ∂c/∂µ or vanishing capacities
involves the solution of a nonlinear equation system (see Section 4.2.2.1, p. 63). The existence
and uniqueness of the solution of this equation system is not guaranteed. Thus, a general and
simple rule for this reduction method cannot be given. Further, as pointed out in Section 5.5.2.1
(p. 107) the reduction method in general leads to a non-diagonal resistance matrix and thus is
not suited for TKM. However, for the special case of serial reactions that corresponds to a serial
connection in electrical theory we may give a simple rule.
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Corollary 6.9 (Serial reactions). Consider a network with two reactions 1 and 2 such that the
products of reaction 1 are the reactants of reaction 2 (P1 = E2 and νP,i1 = νE,i2 for all i). Let
Ci = 0 for at least one i ∈ P1 = E2. Further, assume that the compounds in the set P1 = E2

with Ci = 0 do not appear anywhere else in the reaction network and that the resistances and
capacities of the network do not depend on their thermokinetic potentials.
These two reactions can be replaced by a single reaction with E = E1, P = P2, νE,i = νE,i1,

νP,i = νP,i2 and a resistance R = R1 +R2. The force FP,1 = FE,2 can be reconstructed by

FP,1 = FE,2 =
R2 FE,1 +R1 FP,2

R1 +R2

.

Proof. We have that FP,1 = FE,2 because the reactants of reaction 2 are the products of reaction
1. Since Ci = 0 for a compound i ∈ P1 and since this compound does not occur anywhere else
in the network, we get J = J1 = J2. Thus, it is R1 J = FE,1 − FP,1 and R2 J = FE,2 − FP,2.
Since FP,1 = FE,2, we get (R1 + R2) J = FE,1 − FP,2 and thus RJ = F . Further we get
FP,1 = FE,2 = FE,1−R1 J which leads to the expression for FP,1 = FE,2 given in the corollary.

Example 6.10 (Serial reactions – simple case). Let A
1−⇀↽− B and B

2−⇀↽− C be two reactions in a
network with CB = 0 and no further occurrences of B. Then, we can replace these reactions
by A 
 C with R = R1 +R2. The thermokinetic potential of the reduced compound B can be
reconstructed by ξB = FP,1 = FE,2 = (R2 ξA +R1 ξC)/(R1 +R2).

Example 6.11 (Serial reactions – loss of uniqueness). Let A
1−⇀↽− B1 + B2 and B1 + B2

2−⇀↽− C

be two reactions in a network with CB1 ≥ 0 and CB2 = 0 and no further occurrences of B1

and B2. Then, we can replace these reactions by A 
 C with R = R1 + R2. The force
exerted by the compounds B1 and B2 can be reconstructed by FE,1 = FP,2 = ξB,1 ξB,2 =

(R2 ξA+R1 ξC)/(R1+R2). If CB,1 > 0 then the thermokinetic potential ξB,1 = cB,1/CB,1 = ξB,1,0
is constant because the quasi-steady condition J1 = J2 leads to ċB,1 = 0. In this case, ξB,2 is
given by ξB,2 = FE,1/ξB,1,0. If CB,1 = 0, we have no possibility to separately compute ξB,1 and
ξB,2. This case is an example of the non-uniqueness of the solution as discussed in §4.44 (p. 66).

The above corollary can be generalized to a case where only some of the products of reaction
1 are reactants of reaction 2.

Corollary 6.12 (Partially serial reactions). Consider a system with two reactions 1 and 2

such that some of the products of reaction 1 are reactants of reaction 2 (X = P1 ∩ E2 6= {}
and νP,i1 = νE,i2 for all i ∈ X). Let Ci = 0 for at least one i ∈ X. Further, assume that
the compounds in the set X with Ci = 0 do not appear anywhere else in the reaction network
and that the resistances and capacities of the network do not depend on their thermokinetic
potentials.
Then, these two reactions can be replaced by a single reaction with E = (E1 ∪ E2)/X, P =

(P1 ∪ P2)/X, νE,i = νE,i1 + νE,i2, νP,i = νP,i1 + νP,i2 and a resistance R = R1

∏
i∈E2/X

ξ
νE,i2

i +
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R2

∏
i∈P1/X

ξ
νP,i1

i . The force FX exerted by the compounds in X can be reconstructed by

FX =
∏
i∈X

ξ
νP,i1

i =
∏
i∈X

ξ
νE,i2

i =
R2 FE,1 +R1 FP,2

R
.

Proof. Let FX =
∏

i∈X ξ
νP,i1

i =
∏

i∈X ξ
νE,i2

i , FA =
∏

i∈E2/X
ξ
νE,i2

i and FB =
∏

i∈P1/X
ξ
νP,i1

i .
With these abbreviations we have that FE,2 = FX FA and FP,1 = FX FB. Since Ci = 0 for a
compound i ∈ X and since this compound does not occur anywhere else in the network, we
get J = J1 = J2. Thus, it is R1 J = FE,1 − FX FB and R2 J = FX FA − FP,2. Eliminating FX
yields (R1 FA +R2 FB) J = FE,1 FA − FP,2 FB and thus RJ = F . Eliminating J from the same
equations yields the expression for FX given in the corollary. The stoichiometry of the overall
reactions follows from J1 = J2.

Example 6.13 (Partially serial reactions). Let E
1−⇀↽− X +B and X +A

2−⇀↽− P be two reactions
in a network with CX = 0 and no further occurrences of X. Then, we can replace these
reactions by E + A 
 P + B with R = R1 ξA + R2 ξB. The thermokinetic potential of X can
be reconstructed by ξX = FX = (R2 ξE +R1 ξP )/(R1 ξA +R2 ξB).

6.3.2. Reduction of the Kinetic Submodel

If a network contains vanishing resistances, the corresponding thermokinetic forces are zero.
The resulting algebraic equations allow for a reduction of the model (Section 5.5.2.2, p. 107).
The approximative use of the reduction methods introduced below is possible if the resistances
are small such that the respective reactions rapidly approach thermodynamic equilibrium.
This section presents simple but comprehensive precepts for the reduction of systems defined

by reaction equations that contain fast reactions.

Corollary 6.14 (Reduction of reaction equations). Let M be a system defined by the reaction
equations ∑

i∈Ej

νE,ij Xi 

∑
i∈Pj

νP,ij Xi

with resistances Rj(ξ) ≥ 0 and capacities Ci(ξ) for i = 1 . . . i0 and j = 1 . . . j0. Let at least one
resistance be zero. Without loss of generality, we write R1 = 0 and ν1,1 6= 0. Further, let M̃ be
a system defined by ∑

i∈Ej

ν̃E,ij X̃i 

∑
i∈Pj

ν̃P,ij X̃i

with stoichiometric coefficients

ν̃E,ij = νE,ij − νE,1j
νi1
ν11

, ν̃P,ij = νP,ij − νP,1j
νi1
ν11

,
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resistances R̃j(ξ̃) = Rj(ξ) and capacities

C̃i(ξ̃) = Ci(ξ̃)−
νi1
ν11

ξ1

ξ̃i
C1

for i = 2 . . . i0 and j = 2 . . . j0. The solutions of M and M̃ are equivalent with

ξi = ξ̃i, ci = c̃i +
νi1
ν11

c1, Jj = J̃j, Fj = F̃j,

ξ1 =

i0∏
k=2

ξ̃
−νk1/ν11
k , c1 = C1 ξ1, J1 =

1

ν11

(
ċ1 −

j0∑
j=2

ν1j J̃j

)
, F1 = 0

with i = 2 . . . i0 and j = 2 . . . j0.

Proof. The above follows from Corollary 5.42 (p. 107). There the fast subsystem is denoted
by (′′) and the slow subsystem by (′). Thus, when applying Corollary 5.42 we must take into
account the different ordering of reactions and compounds. We have

R′ = 1

R2

...
Rj0

 , NE/P =

(
νE/P,11 bTE/P

)
aE/P N̄E/P︸ ︷︷ ︸
N ′′

E/P

︸ ︷︷ ︸
N ′

E/P

with

aE/P =

νE/P,21

...
νE/P,i01

 , bTE/P =
(
νE/P,12 . . . νE/P,1j0

)
, N̄E/P =

νE/P,22 . . . νE/P,2j0
... . . . ...

νE/P,i02 . . . νE/P,i0j0

 .

The transformation matrix Tc with T Tc = [T Tc,2, T
T
c,1],

Tc,1 =
(
− 1
ν11
a Ii0−1

)
, Tc,2 =

(
1 0 . . . 0

)
and with a = aP − aE is square and of full rank. The matrices Tc,1 and Tc,2 fulfill the required
conditions Tc,1N ′′ = −a+ a = 0 and rank(Tc,2N

′′) = rank(ν11) = 1 = rank(Tc,2). Thus, we can
use these matrices to gain a reduced representation with

ξ1

ξ2

...
ξi0


︸ ︷︷ ︸

ξ

=

(
− 1
ν11
aT

Ii0−1

)
︸ ︷︷ ︸

TT
c,1

#

 ξ̃2

...
ξ̃i0


︸ ︷︷ ︸

ξ̃

=


∏i0

k=2 ξ̃
−νk1/ν11
k

ξ̃2

...
ξ̃i0


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and  c̃2

...
c̃i0


︸ ︷︷ ︸

c̃

=
(
− 1
ν11
a Ii0−1

)
︸ ︷︷ ︸

Tc,1

c1

...
ci0


︸ ︷︷ ︸

c

=

 c2 − ν21
ν11
c1

...
ci0 −

νi01

ν11
c1

 .

The reduced system has stoichiometric matrices

ÑE/P =
(
− 1
ν11
a Ii0−1

)
︸ ︷︷ ︸

Tc,1

(
bTE/P
N̄E/P

)
︸ ︷︷ ︸

N ′
E/P

= N̄E/P −
1

ν11

a bTE/P .

This is equivalent to the formula given for the new stoichiometric coefficients in the above
corollary. According to Corollary 5.42, we have for the resistance R̃ = R′. The function c̃(ξ) is
given by

c̃(ξ̃) =
(
− 1
ν11
a Ii0−1

)
︸ ︷︷ ︸

Tc,1

(C ◦ ξ)︸ ︷︷ ︸
c(ξ)

=

 C2 ξ2 − ν21
ν11
C1 ξ1

...
Ci0 ξi0 −

νi01

ν11
C1 ξ1

 =


C2 − ν21

ν11
C1

ξ1
ξ̃2

...
Ci0 −

νi01

ν11
C1

ξ1
ξ̃i0


︸ ︷︷ ︸

C̃(ξ̃)

◦ξ̃.

Fluxes and forces of original and reduced system are related byJ2

...
Jj0


︸ ︷︷ ︸

J

=

 J̃2

...
J̃j0


︸ ︷︷ ︸

J̃

,

F2

...
Fj0


︸ ︷︷ ︸

J

=

 F̃2

...
F̃j0


︸ ︷︷ ︸

F̃

,

F1 = 0 and

J1 = inv

(1 0 . . . 0
)︸ ︷︷ ︸

Tc,2

(
ν11

a

)
︸ ︷︷ ︸
N ′′

 (
1 0 . . . 0

)︸ ︷︷ ︸
Tc,2

ċ−
(
bT

N̄

)
︸ ︷︷ ︸
N ′

J̃

 =
1

ν11

(
ċ1 −

j0∑
j=2

ν1j J̃j

)

The above derived expressions are equivalent to the expressions given in the corollary.

§ 6.15 (Step-by-step procedure). The application of the above corollary to a list of reaction
equations is straightforward. Here we give a step-by-step procedure for the reduction of networks
with fast reactions:

1. Choice of the reaction equation and the compound that is to be reduced:
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a) Choose a reaction assumed to be in rapid equilibrium (R1 = 0):

i0∑
i=1

νE,i1Xi 

i0∑
i=1

νP,i1Xi.

b) Choose a compound X1 to eliminate. This compound must be a true reactant or
product of the fast reaction (ν11 = νP,11 − νE,11 6= 0).

2. Computation of the reduced stoichiometry:

a) Solve the rapid reaction equation for X1 as if it is a linear equation:

X1 

i0∑
i=2

νE,i1 − νP,i1
νP,11 − νE,11︸ ︷︷ ︸
fi=−νi1/ν11

Xi

(e. g. A+B 
 C +D → C 
 A+B −D).

b) Replace the compound X1 in the remaining reaction equations by this solution. In
order to distinguish the reduced model from the original model, add a tilde to all
species in all reaction equations. In the example from the previous item, C+E 
 F

and G+H 
 I become Ã+ B̃ − D̃ + Ẽ 
 F̃ and G̃+ H̃ 
 Ĩ.

3. Reconstruction of original from reduced variables:

a) We have ci = c̃i − fi c1 and ξi = ξ̃i for i = 2 . . . i0. Further it is ξ1 =
∏i0

k=2 ξ̃
fk . With

this we can reconstruct c1 by c1 = C1 ξ1.

b) The slow fluxes and forces of the original and reduced system are equal: Jj = J̃j
and Fj = F̃j for j = 2 . . . j0. The fast force is F1 = 0 and the fast flux can be
reconstructed by J1 = (ċ1−

∑j0
j=2 ν1j Jj)/ν11. In many cases, a reconstruction of the

fast flux is not necessary.

4. Computation of the reduced parameters:

a) The reduced resistances are equal to the original resistances R̃j = Rj.

b) The new capacities are given by

C̃i = Ci + fi
ξ1

ξ̃i
C1.

c) If capacities C̃ and resistances R̃ depend on ξ, the results of step 3 can be used to
express them in dependence on ξ̃.

5. If the network contains further reactions with resistance 0, apply the reduction method
again until all remaining reactions have a strictly positive resistance.
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§ 6.16 (Clamping of potentials and fluxes). In §6.3 (p. 111) it was argued that it is sufficient to
formally limit the development of the reduction method to closed systems because it is easily
possible to clamp potentials and fluxes after the reduction step. The remaining potentials ξi
and fluxes Jj of the reduced system are equal to the corresponding potentials and fluxes of the
original system. Thus, the clamping of these compounds can be easily done after the reduction.
During the reduction one has to take care that no clamped flux or potential is removed.

§ 6.17 (Conflicting potentials ξi). During the application of the procedure in §6.15, it may
not be possible to choose a compound that is to be removed because all compounds that
participate in a fast reaction are going to be clamped. This situation corresponds to conflicts
among clamped potentials as discussed in Corollary 4.61 (p. 74). Such situations need to be
resolved as explained in §4.65 (p. 75) because they correspond to physically inconsistent model
assumptions. Either a rapid-equilibrium assumption has to be relaxed, or the potential of a
clamped compound has to be released.

§ 6.18 (Non-uniqueness of Jj). During the application of the procedure in §6.15, it may happen
that a network still contains fast reactions (R1 = 0), but its overall stoichiometric coefficients νi1
are all zero. In this case the reduction cannot be applied, since it requires at least one compound
with νi1 6= 0. In such cases, the rapid-equilibrium condition F1 = 0 is trivially fulfilled and the
flux J1 is not uniquely determined. This situation corresponds to the non-uniqueness of fluxes
that may occur under certain conditions (cf. Corollary 4.71, p. 76). A possibility to treat such
situations is to completely remove the problematic reaction equation from the network (cf. §4.76,
p. 78). This makes the fluxes unique, and only influences the values of the respective fluxes but
no other quantities.

Example 6.19 (Linear reaction chain). Consider the system A
R1−⇀↽− B

R2−⇀↽− C with constant
resistances R1 > 0, R2 = 0 and constant capacities CA, CB and CC . Applying the procedure
in §6.15 in order to remove species C and reaction 2 we get the reduced system: Ã

R1−⇀↽− B̃

with C̃A = CA, C̃B = CB + ξC/ξ̃B CC = CB + CC , cA = c̃A, cB = c̃B − cC , cC = CC ξC and
ξC = ξ̃B. A more appropriate notation for B̃ would be BC, since the compound B̃ comprises
the compounds B and C (c̃B = cB + cC).

Example 6.20 (Reaction chain with bimolecular reaction). Consider the system A + B
R1−⇀↽−

C
R2−⇀↽− D with constant resistances R1 = 0, R2 > 0 and constant capacities CA, CB, CC and

CD. We remove species C and reaction 1 from the system. The reduced system is Ã+ B̃
R2−⇀↽− D̃

with cA = c̃A− cC , cB = c̃B − cC , cC = CC ξC , cD = c̃D, ξA = ξ̃A, ξB = ξ̃B, ξC = ξ̃A ξ̃B, ξD = ξ̃D,
C̃A = CA + CC ξC/ξ̃A = CA + CC ξ̃B and C̃B = CB + CC ξC/ξ̃B = CB + CC ξ̃A. Thus, the new
compounds Ã and B̃ are the pools of {A,C} and {B,C}, respectively.

§ 6.21 (Simultaneous reduction of several fast reactions). By successive application of the
procedure in §6.15 we can completely reduce all reactions with a resistance zero from a reaction
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system. However, we can only remove one fast reaction at a time. To reduce several reactions
simultaneously, one needs to fall back to Corollary 5.42 and compute the required null spaces
(i. e. solve linear equations). However, for a simple but frequent case we can extend the procedure
in §6.15 to reduce several reactions simultaneously: Assume that the first q reactions are fast
(Rj = 0 for j = 1 . . . q). Further, assume that each fast reaction contains a compound Xj that
occurs only in this fast reaction, but not in other fast reactions (νij 6= 0 for i = j, νij = 0 for
i 6= j, i, j = 1 . . . q). Then the q reduction steps that are necessary to reduce the q fast reactions
with procedure §6.15 can be done simultaneously. The only point where the q reduction steps
interact is in the reconstruction of ci and in the computation of the reduced capacities C̃i. There
one needs to add a corresponding summand for each reduced compound.

Example 6.22. Consider a network consisting of the four reactions: A
R1=0−−−⇀↽−−− B1

R3>0−−−⇀↽−−− C1,

A
R2=0−−−⇀↽−−− B2

R4>0−−−⇀↽−−− C2. The reactions 1 and 2 are in rapid equilibrium and we will remove
B1 and B2. Both reduction steps can be done simultaneously and lead to the reduced model
Ã

R3>0−−−⇀↽−−− C̃1, Ã
R4>0−−−⇀↽−−− C̃2 with C̃A = CA+CB1 +CB2 , C̃C1 = CC1 , C̃C2 = CC2 , c̃A = cA+cB1 +cB2 ,

c̃C1 = cC1 and c̃C2 = cC2 .

6.4. Reduction of the Boundary Conditions

The reduction of the number of clamped potentials and clamped fluxes requires the knowledge
of the complete stoichiometry of the model. It is based on the null space of a combination
of stoichiometric matrices (see Section 4.2.3, p. 81). By adding or removing reactions and
compounds to the network, this null space changes. This means that the reduction method
depends on properties of the whole network and not of single reactions or species only. For
this reason, we do not give rules for the reduction of the boundary conditions on the reaction
equation level.

6.5. Excursus: Combinatorial Protein Interaction Networks

In protein-protein interaction networks, the number of distinguishable protein-protein com-
plexes and the number of distinguishable reactions is typically very large. This is due to the
combinatorial explosion of these numbers for scaffold proteins with several binding sites. The
number of species and reactions in such networks easily goes into millions even if only a few
proteins are considered (see e. g. Hlavacek et al. [49]). The number of stoichiometric cycles
and thus the number of Wegscheider conditions grows over-proportionally with the model size
(Example 2.60, p. 37). Therefore, the thermodynamically consistent kinetic modeling of such
networks gets increasingly involved.
Reaction rules are a possibility to describe models of these networks by a relatively short

list of reaction equations [35]. We define a reaction rule as a reaction equation with an index
variable, e. g. the reaction rule A0,x2,x3 +B 
 A1,x2,x3 with the indices x2, x3 ∈ {0, 1}. This rule
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describes 4 single reaction equations. Several computer programs exist that build simulation
equations from a set of indexed reaction rules; e. g. BioNetGen [18]. However, this approach gets
easily intractable because the number of model equations grows exponentially with the number
of involved proteins. Several model reduction techniques were developed for such systems. The
method of Conzelmann et al. [28] relies on an observability analysis and on finding a minimal
Kalman realization of the system. The approaches of Koschorreck [63], Koschorreck and Gilles
[64], Koschorreck et al. [65] and Borisov et al. [20] use approximative assumptions for the re-
duction of the model size. The approximative approach of Koschorreck implicitly uses specific
rapid equilibrium assumptions that allow avoiding a great deal of the combinatorial complexity.
This approach is based on specific interaction motifs that occur frequently. The methods men-
tioned above are highly valuable for modeling protein-protein interaction networks, however,
there is still no satisfying and general method for the reduced-order modeling of protein-protein
interaction networks. The development of a more general method for the application of rapid
equilibrium assumptions is a promising task. This excursus sketches a possible approach.

6.5.1. Reaction Rules and Interaction Factors

This section shows by means of an example how reaction rules can be formulated in TKM. This
is a prerequisite for the consideration of complex protein interaction networks.

