CSRD (2009) 23: 225-230
DOI 10.1007/s00450-009-0071-y

SPECIAL ISSUE PAPER

Architecture aware parallelization of solvers for PDE systems

on geometrical graphs

Sergiy Y. Gogolenko - Volodymyr Svjatnyj

Published online: 30 April 2009
© Springer-Verlag 2009

Abstract Solving PDEs on geometrical graphs with method
of lines approach leads to large-scale, homogeneous, weakly
connected ODE systems. Such differential equation sys-
tems can be efficiently solved on parallel computers by
exploiting of parallelism across system. In this case op-
timal parallelization of the ODE solvers is equivalent to
finding an optimal mapping of secondary topology graph
on architecture graph. Architecture aware graph parti-
tioning is a relatively new direction of research. Avail-
able solutions do not cover all the most important hard-
ware platforms. Furthermore, usage of existing architecture
aware partitioners does not provide facilities for estimat-
ing discretization parameters in PDE solvers. In this pa-
per, we discuss an approach to overcome above-mentioned
drawbacks.

Keywords Dynamic network object -

Partial differential equation on geometrical graph -
Method of lines - Architecture aware partitioning -
Statistical optimization methods -

Bayesian heuristic approach

S.Y. Gogolenko (C)

Max Planck Institute for Dynamics of Complex Technical
Systems,

Sandtorstr. 1,

39106 Magdeburg, Germany

e-mail: gogolenk @mpi-magdeburg.mpg.de

V. Svjatnyj

Computer Science Department, Donetsk National Technical
University,

Artem str. 57,

83000 Donetsk, Ukraine

e-mail: svjatnyj @cs.dgtu.donetsk.ua

1 Introduction

Majority of models for dynamic network objects (DNOs)
can be represented as nonlinear PDE systems on geometri-
cal graphs

u 0 92 92
Fow 2 % 0% 210 o, (1)
ot or’ ot?’ or?

where geometrical graph I' = (V, Er) corresponds to the
graph of DNO [1]. Equations on the edges e € Er reflect be-
havior of the DNO along the edges of I'. Equations in the
vertices v € Vr define laws of interaction between parts of
the DNO (transmission conditions).

Prevalent method for simulation of these models is half
discretization of PDEs using the method of lines (MOL)
approach. It leads to large-scale homogeneous weakly con-
nected ODE or DAE systems on non-weighted secondary
topology graphs. If half discretization in space (with a space
step ¢) is used, the secondary topology graph G, = G (¢, I')
is obtained from I' by replacing each of its edges by a path
of length [/;/¢], where [; is a weight of edge ¢; € Er, or,
equivalently, by inserting of additional [/;/e] — 1 vertices
into each edge of I', and ODE system takes the form

d
Y ZFGQ(I’J’)’ (2)
dr

where y : RT — R™ denotes vector of state variables on the
secondary topology graph G,.

Since the ODE system (2) is large-scale and weakly con-
nected, it can be solved quite efficiently on parallel comput-
ers by exploiting of parallelism across system [2, 3]. Equa-
tion segmentation (ES) method is the most attractive in this
context. According to the ES method the right-hand side
of (2) is distributed among different processors and calcula-
tions of its parts are carried out simultaneously [3]. At the

@ Springer



226

same time the secondary topology graph G, is equivalent
to the computational graph of the right-hand side function
(see Sect. 2.2). It allows to reformulate the problem of op-
timal parallelization of ODE solvers for (2) by means of
equation segmentation in terms of the secondary topology
graph partitioning problem.

Architecture aware partitioning of computational graphs
is a relatively new area of research [4]. Most of existing par-
titioning algorithms are suitable for homogeneous parallel
architectures, but fail to address the limitations imposed by
heterogeneity.

Recently available solutions for complicated heteroge-
neous parallel architectures [4—14] have some significant
drawbacks. For instance, architecture aware partitioning
methods in JOSTLE [6,7], ScoTcH [13] and DRUM [9, 10]
do not take into consideration heterogeneity in both pro-
cessor performance and network. This problem is partially
solved in PT-ScorcH [14]. MINIMAX tries to minimize
the variance in processor execution time, but it does not
take into account the granularity of the parallelized appli-
cation [8]. PART/PARAPART [11,12] and PAGRID [5] are
free from the above-mentioned disadvantages, but they use
edgecut based model of communications which is a poor ap-
proximation of the total communication cost. More accurate
model was proposed in [4] and implemented in extention
of METIS library for architecture aware partitioning. This
model is based on the partitioning volume measure which
is defined as the total communication volume required by
the partition. However, used in [4] communication metrics
do not take into account latencies of links between proces-
sors. Furthermore, all mentioned partitioning tools do not
rely on the well-known fact that the computational cost on
vector processors depends drastically on the structure of the
partition. Finally, all available graph partitioners works only
with a priori known computational graphs. But in our case,
structure of the computational graph depends on the space
step &, which should be also estimated during optimal par-
allelization process. In order to solve the drawbacks and
limitations of existing partitioners in the context of the con-
sidered optimal parallelization problem, we propose a new
problem-oriented approach to parallelize PDE systems on
geometrical graphs in an optimal way.

