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Large-scale protein signalling networks are useful for exploring complex biochemical pathways but
do not reveal how pathways respond to specific stimuli. Such specificity is critical for understanding
disease and designing drugs. Here we describe a computational approach—implemented in the free
CNO software—for turning signalling networks into logical models and calibrating the models
against experimental data. When a literature-derived network of 82 proteins covering the
immediate-early responses of human cells to seven cytokines was modelled, we found that training
against experimental data dramatically increased predictive power, despite the crudeness of
Boolean approximations, while significantly reducing the number of interactions. Thus, many
interactions in literature-derived networks do not appear to be functional in the liver cells from
which we collected our data. At the same time, CNO identified several new interactions that
improved the match of model to data. Although missing from the starting network, these
interactions have literature support. Our approach, therefore, represents a means to generate
predictive, cell-type-specific models of mammalian signalling from generic protein signalling
networks.
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Introduction

Successful identification of transmembrane receptors, intra-
cellular signalling proteins, and transcription factors mediat-
ing the responses of cells to intra- and extracellular ligands has
generated a wealth of information about the biochemistry of
signal transduction (Hanahan and Weinberg, 2000). However,
accumulation of molecular detail does not automatically yield
improved understanding of the ways in which signalling circuits
process complementary and opposing inputs to control diverse
physiological responses. For this we require network-level
perspectives. One approach to organizing data on large groups
of genes and proteins is to create interaction networks using

either of two related methods (Pieroni et al, 2008; Cusick et al,
2009). One infers connectivity directly from systematic two-
hybrid, affinity purification/mass spectrometry and related
high-throughput data (Rual et al, 2005), and the second culls
interactions from the literature (Bauer-Mehren et al, 2009).
Literature curation can be performed by expert readers or
automatically using ‘bibliome’ mining software (Zhou and He,
2008). The resulting information is usually represented as a
node–edge graph and stored in public databases such as Path-
way Commons ((www.pathwaycommons.org); see Pathguide
for a comprehensive list (Bader et al, 2006)) or in proprietary
softwares from companies such as Ingenuity (Redwood City,
CA, USA). Such node–edge graphs are often redrawn to create

& 2009 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2009 1

Molecular Systems Biology 5; Article number 331; doi:10.1038/msb.2009.87
Citation: Molecular Systems Biology 5:331
& 2009 EMBO and Macmillan Publishers Limited All rights reserved 1744-4292/09
www.molecularsystemsbiology.com

mailto:sbpipeline@hms.harvard.edu
http://dx.doi.org/10.1038/msb.2009.87
www.pathwaycommons.org
http://www.molecularsystemsbiology.com
http://www.molecularsystemsbiology.com


graphically pleasing posters and Web-accessible pictograms
(e.g., Biocarta).

As outlined by Pieroni et al (2008), protein node-edge
graphs can be classified into two families: large-scale protein
interaction networks (PINs—or ‘interactomes’), which depict
interactions between protein nodes (species) as undirected
edges, and protein signalling networks (PSNs) whose edges
have a sign (activating or inhibitory) and directionality
(enzyme–substrate relationships). PINs are usually created
using data from bibliome mining (Chatr-Aryamontri et al,
2007; Kerrien et al, 2007), large-scale affinity purification
(Köcher and Superti-Furga, 2007), protein arrays (MacBeath
and Schreiber, 2000), and two-hybrid screening (Rual et al,
2005) or genetic interactions (Jansen et al, 2003), whereas
PSNs are most commonly assembled by expert annotation of
the literature (Ma’ayan et al, 2005). However, PSNs can also be
assembled using ‘reverse engineering’ methods such as
Bayesian network analysis (Sachs et al, 2005) or inferred
systems of differential equations (Nelander et al, 2008). The
utility of PINs and PSNs is increased by incorporation of Gene
Ontology (GO) tags ((Harris et al, 2004) and information from
the KEGG database (Kanehisa et al, 2004). Nodes and edges
can also be referenced to standardized ontologies such as
BioPAX. The topologies of PINs and PSNs have been studied
from an information-theoretic standpoint, with the goal of
extracting principles of network design (Barabási and Oltvai,
2004; Pieroni et al, 2008). Moreover, overlay of expression data
on PINs and PSNs makes it possible to explore differential
activation of sub-networks in various conditions and cell types
(Luscombe et al, 2004; Bossi and Lehner, 2009); annotating
PINs with data has proven useful in predicting outcomes in
breast cancer patients (Taylor et al, 2009).

Despite these developments, protein networks inferred
purely from data and those assembled from the literature
suffer from significant and complementary weaknesses:
reverse-engineered networks ignore a wealth of existing
mechanistic information about individual proteins and reac-
tion intermediates, whereas literature-based networks are too
disconnected from functional data to reveal input–output
relationships. Thus, even the most comprehensive PINs and
PSNs do not capture the logic of cellular biochemistry and—
critically—cannot predict the responses of cells to specific
biological stimuli. To determine whether a particular interac-
tion network is consistent with a set of experimental data, we
require a means to compute the state or output of a network
given a set of input conditions. For example, it might be clear
that two nodes in a signed directed graph have a positive effect
on a downstream node, but a graph alone cannot specify
whether the target is active in the presence of either node or
only when both are present.

One means to convert a graph into a computable model is to
encode it as a system of differential equations. This generates a
detailed and biochemically realistic representation, but at the
cost of many free parameters, which must be estimated. When
the number of species in the network is large (tens to
hundreds), parameter estimation becomes very challenging
(Aldridge et al, 2006). An alternative approach is to depict the
pathway as a logical model in which gates specify how outputs
are related to inputs. Two-state discrete (Boolean) logic is the
simplest logical representation and has no free parameters:

logical models covering the same set of nodes differ only in
topology. Boolean modelling has previously been applied to
biological regulatory and signalling networks (Kauffman,
1969; Thomas and D’Ari, 1990; Huang and Ingber, 2000;
Thomas and Kaufman, 2001; de Jong, 2002; Chaves et al, 2005;
Fauré et al, 2006; Fisher and Henzinger, 2007; Gupta et al,
2007; Saez-Rodriguez et al, 2007; Zhang et al, 2008; Samaga
et al, 2009), but a significant challenge in modelling
biochemical pathways using Boolean logic has not yet been
addressed: optimizing models against experimental data. In
the absence of data-dependent optimization it is difficult to
determine whether logical models can make accurate biologi-
cal predictions and yield new insight.