Example 6.23 (Complex formation at a scaffold). Consider the binding of three ligands L1,
L2 and L3 to a scaffold protein S. The system can be described by 12 reactions that can be
written by three reaction rules:

L1 + S0,x2,x3

1−⇀↽− S1,x2,x3 ,

L2 + Sx1,0,x3

2−⇀↽− Sx1,1,x3 ,

L3 + Sx1,x2,0
3−⇀↽− Sx1,x2,1.

with x1, x2, x3 ∈ {0, 1}. The three subscripts xi indicate whether the corresponding binding
site for ligand Li is occupied (xi = 1) or not (xi = 0). The capacities and resistances of the
reactions depend on the indices x1, x2 and x3. We assume that we can describe the reaction
kinetics by ideal mass-action laws. In contrast to the usual conventions, we allow that the rate
constants k±j of the single reactions described by a reaction rule are different. Thus, we can
describe the network by 11 constant capacities and 12 constant resistances. These numbers
increase exponentially with the number of ligands (see Example 2.60, p. 37). The following two
paragraphs introduce a convenient representation of the capacities and resistances by means of
thermodynamic and kinetic interaction factors.
Thermodynamic interaction factors. The capacities CSx1,x2,x3

of the scaffold complexes can
be written as

CSx1,x2,x3
= CSK

x1
C,1K

x2
C,2K

x3
C,3K

x1 x2
C,12 K

x1 x3
C,13 K

x2 x3
C,23 K

x1 x2 x3
C,123
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with a constant base capacity CS of the unoccupied scaffold and constant thermodynamic in-
teraction factors KC, · . This way of denoting the dependency of the capacities on the binding
state of S is especially appealing because it reflects the interaction structure of the scaffold. If
we rewrite the above expression for CSx1,x2,x3

in terms of chemical standard potentials (see §5.5,
p. 90) we get:

µ◦Sx1,x2,x3
=−R∗ T log

(
CS
c◦

)
︸ ︷︷ ︸

µ◦S0,0,0

−x1 R
∗ T logKC,1︸ ︷︷ ︸

µ◦1

−x2 R
∗ T logKC,2︸ ︷︷ ︸

µ◦2

−x3 R
∗ T logKC,3︸ ︷︷ ︸

µ◦3

− x1 x2 R
∗ T logKC,12︸ ︷︷ ︸

µ◦12

−x1 x3 R
∗ T logKC,13︸ ︷︷ ︸

µ◦13

−x2 x3 R
∗ T logKC,23︸ ︷︷ ︸

µ◦23

− x1 x2 x3 R
∗ T logKC,123︸ ︷︷ ︸

µ◦123

where µ◦S0,0,0
is the standard potential of free S. The terms µ◦1/2/3 together with the standard

potentials of the ligands L1/2/3 determine the Gibbs binding energies of L1/2/3 to free S. For
example, the Gibbs binding energy of L1 to free S is ∆G◦S0,0,0+L1
S1,0,0

= −µ◦S0,0,0
−µ◦L1

+µ◦S1,0,0
=

−µ◦L1
− µ◦1. The other terms describe interactions of the ligand bindings. If µ◦12 is not equal

zero, bound L1 and bound L2 influence each other with the Gibbs interaction energy µ◦12. Such
an interaction occurs if L1 and L2 bind in direct neighborhood (i. e. with physical contact) at
the scaffold protein and thus interact in this way. Another possibility is that the binding of L1

stabilizes the scaffold in a certain conformation with an increased or decreased affinity for L2.
This kind of interaction occurs in signal transduction from extracellular ligands (e. g. hormones)
to intracellular ligands. Observe that interactions are always reciprocal, i. e. the effect of bound
L1 on the Gibbs binding energy of L2 is equal to the effect of bound L2 on the Gibbs binding
energy of L1. If two bindings are independent, the respective µ◦i1i2 equals zero, and the respective
Ki1i2 equals one . There is also the possibility of higher-order interactions (K123 6= 1) that occur
if the concerted effect of several ligand bindings influences the binding of a further ligand. For
large scaffolds with only a few interactions, a simple list of all capacities would be very long,
but a formulation in terms of interaction factors KC, · is short because interaction factors equal
to one can be omitted.
Kinetic interaction factors. The resistances of the reaction rules depend on the respective

free index variables. We parameterize them in the following way:

R1,(x2,x3) = R1

(
KR,1,2

KC,2

)x2
(
KR,1,3

KC,3

)x3
(
KR,1,23

KC,23

)x2 x3

,

R2,(x1,x3) = R2

(
KR,2,1

KC,1

)x1
(
KR,2,3

KC,3

)x3
(
KR,2,13

KC,13

)x1 x3

,

R3,(x1,x2) = R3

(
KR,3,1

KC,1

)x1
(
KR,3,2

KC,2

)x2
(
KR,3,12

KC,12

)x1 x2

.

Here R1/2/3 are the resistances of the binding of L1/2/3 to the unoccupied scaffold S0,0,0 and
KR,1/2/3, · are the kinetic interaction factors. They describe the effect of the binding state of
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the scaffold on the binding rate constant of L1/2/3. For example, the rate constants of the
binding of ligand 1 is k+1,(x2,x3) = R−1

1 C−1
S C−1

L1
K−x2
R,1,2K

−x3
R,1,3K

−x2 x3
R,1,23 (see §5.18, p. 93). The

interaction factors KR,1,2, KR,1,3 and KR,1,23 describe the influence of bound L2, bound L3 and
the concerted effect of bound L2 and L3 on the binding of L1. If for example KR,1,2 < 1, the
association constant of L1 to a S-L2-complex is greater than to the empty scaffold S.
The definition of the kinetic interaction factors KR, · , · given above is advantageous because

the forward rate constants k+j are independent of the thermodynamic interaction factors KC, · .
Thus, a change of the binding velocity is solely determined by the kinetic interaction factors.
Often the diffusion of the ligand Li is the rate-limiting step for the binding. In this case, the
association constants k+i are independent of the state of the scaffold S (see [15, 35]) and the
kinetic interaction factors equal one; KR,i, · = 1. This means that the signal transmission in
this diffusion limited case is solely determined by the thermodynamic interaction factors KC, · .
Independent processes. If the higher order thermodynamic interactions vanish (KC,12 =

KC,13 = KC,23 = 1) and the kinetic interactions vanish (KR, · , · = 1), the binding processes
of L1, L2 and L3 are mutually independent. Then, the rate constants for the reaction rules do
not depend on the binding state of the scaffold.

§ 6.24 (Difference to other notations). Other approaches for modeling by reaction rules usually
assume that all reactions defined by a reaction rule have the same kinetic constants k+ and k−
[19, 28, 65]. This means that the binding event described by a rule is independent of the state
of the complexes that participate in the reaction rule. In the above example, this corresponds
to the case of independent processes. To allow for interactions, the system needs to be written
with more than three reaction rules. The parameterization of reaction rules as introduced in
the above example is more general, since it is only assumed that resistances and capacities can
be expressed in terms of the indices xi that are used to write the reaction rules.

Example 6.25 (Effect of the interaction factors). To illustrate the meaning of the interaction
factors, we consider the signal transduction mediated by a scaffold S with two ligands L1 and
L2. We start in thermodynamic equilibrium of the binding of L1 and L2. The ligands L1 and
L2 are partly bound to the scaffold S. At a certain point in time, the total concentration of L1

(ĉL1 = cL1 + cS1,0 + cS1,1) is increased by adding a certain amount of free L1. In response to this
pulse a part of the added free L1 binds to the scaffold. Due to the interactions at the scaffold, this
may have effects on the binding of L2, i. e. the concentration of bound L2 (ĉS · ,1

= cS0,1 + cS1,1).
If this is the case, the scaffold transmits a signal from ligand L1 to ligand L2. Figure 6.1 shows
several cases with different interaction factors. In this example, the thermodynamic interaction
factors determine the steady state response and the kinetic interaction factors characterize the
transient behavior.

§ 6.26 (Conclusions). Thermodynamic and kinetic interaction factors allow for the thermo-
dynamically consistent modeling of information flow in protein-protein interaction networks.
Such a description is the basis for the application of the rapid equilibrium assumption that is
discussed in the following section.
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ĉS · ,1

time0

ĉS · ,1

time0

ĉS · ,1

time0

ĉS · ,1

time0

ĉS · ,1

time0

KC,12 = 1 KC,12 > 1 KC,12 = 1 KC,12 > 1 KC,12 > 1

KR,1,2 = 1 KR,1,2 = 1 KR,1,2 > 1 KR,1,2 > 1 KR,1,2 > 1

KR,2,1 = 1 KR,2,1 = 1 KR,2,1 < 1 KR,2,1 < 1 KR,2,1 > 1

Figure 6.1.: Effect of the interaction factors on the signal transduction at a scaffold S. Free
ligand L1 is added at time t = 0. The plot show the concentration of bound ligand
L2 (ĉS · ,1

= cS0,1 + cS1,1).

6.5.2. Model Reduction of Reaction Rules

The step-by-step procedure §6.15 (p. 117) for the reduction by rapid equilibrium assumptions
can be applied to reaction rules. It is usually not necessary to completely expand the rules
to a list of reaction equations, but it is possible to directly formulate the reduced reaction
rules. This means that the formulation of the reduced-order model equations does not require
the formulation of the detailed model equations. This is an essential advantage because the
detailed model defined by the expanded reaction rules may contain an infeasibly high number
of equations. We demonstrate this by means of a few examples.

Example 6.27 (Complex formation at a scaffold). Consider a scaffold protein S with q binding
sites for q ligands Li (i = 1 . . . q). By Sx1...xq we denote the complexes of the scaffold, where
xi = 0 means that the ith site is free and xi = 1 means that Li has bound to site i. The reaction
rules

L1 + S0,x2...xq

1−⇀↽− S1,x2...xq

...

Lq + Sx1...xq−1,0

q−⇀↽− Sx1...xq−1,1

with xi ∈ {0, 1} describe all binding processes at the scaffold. The network contains q ×
2q−1 reactions, 2q scaffold complexes and q free ligands. Assume that the binding of L1 is
fast (R1 = 0). We remove the respective reactions and the L1-S-complexes S1,x2...xq from the
network. The new concentrations in the reduced network are c̃L1 = cL1 +

∑
x2...xq

cS1,x2...xq

and c̃S0,x2...xq
= cS0,x2...xq

+ cS1,x2...xq
. The quantity c̃L1 is the total concentrations of L1. The

concentrations c̃S0,x2...xq
describe how much complexes with a binding state defined by (x2 . . . xq)

but arbitrary x1 exist. The notation c̃S0,x2...xq
is chosen systematically as described in §6.15,

p. 117. An alternative and more intuitive notation for the same quantity is c̃S · ,x2...xq
. The

original thermokinetic potential of the reduced complexes can be reconstructed by ξS1,x2...xq
=

ξ̃L1 ξ̃S0,x2...xq
. The remaining concentrations are not changed by the reduction: c̃Li

= cLi
for
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i = 2 . . . q. The reduced capacities are C̃L1 = CL1 +
∑

x2...xq
(ξS1,x2...xq

/ξ̃L1)CS1,x2...xq
= CL1 +∑

x2...xq
ξ̃S0,x2...xq

CS1,x2...xq
, C̃S0,x2...xq

= CS0,x2...xq
+ (ξS1,x2...xq

/ξ̃S0,x2...xq
)CS1,x2...xq

= CS0,x2...xq
+

ξ̃L1 CS1,x2...xq
and C̃Li

= Ci for i = 2 . . . q.
We compute the reduced stoichiometry and the reduced resistances. For this purpose we use

the binding of L2 with resistance R2,(x1,x3...xq) as an example. The reaction rule for the binding
of L2 can be decomposed into two rules:

L2 + S0,0,x3...xq

2a−⇀↽− S0,1,x3...xq , L2 + S1,0,x3...xq

2b−⇀↽− S1,1,x3...xq ,

where only rule 2b contains the complexes S1,x2...xq . The resistances are R2a,(x3...xq) = R2,(0,x3...xq)

and R2b,(x3...xq) = R2,(1,x3...xq). According to §6.15, we get the reduced stoichiometry:

L̃2 + S̃0,0,x3...xq

2̃a−⇀↽− S̃0,1,x3...xq , L̃2 + L̃1 + S̃0,0,x3...xq

2̃b−⇀↽− L̃1 + S̃0,1,x3...xq .

Reaction 2̃b can be simplified by a translation of stoichiometric coefficients (Corollary 6.4, p. 112)

because L1 does not enter its overall stoichiometry. Reaction 2̃b simplifies to L̃2 + S̃0,0,x3...xq

ˆ̃2b−⇀↽−

S̃0,1,x3...xq with a resistance ˆ̃R2b = R̃2b,(1,x3...xq)/ξ̃L,1. Using Corollary 6.7 (p. 113), the rules 2̃a

and ˆ̃2b can be combined to

L̃2 + S̃0,0,x3...xq

2̃−⇀↽− S̃0,1,x3...xq

with resistance R̃2,(x3...xq) = R̃2a,(0,x3...xq) ‖ (R̃2b,(1,x3...xq)/ξ̃L1). Analog expressions can be given
for the binding of the other ligands. The reduced system describes the binding of the remaining
q − 1 ligands L2, . . . Lq. It contains (q − 1) × 2q−2 reactions, 2q−1 scaffold proteins, q − 1

free ligands (L̃2 . . . L̃q) and one ligand L̃1 that represents the sum of free and bound ligand
L1. Thus, the reduced system contains 2q−1 = 50% compounds less than the original system.
The reaction rules, capacities and resistances of the reduced system can be derived without
completely expanding the original reaction rules.

Example 6.28 (Interaction by stabilization of a conformation). Let S be a scaffold with q

ligands Li. Assume that the ligands bind in sufficient spatial distance such that they do not
interact directly. Such a situation occurs for example if a transmembrane receptor binds an
extracellular ligand (e. g. a hormone) and an intracellular ligand (e. g. a kinase). This leads
to the interaction factors KC,i1 = . . . = KC,iq = 1 and KR,i, · = 1 because the ligands do not
directly interact. Based on this interaction factors, the capacities have the form CSx1...xq

=

CSK
x1
C,1 . . . K

xq

C,q. The following reaction rules and resistances describe the binding events:

L1 + S0,x2...xq

1−⇀↽− S1,x2...xq , R1,(x2...xq) = R1K
−x2
C,2 . . . K

−xq

C,q

...
...

Lq + Sx1...xq−1,0

q−⇀↽− Sx1...xq−1,1, Rq,(x1...xq−1) = RqK
−x1
C,1 . . . K

−xq−1

C,q−1 .
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x1 x2 x3 x4

0 phosphatase form dephosphorylated no L1 bound no L2 bound
1 kinase form phosphorylated L1 bound L2 bound

Table 6.1.: The meaning of the subscripts of the scaffold protein Sx1,x2,x3,x4 in Example 6.29.

We assume that the scaffold S can exist in an inactive conformation S̄ that does not allow
for the binding of any ligand. As a consequence, only free S can go to the inactive state. The
capacity of the inactive state is CS̄ = CS K̄ where K̄ > 0 is a constant. We further assume that
there is a rapid equilibrium of the active and the inactive form:

S0...0
0−⇀↽− S̄, R0 = 0.

Applying the reduction method, we remove the inactive scaffold S̄ from the system and get the
new concentration c̃S0...0 = cS0...0 + cS̄. The other concentrations are not changed: c̃Li

= cLi
and

c̃Sx1...xq
= cSx1...xq

for at least one xi 6= 0. The new capacities are C̃S0...0 = CS0...0+CS̄ = CS (K̄+1)

and C̃Li
= CLi

, C̃Sx1...xq
= CSx1...xq

for at least one xi 6= 0. The capacities can be expressed in a
more compact form as C̃Sx1...xq

= CSK
x1
C,1 . . . K

xq

C,q (K̄ + 1)δ with δ =
∏q

i=1(1− xi). If one does
not experimentally distinguish between the active and the inactive forms of the free scaffold
and thus measures only the concentration c̃S0...0 , one can only measure the apparent association
k̃+i = R−1

i C−1
S C−1

Li
(K̄ + 1)−δ and dissociation constants k̃−i = R−1

i C−1
S K−1

C,i (see §5.18, p. 93).
Thus, the apparent dissociation constants k̃−i are independent of the binding state of S, but
the apparent association constants k̃+i depend on the binding state.

In the examples above, the steady state signal flows at scaffold proteins are bidirectional.
Whenever the binding of a ligand L1 has influence on the binding of another ligand L2, the
binding of L2 necessarily has an effect on the binding of L1. This bidirectionality is an effect of
the symmetry of the thermodynamic interaction factors and thus of the Wegscheider conditions.
It can be broken if additional Gibbs energy (e. g. in the form of ATP) is supplied to the receptor.
The next example derives the apparent association and dissociation constants for a model of
such a mechanism.

Example 6.29 (Retroactivity-free signal transduction by a receptor kinase). In the following
example, we derive a reduced-order model of the signal transduction at a receptor kinase.
Consider a receptor protein Sx1,x2,x3,x4 (see Table 6.1). The receptor can spontaneously switch
between two folding states (x1 ∈ {0, 1}) with auto-kinase (x1 = 1) and phosphatase (x1 = 0)
activity, respectively. An extracellular ligand L1 can bind to the kinase form (x3 = 1 means that
L1 is bound). The resulting L1-S complex cannot switch to phosphatase form. If the receptor
is in the kinase form, it rapidly undergoes auto-phosphorylation. If it is in phosphatase form,
it rapidly undergoes auto-dephosphorylation. The index x2 = 0 indicates an unphosphorylated
and x2 = 1 a phosphorylated receptor. After phosphorylation, an intracellular ligand L2 rapidly
binds to the phosphorylation site (x4 = 1 means that L2 has bound). Bound L2 protects the
receptor from dephosphorylation.
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Observe that not all combinations of x1, x2, x3 and x4 are possible. In particular, there are
no L1-S complexes with phosphatase activity (i. e. x1 = 0 ∧ x3 = 1 does not occur) and there
are no L2-S complexes that are dephosphorylated (i. e. x2 = 0 ∧ x4 = 1 does not occur).
We assume that binding, phosphorylation and conformation change are independent processes

and get

CSx1,x2,x3,x4
= CSK

x1
C,1K

x2
C,2K

x3
C,3K

x4
C,4

and KR, · , · = 1.
The above mechanism can be described by reaction rules for conformational change

S0,x2,0,x4

1x2,x4−−−⇀↽−−− S1,x2,0,x4 , R1,(x2,x4) = R1K
−x2
C,2 K−x4

C,4 ,

phosphorylation and dephosphorylation

S1,0,x3,0 + ATP
2x3−−⇀↽−− S1,1,x3,0 + ADP, R2,x3 = 0,

S0,0,x3,0 + P
3x3−−⇀↽−− S0,1,x3,0, R3,x3 = 0,

and binding of L1 and L2

S1,x2,0,x4 + L1

4x2,x4−−−⇀↽−−− S1,x2,1,x4 , R4,(x2,x4) = R4K
−x2
C,2 K−x4

C,4 ,

Sx1,1,x3,0 + L2

5x1,x3−−−⇀↽−−− Sx1,1,x3,1, R5,(x1,x3) = 0.

Each of the states S1,0,x3,0, S0,0,x3,0 and Sx1,1,x3,1 occurs only in one of the three fast reaction
rules 2, 3 and 5, respectively. Thus, we can reduce them simultaneously according to the
step-by-step procedure §6.15 (p. 117) by applying the replacement rules:

S1,0,x3,0 
 S1,1,x3,0 + ADP − ATP, S0,0,x3,0 
 S0,1,x3,0 − P, Sx1,1,x3,1 
 Sx1,1,x3,0 + L2.

For the application of these replacement rules the reactions rules 1 and 4 need to be expanded.
Since the situation x2 = 0 ∧ x4 = 1 cannot occur, rule 1 expands to three reactions. For two of
those reactions the replacement rules are applicable:

S0,0,0,0
100−−⇀↽−− S1,0,0,0 → S̃0,1,0,0 − P

1̃00−−⇀↽−− S̃1,1,0,0 + ÃDP − ÃTP , R̃1,(0,0) = R1,

S0,1,0,0
110−−⇀↽−− S1,1,0,0 → S̃0,1,0,0

1̃10−−⇀↽−− S̃1,1,0,0, R̃1,(1,0) = R1K
−1
C,2,

S0,1,0,1
111−−⇀↽−− S1,1,0,1 → S̃0,1,0,0 + L̃2

1̃11−−⇀↽−− S̃1,1,0,0 + L̃2, R̃1,(1,1) = R1K
−1
C,2K

−1
C,4.