The contributions of this paper are: (a) enhanced met-
rics for estimation of execution time of numerical solvers
for the problem (1); (b) optimization approach that allows
to find both an optimal space step and an optimal parti-
tioning. The reminder of the paper is organized as follows.
Section 2 discusses the model of optimal parallelization
problem. Section 3 contains an overview of proposed opti-
mization approach. A considered approach is implemented
in toolbox mDYNO for optimal parallelization of DNOs
simulators in PRoOMoT/DiANA simulation environment [21].
Some modules of 7DYNO are still under development, but

@ Springer

Gogolenko and Svjatnyj

several results have already been achieved. The architecture
of #DYNO is presented in Sect. 4. Finally, we give conclu-
sions and areas of further work in Sect. 5.

2 Optimization problem
2.1 General model

The de facto criteria for comparing quality of different par-
allel numerical solvers are an accuracy of obtained solu-
tions, as well as total execution time, speedup and efficiency
of application. The execution time 7, of the solver for the
ODE system (2) depends on the number of iterations » dur-
ing ODE system integration and on the set of parameters ¢
that define mapping of computational graph onto target par-
allel system. In addition, structure of the computational
graph for the right-hand side of the ODE system (2) depends
on the space step width e. To find the speedup S, and effi-
ciency E,, only the execution time 7}, and parameters of the
target parallel system need to be known.

The accuracy of the solver E can be roughly estimated
from the discretization steps in space ¢ and in time 7 [2, 16].
The time step t for discretization of the ODE system (2)
allows to uniquely identify the number of iterations n and
conversely. On the other hand discretization steps ¢ and t
can not vary independently. They are constrained by an in-
equality that imposes restrictions on the stability domain of
the chosen ODE integration method. We refer to this in-
equality as stability inequality.

As a result, the following model of optimal paralleliza-
tion problem is proposed

mingex {(7,(x), S, (x), E, ' (x), E(e, 1) - ]
subjectto T, (x)< T;,nax

fo(e, <0 ’
E(e, 1)< E™

3)

where x = (¢, 7, q) is a tuple of unknowns, w € [0, 11 is
a vector of weights for optimality criteria, 7,"** and E™*
are upper bounds for the execution time and the accuracy
of solutions, f., is a stability violation function which de-
fines stability inequality. Inequality constraints in this model
represent the most important restrictions on parallelization.
Furthermore, objective function in (3) allows by means of
weights vector w to choose and combine the most meaning-
ful metrics for users. The only restriction is that objective
function must involve at least one execution time related
criterion.

2.2 Execution time related metrics in the general model

The execution time of the ODE integrator depends signifi-
cantly on the time of right-hand side function evaluation.



Architecture aware parallelization of solvers for PDE systems on geometrical graphs

The computational graph for the right-hand side of the sys-
tem (2) can be modeled by the secondary topology graph
G.. Since sets of equations that correspond to different ver-
tices of G, are computationally equivalent, the computa-
tional graph is unweighted.

For modeling the target parallel system we use a weighted
undirected graph A = (Vy4, E4). The vertices p; € Vy4 rep-
resent processors in the system, and the edges e; € E4
correspond to the communication links between proces-
sors. Array based computations, as well as communications
are modeled by linear functions. Linear models are well
suited for representation of operations on vector proces-
sor and point-to-point communications. Linear model of
communications is widely used and well known in litera-
ture as Hockney’s model. Thus each vertex and edge of A
has associated with it latency and cost per unit operation.
The unit computational operation is an evaluation of the
right-hand sides of the equations that corresponds to some
vertex v € Vg, . The unit communication operation is an data
transfer from one vertex of G, to another. Cost per unit
communication operation between linked processors p; and
pj is equal to m/by(p;, p;), where m denotes transferred
data size, and b,,(p;, p;) denotes bandwidth of the link. For
modeling links between processors without explicit edges
between them, we use linear path length (LPL) model [6].
It allows to obtain communicational costs for directly un-
linked processors.