In this paper we attempt to span the divide between
interaction-focused networks (PINs and PSNs) and functional
studies of cellular biochemistry, and between literature and
data-centric approaches to network modelling. We describe a
method for assembling Boolean logic models from a PSN and
calibrating models (determining the optimal topology) against
functional data using a newly developed and freely available
software package (CellNetOptimizer; CNO). CNO first com-
presses PSNs to remove non-identifiable elements and then
converts them into a hypergraph representing a superposition
of all Boolean models compatible with the PSN. This super-
structure of models is then trained against experimental data
by minimizing an objective function that quantifies the
difference between data and simulation while penalizing
model size. Finally, optimized models are used to predict
new results and are mined for biological insight. We illustrate
CNO with a toy pathway and then apply it to an 85-protein
signal transduction circuit that mediates immediate-early
signalling downstream of seven cytokine and growth factor
receptors in human liver cells. The training data for this PSN
comprises a set of B1000 biochemical measurements that
conformed to a cue-signal-response (CSR) paradigm (Gaudet
et al, 2005). HepG2 hepatocellular carcinoma cells were exposed
to combinations of extracellular ligands and small-molecule
inhibitors, and the phosphorylation states or abundance of
adaptor proteins, intracellular kinases, transcription factors, and
so on were measured using high-throughput biochemical assays
(Alexopoulos et al, in preparation). The training data were
stored and processed using an updated version of our recently
developed data management application, DataRail (Saez-
Rodriguez et al, 2008). Lastly, a set of predictions were made
using the trained model and the predictions confirmed experi-
mentally (using data unique to this paper).

We show here that data-optimized Boolean models of cell
signalling have considerably fewer connections than the
literature-based PSNs from which they are derived, but have
superior false-positive–false-negative rates, and do a better job
of predicting data absent from the training set. Thus, the
radical simplification involved in modelling cellular biochem-
istry using a discrete two-state Boolean formalism does not
preclude optimization of model topology. Training served to
eliminate many interactions present in the starting PSN and
the eventual size of data-optimized Boolean models was
remarkably robust to changes in the size penalty imposed
during training. In HepG2 cells, interactions that were
eliminated included canonical interactions between growth
and inflammatory factors. Removal of these interactions did
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not appear to be an artefact of our approach because the
interactions were retained in models of other cell types. The fit
of optimized models could be further improved by adding a
limited number of links absent from the starting PSN. Newly
added links did not appear to be spurious because they have
support in the literature.

Results

Assembly of a Boolean model

We wrote the CNO software in MATLAB as a means to
assemble and train Boolean models of biological pathways and
then tested CNO on a plausible but imaginary ‘toy’ pathway
and an associated set of synthetic data. The toy pathway
comprised a subset of the intracellular signalling proteins
known to be activated by epidermal growth factor or tumour
necrosis factor (TNF) receptors in mammalian cells (EGFR and
TNFR) and was represented as a signed directed graph (PSN)
having a total of 18 nodes (Figure 1A). A Boolean model (the
‘reference’ model) was assembled manually consistent with
the network graph and then used to compute the discretized
activities of four signalling proteins following ligand stimula-
tion in the presence or absence of a small-molecule inhibitor
of PI3K (e.g., ZSTK474; Yaguchi et al, 2006) or Raf kinase
(e.g., Sorafenib; Hotte and Hirte, 2002). The synthetic data
corresponded to levels of phosphorylation at activating sites
for AKTand ERK, nuclear translocation of NFkB, and cleavage
of caspase-8 (Figure 1B). CNO was used to reconstruct a
Boolean model from the PSN and synthetic data without
knowledge of the reference model. The fidelity of the recon-
struction was judged by the degree of similarity between the
CNO-based reconstruction and the original reference model.

The first step in model assembly was compression of the
pathway graph to remove non-identifiable elements. The
nodes and edges subjected to experimental manipulation or
measurement were labelled as ‘designated’, while the remain-
ing nodes were labelled as ‘undesignated’. Designated nodes in
the toy model included TGFa and TNFa ligands, kinases that
were subject to inhibition by small-molecule drugs, antibodies
or RNAi, and signalling proteins whose levels, states, or
activities were directly measured (Figure 1B). Compression of
undesignated elements involved the application of three
procedures. First, CNO automatically flagged for omission all
species and interactions that did not alter any designated
species. These lay on terminal branches of the pathway graph
and corresponded to non-observables in systems theory
(Kremling and Saez-Rodriguez, 2007). Species whose states
were not affected by any of the inputs and perturbations (the
ligands and inhibitors in this case) were also eliminated; these
corresponded to non-controllable elements. Second, CNO
compressed cascades in which a series of undesignated nodes
and edges impinged on a designated node; these typically
involved linear cascades or subnetworks of converging or
diverging interactions in which no measurements or manip-
ulations were made; the three situations in which this arises
are illustrated in Figure 1C. Third, CNO retained undesignated
nodes that remained after application of the preceding two
procedures; this occurred when several links converged on
a single undesignated element and then diverged from it

(Figure 1C). Compression of such subnetworks can create
internally inconsistent logic.