Analogously, reaction rule 4 expands and reduces to

S1,0,0,0 + L1
400−−⇀↽−− S1,0,1,0 → S̃1,1,0,0 + ÃDP − ÃTP + L̃1

4̃00−−⇀↽−− S̃1,1,1,0 + ÃDP − ÃTP ,

S1,1,0,0 + L1
410−−⇀↽−− S1,1,1,0 → S̃1,1,0,0 + L̃1

4̃10−−⇀↽−− S̃1,1,1,0,

S1,1,0,1 + L1
411−−⇀↽−− S1,1,1,1 → S̃1,1,0,0 + L̃1 + L̃2

4̃11−−⇀↽−− S̃1,1,1,0 + L̃2
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with R̃4,(0,0) = R4, R̃4,(1,0) = R4K
−1
C,2 and R̃4,(1,1) = R4K

−1
C,2K

−1
C,4.

This list of reactions can be further simplified. By a translation of stoichiometric coefficients
(Corollary 6.4, p. 112) the negative coefficients in 1̃00 can be removed and we get S̃0,1,0,0+ÃTP 


S̃1,1,0,0 + ÃDP + P̃ with resistance R̃′1,(0,0) = R1 ξ̃ATP ξ̃P . Ligand L̃2 enters the reaction 1̃11 only
as a catalyst. By a translation of stoichiometric coefficients the reaction 1̃11 can be further
simplified to S̃0,1,0,0 
 S̃1,1,0,0 with a resistance R̃′1,(1,1) = R1K

−1
C,2K

−1
C,4 ξ̃

−1
L2

. Further, all three
reactions 4̃00, 4̃10 and 4̃11 have the same overall stoichiometry S̃1,1,0,0 + L̃1 
 S̃1,1,1,0 and thus
the effect of ξ̃ATP , ξ̃ADP and ξ̃L2 can be moved to the resistances: R̃′4,(0,0) = R4 ξ̃ATP ξ̃

−1
ADP ,

R̃′4,(1,0) = R4K
−1
C,2 and R̃′4,(1,1) = R4K

−1
C,2K

−1
C,4 ξ̃

−1
L2

. After this simplification, several reactions
have the same stoichiometry and can be treated as parallel reactions (see Section 6.2.2, p. 113).
The stoichiometry of 1̃11 is equal to reaction 1̃10. We can also combine the three reactions 4̃00,
4̃10 and 4̃11.
Finally, the reduced system reads:

S̃0,1,0,0 + ÃTP
1̃00−−⇀↽−− S̃1,1,0,0 + ÃDP + P̃ ,

S̃0,1,0,0

1̃1,x4−−−⇀↽−−− S̃1,1,0,0,

S̃1,1,0,0 + L̃1
4̃−⇀↽− S̃1,1,1,0

with resistances

R̃′1,(0,0) = R1 ξ̃ATP ξ̃P ,

R̃1,(1,x4) = R̃1,(1,0) ‖ R̃′1,(1,1) = R1 (KC,2 +KC,2KC,4 ξ̃L2︸ ︷︷ ︸
K̃A(ξ̃)

)−1,

R̃4 = R̃′4,(0,0) ‖ R̃′4,(1,0) ‖ R̃′4,(1,1) = R4 (KC,2 +KC,2KC,4 ξ̃L2 + ξ̃ADP/ξ̃ATP︸ ︷︷ ︸
K̃B(ξ̃)

)−1

with the state dependent factors K̃A(ξ̃) and K̃B(ξ̃). The new concentrations represent sums of
the original concentrations:

c̃S0,1,0,0 = cS0,1,0,0 +cS0,0,0,0 +cS0,1,0,1 =
∑

x2,x4
cS0,x2,0,x4

,

c̃S1,1,0,0 = cS1,1,0,0 +cS1,0,0,0 +cS1,1,0,1 =
∑

x2,x4
cS1,x2,0,x4

,

c̃S1,1,1,0 = cS1,1,1,0 +cS1,0,1,0 +cS1,1,1,1 =
∑

x2,x4
cS1,x2,1,x4

.

These are the overall concentration of the phosphatase form without L1, the kinase form without
L1 and the kinase form with L1, respectively. The concentration c̃L2 is the overall concentration
of all L2:

c̃L2 = cL2 +
∑
x1,x3

cSx1,1,x3,1 = cL2 +
∑

x1,x2,x3

cSx1,x2,x3,1 .
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The reduced capacities are

C̃S0,1,0,0 = CS0,1,0,0 +CS0,0,0,0 ξ̃
−1
P +CS0,1,0,1 ξL2 = CS (K̃A(ξ̃) + ξ̃−1

P ),

C̃S1,1,0,0 = CS1,1,0,0 +CS1,0,0,0

ξ̃ADP

ξ̃ATP
+CS1,1,0,1 ξ̃L2 = CSKC,1 K̃B(ξ̃),

C̃S1,1,1,0 = CS1,1,1,0 +CS1,0,1,0

ξ̃ADP

ξ̃ATP
+CS1,1,1,1 ξ̃L2 = CSKC,1KC,3 K̃B(ξ̃)

and

C̃L1 = CL1 ,

C̃L2 = CL2 +
∑
x1,x3

CSx1,1,x3,1 ξ̃Sx1,1,x3,0

= CL2 + CSKC,2KC,4

(
ξ̃S0,1,0,0 +KC,1 ξ̃S1,1,0,1 +KC,1KC,3 ξ̃S1,1,1,1

)
.

The capacities of the energy carriers are unchanged: C̃ATP = CATP , C̃ADP = CADP and C̃P =

CP .
The binding of L1 is independent of the other processes because K̃B(ξ̃) cancels out in

the rate parameters k+4̃ = R̃−1
4 C̃−1

S1,1,0,0
C̃−1
L1

= R−1
4 C−1

S K−1
C,1C

−1
L1

and k−4̃ = R̃−1
4 C̃−1

S1,1,1,0
=

R−1
4 C−1

S K−1
C,1K

−1
C,3 are independent of the state of the system. Thus, the binding of L1 is not

influenced by the downstream processes. This shows that the above receptor model describes
retroactivity-free signaling.
The original system consisting of 14 compounds (9 complexes, 2 ligands, ATP , ADP , P ) and

13 reactions could be reduced to a system with 7 compounds (3 complexes, 2 ligands, ATP ,
ADP , P ) and 3 reactions. The necessary calculations are lengthy but straightforward and can
easily be automated.

6.5.3. Conclusions

This excursus developed an approach for the modeling of combinatorial complex protein-protein
interaction networks in TKM. Thermodynamic and kinetic interaction factors provide a simple
and intuitive way to characterize thermodynamically feasible signal flows. The reduction meth-
ods can often be applied without completely expanding the reaction rules. This means that
the model reduction can be performed without formulating the detailed model equations based
on a complete expansion of the reaction rules. Because in combinatorial networks the detailed
model equations are very large, this is an essential advantage. It allows reduced order-modeling
instead of model reduction. Thus, thermokinetic modeling and model reduction allows for the
thermodynamically consistent modeling and thus the analysis of the interconnections of signal
and energy flows in large signal transduction networks.
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6.6. Excursus: Reduction of Uncontrollable and
Unobservable Subsystems

The previous excursus demonstrated the application of the rapid-equilibrium assumption to
combinatorial networks in the TKM formalism. Conzelmann et al. [27, 28] introduced a method
for the reduction of such networks that is based on the reduction of unobservable modes in the
system. The key step is the application of a state transformation that forms pool variables.
Under certain conditions, the transformed system decomposes into uni-directionally coupled
modules, the so called tiers. This means that the top-level modules can be analyzed without
analyzing the downstream tiers.
The application of the rapid-equilibrium assumption leads to pool variables that are similar

to the pool variables introduced by Conzelmann et al. [27, 28]. This section shows that the
method that was developed for the reduction of fast reactions also is applicable for the reduction
of unobservable modes.
This excursus shows by means of two examples, how the procedure for the reduction of rapid

reactions in Corollary 6.14 and §6.15 (p. 115) can be modified for the reduction of uncontrollable
and unobservable modes. This excursus provides not an exhaustive discussion but rather a
starting point for including the approaches of Conzelmann et al. [27, 28] into TKM.

6.6.1. Reduction of Uncontrollable Subsystems

The clamped potentials and clamped fluxes describe how the system environment can provide
the system with energy. If the energy cannot reach certain parts of the system, those parts
inevitably go to thermodynamic equilibrium. If the system dynamics has followed the model
equation for a long time before the experiment, these parts are in thermodynamic equilibrium.
Then, we can reduce the system size. The following example demonstrates such a case.

Example 6.30 (Reduction of an uncontrollable subsystem). We consider the independent
binding of two ligands L1 and L2 to a scaffold protein S. We assume constant capacities and
resistances. The interaction factors of the ligand bindings equal one (KC,12 = KR,1,2 = KR,2,1 =

1, see Section 6.5, p. 120) because the binding of L1 and L2 are independent. Thus, we have
the capacities CL1 , CL2 and CSi1,i2

= CSK
i1
C,1 K

i2
C,2. The following reaction rules describe the

system:

(L1) + S0,i2

(1,i2)−−−⇀↽−−− S1,i2 , R1,i2 = R1K
−i2
C,2 ,

(L2) + Si1,0
(2,i1)−−−⇀↽−−− Si1,1, R2,i1 = R2K

−i1
C,1

with i1, i2 ∈ {0, 1}. The clamped thermokinetic potentials of L1 and L2 are the inputs to
the system. We get k+1,0 = k+1,1 = R−1

1 C−1
S C−1

L1
, k−1,0 = k−1,1 = R−1

1 C−1
S K−1

C,1, k+2,0 =

k+2,1 = R−1
2 C−1

S C−1
L2

and k−2,0 = k−2,1 = R−1
2 C−1

S K−1
C,2 (see §5.18, p. 93). This means that the

130



6. Model Reduction of Reaction Equations

association and dissociation constants of ligand L1 do not depend on the binding state of L2,
and vice versa. Both binding reactions are independent.
Similar as Koschorreck [63], we introduce an additional, virtual reaction

S0,0 + S1,1
3−⇀↽− S0,1 + S1,0

with the thermokinetic force F3 = ξS0,0 ξS1,1 − ξS0,1 ξS1,0 , resistance R3 = ∞ and flux J3 = 0.
The time derivative of F3 is

Ḟ3 = ξ̇S0,0 ξS1,1 + ξS0,0 ξ̇S1,1 − ξ̇S0,1 ξS1,0 − ξS0,1 ξ̇S1,0 .

With ξ̇i = C−1
i ċi and ċi in dependence on the fluxes Jj we get

Ḟ3 =

(J2,1 + J1,1) ξS0,0 +KC,2 (J2,1 − J1,0) ξS0,1 +KC,1 (J1,1 − J2,0) ξS1,0−KC,1KC,2(J2,0 + J1,0) ξS1,1

CSKC,1KC,2

.

Now, we apply Jj = R−1
j Fj and Fj in dependence on the thermokinetic potentials ξi and get

Ḟ3 = −KC,1R1 (1 +KC,2 ξL2) +KC,2R2(1 +KC,1 ξL1)

CSKC,1KC,2R1R2︸ ︷︷ ︸
λ

(ξ0,0 ξ1,1 − ξ0,1 ξ1,0)︸ ︷︷ ︸
F3

.

The force F3 asymptotically approaches zero because λ < 0 for all ξL1 and ξL2 . Although the rate
of convergence depends on ξL1 and ξL2 , the set F3 = 0 is invariant and globally, asymptotically
stable for all ξL1 and ξL2 . If the system has followed the given model also before the initial
time t = 0 for an infinitely long time, it is safe to assume that F3 = 0, i. e. reaction 3 is in
equilibrium. Then, we can proceed as if R3 was zero because this assumption forces the system
to an equilibrium of reaction 3.
We apply the step-by-step procedure in §6.15 (p. 117) to reduce S11 from the system (step

1). With S11 
 S0,1 + S1,0 − S0,0 we get in step 2 the new stoichiometry:

(L̃1) + S̃0,0

(1,0)−−⇀↽−− S̃1,0, (L̃1) + S̃0,1

(1,1)−−⇀↽−− S̃0,1 + S̃1,0 − S̃0,0,

(L̃2) + S̃0,0

(2,0)−−⇀↽−− S̃0,1, (L̃2) + S̃1,0

(2,1)−−⇀↽−− S̃0,1 + S̃1,0 − S̃0,0.

Step 3 yields the relation of the original and the reduced variables:

cS0,0 = c̃S0,0 + cS11 , cS0,1 = c̃S0,1 − cS11 , cS1,0 = c̃S1,0 − cS11 , cS1,1 = CS1,1 ξ̃S0,1 ξ̃S1,0 ξ̃
−1
S0,0

and c̃L1 = cL1 and c̃L2 = cL2 . The reduced resistances are R̃j = Rj and the reduced capacities
are

C̃S0,0 = CS0,0 −
ξ̃S0,1 ξ̃S1,0

ξ̃2
S0,0

CS1,1 , C̃S0,1 = CS0,1 +
ξ̃S1,0

ξ̃S0,0

CS1,1 , C̃S1,0 = CS1,0 +
ξ̃S0,1

ξ̃S0,0

CS1,1 ,
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C̃L1 = CL1 and C̃L2 = CL2 . The above equations define a reduced thermokinetic model that
is equivalent to the original model for F3 = 0. Since F3 = 0 is a globally attractive set, the
reduction error goes to zero with increasing time. If the system has followed the model dynamics
for a long time, the reduced system and the original system are equivalent. Thus, this example
shows that the method developed for model reduction by the rapid equilibrium assumption
can be also used for the reduction of uncontrollable subsystems that approach thermodynamic
equilibrium.

6.6.2. Reduction of Unobservable Subsystems

A typical system has a set of natural output variables. This may be signals that connect different
modules of a signaling network, for example the concentrations of active transcription factors
in a model of a signaling pathway. In particular, in the case of models of combinatorial protein-
protein interaction networks one often is not interested in describing the whole combinatorial
complexity, but only in the dynamics of the natural output variables and the experimental
readouts. Conzelmann et al. [27, 28] showed that under certain conditions models of such
systems can be reduced because they contain dynamics that are not observable from the output
variables.
This section shows by means of an example how a non-observable subsystem can be identified

and reduced in the TKM formalism. For this purpose, the unobservable subsystem is assumed
to be in rapid equilibrium. To describe the error that is caused by this assumption virtual
compounds are introduced. By a suited pooling of concentrations, a reduced system can be
derived that does not contain the virtual compounds and thus is independent of the error
introduced by the rapid equilibrium assumption. This means that the reduced system exactly
describes the dynamics of the observable subsystem.

Example 6.31 (Reduction of an unobservable subsystem). Consider the system from Exam-
ple 6.30:

(L1) + S0,i2

(1,i2)−−−⇀↽−−− S1,i2 , R1,i2 = R1K
−i2
C,2 ,

(L2) + Si1,0
(2,i1)−−−⇀↽−−− Si1,1, R2,i1 = R2K

−i1
C,1

with i1, i2 ∈ {0, 1}, constant capacities CL1 , CL2 and CSi1,i2
= CSK

i1
C,1 K

i2
C,2.

Since the bindings of L1 and L2 are independent, we can model L1 binding independently
from L2 binding. The L2 binding is unobservable if the binding state of L1 is considered as the
output of the system. Here, we discuss this in the framework of TKM and provide the reduced
model equations.
The kinetics of L2 binding are determined by the parameter R2. We proceed as if R2 was zero

and thus as if the L2 binding was in equilibrium. This assumption introduces an error that we
can explicitly account for in the reaction network. For this purpose, we introduce two virtual
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species E1 an E2 that describe the error and replace the stoichiometric equation for reactions
(2, i1) by the new equation:

(L2) + Si1,0
(2,i1)−−−⇀↽−−− Si1,1 + (Ei1), R2,i1 = 0.

Since R2 = 0 the equilibrium condition

ξL2 ξSi1,0
= ξSi1,1

ξEi1
(6.1)

holds. The newly introduced thermokinetic potentials ξE0 and ξE1 describe the deviation of the
original reactions (2, 0) and (2, 1) from equilibrium. They describe the error that is introduced
by the rapid equilibrium assumption. We treat the species E1 and E2 as species with a clamped
thermokinetic potential and assume CE1 = CE2 = 0. This means that we may neglect their
concentration cE1 = cE2 = 0 in the further considerations. From Example 6.30 we know that
limt→∞(ξS0,0 ξS1,1−ξS0,1 ξS1,0) = 0. With Equation 6.1 one can derive that ξS0,0 ξS1,1−ξS0,1 ξS1,0 =

ξS0,1 ξS1,1 (ξE,0 − ξE,1)/ξL,2. This means that limt→0(ξE0 − ξE1) = 0 for ξL2 , ξSi1,i2
> 0. Thus, if

we restrict ourselves to the case when the uncontrollable subsystem is in equilibrium, we have
ξE = ξE0 = ξE1 and we can replace the virtual species E1 and E2 by the virtual species E. If we
can show that its thermokinetic potential ξE does not interact with L1 binding, we may safely
use the reduced equations to model L1 binding.
To reduce the system we follow the step-by-step procedure in §6.15 (p. 117). We reduce the

species Si1,1 with Si1,1 
 (L2) + Si1,0 − (E) (step 1) and get the stoichiometry (step 2):

(L̃1) + S̃0,0

(1,0)−−⇀↽−− S̃1,0, (L̃1) + L̃2 + S̃0,0 − (Ẽ)
(1,1)−−⇀↽−− L̃2 + S̃1,0 − (Ẽ)

with resistances R̃(1,i2) = R(1,i2). Reaction (1, 1) can be simplified by a translation of stoichio-
metric coefficients (Corollary 6.4, p. 112). Then reactions (1, 0) and (1, 1) can be reduced to
one equation:

(L̃1) + S̃0,0
1−⇀↽− S̃1,0

with resistances R̃1 = R(1,0) ‖ (R(1,1) ξ
−1
L2
ξE) = R1 · (1 + ξL2 ξ

−1
E KC,2)−1. The relation of the

original and reduced concentrations is given by (step 3):

cSi1,0
= c̃Si1,0

− cSi1,1
, cSi1,1

= CSi1,1
ξL2 ξ̃Si1,0

ξ̃−1
E

and cL1 = c̃L1 and cL2 = c̃L2 − cS0,1 − cS1,1 . Thus, the reduced concentrations c̃L2 , c̃S0,0 and c̃S1,0

are the overall concentrations of L2, scaffold with free L1-binding site and scaffold-L1 complex,
respectively. The reduced resistance was already determined above. The reduced capacities are
(step 4):

C̃Si1,0
= CSi1,0

+ ξL2 ξ
−1
E CSi1,1

= CSK
−i1
C,1 (1 + ξL2 ξ

−1
E KC,2)
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and C̃L1 = CL1 . We see that the reduced capacities C̃Si1,0
as well as the reduced resistance

depend on ξL2 and the error ξE in the same manner. By a translation of the chemical potentials
(Corollary 5.34, p. 102), we can rescale the system in order to remove this dependency. The
scaling factors δξ̃S0,0

= 1 + ξL2 ξ
−1
E K2, δξ̃S0,1

= 1 + ξL2 ξ
−1
E K2 and δξ̃L1

= 1 obey the condition

ÑT log(δξ) + S̃T log(δξe) = 0. The scaling leads to the constant parameters

ˆ̃CSi1,0
= CSK

−i1
1 , ˆ̃R1 = R1

for the reaction equation ˆ̃L1 + ˆ̃S0,0
1−⇀↽− ˆ̃S1,0. This model describes the binding of L1 and does not

depend on the second ligand ξL2 or on the approximation error ξE.
Thus, we could reduce the original system with 4 reactions and 6 species to a system with 1

reaction and 3 species. The reduced system does not describe the L2 binding but only the L1

binding. This is possible because the two binding reactions are independent.

§ 6.32 (Limitations of the approach). In the example above, we assumed that the uncontrollable
subsystem is in equilibrium. Without this assumption, we cannot derive a reduced description
for the L1 binding independent of the L2 binding using the methods discussed so far. Omitting
the equilibrium assumption leads to ξE1 6= ξE2 and impedes to merge the two reactions for
L1 binding into one. Then we could not remove the dependency of L1 binding system on L2

binding. However, also in this case the reduced model relying on the pooling of all free and
the pooling of all occupied L1 binding sites is valid because the association and dissociation
constants of L1 are independent of L2 binding. This is discussed by Conzelmann et al. [27, 28].
If the uncontrollable subsystem is not in equilibrium, i. e. ξE1 6= ξE2 , we cannot prove the

validity of the model reduction only by TKM operations that are introduced in this chapter.
However, it is possible to prove the validity by comparing the model equations in terms of
concentrations, as it is done by Conzelmann et al. [27, 28]. If a certain pooling scheme is known
to lead to a valid reduction of the unobservable subsystem, an according reduced TKM system
can be derived by neglecting the error variables ξEi

from the very beginning. Thus, the above
proposed methodology is not optimal, when one intends to identify the unobservable subsystem,
but it is well suited for doing the actual reduction step.

6.6.3. Conclusions

This excursus sketched a possibility to treat a reduction of uncontrollable and unobservable
subsystems in TKM. By means of two examples it was shown that the step-by-step procedure
§6.15 (p. 117) can be modified to reduce uncontrollable and unobservable subsystems. Thus, this
approach provides a link to the work of Koschorreck et al. [63–65] and Conzelmann et al. [27, 28].