Given the proposed models of the computational graph
and the target parallel system, we now define execution
time related metrics. The computational cost for a processor
pi € Va, i.e. the cost processor p; incur for processing over
all portion of vertices V; C Vg, assigned to it, is a sum of all
array based computations on p;:

CompCost)! =1,(pi)|{e € Er;
enode(e) NV; # B} +cp(pi)|v € Vi, 4

where [,(p;) denotes the latency of array based computa-
tion on p;, c,(p;) is the cost per unit computational oper-

227

ation on p;, and enode(e) is a set of secondary topology
graph nodes, that were inserted into edge e of graph I'
on the stage of half-discretization (see Sect. 1). Since com-
munications of a processor p; € V4 with another can be
performed simultaneously, the cost processor p; incur for
communicating any information associated to V; is defined
as follows:

CommCost,‘,/l{' = max {le(Pist)

Pi€VA\Pi

x|adj(Vi, Vj) # 81 +ce(pi, pladj(Vi, V)I} (&)

where [.(p;, pj) and c.(p;, pj) denote the latency and
the cost per unit computation between p; and p;, and
adj(Vi, V) = {ve Vi e V;ne(v, V) € Eg,}  denotes
a subset of V; vertices adjacent to vertices in V;. Figure 1
gives insight into this formula.

Using the above definitions, the execution time of the par-
allel solver is:

T, =n(z,¢)
x | to(z, &) + max {CompCostVf' +CommC0stVf} ,
pieVa Pi Pi
(6)

where #p is an average time of auxiliary calculations be-
tween two sequential right-hand side function evaluations,
is a number of right-hand side function evaluations, need to
be performed during ODE system integration. Values of 7
and n depends only on the chosen ODE integration method
and on the step sizes T and ¢. The execution time of the
sequential solver is given by

Ty =n(z, 8) (to(f, &)+ (I,(pr) —bp(py)) |Er|

L
+b,(pr) (8 +|Vr|)),

where vertex py corresponds to the fastest processor, and
L =73 ,.g l(e) denotes the total weight of edges in I

(7

a [PO....g PO b = =
P5 P7 P5 P7
1% AD11XS
| e Paf oy —PO||fiip | PARHornir —PO]|
=
s K P3 P1 P3 P1
— — P2 P2
o] I RN Node0 Node1
=) ' ' 1
Z. : : : _Q Impr=2.7 mks lopenmp = 0 mks
NEC SX 8 bympi= 16 Gb/s bopenmp= 64 Gb/s

Fig.1 Estimation of communication cost between processors. The secondary topology graph G, is mapped (a) on the processors PO,
P1 (NodeO) and P4 (Nodel) of SX-8 cluster (b) [15]. Communication volumes [4] for P1 are Vol(P1, PO) = |adj(Vp1, Vpo)| =3
and Vol(P1, P4) = |adj(Vp1, Vps)| = 1. Formula CommCostp; = max {lopenMp + Vol(P1, PO)(m/bopenmp), Inpr + Vol(P1, P4)(m/bMp1)} =

Ippr +m /by pr gives the communication cost for P1

@ Springer



228

Given metrics allows to define the relative speedup S, and
efficiency E, by the following formulas:
T T,

S, = E,= , 8
Per, Pt ®)

where P denotes the peak performance of utilized proces-
SOrS.

2.3 Stability violation and global error estimates

To derive the stability violation function f5, we use the
following procedure. At first, we estimate the spectrum of
the ODE system Jacobian S(Jfg, ). After that estimates of
the spectrum diversity are used to exclude problem depen-
dent terms in the stability function of the ODE integration
method R(A) [16]. Hence, expression

R(S" (Jrs,) = 1]} - ©)

where S* is the upper (lower) estimate of the spectrum diver-
sity for explicit (implicit) integration method, gives a set of
points with fi, (7, &) =0.

For some special classes of ODE systems spectrum
S(J ch) can be calculated exactly. Nevertheless, in the ma-
jority of cases it is rather complicated, and therefore one
need to use some inequalities for eigenvalues. Such in-
equalities can be derived from standard matrix inequalities,
namely Hirsch’s, Bendixson’s and Brauer’s inequalities,
corollaries of Ostrowski’s theorem [17], or on the basis
of particular inferences. In general, these inequalities are
not too sharp, but for each inequality there are classes of
ODE systems for which this inequality yield good estimate.
Therefore, all known estimates should be applied to the
given problem and then the best one should be chosen. Some
useful inequalities for S(JFGS) can be derived on the basis
of information about G,. Applying eigenvalues for lapla-
cian matrix of the secondary topology graph is the most
promising direction in this field [18, 19].