Compression of non-observable pathways (application of
procedure one) is illustrated in the toy graph in Figure 1D
by GSK3. The state of GSK3 was not measured and its activity
was not subjected to manipulation. CNO, therefore, removed
both GSK3 and the AKT-GSK3 link. Application of the
second procedure is illustrated by compression of the path
TGFa-EGFR-Shc-Grb2/Sos-Ras-Raf into TGFa-Raf.
The alternative path from TGFa to Raf via Shc (TGFa-
EGFR-Grb2/Sos-Ras-Raf) was also compressed into
TGFa-Raf, and thus the two parallel paths were automatically
reduced to TGFa-Raf. If compression results in two parallel
paths that share a starting and an ending node but have different
sign, CNO keeps both. Overall, CNO compressed the toy graph
of 18 nodes into a graph with eight designated nodes
(Figure 1D). CNO keeps track of all nodes and edges eliminated
during compression, making it possible to decompress the
model following calibration. This serves to increase the
intelligibility of the network because it re-casts the model in
terms of known biochemical causality (e.g., Raf-MEK-ERK
rather than Raf-ERK) and simplifies another round of
modelling based on additional data and new designated species.

Next we created a superstructure of Boolean models having
all possible logic gates compatible with the compressed graph.
The superstructure was represented as a hypergraph using
the sum-of-products formalism (see section Materials and
methods and reference Klamt et al, 2006) in which multiple
OR and AND gates are combined, and inhibition is encoded
using NOT operators. For example, in the compressed toy
graph Raf and NFkB are upstream of ERK (MEK was removed
by compression), but the logic of their interaction is not known
a priori and CNO, therefore, encodes the relationship by
assuming that both upstream molecules are needed for
activation of ERK (AND gate) or either of them is sufficient
for ERK activation (OR gate). In our graphical formalism, AND
gates with multiple inputs are depicted as hyperedges (a
hyperedge is a generalization of an edge that allows multiple
inputs and outputs; in our case all hyperedges have only one
output, see section Materials and methods). For example, a
two-input AND gate for RafþNFkB-ERK is depicted as a ‘Y’
shape upstream of ERK (Figure 1E). An OR gate with m inputs
is depicted in the hypergraph by m edges or hyperedges
entering a node (in this case Raf-ERK OR NFkB-ERK). Any
possible Boolean function for ERK can be represented as a
combination of some of these three edges/hyperedges, and
identifying the correct combination is the main goal of our
approach. In the remainder of this paper, we consider simple
edges to be included within the general term ‘hyperedge.’

Approach to model optimization

How should we maximize the match between model and data
without overfitting (the introduction of excessive complexity)?
Principles such as the Akaike Information Criterion (AIC)
(Akaike, 1974), Bayesian Information Criterion (Schwarz,
1978), and Minimal Description Length (MDL; Barron et al,
1998) have been developed to formalize the concept of an
optimal model. Boolean models with a fixed structure have no
degrees of freedom and metrics such as AIC and BIC are
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obviously not applicable. MDL provides an applicable theory
for investigating the balance between fit and complexity (which
scales with size and the number of degrees of freedom), but
practical implementation of MDL requires making assumptions
about how to encode complexity and typically involves the
introduction of a tunable parameter that balances fit and
complexity (Zhao et al, 2006). We therefore chose to use a
bipartite objective function common in reverse engineering

(Bonneau et al, 2006; Nelander et al, 2008) and LASSO regres-
sion (Tibshirani, 1994) that balances fit and size using a tunable
parameter chosen to maximize the predictive power of the
model. Other objective functions can be applied in the future,
if theory or practice suggests that this will improve the outcome.

Given these assumptions, training a Boolean superstructure
against experimental data is an optimization problem in a
search space defined by the hypercube S¼{0,1}r where
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candidate solutions (models) are encoded in vectors PAS and r
is the number of hyperedges in the superstructure model. Each
hyperedge in the hypergraph is assigned an index i in vector P,
i¼1,y,r, such that Pi¼1 when the hyperedge is included in the
model and 0 when it is not. The objective function for
optimization is based on the mean squared error (MSE)
deviation between the data and model (Yf), and a second term
that penalized increasing model size (YS). Thus, for a set of
data containing nE data points collected for m readouts (the
four measures of protein activity in the current case) at n time
points under s experimental conditions, (combinations of
ligands and small-molecule drugs in our case) we minimize

YðPÞ ¼ Yf ðPÞ þ a �YsðPÞ ð1Þ

where Yf ðPÞ ¼ 1
nE

Ps
k¼1

Pm
l¼1

Pn
t¼1 ðBM

k;l;tðPÞ � BE
k;l;tÞ

2
and

YsðPÞ ¼ 1
vS

e

Pr
e¼1 vePe such that Bk,l,t

M (P)A{0,1} is the value

(0 or 1) as predicted by computation of the model’s logical
steady state (Klamt et al, 2006) and Bk,l,t

E A[0,1) is the data value
for readout l at time t under the kth experimental condition. In
this paper, we consider only one time point t after stimulation.
To compute the size penalty, each hyperedge in a given solution
P is weighted by the number of starting (tail) nodes ne so that an
AND gate representing Raf (AND) NFkB-ERK carries the
same penalty as Raf-ERK (OR) NFkB-ERK and twice the
penalty of a simple edge. By imposing a size penalty during
optimization we ensure that unnecessary and redundant
gates are not included in the final model. The size penalty
is normalized to the size of the complete superstructure

vS
e ¼

Pr
e¼1 ve and weighted with the tunable parameter a,

which is chosen to maximize predictivity. The variable (P) is
implicit when Y, YS, and Yf are mentioned below.