6.7. Excursus: Enzyme Kinetics in TKM

Enzymatic reactions consist of several elementary steps, but are often described by a single
rate law that is derived on the basis of quasi-steady state or rapid equilibrium assumptions
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[9, 45, 94]. This excursus demonstrates that the use of TKM greatly simplifies the use of rapid
equilibrium assumptions for the derivation of enzyme kinetics. The following considerations
have been published in Ederer and Gilles [31].
As explained in §5.14 (p. 92), any generalized mass-action law can be modeled in TKM.

For example, the thermokinetic resistance of a Michaelis-Menten reaction A 
 B is R =

ρ0 +ρA cA +ρB cB. This law is based on the assumption that the enzyme concentration is much
smaller than the concentration of the substrate such that the concentrations of the enzyme
complexes are in quasi-steady state.
However, situations with low metabolite but high enzyme concentrations may occur in vivo.

Then, the enzyme concentrations cannot be assumed to be in a quasi-steady state. An alterna-
tive approach to derive a kinetic law for an enzymatic reaction is to assume that the binding of
A and B to the enzyme E is in rapid equilibrium.
The reaction scheme

A+ E
A−⇀↽− EA

AB−−⇀↽−− EB
B−⇀↽− B + E (6.2)

describes a simple, reversible enzyme catalyzed reaction. We assume that RA = RB = 0 and
RAB > 0. This means that the conversion of A to B at the enzyme E is the rate-limiting step.
Applying the reduction method, we get the reduced concentrations c̃A = cA+cEA, c̃B = cB+cEB
and c̃E = cE + cEA + cEB that are the total concentrations of A, B and E, respectively. The
reduced capacities are C̃A = CA+ ξ̃E CEA, C̃B = CB + ξ̃E CEB and C̃E = CE + ξ̃ACEA+ ξ̃B CEB.
With these pool variables the reaction scheme reduces to Ã + Ẽ

AB−−⇀↽−− B̃ + Ẽ with resistance

R̃AB = RAB. This can be simplified by a translation of stoichiometric coefficients to

Ã
AB−−⇀↽−− B̃, R̃′AB = RAB/ξ̃E. (6.3)

The reduced model contains the pool compounds Ã, B̃ and Ẽ but not the free species A,
B, E, EA and EB. In fact, the consumption rate of free A is not equal to the production
rate of free B (−ċA 6= ċB 6= JAB) and thus there exists no rate law J(cA, cB) for the reaction
of the free species A → B. The formulation of a kinetic law for the reaction of the pool
compounds Ã→ B̃ is possible, since −c̃A = c̃B = JAB. However, although the TKM expression
JAB(ξ̃A, ξ̃B, ξ̃E) = R−1

AB ξ̃E (ξ̃A − ξ̃B) is simple, the corresponding concentration dependent rate
law JAB(c̃A, c̃B, c̃E) is very complex. To derive an expression for JAB(c̃A, c̃B, c̃E), the equations
c̃i = C̃i(ξA, ξB, ξE) ξ̃i with i ∈ {A,B,C} need to be solved for the thermokinetic potentials ξ̃i.
Because these are three coupled, nonlinear equations, the resulting expression is too complex to
be shown here. Further, the resulting rate law JAB(c̃A, c̃B, c̃E) is not a generalized mass-action
law. The equilibrium constant for the pool compounds Keq = c̃B,eq/c̃A,eq = C̃B/C̃A depends
on the total enzyme concentration c̃E and the overall amount c̃AB = c̃A + c̃B. For c̃E � c̃AB,
i. e. small ξ̃E, the equilibrium constant is Keq = CB/CA, whereas for large c̃E � c̃AB, i. e. large
ξ̃E, the equilibrium constant is Keq = CEB/CEA. Thus, the rate JAB can be described by a
simple TKM model but the rate law JAB(c̃A, c̃B, c̃E) is very complex.
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Figure 6.2.: Comparison of several models of an enzyme catalyzed reaction: (1) detailed model
(solid); (2) reduced TKM (dashed); black lines for (1) and (2) show the total
concentrations of A and B, whereas gray lines show the concentrations of free A
and B); (3a) reversible Michaelis-Menten for total concentrations (dotted, black);
(3b) reversible Michaelis-Menten for free concentrations (dotted, gray).

Under the additional assumption that the amount of enzyme-bound A and B is small com-
pared to the total concentrations of A and B, we can further approximate c̃A/B ≈ cA/B and
C̃A/B ≈ CA/B. With this simplification, we can easily compute a concentration dependent rate
law: JAB = R−1

AB c̃E · (C−1
A cA − C−1

B cB)/(CE + CEAC
−1
A cA + CEB C

−1
B cB). This is the classical

reversible Michaelis-Menten rate law. However, in in vivo situations this last assumption is not
always fulfilled.
Figure 6.2 compares simulation results of three different models: (1) the original, unreduced

system in Equation 6.2, (2) the reduced TKM system in Equation 6.3, which is based on
the rapid equilibrium assumption, and (3) the classical Michaelis-Menten approach, which is
additionally based on the quasi-steady state of the enzyme complexes. We choose the capacities
Ci = 1 for i ∈ {A,B,E,EA,EB} and initial conditions cEA,0 = cEB,0 = 0 c̃A,0 = 1 and c̃B,0 = 0.
The resistance of the actual conversion RAB = 1 exceeds the resistances of the the binding
processes RA = RB = 0.2 by a factor of five. The Michaelis-Menten approach (3) does not
distinguish between the free and the total concentration of A. For the comparison, we assume
that it either describes (3a) the concentrations of the pool compounds cMM,A ≈ c̃A or (3b)
the concentration of free compounds cMM,A ≈ cA where cMM,A is the concentration of A in the
Michaelis-Menten model. In the case (3a) the initial condition is cMM,A,0 = c̃A,0. In the case
(3b) the initial condition is computed to be consistent with the rapid equilibrium assumption:
cMM,A,0 cE,0 c

−1
EA,0 = CA,0CE,0C

−1
EA,0, cMM,A,0 + cEA,0 = c̃A,0, cE,0 + cEA,0 + cEB,0 = c̃E,0.

For low enzyme concentrations (e. g. c̃E,0 = 0.1) the approximative models (2), (3a) and
(3b) are close to the detailed model (1) (data not shown), but for high enzyme concentrations
(cE,0 = 3) the TKM model (2) given by Equation 6.3 is much closer to the detailed model
(1) than the Michaelis-Menten model (3). While, the fluxes in the original model (1) and
the reduced TKM model (2) are almost indistinguishable after a short induction period, both
versions of the Michaelis-Menten model (3a) and (3b) show considerable deviations. These
deviations of the Michaelis-Menten approach from the detailed model will be even higher if A,
B and E participate in further reactions and exist in complexes with different enzymes (not
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shown). In this case, the deviations of free and total concentrations are greater than for a
single reaction. In the specific simulation shown here, a better approximation of the original
model (1) by the Michaelis-Menten model (3) can be achieved by fitting the parameters of
the Michaelis-Menten rate law. However, because the Michaelis-Menten law gives the wrong
functional dependencies of the reaction rate on the concentrations, it is not applicable if one
aims for predictive models that need to describe a variety of cases.
This excursus showed that the TKM approach allows formulating a simple kinetic law for an

enzymatic reaction assuming rapid equilibrium of the binding processes, but not an excess of
substrate. The corresponding concentration dependent rate law is very complex and for this
reason can hardly be used in kinetic models of larger reaction networks. The TKM model uses
total concentrations of reactants and products instead of the free concentrations. This is more
appropriate, since these are also the usual experimental readouts. The capacities of such pool
concentrations are non-constant and consist of terms for the free and bound forms. For more
complex reaction systems, e. g. if A, B and E participate in further reactions, these expressions
are readily adapted. This demonstrates that the use of TKM does not only guarantee the
thermodynamic feasibility of models but also extends the scope of kinetic modeling.

6.8. Conclusions

The thermodynamic modeling formalism for the modeling of reaction networks is directly based
on concepts and quantities from irreversible thermodynamics (Chapter 3, p. 39). Chapter 4
(p. 51) systematically collected a variety of model reduction methods for the thermodynamic
modeling formalism. However, the thermodynamic formalism leads to very complex equa-
tions and for this reason can hardly be used for realistic systems far from equilibrium. The
Thermokinetic Modeling (TKM) formalism is based on the thermodynamic modeling formalism
(Chapter 5, p. 89). Except for some minor restrictions, it is as powerful as the thermodynamic
formalism but the thermokinetic model equations are much simpler than the thermodynamic
model equations. Section 5.5 (p. 105) introduced several reduction methods for TK models
that are based on matrix operations. However, one would also like to have modular procedures
that can be easily applied to single reaction equations or reaction rules. In this chapter, we
demonstrated the use of TKM to manipulate and reduce a list of reaction equations and their
parameters, without explicitly formulating the system matrices or the model equations.
The reduction of the conservation relations and of the boundary conditions cannot be easily

performed at the reaction equation level, since they rely on systemic rather than local properties
of a model. The reduction of the stoichiometric cycles and of the kinetic submodel lead in general
to a non-diagonal resistance matrix and thus can only be performed in special, but important,
cases. The reduction of the kinetic submodel, which proved to be the most powerful method,
is easily applicable at the reaction equation level. The proposed step-by-step procedure (§6.15,
p. 117) leads to a natural pooling scheme where the reduced concentrations often correspond to
meaningful and measurable sums of concentrations. The thermokinetic capacities of the pooled
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compounds are non-constant.
Using non-constant capacities, we can describe kinetic laws that cannot be described by

generalized mass-action kinetics. Such kinetic laws appear under natural assumptions if the
enzyme and substrate concentrations are in the same order of magnitude. These kinetic laws
are very complex in a concentration-dependent notation but simple in the TKM notation. The
use of the TKM formalism therefore extends the scope of kinetic modeling.
The step-by-step procedure (§6.15, p. 117) can be easily applied to combinatorial systems that

are described by reaction rules without expanding the rules to a complete, detailed model. This
is advantageous because it allows for the computationally cheap reduction of large combinatorial
networks. The reduction method can also be modified for the reduction of uncontrollable and
unobservable modes. Conzelmann et al. [27, 28] showed that the latter is a valuable tool for
the reduction of combinatorial networks. Thus, this modification may provide a link between
the TKM approach and the approach of Conzelmann.
The methods introduced in this chapter can be used for the model reduction by ‘paper and

pencil’ because the single steps are simple and can be applied to single reaction equations.
The next chapter introduces a graphical representation of TK models and discusses graphical
methods to perform the reduction. This further stresses the modular nature of the reduction
methods.
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The TKM formalism is based on potentials and fluxes. The parameters are capacities and
resistances. Thus, it is possible to use a graphical representation of reaction systems that is
analog to the graphical representations of electrical systems. This chapter develops such a
graphical representation. A preliminary version of the graphical representation was sketched in
Ederer and Gilles [31, 33]. This chapter further shows how model reduction can be performed
by manipulating the graphical representation. It also compares TKM to different aspects of the
modeling of electrical networks.

7.1. Thermokinetic Components

§ 7.1 (Basic Components). The basic components for the graphical representation of TK models
are shown in Figure 7.1. Capacitors and resistors are known from electrical engineering and their
behavior is described by analog equations. For TK models we need a further graphical element
that describes the stoichiometry of reactions. We call this new element stoichior. Whereas
ideal capacitors and resistors show linear behavior, the stoichior is an intrinsically non-linear
element.

FE,j
Jj FP,j

ξA

JB

νAJA
F J

νBξB

capacitor (compound)

ξi Ji

resistor (reaction) stoichior

ci = Ci ξi

ċi = Ji

Rj Jj = FE,j − FP,j F = ξνA
A ξνB

B

J = JA/νA = JB/νB

Figure 7.1.: Basic network elements of thermokinetic modeling. The following symbols are used:
concentration ci, thermokinetic potential ξi, capacity Ci, flux Jj, thermokinetic
force Fj, thermokinetic force exerted by reactants/products FE/P,j, resistance Rj,
stoichiometric coefficients νi. For the sake of simplicity we will suppress stoichio-
metric coefficients of unity at stoichiors. Stoichiors can have more or less than three
terminals. Open circles indicate terminals for the connection of different elements.
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R6

CEI
CI

CA

CB
CEB

R3

R1

CEAB

R5

CC

CE

CEA

R2

R4

Figure 7.2.: Graphical representation of the example network in Equation 7.1 (enzyme catalyzed
reaction with competitive inhibitor).

Example 7.2 (Enzymatic reaction). We consider a simple example of a competitively inhibited
enzymatic reaction:

A+ E
1−⇀↽− EA, EA+B

2−⇀↽− EAB,

B + E
3−⇀↽− EB, EB + A

4−⇀↽− EAB,

EAB
5−⇀↽− C + E, I + E

6−⇀↽− EI.

(7.1)

The enzyme E catalyzes the reaction A+B 
 C by a random-order mechanism. The inhibitor
I may bind to free E, block it and thus inhibit catalysis. With the elements introduced above,
we can give the graphical representation of this system shown in Figure 7.2.

Example 7.3 (PTS). Figure 7.3 shows a graphical representation of the PTS model from
Example 5.20 (p. 94). The thermokinetic potentials ξPEP , ξPyr, ξGlc and ξGlc·P are clamped.

§ 7.4 (Kirchhoff’s junction law). Kirchhoff’s junction law postulates that at each storage-free
junction in a network, the sum of the incoming fluxes minus the sum of the outgoing fluxes is
zero. This is a direct consequence of charge and mass conservation and thus also valid in TK
models. In Figure 7.2 and Figure 7.3 the junctions are indicated by bold dots.

§ 7.5 (Kirchhoff’s loop law.). Kirchhoff’s loop law in electrical systems states that the sum
of potential differences along each cyclic path is zero. Analogously, the sum of ∆µj around a
stoichiometric cycle sums up to zero [81]. Let Jc be a vector describing a cyclic flux distribution
and ∆µ the vector of negative Gibbs reaction energies, then ∆µT Jc = 0. The example network
in Equation 7.1 and Figure 7.2 contains the loop E + A + B

1−⇀↽− EA + B
2−⇀↽− EAB

4
↼−−⇁ A +

EB
3
↼−−⇁ E + A + B. Thus, a cyclic flux vector is given by Jc = (1, 1,−1,−1, 0, 0)T and it is
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CEI·P CIIA·PCHPr CIICB

R
1

R
2

ξPyr

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
1
0

ξGlc

ξGlc·P

CEI·P ·HPrCPyr·P ·EI CIIA·P ·IICB CIICB·P ·Glc

CEI CHPr·P CIIA CIICB·P

CHPr·P ·IIA

ξPEP

Figure 7.3.: Graphical representation of the PTS (see Example 7.3).

∆µ1 + ∆µ2 −∆µ4 −∆µ3 = 0. Using Definition 5.8 and §5.9 (p. 90), Kirchhoff’s loop law can
be expressed by ∏

j

(
FE,j
FP,j

)Jc,j

= 1. (7.2)

In the example network (Figure 7.2, Equation 7.1), we have that

FE,1/FP,1 ·FE,2/FP,2 ·FP,4/FE,4 ·FP,3/FE,3 = 1.

Due to the presence of stoichiors, the identification of loops in the graphical representation of
a TK model is more difficult than in electrical networks. The identification of the loops is not
necessary for modeling and simulation. because the use of the TKM formalism guarantees the
fulfillment of Kirchhoff’s loop law for all loops.

§ 7.6 (Degenerated components). As for electrical networks, the graphical representation sim-
plifies if the parameters take certain extreme values. The simplification rules in Figure 7.4
follow directly from the definition of the respective elements.

§ 7.7 (Operations with stoichiors). Connections of stoichiors can be simplified to a single
stoichior as shown in Figure 7.5. These rules follow directly from the equations of a stoichior.

R = 0
=

C = 0

=
R =∞

=

C =∞

=

Figure 7.4.: Network simplifications for extreme values of capacities and resistances.
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ν1

ν2

ν3

ν3 =

ν1

ν2
1

1

ν4

ν3
ν2

ν1

=

ν1

ν2
ν3

ν4=
ν4

=

ν1 ν3

ν2 ν3
+ν4

1

= =
ν2 ν2 ν2 λ ν2

λ

ν2

ν1

ν1

ν2

=

ν1

ν2 ν2

1
=

−ν2

1

ν1 ν1 ν1 λ ν1

ν2 ν3

ν1 ν3

Figure 7.5.: Equivalence between connections of stoichiors. The rules are shown for stoichiors
with two or three terminals but are readily extended to stoichiors with more or less
terminals.

§ 7.8 (Translation of the stoichiometric coefficients). A translation of the stoichiometric coeffi-
cients is sometimes useful to remove negative stoichiometric coefficients that may occur during
model reduction. Figure 7.6 gives the graphical rule for a translation of the stoichiometric
coefficients. More general cases can be brought to this form using the rules from Figure 7.5.

7.2. Model Reduction

Based on the results developed in Chapter 6, simple but powerful rules for the reduction of a
graphical network representation can be formulated.

7.2.1. Parallel and Serial Reactions

The basic rules for the series and parallel connections of resistances in electrical networks are
also valid in TKM. This was shown in Corollary 6.7 (p. 113) and Corollary 6.9 (p. 114), respec-
tively. Partially serial reactions can be treated in a similar way (see Corollary 6.12, p. 114).
The graphical simplification rules for parallel, serial and partially serial reactions are shown in
Figure 7.7.

7.2.2. Vanishing Resistances

Resistors with a resistance of zero can be replaced by a simple connection (see Figure 7.4).
The resulting model equations contain algebraic equations that can be used to reduce the
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ξC

Rξ−νA

ξA

= ξB
ξC

Rξ−νA
ν

RξA
ξC

ξB
−ν

ξB

ν

ξA

ν
R

ξA

ξB

ν
R

ξB=

=

ν + νA

ξC

ξC

ν

R ξνB ξC

ξB

ξA

Figure 7.6.: Translation of the stoichiometric coefficients. The rules are shown for stoichiors with
three terminals but are readily extended to stoichiors with more or less terminals.

B

C

A

ν2 ν2

R2R1

=
R1 +R2

ν1ν1R1 R2

=
R1 +R2

ν1
R1 ξ

ν2
A +R2 ξ

ν1
B

ν1

ν3
ν3

ν2

=

ν2

1R1

R2

ξB

1
ξA

R1 ‖ R2

R1

=

R2

Figure 7.7.: Parallel (A), serial (B) and partially serial (C) reactions can be simplified into a
single reaction.
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=

ξE2

νE2

C̃P2C̃E2

C̃P1

ξE1 ξP1

ξP2ξE2

CE2

νE2

CE1

CP2

CP1

ξE1 ξP1

ξP2

νP2

νP1νE1

νP2

νP1νE1

C̃E2 = CE2 −
νE2

νE1

ξE1

ξE2

CE1 , C̃P1 = CP1 +
νP1

νE1

ξE1

ξP1

CE1 , C̃P2 = CP2 +
νP2

νE1

ξE1

ξP2

CE1 ,

c̃E2 = cE2 −
νE2

νE1

cE1 , c̃P1 = cP1 +
νP1

νE1

cE1 , c̃P2 = cP2 +
νP2

νE1

cE1

with ξE1 = ξ
νP1
P1

ξ
νP2
P2

ξ
−νE2
E2

Figure 7.8.: Rapid equilibrium assumption: the network on the left with four capacities is equiv-
alent to the network on the right with three capacities. Cases with more than two
reactants and products can be treated analogously.

model. Section 6.3.2 (p. 115) introduced a method for the reduction of systems with vanishing
resistances. The reduction method is based on a suited pooling of concentrations and removes
implicit algebraic equations.
This method can be directly applied to a graphical representation. Figure 7.8 gives a generally

applicable simplification rule for fast reactions. Additionally, Figure 7.9 shows two important
special cases, namely a reduction of a fast reaction E 
 P and of a reaction E1 + E2 
 P .
These rules follow directly from the application of the step-by-step procedure in §6.15 (p. 117).

ξE1ξE1 ξP1

CE CP
C̃ = CE + CP
c̃ = cE + cP

=

=

ξE1

ξE2

νE2

νE1

ξE1

ξE2

CE2

CE1 ξP

CP

C̃E1

C̃E2

ξP

ξP1

C̃E1 = CE1 + ξE2 CP
c̃E1 = cE1 + cP

c̃E2 = cE2 + cP

C̃E2 = CE2 + ξE1 CP

Figure 7.9.: Reduction of a fast reaction for two important special cases.
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. . .

. . .

CA1 CAi0
CAi0−1CA2
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ξE′′1

ξE′1 R′1
ξP ′1 ξE′2 ξE′i0−1 R′i0−1

ξE′i0

R′′i0−1R′′1
=

=

. . .

. . .