Since reliable a priory estimation of global error usually
gives significantly overrated values for nonlinear ODE sys-
tems, we use the following formula for expected accuracy of
the solver

{(r.e) e R

E(z,¢) = a(Fg,)En (v, @ (FG,)) » (10)

where E,, is a function of reliable a priory global error
estimate for the target ODE integration method, a(-) is a re-
laxation coefficient, and @(-) is a mapping, that allows to
obtain Lipschitz constant for the given function.

3 Optimization approach

The key idea of our optimization approach is in separa-
tion of architecture aware partitioning of the secondary top-

@ Springer

Gogolenko and Svjatnyj

Input: E™e®, T w, I', A, X C R2, feu(+), E(*)
Output: 7, ¢, q

begin

Initialize statistical global optimizer

while Convergence of statistical global optimizer do
Generate a new sample x € X with statistical global
optimizer
if E(r,e) < E™*® and fey(T,€) < 0 then /* sample
x is feasible */
Generate a secondary topology graph
G: = G(e,T")
Compute an initial partitioning q of G, with
available graph partitioner
Correct the initial partitioning q with some
heuristic /* see Formula (6) */
Tune randomized parameters of heuristic with
bayesian heuristic approach
if Tp(7,e,q) < Tp** then
Calculate objective function /* see
\\ Formula (3) */
continue

| Treat sample x as infeasible

end
Fig.2 Outline of the optimization approach

ology graph from estimation of the step sizes 7 and ¢. It
is possible due to independence of accuracy and stability
constraints in (3) from information about partitioning. We
use the nested optimization scheme (see Fig. 2). The “out-
er” optimizer tries to find optimal values of the step sizes t
and e. Each iteration of the “outer” optimizer entails three
steps. In the first step, a sample points x = (z, €) is pro-
duced. The second step generates partitioning g of the sec-
ondary topology graph G, for the given x according to the
optimality criterion (6). The third step addresses the calcu-
lation of objective function and the treatment of infeasible
samples.

In the partitioning step, we use a predictor-corrector ap-
proach similar to one proposed by Moulitsas and Karypis
in [4]. The partitioning for prediction phase is computed
using available graph partitioning library. Architecture
aware partitioners are preferred. In this phase, model of
the execution time objective (see (6)) is simplified. Namely,
computational and communication latencies are not taken
into account. The prediction phase allows to leverage ex-
isting high-quality partitioning software. The partitioning
for correction phase is computed by utilizing some ran-
domized combinatorial optimization heuristic (randomized
greedy algorithms, genetic algorithms, ant colony method,
simulated annealing, tabu search etc). The objective for
this phase is given by (6). After each correction phase
we use the Bayesian heuristic approach for tuning ran-
domized parameters of the combinatorial optimizer [20].
It allows to improve convergence rate of the randomized
heuristic.



Architecture aware parallelization of solvers for PDE systems on geometrical graphs

Note that partitioning step is computationally very ex-
pensive. Furthermore, the estimated partitioning ¢ de-
pends on some randomized parameters of the combina-
torial optimizer. It leads to partial uncertainty of time
related metrics and hence to stochastic objective in the gen-
eral model (3). Therefore “outer” optimizer should realize
stochastic black-box optimization approach for expensive
objectives. Statistical optimization methods fall under this
category [22].

4 Description of toolbox 7DyNO for optimal
parallelization of DNOs simulators
in ProMoT/Diana simulation environment

The proposed parallelization approach is implemented
in wDYNO toolbox (the name stands for ‘“Paralleliza-
tion tool for Dynamic Network Objects Simulators™).
7DYNO is realized as supplementary software for Pro-
MOoT/DiaANA simulation environment. Figure 3 shows a flow
diagram of 7DYNO in PROMOT/DIANA. At present tDYNO
consists of two shared libraries (pdynoopt.so and
pdynopart.so) and two utilities (pdyno2bs and
pdyno2c++). The library pdynopart . so represents op-
timization problem for the partitioning step. The library
pdynoopt.so corresponds to general representation of
optimization problem for the “outer” optimizer (see Sect. 3).
The above-mentioned libraries allows to generate XML
file with representation of optimally parallelized solver
for the PDE system on geometrical graph. This file is
used as an input by pdyno2bs and pdyno2c++ utili-
ties. pdyno2bs generates script for running the parallel
application on the nodes defined by optimal partitioning.
Formats for Portable Batch System (PBS), as well as for
batch environments in MPICH and OPENMPI are supported.
pdyno2c++ generates C++ sources for calculating the