Equation (1) can be optimized by exhaustive evaluation of
all possible solutions for the toy model, but the search space
S increases exponentially with the number of hyperedges r.
For large models we, therefore, implemented a genetic search
algorithm (see section Materials and methods). We also
compressed the search space S, based on the concept of
Sperner systems (Bollobas, 1986). This obviates the need to
search over redundant combinations of hyperedges. For
example, nodes X and Y can be connected to downstream
node A with three possible hyperedges: X-A, Y-A, and (X
ANDY)-A. However, the logical combination of X OR (X AND
Y)-A has the same truth table as X-A, but is larger and will
not appear in optimized models. Thus, it is unnecessary to
consider models containing the X OR (X AND Y)-A logic. We
therefore replace the full set of Boolean functions (all possible
combinations of hyperedges) in the model superstructure with

a reduced set containing only the smallest non-redundant
combinations of hyperedges, which corresponds to a Sperner
hypergraph (see section Materials and methods).

As an illustration we trained the Boolean superstructure of
toy models against synthetic data by optimizing equation (1)
for several values of a. Since the training data was binary,
Yf simply corresponded to the average number of wrong
predictions. As the toy model was not necessarily identifiable,
more than one model P (possibly many) can have the same
value Y. For example, with a¼0, four models with perfect
fits to synthetic data (Yf¼0) were recovered. One of them
corresponded to the reference model and the others differed in
having alternate logic upstream of ERK (shown in Figure 1F,
insets). When model size was penalized to a modest degree
(0oao0.25), the smallest of the four a¼0 models was
recovered and it corresponded to the reference model
(Figure 1F). When model size was further penalized
(0.25oao0.86) a single model was recovered in which NFkB
was no longer linked to upstream and downstream nodes,
giving rise to one mismatch between simulation and data
(Figure 1G). With 0.75oao1.54 a yet smaller model having
six mismatches was obtained and, finally, with a41.54 the
size penalty overweighed fit and calibration returned an empty
model with no hyperedges and all nodes in their default state
(0 for all nodes but IkB and GSK3, which were set to 1). These
results correspond to a Pareto frontier with a trade-off between
model size and goodness of fit (Figure 1H and I). Overall, this
exercise illustrates the ability of a CNO-based workflow to
regenerate a reference Boolean model using synthetic data and
a signed directed graph (Figure 2). It also illustrates the
importance of having a rich data set. For example, omitting the
combined treatment of TGFa and TNFa from the synthetic data
prevents recovery of the AND gate that lies upstream of NFkB
in the reference model.

Applying CNO to growth and inflammatory
signalling in human cancer cells

Having tested CNO on a toy network, we turned to the analysis
of real data collected from human liver cancer cells.
Hepatocytes, which constitute the majority of cells in the
liver, are both targets for and sources of multiple chemokines
and cytokines that activate overlapping intracellular signalling
pathways. To begin to understand the cooperative and
antagonistic interactions among ligands, we used a cue–
signal–response (CSR) data set from HepG2 hepatocellular
carcinoma cells exposed to one of seven cytokines in the

Figure 1 Assembly, calibration, and analysis of a toy signalling model. (A) Signed directed graph representing a simple pathway as visualized using Cytoscape (Shannon
et al, 2003). The topology of the reactions downstream of TGFa and TNFa receptors is imaginary, but it includes real molecules such as Shc, Ras, Raf, MEK, ERK, PI3K,
AKT, GSK3, IkK, IkB, NFkB, TRADD, caspase 8 (denoted C8), and the Grb–Sos complex (denoted GrbSos). (B) The design of the synthetic experiments used to train the
graph in panel A. Each column represents an experiment and each row a different designated species as follows: green denotes ligands, red denotes the protein targets of
kinase inhibitors, and blue denotes the proteins whose states were assayed (readouts). The presence or absence of ligand or an inhibitor specific to a node is denoted with
‘þ ’ and ‘�’, respectively. The 0/1 value for the readouts corresponds to the result obtained from simulating the reference model under specific conditions of ligand and
inhibitor exposure. (C) Rules applied to graphs to create compressed representations. (D) The experimental design (B) determines which nodes in the graph are designated
and which are undesignated. This information, in combination with the rules in panel C was used to create a compressed graph, with nodes eliminated by compression
indicated by dashed lines. (E) Superstructure of all models compatible with the graph in panel A. (F) Optimal models for size penalties of 0pap0.23. The highlighted
panels to the right (boxed with dashed lines) show three different logical structures recovered during model calibration with a¼0. The fit to data was perfect for all models
(Yf¼0). (G) Optimal model for 0.23pap0.75. The matrix below shows the single mismatch (in red) between model-based simulations and the training data. (H, I) Balance
between the fit of the data Yf (the MSE deviation from data; see text for details) and size YS for models recovered using different values of the size penalty, a.
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presence or absence of seven small-molecule kinase inhibitors,
and then measured the states of 16 intracellular signalling
proteins before and 30 min after ligand addition (Figure 4A).
The extracellular ligand ‘cues’ included two mediators
of the acute-phase response, TNF-a and interleukin-6 (IL-6);
the TLR4 agonist lipopolysaccharide (LPS); two general
inflammatory factors active in liver, IL-1a and interferon-g
(IFN-g); and two mitogenic factors, insulin-like growth
factor-1 (IGF-1) and the EGFR ligand, transforming growth

factor-a (TGFa; Supplementary Table 1). Cells were exposed to
one of seven small-molecule kinase inhibitors at concentra-
tions sufficient to achieveB90% target inhibition (as assaying
in HepG2 cells, Alexopoulos et al, in preparation). After1 h,
cells were treated with ligands and samples were then
collected at 0 and 30 min, and the phosphorylation of 16
intracellular signals was measured in whole-cell lysates using
bead-based sandwich ELISA methods (multi-analyte profiling
xMAP technology; Luminex, Austin, TX, USA). Further
rationale for the experimental design can be found in reference
Alexopoulos et al (in preparation), but with respect to our goal
of training a Boolean model, the B1000 biochemical measure-
ments in the data set represent a relatively rich set collected
from cells under different conditions (combinations of ligands
and inhibitors).