ξE′′2ξP ′′1 ξE′′i0−1
ξE′′1

ξE′1 ξP ′1 ξE′2 ξE′i0−1 ξE′i0

ξE′′i0

C̃A1 C̃A2 C̃Ai0−1

R̃′1

R̃′′1

R̃′i0−1

R̃′′i0−1

C̃Ai
=

c0

C0

CAi
, c̃Ai

= cAi
, ξ̃Ai

=
C0

c0

ξA,i,

R̃′i =
C0

c0

R′i, J̃ ′i = J ′i , F̃ ′i = F ′i/ξAi+1
,

R̃′′i =
C0

c0

R′′i , J̃ ′′i = J ′′i , F̃ ′′i = F ′′i /ξAi+1

with i = 1 . . . (i0 − 1) and

c0 = cA1 + . . .+ cAi0
= const, C0 = CA1 ξ̃A1 + . . .+ CAi0−1

ξ̃Ai0−1
+ CAi0

, ξAi0
= c0/C0.

Figure 7.10.: Simplification rule for the reduction of conservation relations. The simplification
rule is shown for a linear reaction chain. Rules for the reduction of branched or
circular conservation relations are analog.

7.2.3. Conservation Relations

As discussed in Section 5.5.1.1 (p. 105), a reduction of conservation relations involves the solu-
tion of a non-linear equation. For this reason one cannot develop a simple and general rule for
the reduction of conservation relations.
Figure 7.10 gives a rule for the important special case of a conservation relation where all

coefficients are one, i. e. cA1 + . . . + cA2 = c0 = const. For example, the conservation relation
cATP + cADP + cAMP = const could be reduced by this rule. This case is a generalization of
Example 5.41 (p. 106) where only two compounds were considered. It can be derived analo-
gously. If the capacities CAi

depend on the potentials ξAi
, the application of the rule is not

straightforward because then the function C̃Ai
(ξ̃) is only implicitly given by the equations in

Figure 7.10. In all other cases the rule can be used directly.
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7.2.4. Examples

In order to demonstrate the application of the graphical simplification rules, we consider two
examples. First, we reduce the model of the enzymatic reaction with competitive inhibition from
Example 7.2 and Figure 7.2. Then, we consider the more complex PTS model from Figure 7.3.

Example 7.9 (Enzymatic reaction). In the network from Example 7.2 (p. 140) and Figure 7.2,
we assume that the rate-limiting step is the actual conversion of the products A and B into
the reactant C in reaction 5. Accordingly, as the first step towards a reduced model, we set
R1 = R2 = R3 = R4 = R6 = 0 (Figure 7.11 left). After applying the simplification rule from
Figure 7.9 to reactions 1, 3 and 6 we get in step 2 the network in Figure 7.11 (right). By
applying rules from Figure 7.5 this can be simplified in step 3 to Figure 7.12 (left). In step 4 we
apply again the rule from Figure 7.9 and get Figure 7.12 (right). In step 5, a translation of the
stoichiometric coefficients (Figure 7.6) finally leads to the reduced model in Figure 7.13. The
figure shows that the inhibitor I and the enzyme E do not participate in the overall reaction,
but they influence the reaction rate via ‘side effects’ of their thermokinetic potentials on the
capacities C̃A, C̃B and C̃C . The reduced concentrations ˜̃cA, ˜̃cB, ˜̃cE and c̃I represent the overall
concentrations of A, B, E and I, respectively. This result is consistent with the discussion in
Section 6.7 (p. 134).

CEB

CEA

CEI

R5

CEAB
CB

CA

CI

CE

CC

R5

CEAB

C̃I

C̃A

C̃B

C̃E

CC

c̃E = cE + cEI + cEA + cEB, C̃E = CE + ξ̃I CEI + ξ̃ACEA + ξ̃B CEB,

c̃I = cI + cEI , C̃I = CI + ξ̃E CEI ,

c̃A = cA + cEA, C̃A = CA + ξ̃E CEA,

c̃B = cB + cEB, C̃B = CB + ξ̃E CEB.

Figure 7.11.: Reduction of the enzymatic reaction model – step 1 and 2.
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R5

C̃E

CC

C̃I

C̃A

C̃B

CEAB

R5

˜̃CE

CC

C̃I

˜̃CA

˜̃CB

˜̃cE = c̃E + c̃EAB
˜̃CE = C̃E + ξ̃A ξ̃B CEAB,

= cE + cEI + cEA + cEB + cEAB, = CE + ξ̃I CEI + ξ̃ACEA + ξ̃B CEB + ξ̃A ξ̃B CEAB,

˜̃cA = c̃A + cEAB
˜̃CA = C̃A + ˜̃ξE ξ̃B CEAB,

= cA + cEA + cEAB, = CA + ˜̃ξE CEA + ˜̃ξE ξ̃B CEAB,

˜̃cB = c̃B + cEAB
˜̃CB = C̃B + ˜̃ξE ξ̃ACEAB

= cB + cEB + cEAB, = CB + ˜̃ξE CEB + ˜̃ξE ξ̃A.

Figure 7.12.: Reduction of the enzymatic reaction model – step 3 and 4.
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Figure 7.13.: Reduced model of the enzymatic reaction.
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Example 7.10 (PTS). In Example 5.20 (p. 94) the thermokinetic resistances and capacities
for the PTS model from Rohwer et al. [87] were derived. The graphical representation of this
model is given in Figure 7.3.
The model contains 10 resistances and 13 capacities. To reduce the model we approximate

the 6 lowest resistances by zero: R1 = R2 = R5 = R6 = R9 = R10 = 0. This leads to the
approximated but unreduced model in Figure 7.14 with 4 resistances but still 13 capacities. By
applying the rules for the reduction of the kinetic submodel (Figure 7.8), we get the reduced
model in Figure 7.15. This model contains only 7 capacities but is not suited for a direct
simulation because it contains stoichiors that are directly linked without intermediate capacities
or resistances. This means that instead of the removed capacities CEI , CEI·P , CHPr·P , CIIA·P ,
CIICB and CIICB·P , the network in Figure 7.15 contains capacities of value zero. We can apply
the rules for the reduction of partially serial reactions from Figure 7.7 to resolve this problem
partially. In order to avoid crossing lines, the remaining elements need to be rearranged and
one gets Figure 7.16.
By applying the rules for the equivalence of stoichior elements (Figure 7.5), we can completely

resolve this problem in the two steps shown in Figure 7.17 and Figure 7.18. This network could
be simulated as a TK model. However, the negative stoichiometric coefficients are uncommon
and we can get rid of them by a translation of the stoichiometric coefficients (Figure 7.6) and
get the reduced model in Figure 7.19. The model contains a conservation relation for each of
the four proteins EI, HPr, IIA and IICB. Only the conservation relations for EI and IICB
in Figure 7.19 have the form required for using the simplification rule in Figure 7.10. After
reduction of these two conservation relations we get the reduced model in Figure 7.20.
Figure 7.21 shows simulation results of the original and the reduced model. The respective

curves are qualitatively similar but partly deviate quantitatively. The fluxes in the reduced
model are overestimated in steady state because some of the resistances that add to the overall
resistance of the PTS are set to zero. Thus, by increasing the remaining resistances we can
get a much better fit of original and reduced model. In a real modeling work, the parameters
of the detailed model are not known, but the reduced parameters are estimated using the
measurement data. Then, the adapted resistance values can be directly identified from the
measurement values.
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CEI·P ·HPrCPyr·P ·EI CIIA·P ·IICB CIICB·P ·GlcCHPr·P ·IIA

CHPr·P CIICB·P

Figure 7.14.: Approximated but unreduced PTS model.
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C̃IIA

C̃Pyr·P ·EI = CPyr·P ·EI + ξ−1
PEP CEI + ξ−1

Pyr CEI·P , c̃Pyr·P ·EI = cPyr·P ·EI + cEI + cEI·P ,

C̃HPr·P ·IIA = CHPr·P ·IIA + ξ̃−1
IIACHPr·P + ξ̃−1
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C̃IICB·P ·Glc = CIICB·P ·Glc + ξ−1
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HPr CIIA·P , c̃HPr = cHpr − cIIA·P .

Figure 7.15.: Reduction of the PTS model – step 1.
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R̃3 = ξPyr R3, R̃4 = ξPEP R4, R̃7 = ξGlc·P R7, R̃8 = ξGlcR8.

Figure 7.16.: Reduction of the PTS model – step 2.
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Figure 7.17.: Reduction of the PTS model – step 3.
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Figure 7.18.: Reduction of the PTS model – step 4.
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Figure 7.19.: Reduction of the PTS model – step 6.
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Figure 7.20.: Reduced PTS model.
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Figure 7.21.: Simulation results with the original (solid) and the reduced (dashed) PTS model.
The dotted line shows the reduced model with corrected resistances: R′3 = 1.3R3,
R′4 = 1.3R4, R′7 = 1.3R7 and R′8 = 1.3R8. The clamped concentrations are
cPEP = 2800 µM, cPyr = 900 µM, cGlc = 500 µM, cGlc·P = 50 µM. The initial
conditions of the detailed model are cEI,0 = 5 µM, cHPr,0 = 50 µM, cIIA,0 =

40 µM, cIICB,0 = 15 µM, cEI·P ·HPr,0 = cEI·P,0 = cHPr·P ·IIA,0 = cHPr·P,0 =

cIIA·P ·IICB,0 = cIIA·P,0 = cIICB·P ·Glc,0 = cIICB·P,0 = cPyr·P ·EI,0 = 0.01 µM. The
initial conditions of the reduced model were computed numerically from the initial
conditions of the original model.
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7.3. Comparison to Electrical Networks

The TK formalism works with potentials, capacities and resistances. In this respect, it is
similar to the modeling formalism for electrical networks. The previous section introduced a
graphical representation for thermodynamic models that resembles the graphical representation
for electrical networks. The following subsections inspect this analogy more closely. They work
out common features and differences. In particular, they show the chemical counterparts to
some important electrical network elements.

7.3.1. Conceptual Comparison

Thermokinetic potentials and forces are the key variables of the TKM formalism. This section
discusses the relation of the thermokinetic and the electrical potentials, i. e the voltages.

§ 7.11 (Basic variables of electric theory). The theory of electrical networks is based on four
different quantities: The current I, the voltage U , the charge Q and the magnetic flux Φ.
The charge is the integral of the current dQ = I dt and the magnetic flux is the integral of
the voltage dΦ = U dt. Three of these four quantities have a direct analog in thermokinetic
networks. Current I and charge Q correspond to flux J and concentration c, respectively. The
analog of voltages U and voltage differences ∆U are thermokinetic potentials ξi and forces
Fj, respectively. The magnetic flux does not have a chemical counterpart because neither the
integral of the chemical potential nor of the thermokinetic potential nor of the thermokinetic
force has an obvious physical interpretation.

§ 7.12 (Chemical and electrical potential). The Gibbs energy G in a purely electrical network is
equal to the electrical energy E. The energy E in an ideal electrical capacitor with capacitance
C is given by G = E = 1/2C−1Q2. Thus, the chemical potential of the electrical charge is equal
to the electrical voltage: µQ = ∂G/∂Q = C−1Q = U . The chemical potential is a generalization
of the electrical potential to electro-chemical systems.

§ 7.13 (Thermokinetic and electrical potential). Many real electrical network elements are linear
in dependence on the voltages, but most chemical networks are non-linear in dependence of the
chemical potentials µi. For this reason, the kinetic modeling of reaction networks with chemical
potential leads usually to complex model equations. The use of thermokinetic potentials ξi =

exp(µi/(R
∗ T )) and forces Fj leads to a considerable simplification of the model equations. Ideal

thermokinetic resistances and capacities are constant, whereas ideal thermodynamic resistances
and capacities depend on the state of the system. Thus, although the electro-chemical potential
µi and the thermodynamic force ∆µ are the physical generalizations of the electrical potentials
and the electrical potential differences, the thermokinetic potentials and the thermokinetic forces
are in their formal handling more similar to the electrical counterparts. The most important
difference between thermokinetic and electrical potential is that the electrical potentials can be
negative, but thermokinetic potentials are always non-negative.
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ξM

JR

R = ρM ξM ξ−1
E

J = R−1 (ξM − 0) = ρ−1
M ξE

Figure 7.22.: TKM realization of a potential-controlled current source.

7.3.2. Sources and Amplifiers

Ideal voltage and current sources are equivalent to clamping of thermokinetic potentials and
fluxes, respectively. As an example, the concentration of the energy carrier adenosine-triphos-
phate ATP is known to be tightly regulated by the cell and thus for many purposes may
be modeled as an ideal thermokinetic potential source. Current sources may be realized by
reactions with FE,j � FP,j and clamped reactants. Then, the products do not significantly
influence the reaction rate and the reaction rate is determined only by the reactant potentials.

§ 7.14 (Irreversible reactions and grounding). The grounding of a terminal means that the
respective potential is clamped to the value zero (see e. g. Figure 7.22). Because thermokinetic
potentials are non-negative, this realizes an irreversible reaction towards the grounded terminal.
In most biochemical systems, irreversible reactions are realized by a high clamped potential of
a reactant; for example by coupling the reaction to the hydrolysis of ATP. Both possibilities, a
grounded product and a clamped reactant with high potential, lead to a reaction that cannot
be reversed under physiological conditions. The realization of an irreversible reaction by a
grounded product is easier to depict. For this reason, grounded products are used to describe
irreversible reactions in the following paragraphs. One has to keep in mind that the same
behavior may be realized in a different way.

§ 7.15 (Controlled sources and amplifiers). Potentials or fluxes of controlled sources are func-
tions of other potentials or fluxes. Amplifiers are an example for controlled sources. In chemical
networks, controlled sources can be realized in different ways. A particularly simple and ubiqui-
tous solution is a irreversible, saturated, catalyzed reaction where the concentration of the en-
zyme determines the flux. One possibility to model a saturated enzymatic reactionM 
 A+B

is by ideal capacities and a resistance of R = (ρ0 + ρM ξM + ρA ξA + ρB ξB + ρAB ξA ξB) ξ−1
E

(cf. §5.16, p. 92). If ξB is kept on a low level and ρM ξM is the dominant term in the resistance R,
one may approximate ξB = 0 and R = ρM ξM ξ−1

E . Then the flux J = R−1 (ξM −ξA ξB) = ρ−1
M ξE

depends solely on the potential of the catalyst. Thus, such an enzymatic reaction realizes
a potential-controlled current source. The necessary energy is supplied by the difference of
the high potential ξM and the low potential ξB. Figure 7.22 shows a TKM diagram of this
potential-controlled current source.
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7.3.3. Passive Two-Terminal Components

Electrical network theory uses four basic, passive two-terminal elements: resistor, capacitor,
inductor and memristor [25, 99]. Each element relates a pair of the four basic quantities current
I, voltage U , charge Q and magnetic flux Φ. In particular, a resistor is characterized by dU =

RdI, a capacitor by dQ = C dU , a inductor by dΦ = LdI and a memristor by dΦ = M dQ.
Together with the laws dQ = I dt and dΦ = U dt, they cover all six possible pairwise relations of
the four basic quantities. The parameters R, C, L and M of the total differentials can depend
on the independent variables I, U , I and Q, of the differentials above. In the following we will
discuss the four elements and their thermokinetic analog in detail.

7.3.3.1. Resistor and Memristor

An electrical resistor is characterized by the law dU = RdI with the differential resistance R.
In the ideal case with R = const, we get U = RI. A memristor is characterized by dΦ = M dQ

or equivalently Φ̇ = M Q̇ and thus U = M I. Thus, in the ideal case with R,M = const

resistors and memristors behave equally. In the non-ideal case, the resistance R depends on the
current or the voltage, but the memristance M depends on the charge Q or in a generalized
approach on an arbitrary storage variable. This means that the memristor is a resistor with
a memory. Although the introduction of the memristor was suggested already in 1971 by
Chua [25], implementations of electrical memristors without active elements were only recently
experimentally demonstrated and afford nano-scale structures [99].
A thermokinetic resistor is characterized by F = RJ . A thermokinetic resistor is able to

show resistive and memristive behavior because R may depend on the potentials of reactants
and products or arbitrary other storage variables of the system.

7.3.3.2. Capacitor

An electrical capacitor is characterized by the law dQ = C dU where C is the differential
capacitance and U is the voltage difference at the terminals of the capacitor. In the ideal case
C = const, we get Q = C U . In the thermokinetic formalism, a compound is characterized by
c = C ξ and thus is analog to a grounded electrical capacitor. The behavior of ungrounded
capacitors can be simulated by appropriate thermokinetic networks. Figure 7.23 (left) shows a
circuit with capacitor-like dynamics. The underlying network consists of a complex formation
A + X 
 B. Complex formation is a common motif in signal transduction. The compound
X mimics the effect of the electric field in an electric capacitor. Upon excitation, it builds up
a force that balances the original force and stops the flux. For R → 0 and thus ξA ξX = ξB,
the dynamics approaches J = −CX ξ̇X = −Cx d(ξB/ξA)/dt. This is an ideal behavior because
J 6= 0 only for non-constant ξB/ξA. It is however not the linear behavior of an ideal electrical
capacity with J = C · (U̇A − U̇B).
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Figure 7.23.: TKM circuits with inductor and capacitor-like behavior. A: Capacitor-like behav-
ior (R = 0.2, CX = 1, ξB = 1). B: Inductor-like behavior (R = 0.6, RX = 0.6,
CX = 2, ξB = 1).

7.3.3.3. Inductor

The electrical inductor has the equation dΦ = LdI where L is the differential inductance. With
Φ̇ = U this is equivalent to U = L İ. For a constant positive voltage U , the current I grows
steadily. For a sinusoidal voltage U = U◦ sin(ωt), the flux follows the voltage with a delay of
T = ω−1 π/2 because I = L−1 U◦ ω−1 sin(ω t− π/2). A ‘true’ thermokinetic inductor does not
exist because thermokinetic networks do not contain a quantity comparable to the magnetic flux,
but one may construct thermokinetic networks with an inductor-like behavior. Real electrical
inductors are realized by electromagnetic coils and thus have a considerable resistive behavior.
Further, they tend to be rather large in size. For this reason electrical engineers also often seek
to replace inductors by networks of different elements with an inductor-like behavior [10].
Several chemical networks show inductive behavior. The average flux through an enzymatic

reaction does not change immediately when the concentration of free reactant or product changes
because the change is buffered by the intermediate complexes. The average flux reacts with
a certain delay that is characteristic for inductive behavior. However, such a system contains
more than one independent reaction flux and does not represent a simple network element in a
strict sense.
The behavior of an autocatalytic reaction A + X 
 B + 2X and X → 0 as shown in

Figure 7.23 (right) partly resembles the behavior of a real inductor. Upon a jump in the
reactant concentration cA the flux does not jump immediately to its steady-state value but
increases slowly. Due to the asymmetry of the system with respect to A and B, we do not get
this inductive behavior for all situations; for example a decrease of the reactant concentration
does lead to a immediate decrease of the flux.
The above two examples for inductive behavior occur as side effects of enzymatic and auto-

catalytic reactions. Both reaction types are common motifs in metabolic networks. However,
an inductive behavior may also be desired for filtering signals in signal transduction networks.
Figure 7.24 shows a network that simulates the behavior of an ideal inductor. It consists of four
irreversible, catalyzed reactions that realize controlled current sources (cf. Figure 7.22). The
overall reaction rate J from A to B is given by J = JA−JB = R−1

A ξA−R−1
B ξB = (ρ−1

A −ρ
−1
B ) ξX .
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Figure 7.24.: TKM circuit with an ideal inductive behavior. Both parts of the circuit influ-
ence each other because the resistances in one part depend on the thermokinetic
potentials of the other part.

We further have that CX ξ̇X = JXA − JXB = R−1
XA ξM − R

−1
XB ξX = ρ−1

X (ξA − ξB). In effect, we
get an ideal inductive behavior:

((ρ−1
A − ρ

−1
B )−1 ρX CX)︸ ︷︷ ︸
L

J̇ = ξA − ξB.

In this example, the ideal inductive behavior can only be realized by the introduction of con-
trolled current sources, i. e. irreversible, saturated reactions. Thus, the passive inductive be-
havior can only be realized by using active elements. The example above is motivated by the
so-called gyrator realization of electric inductive behavior without the use of electromagnetic
coils but with active elements. General gyrators will be discussed in Section 7.3.4.2.
A possibility for the interpretation of the example above is to identify A and B with the

dephosphorylated and phosphorylated form of a protein, respectively. Then the resistances
RA and RB describe the phosphatase and kinase activity of the enzyme X, respectively. The
synthesis or activation of X is controlled by A, whereas the degradation or inactivation is
controlled by B.

7.3.4. Passive Two-Ports

The last section discussed basic network elements with two terminals. This section discusses
the TK realization of two important two-port, four-terminal devices, namely the transformer
and the gyrator.