229

Table 1 Statistical optimization methods in D1aNA

Routine  Package Description

bayes]  GMFL [20] Bayesian global optimization method

unt GMFL The global method of extrapolation
type by A. Zilinskas

Ibayes =~ GMFL The local Bayesian method
by J. Mockus

direct DiREcT v2.0 [23]  Dividing rectangular global
optimization method

bbowda BBOWDA [24] Black box global optimization

method with data analysis

right-hand side of the ODE system (2). The sources ob-
tained with pdyno2c++ realize hybrid OpenMP + MPI
code.

The whole process of optimal parallelization with
wDYNO can be subdivided into three stages. The first stage
concerns further specification of the optimization prob-
lem. The modeling tool PROMOT allows to obtain model
of accuracy and stability constraints in symbolic represen-
tation. The command line utility mdl12diana translates
this model to C++ source files, which can be compiled
and linked to a shared library by the utility dianac. The
compiled model is used as an input by pdynoopt. so.
The geometrical I' and architecture A graphs should be
specified in XML-files, which need to be defined for
pdynoopt. so.

The second stage deals with running optimal paralleliza-
tion procedure in the simulation environment DIANA. DIANA
is based on the dynamic object-oriented programming lan-
guage Python and inherits the Python command line user
interface. Hence, the user should assign optimization prob-
lems from pdynoopt . so and pdynopart . so with op-
timizers in Python script, and run this script with diana
utility. Table 1 lists statistical optimization methods, which
can be used as “outer” optimizers in DIANA.

Fig.3 7DYNO flowchart

PROMOT

| pdynoopt.so |
2
part.xml <~ pdynopart.so |
|—>| pdyno2bs |
> pdyno2c++ |

nDyNO

constrmdl : | Optimizers |——
mdl2diana [ bayesl.so |
*CO”S”’-CPP [ Jbayes.so ]
constr.so dianac I LiileCy |
[ direct.so |
TN b diana <im I bbowda.so I
T é [ genetic.so 1]

run_opt.py E
E— I kvmetis.so I
DI ANA [ Jjostle.so 1]

@ Springer



230

In the third stage, utilities pdyno2bs and pdyno2c++
should be run to obtain sources of optimally parallelized
solver.

5 Conclusions and further work

In this paper, we address issues in the architecture aware
parallelization of solvers for PDE systems on geometrical
graphs. We propose and discuss an approach to formalize
and solve the optimal parallelization problem. Our approach
allows to optimize both the characteristics of discretization
method, and the mapping of discretized problem on the tar-
get parallel system. Finally, we present a tool, 7DYNO, for
the semi-automatic parallelization of solvers, which imple-
ments this approach.

Further work will consist of developing testing environ-
ment for tDYNO, and empirical investigation of parallel
PDE solvers obtained with tDYNO on real parallel systems.
Since parallelism across system does not restrict the use of
parallelism across method and parallelism across time [3],
the other direction for further work will be concerned with
the development of an approach to optimally parallelize
solvers that entail both parallelism across system and paral-
lelism across method.

Acknowledgement Authors would like to thank Process Synthesis
and Process Dynamics Research Group of Max Planck Institute for
Dynamics of Complex Technical Systems, as well as Process Engin-
eering and Technology Network of Competence — Pro3 for financial
and technical support of this work.

References

1. Pokornyj YV, Penkin OM et al. (2005) Differential Equations on
Geometrical Graphs. Fizmatlit, Moscow, p 210 (in russian)

2. Hairer E, Ngrsett SP, Wanner G (2008) Solving Ordinary Dif-
ferential Equations I: Nonstiff Problems. Springer, Heidelberg,
p 528

3. Petcu D (1998) Parallelism in Solving Ordinary Differential
Equations. Tipografia Universitatii, Bucharest, p 232

4. Moulitsas I, Karypis G (2008) Architecture Aware Partitioning Al-
gorithms, In: Proc 8th Int Conf on Algorithms and Architectures for
Parallel Processing (ICA3PP), LCNS, vol 5022, pp 42-53