We constructed a signed directed graph of intracellular
signalling covering the ligands and immediate-early kinase
pathways in our data set using the software from Ingenuity
Systems (http://www.ingenuity.com/). The graph was sup-
plemented with literature data on IRS-1, whose representation
in the Ingenuity database seemed particularly poor (see
section Materials and methods). The resulting literature-
derived protein signalling network (LD-PSN) contained 82
nodes and 116 edges comprising 26 designated and 56
undesignated nodes. Compression with CNO simplified the
graph to 31 nodes and 53 edges. Creating all logical
combinations consistent with this compressed graph yielded
a superstructure with 131 hyperedges. In the absence of
compression the superstructure would have contained 197
hyperedges.

Normalizing experimental data

Variables in Boolean models are necessarily binary (0 or 1),
but the biochemical measurements in our CSR data set are
continuous. The simplest way to compare the experimental
data to model output is to discretize the data to a value of 0 or 1
based on a set of thresholds. However, discretization reduces
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Figure 2 Workflow for creating and calibrating Boolean models using CNO
software. Signed directed graphs are imported into CNO (a set of software
routines implemented in MATLAB) and data are imported into DataRail (Saez-
Rodriguez et al, 2008). The experimental design defines which nodes in the
graph are designated and which are undesignated. The graph is then
compressed based on three procedures operating on undesignated nodes
(see Figure 1C). The compressed graph is transformed into a superstructure that
represents a superposition of all Boolean models compatible with the graph. An
optimization algorithm then searches the superstructure for those models that
minimize the value of the objective function Y for a specific value of the size
penalty, a; typically this calibration procedure is repeated for multiple values of a
(see text for details). Optimization is terminated when a predetermined criterion is
fulfilled; typically the number of times optimization is performed or when a
threshold value for Y is reached. Optimization can then be terminated or new
routines initiated to add new edges to the optimized model, followed by another
round of calibration aimed at decreasing the value of the objective function.
During edge addition, a higher size penalty (ci) is assigned to edges absent from
the initial graph to reflect the fact they are not supported by prior knowledge.
Once a model has been found, different types of analyses can be performed,
such as designing new experiments based on model predictions or comparing
models between different cell types. Moreover, a series of evaluation procedures
should be performed that include cross-validation, ROC curve, and comparison
to null models (indicated in yellow; see text for details).
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the information content of the data by implying the existence
of unrealistic on-off signalling states and is not necessary: the
MSE deviation can be computed by comparing binary model
outputs to normalized continuous data (i.e., values between
0 and 1). Normalization commonly involves dividing each
measurement in a series by the highest value, but this over-
emphasizes outliers while underweighting small but highly
reproducible differences. We therefore developed a multi-step
scheme for non-linear data normalization (see Figure 3). For
each readout l, we specified a lower limit based on experi-
mental noise (Sl,N) and an upper limit corresponding to
saturation of the assay (Sl,SAT). In the current work, analysis of
serially diluted samples showed Sl,NB500 and Sl,SATB18 000.
Next, using routines newly added to the DataRail software
(Saez-Rodriguez et al, 2008), we computed the ratio
Sk,l,t

R (where k is the index for the experimental condition,
l for the measurement—the specific xMAP sandwich immu-
noassay in this case—and t is the time point) between each
measurement, Sk,l,t, and Sk,l,0, the value at the start of the
experiment, as follows: Sk,l,t

R ¼|(Sk,l,t�Sk,l,0)|/Sk,l,0 (Figure 3
illustrates how this methods applies for signals that rise or fall
after t¼0). In our data, Sk,l,t

R varied between 0 and 80, and was
mapped to a value 0oVk,l,t

R o1 using a sigmoidal normal-
ization function that maximized sensitivity in the intermediate
range. The parameter e1 defines the midpoint of the normal-
ization function (i.e., when Vk,l,t

R ¼0.5) and was constant across
the entire data set. A value for e1 was chosen heuristically
based on the subset of CSR data for which we had strong prior
expectations; we refer to these as the ‘fiducial data’. For
example, we know that treatment of cells with TGFa (an EGFR
ligand) triggers a dramatic increase in ERK phosphorylation
except when the MEK kinase inhibitor PD325901 is present
(Figure 4A). Similarly, TGFa triggers AKT phosphorylation
except when PI3K is inhibited by the small-molecule inhibitor
ZSTK474. We therefore chose a value for e1 such that

VERK,l,t
R 40.5 in cells treated with TGFa and VERK,l,t

R o0.5 in
cells treated with TGFa plus PD325901, while simultaneously
yielding VAKT,l,t

R 40.5 in cells treated with TGFa and
VAKT,l,t

R o0.5 in cells treated with TGFa and ZSTK474. Overall,
such fiducial experiments comprised 5% of the total data set.
In the future, we anticipate implementing a scheme for e1

optimization based on multiple user-defined fiducial data
points. However, data normalization in the current work was
not very sensitive to the precise value of e1 (see below) and a
value e1¼0.5 proved effective.

A subtlety in data processing is that it is necessary to remove
from the data phospho-protein measurements for nodes
whose activities are blocked with a drug. For example, removal
of phospho-MEK data collected from cells treated with the
MEK inhibitor PD325901, because phosphorylation levels are
not a reliable measure of the activity of PD325901-bound
kinase. Moreover, to deemphasize data in which measure-
ments were close to background for all time points under
condition k, we computed the ratio of each data point Sk,l,t to
the maximal value obtained for the same readout l across all
conditions and time points in the full data set (Sl,MAX), and
then transformed this into a value 0oVk,l,t

M o1 using a
saturation curve (Langmuir function, which has the same
form as the Michaelis–Menten function) with half-maximal
value at e2B0.05. The parameter Vk,l,t

M was then used to
penalize very weak signals by computing the product
Bk,l,t

E ¼Vk,l,t
M �Vk,l,t

R . Finally, the MSE deviation Yf between the
experimental value Bk,l,t

E and its corresponding simulated
value Bk,l,t

M was computed as a measure of the fit of model to
data. In cases in which phosphorylation corresponds to
repression of a node (in our case this is true for GSK3 and
IkB) the appropriate simulated value for computing MSE
deviation is 1�Bk,l,t