7.3.4.1. Transformer

An ideal electrical transformer is a two-port device that is characterized by the equations shown
in Figure 7.25 (right) [10]. The turns ratio n is the sole parameter of an transformer. Real
transformers are realized by magnetically coupled coils. Due to the magnetic and electric
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Figure 7.25.: The analog to an ideal transformer is a stoichior.
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Figure 7.26.: Stoichiors with more than two terminals correspond to transformers with multiple
primary coils.

losses, real transformers work only with alternating current but not with direct current. Ideal
transformers without losses would work with direct current as well. A stoichior has analog
equations (see Figure 7.25, left) if one uses chemical potentials µi = R∗ T log(ξi) as potential
variables. For thermokinetic potentials ξi the behavior is accordingly non-linear. Figure 7.26
shows that the electrical analogy of a stoichior with more than two terminals is a transformer
with multiple primary coils.

7.3.4.2. Gyrator

A gyrator is a two-port device with equations as shown in Figure 7.27 (right) [10]. Gyrators
are non-reciprocal elements. This means, for example, that a capacitive behavior on terminal 2

leads to an inductive behavior at terminal 1. In electrical engineering, gyrators are often used
to avoid the use of space-consuming coils to realize inductive behavior. Indeed, we already used
a gyrator in our TK realization of an ideal inductive behavior in Figure 7.24. Figure 7.27 (left)
shows a possible TK implementation of a grounded gyrator. It is based on saturated, enzymatic
reactions, where the catalyst of reactions 1 and 2 are the compounds 2 and 1, respectively.
This means that compound X1 catalyzes the synthesis of compound X2 and X2 catalyzes the
degradation of X1.
The term gyrator has its origin from the fact that mechanical gyroscopes show such behavior.

Although the equations of the gyrator are energy-conserving, there are no non-active electrical
devices with gyrator behavior, but electrical gyrators are realized by circuits that contain am-
plifiers [10]. Irreversible, saturated enzyme kinetics are analog to amplifiers and thus electrical
and TK gyrators are similar in their realization.
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Figure 7.27.: Implementation of a gyrator behavior by irreversible, catalyzed, reactant-saturated
reactions.

7.4. Conclusions and Discussion

This chapter established a graphical representation of TK models that resembles the graphical
representation of electrical networks.
We can give simple but powerful rules for the reduction of the graphical representations of

TK models. As in the previous chapters, the reduction of reactions with vanishing resistances
is the most powerful method and plays a crucial role. A graphical way for dealing with reaction
network models is useful for the analysis of small models or model parts using paper and
pencil. The graphical simplification procedures are intuitive but require multiple redrawing of
the diagram. For larger networks, this is tedious and the reaction equation based methods
from Chapter 6 are more efficient. For small models, the graphical procedure is advantageous
because it provides a better feeling for the network structure than a list of reaction equations.
The TK circuit diagrams and the rules for their simplification stress the modular nature of

the model reduction techniques. Several simplification rules can be applied locally to certain
modules. This facilitates the building of model libraries containing modules on different level
of detail. This modular nature of TKM provides a starting point for the integration of TKM
into modular modeling tools as ProMoT [40] that is based on the network theory of chemical
processes [39]. The network theory represents chemical processes as a connection of components
and coupling elements. Components contain storages and coupling elements do not contain
storages. In TKM, the capacities are the components and the stoichiors and resistances form
the coupling elements.
Further, the analogy of notation may help to recognize important analogies in the design

principles of electrical and chemical networks. For this purpose, the chapter listed the basic
elements of electrical networks and discussed which chemical networks show an analog behavior.
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8. Modeling the Redox Regulation of
Escherichia coli

8.1. Introduction

The previous chapters introduced TKM, a method for the thermodynamically consistent mod-
eling and model reduction of reaction networks. Here, this method is used to model the oxygen
response of the bacterium Escherichia coli.
Upon a change of oxygen availability, the central metabolism of Escherichia coli undergoes

major changes [69, Chapter 11]. If the oxygen availability is decreased, the metabolism switches
in several steps from a purely respirative to a fermentative mode [4–7]. This oxygen response
emerges from an interplay of metabolic pathways and their regulation. Several global and local
regulatory systems, e. g. the ArcAB two-component system and the transcriptional regulator
FNR, directly or indirectly respond to a change in the oxygen availability [88].
The oxygen response of Escherichia coli is an ideal example to test the thermokinetic approach

developed throughout this thesis. The structure of the metabolic and regulatory network is
largely known and accessible in databases, see e. g. [54, 86]. Further, the systemic behavior was
experimentally studied and valuable data sets are available [4–7]. Since the oxygen response
emerges from an interaction of several pathways, the model cannot be restricted to a single
pathway or small subsystem, but one needs to model large parts of the central metabolism
including the glycolysis, the tricarboxylic acid cycle (TCA), the fermentative pathways and
the electron transport chain. The metabolic fluxes, in particular in the redox and energy
metabolism, are strongly constrained by thermodynamic conditions [14]. Thermodynamic data,
i. e. Gibbs formation energies, of the relevant compounds are available [1].
This chapter introduces a model that explains the emergence of the experimentally observed

behavior from the interplay of different pathways and regulatory systems. The model describes
steady-state concentrations and fluxes in the central metabolism of an Escherichia coli popu-
lation growing in a chemostat.
Despite the large data basis, a strict bottom-up approach integrating only mechanistic details

and relying only on measured kinetic parameters cannot be performed because quantitative data
on enzyme kinetics and interaction strengths of regulatory interactions is missing or collected
under in vitro conditions. For a thorough bottom-up approach, it would be necessary to de-
termine all parameters under defined conditions in a defined strain, but the literature values
are incomplete and refer to different strains under different conditions. Indeed, this is a typical
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situation, since for hardly any biochemical network sufficiently detailed and reliable kinetic data
is available [48, 56]. For these reasons, the bottom-up approach is complemented by top-down
elements. The available structural information is used in a bottom-up fashion. This means that
the known stoichiometry and the known regulatory interactions determine the structure of the
model. Simplified, generic expressions are used for enzyme kinetics and regulatory interactions.
The corresponding parameter values are determined by adjusting them to fit the measurement
data. This procedure has a top-down character because systemic data is used to identify the
characteristic single interactions.
There is no guarantee that this procedure does initially lead to a unique model because there

may be many combinations of parameter values where the simulation results fit the data. How-
ever, the model can be used to develop hypotheses concerning the functioning of the network.
In particular, such a model is useful to hint for elements which are still unknown but important
for the network behavior. Further, it can be used to suggest experiments that could help to
identify such elements or clarify their function. In an iterative cycle of modeling, simulation
and experiment the model converges to a correct and validated model.

8.2. Model Description

The model is structured into 7 compartments listed in Table 8.1. It contains variables describing
the concentrations of 61 metabolic compounds, the concentration of biomass and 70 fluxes.
The thermokinetic potentials of 12 of the compounds is assumed to be clamped and 31 of the
fluxes are assumed to be in rapid equilibrium. Further, it contains the concentrations of 11

enzymes. Their synthesis rates are controlled by 5 transcription factors. The original model
before the reduction contains 61 state variables (60 unclamped compounds plus biomass). After
applying the rapid equilibrium assumption to 31 fluxes the reduced model is described by 30

state variables.
The model is implemented in Mathematica [104] using the package TKMOD (Appendix A,

p. 185). The following section explains the structure of the model.

8.2.1. Metabolic Network

§ 8.1 (Network stoichiometry). The metabolic network structure is based on a subset of the
genome-scale flux balance model of Escherichia coli K-12 presented by Reed et al. [86]. This
model contains the complete stoichiometry of the reactions which is necessary for the application
of the TKM formalism. It further contains the charge of the dominant form of all species under
physiological conditions. This number is used as an approximation of the average charge of
the respective compounds. Table 8.2 lists the metabolites included in the model. Several
thermokinetic potentials are clamped. The clamped values for the thermokinetic potentials
of adp, coa, nad, nadp, pi and q8h2 are calculated from the list of typical concentrations
given in Kümmel et al. [68]. By clamping adp, nad, nadp and q8h2 one assumes that the

162



8. Modeling the Redox Regulation of Escherichia coli

ratios atp/adp, nadh/nad, nadph/nadp and q8h2/q8 determine the behavior but not the single
concentrations of adp, atp, nad, nadh, nadp, nadph, q8 and q8h2. Consequently, all kinetics
in the model depend only on the ratios catp/cadp, cnadh/cnad, cnadph/cnadp and cq8h2/cq8 but not
on the single concentrations. In this way, the detailed modeling of the de novo synthesis of
adenosine, nicotineamide adenine dinucleotide and quinone is avoided and the model does only
describe the ratios mentioned above but not the absolute concentrations. The clamped values
for h2o and h are determined by assuming a water concentration of 55.24 mol L and a pH = 7.6,
which is the normal cytoplasmic pH of Escherichia coli [69, Section 28.3]. Table 8.3 lists the
transport reactions between the compartments, Table 8.4 lists the reactions in the electron
transport chain and Table 8.5 lists the remaining metabolic reactions in the model.

§ 8.2 (Gibbs formation energies and thermokinetic capacities). Alberty [1] gives a list of Gibbs
formation energies for many compounds of the central metabolism in dependence on pH and
ionic strength I at a temperature T = 298.15 K. The table is available in Mathematica notebook
format [104] at http://library.wolfram.com/infocenter/MathSource/5704. This data al-
lows computing the thermokinetic capacities of most metabolites. Data for the remaining
metabolites are taken from Kümmel et al. [67, Additional file 2] who extended the data set of
Alberty [1]. The thermokinetic capacities used in the model are computed for the temperature
T = 310.15 K from the Gibbs formation energies at pH = 7.6 and I = 0.15 M (see §5.5, p. 90).
Because Alberty [1] does not list the temperature dependency of the Gibbs formation energies
for many important metabolites, we follow the approach of Kümmel et al. [67] and neglect the
temperature dependency of the Gibbs formation energies.

§ 8.3 (Reactions in rapid equilibrium). Kümmel et al. [68] used the data set of Alberty [1]
and measured metabolite concentrations to compile a list of reactions proceeding near ther-
modynamic equilibrium. For building the present model, this list was completed based on
the assumption that only the reactions that are known to be tightly regulated proceed far from
equilibrium. For the reactions proceeding near equilibrium, a thermokinetic resistance of zero is
assumed that leads to a reduction of the model size and stiffness (see Section 5.5.2.2, p. 107). As
an example, Figure 8.1 shows the TKM diagram for the tricarboxylic acid cycle. In the model,
the behavior of the TCA cycle is determined by three reactions that are far from equilibrium,
whereas the remaining reactions are assumed to be in rapid equilibrium.

§ 8.4 (Reactions far from equilibrium). Irreversible, concentration-dependent kinetics are cho-
sen for the reactions that are not in rapid equilibrium. This is possible because the steady state
direction of the remaining reactions under physiological conditions is unique and the model is
supposed to describe the steady state concentrations and fluxes. In TKM, irreversible reactions
are modeled by clamped reaction fluxes. Technically, this means that the stoichiometry of these
reactions is described by the stoichiometric matrix Ne, whereas the near-equilibrium reactions
are described by the matrix N (see Definition 5.29, p. 100). Reactions that proceed far from
equilibrium lead to differences of several orders of magnitude in the thermokinetic potentials.
These differences may lead to difficulties in the numerical treatment of the reactions. Modeling
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the problematic reaction fluxes by irreversible reactions, reduces span(N) and the model can be
scaled by a translation of chemical potentials (Corollary 5.34, p. 102). In this way the numer-
ical difficulties can be overcome. Thus, the TKM formalism is used for the reactions in rapid
equilibrium, but the remaining reactions are formulated in the conventional kinetic modeling
formalism. This procedure shows that it is easily possible to combine the convenient model
reduction possibilities of TKM with conventional kinetic rate laws.

§ 8.5 (Thermodynamic constraints). The modeled network contains six independent stoichio-
metric cycles and thus six independent Wegscheider conditions. However, all of these cycles
contain reactions that are assumed to proceed irreversibly in a way such that the cycle is bro-
ken and a cyclic flux is not possible. For example, Escherichia coli possesses several oxidases
with different proton translocation efficiencies. A possible cycle consists of two oxidases, the
ATP synthase and the hydrolysis of ATP. A proton translocating oxidase reduces oxygen to
water and oxidizes NADH to NAD. The second oxidase oxidizes water to oxygen and reduces
NAD to NADH without translocating protons. The ATP synthase uses protons translocated
by the first oxidase to provide the energy for the phosphorylation of ADP to ATP. The cycle
is completed by the spontaneous hydrolysis of ATP to ADP. However, because the oxidation
of water to oxygen is thermodynamically highly unfavorable such that it does virtually not oc-
cur, the oxidases can be modeled by irreversible reactions and the cycle is broken. Because all
occurring cycles are broken in this way, the thermodynamic constraints in the example model
are not considered in the form of the Wegscheider conditions but in the form of the known,
organism-independent Gibbs formation energies of the compounds. The organism-independent
Gibbs formation energies (and thus the thermokinetic capacities) strongly restrict the values of
the concentrations that are possible for the realization of a certain observed flux distribution.
Henry et al. [46, 47] analyzed these conditions for a larger metabolism-wide flux balance model
of Escherichia coli and showed that they strongly constrain concentrations of key metabolites.

§ 8.6 (Simplified kinetic laws). For the sake of simplicity, Michaelis-Menten and Hill-type
kinetics are used for the description of irreversible kinetics. For example, the reaction A 
 B

with enzyme E and inhibitor I is modeled by

Jj = Ĵj cE
c
kh,j,A

A

c
kh,j,A

A + k
kh,j,A

m,j,A

c
kh,j,I

I

c
kh,j,I

I + k
kh,j,I

m,j,I

(8.1)

where Ĵj, km,j, · and kh,j, · are constant parameters. Since A is a reactant and I an inhibitor, the
parameters kh,j,A and kh,j,I are positive and negative, respectively. The basic hypothesis is that
the dominating systemic behavior is not determined by the detailed form of the kinetic laws but
by the network structure. For this reason often steep Hill kinetics with |kh,j, · | ≈ 5 are assumed.
The use of such kinetics allows a quasi-logical reasoning because reactions can be thought to
be switched on and off dependent on the concentrations of reactants, products or effectors.
However, a discrete, purely Boolean approach is not easily possible because the concentrations
often stabilize near the threshold values km,j, · , which would lead to continuous switching in a
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discrete model. The use of steep Hill kinetics provides an intuitive way to parameterize the
model and analyze the simulation results. It proofed to be very helpful for the discussion with
experimentalists because semi-quantitative statements (as for example: pyruvate formate lyase
is inactive for oxygen concentrations above a certain threshold) can be easily implemented in
the model.
The parameters were adjusted manually in an iterative way in order to get simulations that

fit the data of Alexeeva et al. [5, 6, 7] and Alexeeva [4]. This data set will be discussed in
Section 8.3.

§ 8.7 (Cellular growth and maintenance). Cellular growth is modeled by an overall reaction from
the precursor molecules to biomass. The stoichiometric coefficients are taken from Neidhardt
et al. [74, Chapter 5]. A Hill-type kinetic law is assumed for the overall reaction. The behavior of
the measured quantities proved to be robust against the parameters of this rate law. Basic data
on the volume, surface and weight of a cell is taken from Sundararaj et al. [100]. The reaction
ATPM represents the ATP consumption for maintenance needs, the spontaneous hydrolysis of
ATP and the hydrolysis of ATP in unmodeled futile cycles. This flux is modeled by a Hill
law depending on the ATP/ADP ratio with a km-value below physiological ATP/ADP ratios
such that the ATPM flux is always saturated. The maximal ATPM flux is assumed to depend
also on the activity of the transcription factor ArcA because measurement data of an ∆arcA

mutant from Alexeeva et al. [7] show an increased electron transport activity that presumably
originates from a higher ATP consumption caused by a futile cycle.

§ 8.8 (Chemostat equations). The concentration of the medium constituents is determined by
the chemostat equations [95]. Glucose is the sole carbon source and supplied in the inflow of
the chemostat with a concentration of 45 mM. The dilution rate is 0.15 h−1. The oxygen inflow
into the chemostat is varied in order to adjust different levels of oxygen availability.

§ 8.9 (ATP and NADH in the model). A hallmark of the model is the treatment of the
ATP/ADP and the NADH/NAD ratio as state variables. These concentrations are often set
constant because only a subset of the relevant reactions is modeled, see e. g. [16, 24, 78]. Because
the present model contains the relevant parts of the central metabolism and overall reactions
for the cellular growth and maintenance metabolism, it is possible to model this quantities as
state variables.

8.2.2. Transcriptional Regulation

The transcriptional regulation network is described by phenomenological equations. The model
describes the effect of each transcription factor on the gene expression by its activity ai. The
activity of a transcription factor is between 0 and 1 indicating minimal and maximal activity,
respectively. The transcription factor activities ai depend on their metabolic signals si that are
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id description electrical potential
c cytoplasm φc = 0

cm cytoplasmatic membrane φcm = (φc + φp+)/2

p+ charged boundary layer in periplasm φp+ ∝ ch,p+ − ch,c
p periplasm φp = 0

om outer membrane φom = 0

e cell exterior (medium) φe = 0

Table 8.1.: Compartments in the Escherichia coli model.
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Figure 8.1.: TKM diagram of the citric acid cycle. The capacities are omitted because the model
simulations are restricted to steady state conditions. The dashed lines indicate
inhibitions. The arrow in the resistances indicates that the respective reactions are
modeled by irreversible kinetics.
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id name compartments clamped in
(see Table 8.1) compartments

13dpg 3-phospho-D-glyceroyl phosphate c -
2pg, 3pg D-glycerate 2-phosphate, 3-phospho-D-glycerate c -
6pgc 6-phospho-D-gluconate c -
6pgl 6-phospho-D-glucono-1,5-lactone c -
ac acetate c, p, e -
accoa, actp acetyl-CoA, acetyl phosphate c -
akg 2-oxogluatate c -
amp adenosine-monophosphate AMP c -
adp adenosine-diphosphate ADP c c
atp adenosine-triphosphate ATP c -
cit, icit citrate, isocitrate c -
co2 carbon dioxide c, p, e e
coa coenzyme A c c
dhap dihydrixyacetone phosphate c -
e4p D-erythrose 4-phosphate c -
etoh ethanol c, p, e -
fdp D-fructose 1.6-biphosphate c -
for formate c, p, e -
fum fumarate c -
g3p glyceraldehyde 3-phosphate c -
g6p, f6p D-glucose 6-phosphate, D-fructose 6-phosphate c -
glc-D D-glucose c, p, e -
h proton c, p+ c
h2o water c c
mal-L L-malate c -
nad nicotinamide adenine dinucleotide c c
nadh reduced nad c -
nadp nicotinamide adenine dinucleotide phosphate c c
nadph reduced nadp c -
o2 oxygen c, p, e -
oaa oxaloacetate c -
pep phosphoenolpyruvate c -
pi phosphate c c
pyr pyruvate c -
q8 ubiquinone-8 cm -
q8h2 ubiquinol-8 cm c
r5p α-D-ribose 5-phosphate c -
succ succinate c, e, p -
succoa succinyl-CoA c -

Table 8.2.: Metabolites in the Escherichia coli model.
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Transport p → c (compartment cm):
regulation

id name Rj genetic enzymatic
ACt acetate transport 0 - -
CO2t carbon dioxide transport 0 - -
ETOHt ethanol transport 0 - -
FORt formate transport 0 - -
GLCpts glucose PTS irrev - -
O2t oxygen transport 0 - -
SUCCt succinate transport irrev FNR: + -

Transport e → p (compartment om):
compounds: ac, co2, etoh, for, glc, o2, succ; Rj = 0

Table 8.3.: Transport reactions from the extracellular medium (e) into the periplasm (p) and
the cytoplasm (c). Reactions modeled by irreversible kinetics are marked with ‘irrev’
in the resistance column.

id enzyme Rj genetic regulation
oxidases

CYTBO3 Cyo (proton translocating) irrev ArcA: -, FNR: -
CYTBD Cyd (proton translocating) irrev ArcA: +, FNR: -
CTYBD2 AppB irrev ArcA: +, FNR: -, AppY: +

NADH dehydrogenases
NADHII Ndh irrev FNR: -
WrbA WrbA irrev ArcA: -, FNR: -

other
SUCDH succinate dehydrogenase 0 -

fumarate reductase
ATPS4r ATP synthase 0 -

Table 8.4.: Reactions in the electron transport chain model. Reactions modeled by irreversible
kinetics are marked with ‘irrev’ in the resistance column. All reactions proceed at the
cytoplasmatic membrane (compartment cm). The implemented genetic regulation is
indicated by the transcription factors and the signs of the interactions (+: activation,
-: inhibition).
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regulation
id enzyme EC number Rj genetic enzymatic
ACKRr acetate kinase 2.7.2.1 0 - -
ACONT aconitase 4.2.1.3 0 - -
ADHEr acetaldehyde dehydrogenase 1.2.1.10 irrev FNR: - -
ADK1 adenylate kinase 2.7.4.3 0 - -
AKGDH 2-oxoglutarate dehydrogenase irrev ArcA: -, FNR: - -