5. Huang S, Aubanel E, Bhavsar V (2006) PAGRID: A mesh parti-
tioner for computational grids. J Grid Comput 4:71-88

6. Walshaw C, Cross M (2001) Multilevel mesh partitioning for
heterogeneous communication networks. Future Generat Comput
Syst 17:601-623

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. Kumar S, Das

Gogolenko and Svjatnyj

. Walshaw C, Cross M (2007) JosTLE: Parallel Multilevel Graph-

Partitioning Software — An Overview. In: Magoules F (ed) Mesh
Partitioning Techniques and Domain Decomposition Techniques,
Civil-Comp Ltd, EE 27-58 o

, Biswas R (2002) Graph Partitioning for
Parallel Applications in Heterogeneous Grid Environments, In:
Parallel and Distributed Processing Symposium, Proceedings In-
ternational, IPDPS 2002, pp 66-72

. Faik J (2005) A Model for Resource-Aware Load Balancing on

Heterogeneous and Non-Dedicated Clusters, PhD Thesis, Rensse-
laer Polytechnic Institute Troy, New York, p 90

Teresco JD, Faik J, Flaherty JE (2006) Hierarchical Partition-
ing and Dynamic Load Balancing for Scientific Computation, In:
Applied Parallel Computing, 7th Int Conf PARA 2004 Revised
Selected Papers, LNCS, pp 911-920

Chen J, Taylor VE (1999) PARAPART: Parallel Mesh Partition-
ing Tool for Distributed Systems, In: Proc 11th IPPS/SPDP-99
Workshops Held in Conjunction with the 13th International Par-
allel Processing Symposium and 10th Symposium on Parallel and
Distributed Processing, LNCS, vol 1586, pp 996-1005

Chen J, Taylor VE (2002) Mesh partitioning for efficient use of
distributed systems, IEEE Trans Parallel Distributed Syst 13(1):
67-79

Pellegrini F, Roman J (1996) ScotcH: A Software Package for
Static Mapping by Dual Recursive Bipartitioning of Process and
Architecture Graphs, In: Proc Int Conf and Exhibition HPCN Eu-
rope 1996, LNCS, pp 493498

Chevalier C, Pellegrini F (2008) PT-ScotcH: A tool for efficient
parallel graph ordering, Parallel Comput 34(6-8):318-331
Tagaya S et al. (2006) The NEC SX-8 Vector Supercomputer
System. In: Resch M, Bonisch T, Benkert K (eds) High Perform-
ance Computing on Vector Systems. Springer, Berlin, Heidelberg,
pp 3-24

Hairer E, Wanner G (2004) Solving Ordinary Differential Equa-
tions II: Stiff and Differential-Algebraic Problems. Springer,
Berlin, p 614

Markus M, Mink H (1992) A Survey of Matrix Theory and Ma-
trix Inequalities. Courier Dover Publications, New York

Doob M (2003) Spectral Graph Theory. In: Gross JL, Yellen
J (eds) Handbook of Graph Theory, CRC Press, Boca Raton,
pp 557-574

Cvetkovi¢ D, Doob M, Sachs H (1995) Spectra of Graphs: Theory
and Application. Ambrosius Barth Verlag, Heidelberg, Leipzig,
p 448

Mockus J (2000) A Set of Examples of Global and Discrete Opti-
mization: Applications of Bayesian Heuristic Approach. Springer,
Dordrecht, p 321

Krasnyk M (2008) DIANA — An object-oriented Tool for Nonlin-
ear Analysis of Chemical Processes/Forschungsberichte aus dem
Max-Planck-Institut fiir Dynamik komplexer technischer Systeme
23, Shaker, Aachen, p 129

Zhigljavsky A, Zilinskas A (2007) Stochastic Global Optimiza-
tion. Springer, New York, p 272

Finkel DE (2003) DiIREcT Optimization Algorithm User Guide:
Technical Report, NC 27695-8205, North Carolina State Univer-
sity, Raleigh, North Carolina, p 14

Kofler K (2007) Black Box Optimization with Data Analysis:
Diploma thesis, Universitit Wien, Wien, p 143, http://www.tigen.
org/kevin.kofler/bbowda/. Accessed 27 April 2009


http://www.tigen.org/kevin.kofler/bbowda/

	1 Introduction
	2 Optimization problem
	2.1 General model
	2.2 Execution time related metrics in the general model
	2.3 Stability violation and global error estimates

	3 Optimization approach
	4 Description of toolbox DyNO for optimal parallelization of DNOs simulators in ProMoT/Diana simulation environment
	5 Conclusions and further work
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