E .
As data are continuous and Boolean models are binary,

a residual ‘discretization’ error remains even in the case
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Figure 3 Procedure for data normalization. If the measured signal Sk,l,t for readout l at time t under the kth experimental condition is either above the saturation limit
(Sl,SAT) or below the limit of detection (Sl,N) of the lth measurement method, the value is not reliable and is therefore ignored; values for Sl,SAT and Sl,N are obtained from
serial dilution experiments. Otherwise, the scaled measurements are computed relative to the value of the measurement at the start of the experiment
Sk,l,t

R ¼|(Sk,l,t�Sk,l,0)|/Sk,l,0 and transformed using a non-linear normalization function (Hill function; upper part of the schematic) into a value 0oVk,l,t
R o1. To impose a

penalty on measured values that are very low relative to other time points and experimental conditions, the value is scaled relative to the maximum (Sk,l,t
M ¼Sk,l,t /Sl,MAX)

and transformed 0oVk,l,t
M o1 using a saturation curve (e.g., Langmuir function; lower part of the schematic). Values for adjustable parameters e1 and e2 specifying

midpoints of the data normalization functions are determined from a ‘fiducial’ subset of data as described in the text. The two-scaled and normalized values for each data
point are then multiplied, Bk,l,t

E ¼Vk,l,t
M � Vk,l,t

R , to yield the value used for model calibration. Calibration involves minimizing the MSE deviation between all experimental

measurements Bk,l,t
E and model outputs Bk,l,t

M . The data normalization procedure is embedded in DataRail and is a generalization of the discretization algorithm described
by Saez-Rodriguez et al (2008).
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of the best fits. This residual error Yf
D corresponds to

the difference between the discrete predictions of the
best possible Boolean model and the continuous data:

YD
f ¼ 1

nE

Ps
l¼1

Pm
k¼1

Pn
t¼1 ðBD

k;l;t � BE
k;l;tÞ

2
, where Bk,l,t

D is the

binary value arising from rounding Bk,l,t
E . With the optimized

model and CSR data set in this paper, Yf
D¼0.024. Further

investigation of data normalization procedures is no

doubt warranted, ideally based on maximizing the predictivity

of trained models. However, we observed that varying e1

from 0.3 and 0.7 did not change the set of optimal models,

although it did alter identifiability (see below). We therefore

concluded that our approach is not unduly sensitive to

changes in the values of adjustable parameters used for data

normalization.
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Training a multi-receptor model against
experimental data

The Boolean superstructure for the seven-receptor network
(containing 131 hyperedges) was calibrated against normal-
ized biochemical data (comprising 809 data points) by running
a genetic algorithm multiple times and monitoring the
objective function to ensure stability of the solution at the
end of each run (Figure 4B). Even with a¼0 we found that
optimized models were about one-third the size of the initial
superstructure (which contained all possible logical models),
but exhibited fourfold improved goodness of fit to data.
Further analysis revealed that the superstructure predicted
many responses that were absent from the data because the
LD-PSN contained too many interactions. As a consequence,
an empty model—one containing 31 nodes but no hyperedges–
actually had a lower value of Yf than the superstructure.
To explore the relationship between Y, Yf, and YS we
performed 20 rounds of optimization at each of 19
values of a between 0 and 50. Over this range, the size of
optimized models was nearly constant at B0.19, as was the
goodness of fit, until a40.1 at which point the model
collapsed and the fit approached that of the empty model
(Figure 4C). This suggests a penalty of 0oao0.1. To confirm
this range, we performed 10-fold cross-validation by con-
structing models from 90% of the data and then attempted to
predict the remaining 10%. The process was then iterated
B150 times for different values of a. Trained models predicted
missing data most accurately with ao0.1 (Figure 4D). We
therefore concluded that over the range 0oao0.1 calibrated
models have a complexity close to the minimum value
necessary for a good fit, and we chose a value a¼0.0001 for
the remaining of the analysis.

Statistical significance of trained models

Are model topologies recovered by calibration statistically
significant given the training data and the prior knowledge in
the LD-PSN, or might they arise by chance? To address this
question we generated scrambled versions of the data and both
scrambled and random model superstructures. First, 500 sets

of scrambled data were generated by pairwise exchange of
data points. This was accomplished by randomly dividing the
original data set in two and swapping all data points, thereby
scrambling relationships between signals and experimental
conditions. For each of the 500 scrambled data sets, we
repeated calibration and observed that the fit of optimized
models to data was significantly worse than the fit of calibrated
models to unscrambled data (Po10�200). Next, 500 scrambled
networks (null networks) were created from the LD-PSN
superstructure by random pairwise exchange of elements. We
performed three types of exchanges (see Figure 4E): in type-1
the tails for two hyperedges chosen at random were exchanged
and the process was iterated across all hyperedges (keeping
constant the out-degrees of all nodes); in type-2 this procedure
was followed for the heads of pairs of hyperedges (keeping
constant the in-degrees of all nodes); and in type-3 all of the
edges ending at each of two randomly chosen nodes were
exchanged and the process was iterated across all nodes
(keeping constant the distribution of in-degrees of the nodes in
the graph). Alternatively we created a set of completely
random networks having (i) the same number of nodes and
edges as the LD-PSN, (ii) at least one edge per node, and (iii)
network inputs (corresponding to cytokine stimuli in the LD-
PSN) with no incoming edge but at least one outgoing edge.
Two types of random networks having these characteristics
were generated: type-4 in which all measured nodes had at
least one input, as in the LD-PSN and type-5 in which this
restriction was removed. For 500 runs over superstructures
derived from each of the five types of null network, the
LD-PSN superstructure yielded a significantly better fit to
data: for null model type-1 and 2, the P-values wereB2�10�6

to 3�10�7, whereas random networks type-4 and 5 yielded
P-value B10�13 and 10�18 (Figure 4F). The discrimination
between real and null networks of type-1 and 2 was less than
that for random networks because the former retain informa-
tion on hub nodes (e.g., Ras). In type-3, where inputs but not
outputs were scrambled, the null networks were no better
than random networks (P-value B10�17). From these data we
conclude that the LD-PSN contains prior knowledge, with a
significantly greater match to experimental data than would
occur by chance.