CRP: +, PdhR: -
ATPM ATP maintenance drain irrev - -
ATPS4r ATP synthase 3.6.3.14 0 - -
CS citrate synthase 4.1.3.7 irrev ArcA: - akg: -
ENO enolase 4.2.1.11 0 - -
FBA fdp aldolase 2.7.1.11 0 - -
FUM fumarase 4.2.1.2 0 - -
G6PDH2r g6p dehydrogenase 1.1.1.49 irrev - -
GAPD g3p dehydrogenase 1.2.1.12 0 - -
ICDHyr isocitrate dehydrogenase 1.1.1.42 0 - -
MDH malate dehydrogenase 1.1.1.37 0 - -
PDH pyruvate dehydrogenase 1.2.1.- irrev FNR: -, PdhR: - -

ArcA: -, CRP:+
PFK phosphofructokinase 2.7.1.11 irrev - pep: -
PFL pyruvate formate lyase 2.3.1.54 irrev FNR: +, ArcA: + o2:-
PGI g6p isomerase 5.3.1.9 0 - -
PGK phosphoglycerate kinase 2.7.2.3 0 - -
PGL 6-phosphogluconolactonase 3.1.1.31 0 - -
PGM phosphoglycerate mutase 5.4.2.1 0 - -
PPC pep carboxylase 4.1.1.31 irrev - mal-L: -
PTAr phosphotransacetylase 2.3.1.8 irrev - atp/adp: -
PYK pyruvate kinase 2.7.1.40 irrev - fdp: +
SUCOAS succinyl-CoA synthetase 6.2.1.5 0 - -
TPI triose-phosphate isomerase 5.3.1.1 0 - -

GND, TKT1, TKT2 composite reactions 0 - -
describing reactions in the pentose phosphate pathway

Table 8.5.: Metabolic reactions in the cytoplasm of the Escherichia coli model. Reactions mod-
eled by irreversible kinetics are marked with ‘irrev’ in the resistance column. The
regulation that is implemented in the model is indicated by the transcription factors,
the effectors and the signs of the interactions (+: activation, -: inhibition).
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TFi si kh,i reference
ArcA cq8/cq8h2 -5 Georgellis et al. [37]
FNR co2 -5 Unden et al. [102]
CRP cpep/cpyr +5 Bettenbrock et al. [17]
PdhR cpyr -5 Quail and Guest [82]
AppY cfor +5 Brøndsted and Atlung [22]

Table 8.6.: Transcription factors TFi and their metabolic signals si.

metabolite concentrations or ratios of metabolite concentrations in the form of a Hill equation:

ai =
s
kh,i

i

s
kh,i

i + k
kh,i

m,i

(8.2)

where km and kh are constant parameters. The modeled transcription factors together with their
metabolic signals are listed in Table 8.6. The gene expression rates for the enzymes depend
on the transcription factor activities. For example, the concentration of an enzyme E whose
expression is activated by the transcription factor 1 but repressed by the transcription factor 2
can be modeled by

ċE = α + β · a1 · (1− a2)− µ · cE (8.3)

where α and β are constants and µ is the specific growth rate. The mRNA concentration and
the enzyme concentrations are assumed to be proportional. The database EcoCyc [54] lists the
known transcriptional activators and repressors for many genes but does not contain information
on the interaction strengths. The exact expression and the parameters of the transcriptional
regulation model were adjusted to fit the measurement data from Alexeeva et al. [5, 6, 7] and
Alexeeva [4]. It is not always necessary to include the full list of transcription factors listed in
EcoCyc [54] of a gene to explain the observed behavior. In such cases, the influence of some
transcription factors on the expression of certain genes was omitted and it is conjectured that
this interaction does not play a significant role under the considered conditions. The genetic
regulation of the enzymes that is implemented in the model is listed together with the metabolic
reactions in the Tables 8.3, 8.5 and 8.4.

8.3. Comparison of the Simulations to Measurement Data

Alexeeva et al. [5, 6, 7] and Alexeeva [4] collected measurement data on the steady-state behavior
of Escherichia coli in a glucose-limited chemostat at different levels of oxygen availability. They
report on uptake and excretion fluxes, expression levels of key enzymes, the NADH/NAD ratio,
the ArcA activity and the oxygen concentration. This data is given for the wildtype and a
∆arcA mutant.
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§ 8.10 (Perceived aerobiosis). The experimental adjustment and quantification of the oxygen
availability is not straightforward. Significant metabolic changes occur at very low oxygen con-
centrations. These concentrations are difficult to measure and adjust with a sufficient accuracy.
For this reason, Alexeeva et al. [5, 6] introduced “perceived aerobiosis as a quantifiable param-
eter which reflects the relative extent to which a cell uses oxidative catabolism.” The oxygen
supply in a chemostat is adjusted by varying the percentage of oxygen in the input gas. A fully
anaerobic condition with no oxygen in the input gas (JO2,in = 0) is defined as 0% aerobiosis.
The minimum oxygen input rate (JO2,in = ĴO2,in) required for complete oxidation of glucose to
carbon dioxide is defined as 100% aerobiosis. This means that 100% aerobiosis represents the
minimal oxygen availability where no fermentation products are formed. Intermediate aerobio-
sis levels are defined via the oxygen input rate, e. g. 50% aerobiosis are defined as the metabolic
state reached for JO2,in = 0.5 · ĴO2,in. Because ĴO2,in is different for every bioreactor, bioreac-
tors need to be calibrated by identifying the respective ĴO2,in. Perceived aerobiosis provides a
quantitative and reproducible measure for the oxygen availability and is suited when compar-
ing experimental results from different reactors. Thus, this parameter is an ideal basis for the
comparison of simulation results with measurement data.

§ 8.11 (Comparison of simulation results with measurement data). Figure 8.2 shows the com-
parison of the measurement data of Alexeeva et al. [5, 6, 7] and Alexeeva [4] with simulation
results. All values are in steady state and are plotted over aerobiosis. The plots show the
glucose-biomass yield YGlc, the transport rates JACt, JETOHt, JFORt, JO2t (see Table 8.3), the
residual oxygen concentration in the medium co2(e), the ratio of the concentrations of NADH
and NAD cnadh/cnad, the cytochrome d content cytd that corresponds to the sum of the concen-
trations of oxidase bd (enzyme of reaction CYTBD) and bd2 (enzyme of reaction CYTBD2), the
mRNA level of the pyruvate formate lyase pfl (mRNA of reaction PFL) and the ArcA activity
measured by a reporter construct. Further, Alexeeva et al. [5, 6, 7] and Alexeeva [4] present the
values of fluxes that were not measured directly but are calculated from measured quantities by
simple models. This data is not included in the comparison. Only directly measured quantities
are shown in Figure 8.2. An exception is the flux through the pyruvate formate lyase JPFL that
produces formate. In the experiment, the formate is partly decomposed into carbon dioxide
and hydrogen by the formate hydrogenlyase. Alexeeva et al. [7] compute the flux JPFL from
the measured formate excretion rate and other measured rates. Because the decomposition of
formate into hydrogen and carbon dioxide is not included in the model, the formate excretion
flux JFORt is equal to JPFL in the steady state of the model. Thus, the flux JFORt of the model
is not compared with the measured excretion rate of formate but with the calculated flux JPFL
given in Alexeeva et al. [7].
The simulation results fit the measured quantities well (Figure 8.2). The model reproduces

the experimentally observed switching from fermentative metabolism with the formation of
ethanol, formate and acetate under anaerobic conditions to purely respirative metabolism at
and above 100% aerobiosis. It also reproduces the activity profile of ArcA, the cytochrome d
content and the expression of pfl that show a complex, non-trivial behavior in dependence
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on aerobiosis. The model is also able to describe the ∆arcA mutant that (compared to the
wildtype) shows a decreased yield YGlc, an increased oxygen uptake, an increased NADH/NAD
ratio and a decreased residual oxygen concentration under microaerobic conditions (Figure 8.2).
This shows that the structure as it is currently implemented in the model is coherent with the
measurement values and that TKM is suited to describe large metabolic networks.

8.4. Conclusions

This chapter introduces a model of the steady state oxygen response of Escherichia coli in a
chemostat culture. The model covers the central metabolism and the relevant regulation on the
enzymatic and transcriptional level, both in the wildtype and a ∆arcA mutant.
The structure of the metabolic and regulatory network is largely known and was extracted

from databases. An additionally available information allowing for model reduction is the
knowledge which reactions proceed near thermodynamic equilibrium.
The Gibbs formation energies of the relevant metabolites are tabulated and thus the thermoki-

netic capacities can be computed. The reactions that proceed near thermodynamic equilibrium
can be assumed to have a resistance of zero. However, reliable quantitative information on the
remaining reaction kinetics and the strength of the regulatory interactions is scarce. For this
reason, the kinetic rate laws and the regulatory interactions were modeled in a simplified man-
ner. An interesting observation when building the model was that the model behavior is largely
determined by the model structure and only to a lesser degree by the numerical values of the
quantitative parameters. An important feature of the model is that it is able to quantitatively
describe the data set of Alexeeva et al. [5, 6, 7] and Alexeeva [4]. To the knowledge of the
author, it is currently the only kinetic model explaining the behavior of the central metabolism
of Escherichia coli in dependence of the aerobiosis scale. The model is currently used to plan
further experiments with the goal to extend and validate the model. This ongoing work is
expected to further contribute to a deeper systemic understanding of the oxygen response1.
Apart from the increased understanding of the oxygen response of Escherichia coli, the con-

struction of the model and its performance show that the TKM formalism is highly useful as it
allows the convenient reduced-order modeling of large reaction networks.

1This is done in the framework of the SysMO-SUMO consortium.
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Figure 8.2.: Comparison of the simulation results (lines) and the experimental data (symbols)
of the wildtype (filled symbols, solid lines) and a ∆arcA mutant (open symbols,
dashed lines) over the aerobiosis scale. The plot labels are explained in §8.11.
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The efforts of systems biology to arrive at large scale mathematical models require methods for
the systematic analysis of thermodynamic constraints on reaction networks. For this reason,
the consideration of thermodynamic constraints in the mathematical modeling of biochemical
reaction networks received an increased attention in the last years. The focus of most current
studies are the thermodynamics of metabolic networks. Such studies are possible due to the
availability of tables of Gibbs formation energies for metabolites [1, 36] and of methods for their
estimation [53, 73].
Several methods for the analysis of thermodynamic constraints in stoichiometric, constraint-

based models of quasi-stationary metabolic networks are available. They help to reveal impor-
tant principles of the functioning of large scale metabolic networks. For this reason Section 9.1
shortly reviews these methods. Section 9.2 is focusing on dynamic, kinetic modeling and com-
pares TKM with several other approaches for the incorporation of thermodynamic constraints
into dynamic, kinetic models. The discussion is restricted to approaches that are based on the
structure of the biochemical network. Black-box approaches that are based on thermodynamic
relationships but do not consider the detailed stoichiometry of the network are excluded from
the discussion.

9.1. Thermodynamic Constraints in Constraint-Based
Models

Constraint-based modeling seeks to formulate and analyze the basic laws that constrain the
behavior of biochemical reaction networks. It is mainly used for modeling the fluxes in quasi-
stationary metabolic networks characterized by stoichiometric matrices [85]. In this case, the
main constraints are the quasi-steady state condition and the thermodynamic constraints.
Although constraint-based models do not provide a unique solution, they proved to be valu-

able for the analysis and redesign of metabolic networks. For example, Stelling et al. [97] showed
that the quasi-steady state and the thermodynamic constraints on the metabolic network of Es-
cherichia coli determines key aspects of its functionality and regulation.
Thermodynamic constraints on quasi-stationary flux distributions have the form of sign con-

ditions; for example, in a given network under given boundary conditions, certain fluxes are
irreversible, i. e. they can only proceed in one direction. These thermodynamic constraints are
often determined heuristically [86]. Recently, formal methods were developed to computation-
ally determine feasible flux directions. The following paragraphs review such approaches.
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Beard and Qian [12], Beard et al. [13, 14], Price et al. [79], Qian and Beard [80], Qian et al.
[81] and Yang et al. [105] introduce and apply energy balance analysis (EBA) that is a method
for flux balance analysis under thermodynamic constraints. This method identifies and excludes
thermodynamically infeasible cyclic flux distributions. It is applicable in situations where no
thermodynamic data and no information on physiological concentration ranges is available be-
cause it only needs information on the stoichiometry of the network and on the boundary
conditions.
If Gibbs energies of formation and bounds on physiological concentrations are known, stronger

results can be achieved. Kümmel et al. [67, 68] present network-embedded thermodynamic
(NET) analysis that uses the Gibbs energies of formation to determine the consistency of
metabolomic data sets. Further, the method allows determining which reactions in the cen-
tral metabolism proceed near thermodynamic equilibrium and which far from it. As expected,
the far-from-equilibrium reactions are the rate limiting steps that are known to be strongly
regulated and that determine the flux distributions. Zamboni et al. [107] present a computer
tool for the application of NET analysis.
Henry et al. [46, 47] and Hoppe et al. [50] developed further methods to include thermody-

namic constraints into constraint-based modeling. For this purpose, estimates for the maximal
and minimal concentrations for the metabolites are used.
The methods sketched above analyze the thermodynamic constraints on the steady-state

fluxes in metabolic networks. In contrast to that, TKM considers the thermodynamic con-
straints in dynamic, kinetic models. The next section discusses several alternative approaches
to this problem and compares them to TKM.

9.2. Thermodynamic Constraints in Kinetic Models

The problem of how to consistently introduce thermodynamic constraints into kinetic modeling
is discussed several times in the literature. This section shortly reviews several approaches. In
particular, it works out their differences to the TKM approach. A preliminary version of this
comparison was previously published in Ederer and Gilles [31].

9.2.1. Identification of a Cycle Base

Colquhoun et al. [26] discuss the problem of how to impose the detailed balance constraints
in complex reaction mechanisms. Three methods have been suggested that rely on an explicit
identification of independent stoichiometric cycles. In method 1, the cycles are subsequently
identified and the according Wegscheider condition is used to eliminate a parameter, i. e. to
express this parameter in dependency on the other parameters, whereby the order in which the
cycles and parameters are considered is crucial. With a badly chosen ordering, this procedure
leads to the elimination of all parameters in a cycle such that its Wegscheider condition is
violated. Therefore, Colquhoun et al. [26] give rules to arrive at a valid ordering. Method
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2 chooses a graph theoretical approach. Based on the spanning tree of the network, a set of
independent cycles is computed that can be used to eliminate parameters. Here, the ordering
is arbitrary. Method 3 uses the fact that the Wegscheider conditions form a linear equation
system in the logarithms of the kinetic constants (see §2.52, p. 33). By basic linear algebra it
is possible to divide the parameters into thermodynamically independent and dependent ones.
Then, the dependent parameters can be computed as a function of the independent parameters.
Method 1 and 2 are implemented in the parameter fitting tool HJCFIT.
The methods described above are developed for the purpose of automatic parameter fitting.

For manual modeling and parameter adjustments prior to an automatic identification, there
occur several problems. The identification of cycles and independent parameters has to be
redone when extending or modifying the model. Hereby, different ordering or different spanning
trees give different sets of independent parameters. Further, the independent parameters cannot
be assigned to reactions or compounds, but changing a single parameter may have effects on the
kinetic laws of several reactions. This makes parameter adjustment and interpretation difficult.

9.2.2. Reparameterization of Kinetic Rate Laws

From a mathematical point of view, TKM is equivalent to a transformation of the kinetic
parameters into capacities and resistances. Yang et al. [106] and Liebermeister and Klipp [70]
suggest similar parameters to avoid thermodynamic inconsistencies. First, both approaches are
shortly discussed and then their relation to TKM is explored.

The approach of Yang et al. [106] is based on the formalism developed by Horn and Jackson
[51], which uses the concept of reaction groups. A reaction group is a set of species participating
in a reaction, either as reactants or products. In the example of an enzyme catalyzed reaction
in Equation 7.1 (p. 140), one has the reaction groups {A,E}, {B,E}, {C,E}, {I, E}, {EA},
{EB}, {EI}, {EA,B}, {EB,A} and {EAB}. A reaction transforms a reaction group into
another reaction group. Now a matrix of kinetic parameters K can be built with J = KT g

where g contains the mass action terms of the groups; in the example g = (cA cE, cB cE, . . .).
Here J is a vector containing the rate of production for each reaction group. Let the matrix G
be the diagonal matrix of the thermodynamic equilibrium values of g. Then, the elements of
the matrix GK are the forward and backward rates of the single reactions in thermodynamic
equilibrium. The detailed balance relations, implying equality of forward and backward rates in
equilibrium, take the form GK = (GK)T . Thus, a valid parameter matrix K can be computed
as K = G−1Ks, where Ks is an arbitrary symmetric matrix. The independent parameters of
the model are the equilibrium concentrations and the entries of the matrix Ks.
Detailed balance constrains the parameters only for true stoichiometric cycles. Thus, in a

given scheme only a subset of the reaction parameters is constrained. For this reason, Yang
et al. [106] further introduce a method to find the minimal subnetwork whose parameters are
constrained by detailed balance. Any method imposing detailed balance on the parameters
needs to work only on this subsystem.
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Liebermeister and Klipp [70] suggest the use of so called convenience kinetics for the (semi)-
automatic generation of kinetic models. Convenience kinetics are a special form of general
mass-action kinetics that describe enzyme-catalyzed reactions with a random-order mechanism.
Because these kinetics are quite flexible, they are suited as generic rate laws for (semi)-automatic
model generation. In this context, also the question of how to find thermodynamically consistent
parameters arises. This problem is solved by parameterizing the model by thermodynamically
independent parameters: the energy constants for compounds kGi = exp(∆fG

◦
i /(R

∗ T )), the
velocity constant for reactions kVj = (k+j k−j)

1/2 and the half saturation constants kMij .

The parameterizations suggested by Yang et al. [106] and Liebermeister and Klipp [70] are
similar to TKM. All three approaches divide the parameters into kinetic parameters related to
reactions and thermodynamic parameters related to compounds. The thermodynamic param-
eters of the compounds are equal to or are the reciprocal value of the thermokinetic capacities:
Ci = ceq,i = c◦/kGi . The capacities Ci, the equilibrium concentrations ceq,i and the energy con-
stants kGi are not unique and may be transformed to a different reference state (cf. Section 5.4.2,
p. 102).
In the approach of Yang et al. [106], the entries of the matrix Ks are the forward and

backward rates of the reactions in thermodynamic equilibrium defined by the concentrations
Ci = ceq,i. Thus, for mass-action kinetics the entries of the matrix KS are equal to the reciprocal
thermokinetic resistances. However, the approach by Yang et al. [106] is based on reaction
groups. This concept is seldom used directly for kinetic modeling. In addition, there are
usually much more reaction groups than species and thus complexity is added to the problem.
Although Liebermeister and Klipp [70] describe the approach for convenience kinetics, it

is readily extended to generalized mass-action kinetics. TKM uses resistances Rj instead of
velocity constants kVj to describe the kinetics. This is only a formal difference, but each variant
has its own advantages. The standard Gibbs formation energies ∆fG

◦
i are tabulated with respect

to a chosen, arbitrary reference state. If this reference state is changed, the capacities Ci and the
parameter kGj = c◦C−1

i change accordingly (see Section 5.4.2, p. 102). A change of the reference
state also affects the thermokinetic resistances Rj but not the velocity constants kVj . This
means that the exchange of the velocity constant kVj between different models with different
reference states is simpler than the exchange of thermokinetic resistances Rj. However, the
use of thermokinetic resistances Rj is advantageous for parameter adjustments and sensitivity
analysis: for the forward rate constant k+j one gets in TKM k+j = R−1

∏
i∈Ej

C
−|νE,ij |
i and

in the convenience kinetics approach k+j = kVj
∏

i(k
G
i )−νij/2. In TKM, an adjustment of the

thermodynamic parameter Ci of the products leaves the forward rate constant k+j unchanged
but has only influence on the backward constant k−j. In the convenience kinetics approach, a
change in the analog parameters kGi of the products changes both the forward and the backward
rate constant. Thus, in the convenience kinetics approach, a variation of a thermodynamic
parameter of a compound influences also the rate constant of mass-action terms that do not
contain the respective concentration. Thus, for a clear distinction of thermodynamic and kinetic
information, the use of thermodynamic resistances is advantageous.
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Besides a parameterization of kinetic models by capacities and resistances, TKM introduces
thermokinetic potentials and forces. In contrast to the reviewed approaches, TKM provides
an intuitive, thermodynamic interpretation and stresses the relation to chemical potentials and
thermodynamic flow-force relationships. For example, this allows using non-ideal capacities to
model pools of compounds that are in equilibrium with each other. In this way, kinetic laws that
would be very complex when expressed in dependence on the concentrations can be expressed
in a simple manner (see Section 6.7, p. 134). None of the described, alternative approaches
provides such a possibility.