Figure 4 The selection of models of HepG2 hepatocellular carcinoma cells. (A) Design of experiments in the training data set depicting the use of seven ligands and
seven drugs. The 16 proteins that were measured are depicted by coloured boxes with specific states of modification (shown in parentheses) that were assayed by xMAP
technology. The red inhibitory arrows depict the seven small-molecule drugs that were used to block protein kinases; drugs were added to HepG2 cells at concentrations
two- to four-fold above their measured IC50s 60 min prior to ligand addition (see Alexopoulos et al, in preparation, for details). (B) Evolution of model calibration with a
genetic algorithm run 100 times. For each run, a set of 100 models (chosen at random from all possible models compatible with the superstructure) was analysed. At
each generation in the genetic algorithm, the average (green) and best (blue) value of Y across the set of 100 models was evaluated. Sufficient numbers of evaluations
were performed (B105) to obtain stable solutions. (C) Trade-off between fit of data and size of model. The total objective function Y (red line), MSE deviation of model
from data Yf (blue line), and model size YS (green line) are shown for the best model recovered at 19 different values of the size penalty, a. With a¼0, multiple solutions
were recovered having an equal value of Yf but different values of YS; this is depicted in the figure by multiple converging green lines. (D) Predictive power as estimated
by 10-fold cross-validation. For each value of a, B150 trainings were performed, leaving out one-tenth of the data randomly chosen. The plot shows the mean and
standard deviation of the prediction of the left-out data. Predictive power is best for ao0.1. (E) Different approaches used to scramble prior knowledge encoded in the
LD-PSN. In scrambled networks of type-1, edges are divided into two random and equally sized groups; edges in the first group exchange their head (input node) with
edges in the second group; the process is iterated over all nodes. Type-2 of scrambling is equivalent, but edges exchange tails (output nodes). In type-3, nodes are
divided in two random groups and exchange all incoming edges as a group. (F) Statistical evaluation of the training of the randomized and scrambled models to the real
data, and of the Ingenuity network to the scrambled data. (G) Distribution of hyperedges across families of calibrated models as a measure of model identifiability. Each
curve represents a sorted histogram depicting the frequency with which a hyperedge was recovered based on the allowable tolerance between models under
consideration and the best model where tolerance is defined as the increase in Yf relative to the lowest value achieved (Yf¼0.081) as follows: blue line, 0% tolerance—
3 models; brown line, 1% tolerance (0.081pYfo0.083)—4 models; red line, 10% tolerance (0.081pYfo0.089)—11 models; and green line, 50% tolerance
(0.081pYfo0.122)—189 models. For the 11 best models (10% tolerance), a yellow band denotes hyperedges present in all models, the grey band hyperedges
present in some models, and the white band hyperedges absent from all models.
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Features of trained models
With a¼0.0001 andB300 rounds of optimization, we obtained
three best-fit models that had Yf¼0.081, a value that was
roughly three time the residual error of Yf

D¼0.024, showing
that even the best model did not fit data perfectly (Yf could be
reduced further by adding new interactions; see below). The
recovery of multiple solutions with the same value for Y
shows that the model is not completely identifiable. We
therefore divided the number of occurrences of a particular
hyperedge by the number of calibration runs; this value is an
estimator of the probability, pi, that the ith hyperedge is

actually present in the true model (i.e., p(hyperedgei|data)).
In the case of complete identifiability, pi is either 1 or 0 for
all hyperedges, and standard deviation si¼O(pi � (1�pi))¼0.
Complete non-identifiability corresponds to pi¼0.5 and
si¼0.5 for all hyperedges. As expected, identifiability varied
with the allowable deviation from the lowest value of Yf

achieved. In principle this deviation should be similar to
the propagated error in the training data. A 10% error in
phospho-protein measurements (close to the error we obtain
upon repeatedly assaying the same biological samples; data
not shown) when propagated through our normalization
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procedures yields B4% variance in Bk,l,t
E and thus a 2%

tolerance in MSE. However, if we allow a more conservative
10% tolerance in goodness of fit to allow for biological
variability in the experiment so that Yfo0.089, 11 models
were recovered and osX0.05. With a tolerance of 50%, 189
models were included with Yfo0.122 and osX0.09.

The set of 11 calibrated models had 26–28 hyperedges of
which 19 were present in all models (Figure 4G, yellow band).
Seventeen (grey band) of the 131 hyperedges in the original
superstructure (white band) were present in some but not all
models, whereas 95 were absent from all models. In Figure 5
estimates of pi for 11 models and osX0.05 are shown by line
weights: thick black lines denote hyperedges that were preset
in all models, grey lines denote hyperedges that were present
in some models, and light grey lines denote hyperedges in the
superstructure that were absent from all calibrated models.
From this representation we can see that, as expected, non-
identifiable hyperedges involved proteins that were neither
perturbed nor assayed; for example, the multiplicity of MAP
kinase-kinases that regulate p38 and JNK are largely indis-
tinguishable. In future experiments it should be possible to
increase model identifiability by adding additional data on the
phospho-states of individual MAPKKs.