9.2.3. Flow-Force Relationships

Kinetic rate laws that are derived from thermodynamic flow-force relationships are sometimes
used to model biochemical reactions. TKM belongs to this class of approaches and thus one
can directly compare the resulting rate equations.
For systems far from equilibrium, the complex dependency of the thermodynamic resistance

on the chemical potentials µi (see Section 3.3.2, p. 46) renders the thermodynamic modeling for-
malism almost intractable for larger networks. Even first order reactions that would yield linear
models in the kinetic modeling formalism have highly nonlinear thermodynamic resistances.
Thus, thermodynamic flow-force relationships are usually used in an approximated form. We
compare the TKM approach to two of these approximations by considering a model for the flux
through the membrane-bound NADH dehydrogenase in the electron transport chain

NADH +Q 
 NAD+ +QH2 + 4 ∆H+

where Q and QH2 are ubiquinone and ubiquinol, respectively. Here ∆H+ describes the translo-
cation of protons over a membrane. Models of this reaction were recently presented by Beard
[11] and Klamt et al. [58] as parts of their respective electron-transport chain models. In Al-
berty [1] one finds the following tables of transformed Gibbs energies of formation at pH = 7,
T = 298 K and an ionic strength I = 0.25 mol L−1:

∆fG
′◦
Q = 3668.94 kJ mol−1, ∆fG

′◦
QH2

= 3660.55 kJ mol−1, (9.1)

∆fG
′◦
NAD = 1059.11 kJ mol−1, ∆fG

′◦
NADH = 1120.09 kJ mol−1.

This yields a standard Gibbs reaction energy of ∆G◦ = −∆fG
′◦
NADH − ∆fG

′◦
Q + ∆fG

′◦
NAD +

∆fG
′◦
QH2

+ 4F ∆p. Assuming a constant proton-motive force of ∆p = 180 mV one gets ∆G◦ =

0.11 kJ mol−1.
Klamt et al. [58] assumes proportionality of ∆G and JK and use the law

JK = −kK
(

∆G◦ +R∗ T log

(
cQH2 cNAD
cQ cNADH

))
.

Laws of this kind are also used for example by Korzeniewski [60] and Korzeniewski and Zoladz
[62]. Beard [11] uses the law

JB = kB

(
exp

(
−∆G◦

R∗ T

)
cQ
cQH2

cNADH − cNAD
)
.
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The corresponding TKM law is

JTKM = R−1 (ξNADH ξQ − ξNAD ξQH2 ξ
4
∆H+)

where ξ∆H+ = exp(F ∆p/(R∗ T )) = 1107.03 and ξi = ci/Ci for i ∈ {Q,QH2, NAD,NADH}.
Assuming a constant resistance R, the flux is proportional to the thermokinetic force. The
capacities Ci can be computed from the data in Equation 9.1:

CQ = 8.067× 10−644 M, CQH2 = 2.38× 10−642 M,

CNAD = 2.28× 10−186 M, CNADH = 4.68× 10−197 M.

A scaling of the system according to Section 5.4.2 (p. 102) with δξQ = δξQH2 =
√
CQCQH2 =

4.39× 10−643 M and δξNAD = δξNADH =
√
CNAD CNADH = 1.03× 10−191 M yields

CQ = 0.18 M, CQH2 = 5.44 M,

CNAD = 221.× 103 M, CNADH = 4.53× 10−6 M.

We use kB = 0.54088 s−1 and adopt kK and R such that in thermodynamic equilibrium the
three approaches are equal up to the first order such that for small deviations from equilibrium
JK ≈ JB ≈ JTKM . Figure 9.1 compares the three models in dependence of cQH2 for fixed
cQ = cNAD = cNADH = 1 mM. Deviations occur in particular for small cQH2 . Then, the fluxes
JK and JB are very large because their forward rate depends on the ratio cQ/cQH2 . However, one
would not expect that the forward rate of a reaction is activated by the depletion of the product
cQH2 . In particular, there should be an upper bound for the forward flux independent of the
concentration of the product cQH2 . The flux JTKM follows a kinetic mass-action law and thus
the forward rate is independent of the product concentration cQH2 and for small cQH2 only the
backward rate vanishes. Whereas the approach of Klamt et al. [58] shows problematic behavior
for low and high concentrations of cNAD and cQH2, the approach by Beard [11] avoids this
problem for cNAD but not for cQH2. The above laws are good approximations in a certain range
of the concentrations, but they fail for low and high concentrations. Korzeniewski [61] observed
a similar problem when comparing experimental flux data with the thermodynamic driving
force of the cytochrome oxidase. In particular, Korzeniewski [61] showed that the flux through
the oxidase even decreases with increasing thermodynamic force in a wide and physiological
reasonable range.
Altogether, all three approaches for the NADH dehydrogenase yield similar results near ther-

modynamic equilibrium. Besides the known and tabulated Gibbs energies of formation they
require only one additional parameter that has to be fitted to the measurement data. Far from
equilibrium only the TKM approach shows a realistic behavior.

9.3. Discussion

In comparison to other approaches for the incorporation of thermodynamic constraints into
kinetic models, the TKM approach has several advantages that are summarized in the following
paragraphs.
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Figure 9.1.: Comparison of three different kinetic laws for the NADH dehydrogenase: TKM
(solid); Klamt et al. [58] (dashed); Beard [11] (dotted).

Any model formulated using generalized mass-action kinetics can be translated into a TK
model provided that the original model is thermodynamically consistent. Thus, TKM does not
suffer from the scaling problems of linear thermodynamics for small and large concentrations.
TKM does not require the explicit enumeration of stoichiometric cycles, but provides an

inherent thermodynamically consistent parameterization. The use of thermokinetic capacities
and resistances distinguishes thermodynamic parameters (capacities) and kinetic parameters
(resistances) in a clear way. For mass-action laws, TKM and the alternative parameterization
schemes of Yang et al. [106] and Liebermeister and Klipp [70] are physically equivalent but
differ in their formal properties. Yang et al. [106] apply the concept of reaction groups, which
however is rarely directly used for modeling. Liebermeister and Klipp [70] describe their method
for so called convenience kinetics, but it can be readily extended to generalized mass-action
kinetics. This approach differs from TKM in the choice of the parameters of reactions. Changes
in thermokinetic capacities influence only the mass-action terms that involve the respective
concentrations, but not the rate constants of the reverse reaction. In the convenience kinetics
approach, a change of the energy constants has effects on both directions of a reaction. Thus,
TKM dissects thermodynamic and kinetic effects more clearly.
TKM unifies the approaches that are based on a thermodynamically consistent parameteriza-

tion and those approaches that use flow-force relationships. A crucial point that is not addressed
by any of the approaches discussed above is the introduction of thermokinetic potentials, forces,
capacities and resistances. As shown in the Chapters 5 and 6, this simplifies the application of
several model reduction techniques which lead to reduced models with non-constant capacities
and resistances that depend on the system state. Non-constant resistances allow the modeler to
describe all kinds of generalized mass-action kinetics, e. g. a reversible Michaelis-Menten reaction
is described by a linear dependency of the resistance on the potentials (see Section 3.3.2, p. 46).
Non-constant capacities can describe pools of species that are in rapid-equilibrium, e. g. the pool
of free substrate and substrate-enzyme complex (see Section 6.7, p. 134). This is particularly
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interesting, since the respective concentration dependent rate laws do not follow a generalized
mass-action law and are very complex, but the according TKM expressions are simple.
In conclusion, TKM unites the advantages of kinetic modeling and thermodynamic flow-force

relationships. It makes the use of thermodynamic flow-force relationships feasible for networks
far from equilibrium and extends the scope of kinetic modeling.
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Callen [23, p. 3] states that “thermodynamics sets limits (inequalities) on permissible physical
processes, and it establishes relationships between apparently unrelated properties.” In par-
ticular, thermodynamics constrains the physically possible dynamics of biochemical reaction
networks. It determines the sign of reaction fluxes and establishes relationships between rate
constant of different reactions. If no special care is taken, kinetic models may easily describe
systems that are thermodynamically impossible.
It is the explicit goal of systems biology to derive large scale mathematical models of bio-

chemical reaction networks [96]. To approach this goal, it is important to use methods that
explicitly acknowledge the thermodynamic constraints [48]. The present thesis presents solu-
tions for the thermodynamically consistent formulation and reduction of kinetic models. The
key contribution is the introduction of the thermokinetic modeling (TKM) and model reduction
formalism.
In general, thermodynamics distinguishes between extensive, specific and intensive variables.

Extensive variables describe the amount of substance, charge, energy or other balanceable quan-
tities. Specific variables are the ratio of extensive variables and a variable that describes the
size of the system, e. g. its mass or volume. Examples for specific variables are concentrations,
i. e. the ratios of the amounts of species and the volume of the system. Intensive variables de-
scribe the ability of an extensive variable to drive a flux. For example, temperatures, voltages
and chemical potentials are intensive variables. Differences of intensive variables are the ther-
modynamic forces. For example, temperature, voltage and chemical potential differences drive
heat fluxes, electrical currents and chemical reactions, respectively. The direction of the driving
force determines the direction of the respective flux. For example, heat flows from hot to cool
bodies. In contrast to extensive variables, intensive and specific variables are independent of
the size of the system. Often, specific variables are called intensive variables because they share
this property. Here, we follow Callen [23, Section 2.1] and reserve the term intensive variables
for the variables whose differences are the thermodynamic forces, i. e. for the partial derivatives
of the fundamental equation in the form U(S, V, n, . . .) or S(U, V, n, . . .). This distinction is
necessary for the following discussion.
Dynamic models of thermodynamic systems generally consist of the balance equations and the

rate equations. The balance equations describe the change of the extensive or specific variables
in dependence on the fluxes. The rate equations describe the dependence of the fluxes on the
state of the system. In most cases, the rate equations are formulated in terms of the driving
forces, i. e. of intensive variables. For example, the heat flow and the electrical current can often
assumed to be proportional to temperature and voltage differences, respectively. Such rate laws
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guarantee that the direction of the flux is thermodynamically feasible.
An exception is the conventional kinetic modeling formalism. Whereas electrical, thermal or

diffusive systems often proceed sufficiently near to thermodynamic equilibrium such that the
use of linear flow-force relationships is appropriate, reaction systems often proceed far from
equilibrium such that the flow-force relationships are highly non-linear and the thermodynamic
resistance in the flow-force relationships is not constant but depends strongly on the state of
the system [23, Section 14.3]. For this reason, reaction rates are often more conveniently ex-
pressed in dependence on the concentrations, i. e. on specific but not intensive variables. An
alternative is the use of approximated flow-force relationships that assume a functional, for
example a linear, dependency of the fluxes from the forces but not from other state variables.
Heinrich and Schuster [45, Chapter 2.2.3] discuss that approximated thermodynamic flow-force
relationships are often inferior to concentration-dependent kinetic rate equations. The ther-
modynamic forces driving reaction fluxes do not contain the full information determining the
reaction rates such that approximated flow-force relationships often fail to describe the occurring
effects. In contrary, concentration-dependent kinetic rate equations allow one to incorporate
detailed mechanistic knowledge and thus give deeper insight into the system.
Whereas flow-force relationships guarantee thermodynamic feasibility, concentration-depen-

dent kinetic laws are more flexible and simple. To overcome this dilemma, TKM introduces
flow-force relationships into kinetic modeling. TKM is based on the use of thermokinetic po-
tentials and forces. Thermokinetic potentials and forces are derived from chemical potentials
and thermodynamic forces. In the case of mass-action kinetics in an ideal dilute solution that is
a standard assumption for many kinetic models, the thermokinetic flow-force relationships are
linear. Compared to the conventional kinetic modeling formalism, TKM has two main features
that render it attractive for the modeling of biochemical reaction networks. The use of TKM
structurally guarantees the thermodynamic feasibility of the model equations, and any ther-
modynamically feasible kinetic model can be expressed in the TKM formalism. Additionally,
TKM strongly simplifies the application of several model reduction techniques.
The advantages of TKM are related to its use of flow-force relationships. The use of flow-

force relationships structurally guarantees the non-negativity of entropy production and the
vanishing of the fluxes in thermodynamic equilibrium. Thus, it guarantees the thermodynamic
feasibility of the model equations. If the flow-force relationships have certain properties, model
reduction methods can be applied. A reaction is in rapid equilibrium if its force but not its
flux is negligible, and a species is in quasi-steady state if its concentration change but not its
contribution to the forces is negligible. In both cases, the size of the model can be reduced.
TKM strongly simplifies the reduction of the model because it is able to directly incorporate
the conditions on the flow-force relationships. In particular, it is possible to rigorously derive a
reduced reaction scheme with less species and less reactions. Model reduction does not require
the formulation of the full system equations but can be performed on a list of reaction equations
or reaction rules, which additionally simplifies model reduction. The treatment of the rapid
equilibrium assumption is particularly simple because it requires only linear operations.
Additionally, the use of flow-force relationships allows for a graphical representation of TK
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models analogously to the graphical representation of electrical networks. The model reduction
methods can be formulated as graphical rules that allow their convenient application.
In conclusion, TKM unites the advantages of conventional kinetic modeling and of thermody-

namic flow-force relationships. Further, it strongly simplifies model reduction. For this reasons,
TKM is an ideal tool for building mathematical models of large biochemical reaction networks.
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The use of Thermokinetic Modeling (TKM) and the thermokinetic model reduction methods is
especially advantageous for large systems because it guarantees the thermodynamic feasibility
of the model equations. The treatment of large systems requires a computer tool that assist
the modeler in formulating and reducing the model equations. For this purpose the Mathemat-
ica package TKMOD (Thermodynamik-Kinetic Modeling tool) was built. Mathematica is a
computer program that provides a highly developed programming language that is especially
suited for mathematical applications [104]. It provides a large set of routines for symbolic and
numerical computations. Due to its flexibility, it is an ideal tool to develop a thermokinetic
modeling tool.
The Mathematica package TKMOD provides functions for modeling, model reduction and

simulation of thermokinetic models. In particular, if provides functions to define compart-
ments, compounds and reactions. TKMOD builds and simulates the model equations from
this information. Additionally, it provides routines for the application of the rapid equilibrium
assumption (see Section 5.5.2.2, p. 107). The model of the oxygen response of Escherichia coli
that is presented in Chapter 8 (p. 161) was built with TKMOD. The following section shortly
describes TKMOD.

A.1. Model Description in TKMOD

TK models are described by a data structure that is a textual list of model elements. This data
structure may be defined in a model description file. The three most important types of model
elements are compartments, compounds and fluxes. Further model elements allow the input of
additional equations and the definition of export and visualization routines.
An example for the definition of a compartment is the definition of the cytoplasm in the

model of Escherichia coli :

Compartment["c",
"Name" -> "cytoplasm",
"Size" -> n["X"][t] * Vc,
"Scale" -> Vc0,
"Value" -> Vc0,
"ElectricalPotential" -> 0,
"Temperature" -> 310.15,
"Flux" -> -DIL*V["c"][t]]
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The definition consists of an expression with the head Compartment. The first element of the
expression is the unique identifier c. The rest of the expression consists of tags that describe the
compartment c. The tag Name has purely documentary function. ElectricalPotential and
Temperature define the value of the respective intensive state variables for the compartment.
Size describes a law for the computation of the volume of the compartment. In this case, the
volume depends on the number of cells n["X"][t] and the volume of a cell Vc. The volume
of the compartment is variable because the number of cells n["X"][t]is a function of time
t. TKM uses the provided law for the volume of a compartment, e. g. V (t) = Vc nX(t), in
its differentiated form, e. g. V̇ (t) = Vc ṅX(t). For this reason, an initial value Value has to be
supplied. The value Scale is used to internally scale the resulting equations for the compartment
size in order to get more convenient numerical behavior. In a reactor cells grow and thus the
intracellular compounds are accordingly diluted. This dilution of the compounds is determined
by the growth rate of the compartment that is defined by the tag Size. In a chemostat, cells
are continuously removed from the reactor. This means that although the overall size of the
cytoplasm grows, the volume of cytoplasm in the reactor can be constant or even decrease. The
tag Flux determines this dilution rate of the compartment, which results from a continuous
flow through the reactor. Here, the term -DIL*V["c"][t] describes the dilution in a chemostat
with dilution rate DIL.
Compounds are defined in a similar way as compartments. An example for a compound

definition is that of glucose-6-phosphate g6p, which is given by:

Compound["g6p",
"Compartment" -> "c",
"Name" -> "D-Glucose 6-phosphate",
"Formula" -> "C6H11O9P",
"Charge" -> -2,
"Capacity" -> Cap["g6p"],
"Value" -> 0.4 mM["g6p"],
"Scale" -> 0.4 mM["g6p"],
"Clamped" -> False]

Capacity defines the thermokinetic capacity at an electrical potential of zero. Cap["g6p"] is
a function that computes the capacity of glucose-6-phosphate at an electrical potential of zero
from a table of Gibbs formation energies. The true thermodynamic capacity is determined
automatically by a multiplication by a correction term involving the Charge and the electrical
potential of the phase:

Ci = C ′i exp

(
−F zi φ
R∗ T

)
(A.1)

where Ci is the corrected capacity and C ′i is the user-supplied capacity (see §5.26, p. 98). The
Boolean value Clamped determines if the thermokinetic potential is clamped to Value or if Value
determines only the initial condition of the thermokinetic potential. The function mM["g6p"]
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defines the conversion factor of the unitless thermokinetic potential into the concentration of
glucose-6-phosphate given in millimolar.
The definition of a reaction flux follows the same principle as the definition of compartments

and compounds. An example is the reaction g6p 
 f6p catalyzed by the glucose-6-phosphate
isomerase:

Flux["PGI",
"g6p" -> "f6p",
"Name" -> "glucose-6-phosphate isomerase",
"Subsystem" -> "Glycolysis/Gluconeogenesis",
"EC" -> "EC-5.3.1.9",
"Compartment" -> "c",
"Resistance" -> 0,
"Value" -> kp*c["g6p"][t],
"Clamped" -> False]

Here the Boolean value Clamped decides if the thermokinetic resistance in the slot Resistance
is used to compute the flux or if the expression given in Value is used instead. Value may
depend on constants, e. g. kp, concentrations, e. g. c["g6p"][t] or other quantities. The
tag Value is without effect, if the flux is not clamped. Resistance defines the thermokinetic
resistance at an electrical potential of zero. This tag is without effect, if the flux is not clamped.
The user supplied resistance value is multiplied with a voltage-dependent correction term that
is unity at an electrical potential of zero:

Rj = R′j exp

(
F zj φ

R∗ T

)
(A.2)

where Rj is the corrected resistance, R′j is the user supplied resistance and zj =
∑

i∈Ej
νE,ij zi =∑

i∈Pj
νP,ijzi. In the expression for the concentration-dependent reaction rate (§5.18, p. 93),

the correction factors for the resistances and for the capacities (Equation A.1) cancel out if
all reaction partners are on the same electrical potential. Thus, the reaction velocity depends
on the electrical potential only if reactants and products are in different compartments with
different electrical potentials.
Due the correction terms in Equations A.1 and A.2, the modeler needs to supply the re-

sistances and capacities for an electrical potential of zero. TKMOD automatically adapts the
expressions such that reaction fluxes in a compartment are independent of the electrical poten-
tial, and reaction fluxes between reactants and products of different compartments with different
electrical potentials can be conveniently modeled. In the latter case, the reaction needs to be
placed in an additional compartment that models the interface between the compartments of
reactants and products. By adjusting the electrical potential φ̂ in the interface compartment,
different transition factors α with φ̂ = αφ′ + (1− α)φ′′ can be realized (see §5.26, p. 98).
Defining compartments, compounds and reactions as introduced above results in a complete

TK model that can be reduced and simulated using the functions introduced in the next section.
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A.2. Functions in TKMOD

TKMOD provides several functions for dealing with thermokinetic models. Here, the most
important functions are shortly described.
CheckNetworkDescription tests the network description for common errors and prints warn-

ings and errors. NetworkDescription2TKM reads in a network description and transforms it
into an internal data structure for the description of thermodynamic kinetic models. TKMScale
scales the model by a translation of chemical potentials (see Section 5.4.2, p. 102) in order to
get numerically convenient model equations. ComputeConsistentIC computes consistent ini-
tial conditions for models with vanishing resistances (see §4.42, p.66). TKMReduce reduces the
system by performing the reduction steps for vanishing resistances developed in Section 5.5.2.2
(p. 107). TKMsim finally allows to simulate the reduced model. ShowView and MakeReport pro-
duce plots and write csv files (numerical data in the comma-separated values format) of the
simulation results, respectively.

A.3. Conclusions

This chapter gave a short overview over the TKMOD package for modeling and model reduction
of thermokinetic models. The tool allows the convenient definition and simulation of thermoki-
netic models. A list of model elements that describe compartments, compounds and reactions
constitutes the input of TKMOD.
As demonstrated in Chapter 8, the tool TKMOD can be used for the thermokinetic modeling

of large reaction networks. Currently, TKMOD is able to treat vanishing resistances. In the
future, it will be extended to the more difficult problem of vanishing capacities. Further, it is
planned to include rule-based modeling and model reduction, which is a prerequisite for the
modeling of complex signal transduction networks.
The Mathematica package TKMOD is a powerful tool for TKM that proved to be a valuable

tool for method development and for the development of a large TK model of the oxygen
response of Escherichia coli.
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