In optimized models, all receptors are linked to downstream
signalling molecules, with the exception of TLR4. This is not a
spurious result since models calibrated to data from other cell
types contain links between TLR4 and downstream signalling
proteins (data not shown). Instead, TLR4 receptors in HepG2
cells do not appear to be active (Alexopoulos et al, in
preparation). A surprising feature of optimized HepG2 models
is the relative paucity of links between intracellular molecules
activated by inflammatory factors and those activated by
growth factors. Specifically, the link TNFR-PI3K (labelled 1;
Figure 5) proposed by Marchetti et al (2004) was missing as
was Rac-MAP3K1 (labelled 2; Fanger et al, 1997) and Ras-
MAP3K1 (labelled 3; Russell et al, 1995). Crosstalk between
AKT and the Raf/MEK/ERK cascade (labelled 4; Guan et al,
2000) was also missing. The absence of these interactions from
the LD-PSN calibrated to data from HepG2 cells does not
appear to be an artefact of our approach because links 1 and 3
were present in a preliminary model assembled using data

from Huh7 cells, another hepatocellular carcinoma cell line
(data not shown). Thus, we propose that the exclusion of
documented protein–protein interactions from calibrated
models reflects their irrelevance in HepG2 cells within the
first 30 min after ligand addition.

Identifying new interactions that improve fit
to data

Although the LD-PSN-derived superstructure contained con-
siderably more hyperedges than were present in the calibrated
models, it nonetheless seemed likely that some interactions
might be missing, either because the literature survey was
imperfect or because our understanding of the relevant biology
is incomplete. We therefore asked whether addition of a
limited number of hyperedges would improve fit to data. The
number of possible edges in a graph of n nodes is 2(n2�n)
(because each edge can point either direction and be either
positive or negative), and the number of hyperedges increases
as n(3n�1�1). Thus, a LD-PSN with 82 nodes has 13 284
possible edges and the associated superstructure has B1040

possible hyperedges. Even the compressed superstructure of
31 nodes has 1860 potential edges and B1015 hyperedges.
Thus, the LD-PSN superstructure contained B1% of all
possible edges for a graph of 82 nodes. The search space for
new edges scales as 2y where y is the number of hyperedges,
making it impossible to perform an exhaustive search. We
therefore focused our search on areas of the model in which
the fit to data was poor (CNO ranks stimuli, perturbations, and
readouts according to Yf). In our data, the greatest deviation
between the nine best-fit models and data involved IL1a and
TGFa stimulation (Figure 6A), and assays for IRS-1S and
p70S6K phosphorylation (Figure 6B). Accordingly, 630 OR-
gated hyperedges were added to the LD-PSN-derived super-
structure to connect nodes downstream of IL1aa and TGFa to
IRS-1S and p70S6K, or to nodes upstream of IRS-1S and
p70S6K. Only positive (activating) hyperedges were evaluated,
since errors involved mostly false negatives (Figure 6C).
The search for new hyperedges involving these nodes was
accomplished using a modified size penalty Y�s ¼

Pn
k¼1 ckvkPk

Figure 5 Family of calibrated models recovered for immediate-early signalling downstream of seven transmembrane receptors in HepG2 cells. The graph represents
the nodes and edges present in a set of calibrated Boolean models considered to be indistinguishable based on the data (see text for details). The graph was created
using a routine in CNO based on a GraphViz visualization engine (www.graphviz.org), followed by manual annotation using Adobe Illustrator. Green ellipses denote
stimuli, red ellipses species blocked by kinase inhibitors, and blue ellipses denote readouts. Ellipses with red borders and blue filling were both measured and subjected
to inhibition using small-molecule drugs. Ellipses with dashed borders were compressed during graph processing, and empty ellipses were not designated but were not
compressed since they did not fulfill the three rules for compression (Figure 1C). Positive interactions are denoted in grey and black and inhibitory interactions in red. We
did not recover any AND gate; this is, however, not an artefact of the model, but rather a feature extracted from the data (in other data sets using data from other cell
types, calibrated models contain AND gates). Colour and line thickness denote the frequency with which each hyperedge was present in the models; hyperedges
represented by solid black lines were present in all models, grey hyperedges were present in some models, and dashed grey (activating) hyperedges or dashed red
(inhibitory) hyperedges were absent from all the models. CNO automatically determined that none of the proteins downstream of IFN-g were assayed or inhibited and
thus, this input remains isolated; model decompression introduces the possible connections making it possible to visualize the calibrated model in the context of prior
knowledge. Blue arrows highlight key interactions present in the starting, literature-derived PSN, but excluded from calibrated models, and connecting growth factor
signalling pathways downstream of IGF-1 and TGFa (shadowed in grey) and inflammatory pathways. The existence of these interactions has been documented in the
literature (with numbering indicated by the yellow circles) (1) by Marchetti et al (2004); (2) by Fanger et al (1997), and (3) by Russell et al (1995). Moreover, in a
preliminary model using data from Huh7, another liver cancer cell line, interactions (1) and (3) were present. Crosstalk between AKT and ERK (4), described by Guan
et al (2000) was not observed in models of either HepG2 or Huh7 cells. Green and purple arrows denote hyperedges that impinge on either MEK or phospho IRS-
1(S636/S639) that were absent from the LD-PSN but were identified during model extension as improving fit to data. The short arrowheads depict alternative origins for
links that are indistinguishable because of model non-identifiability: each model would contain only one green and one purple link. TRAF6 has been reported to be an
upstream regulator of MEK (interaction 5) by Hers and Tavaré (2005), and support for the role of ERK in the phosphorylation of some serine residues in IRS-1 (interaction
6) can be found in reference Rhee et al (2004).
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that included a weighting factor ck that varied from hyperedge
to hyperedge. This made it possible to penalize newly added
hyperedges more heavily than hyperedges derived from prior
knowledge. We assigned a value ck¼1 for existing hyperedges
and investigated the effect of assigning different values of
ck to the new hyperedges (ck

N). The optimal penalty for new

hyperedges is one that results in new links only if they provide
a significance improvement in the fit to data. Model calibra-
tion was performed using the extended superstructure and
different values of ck. With ck

N
X500 no new hyperedges were

added, since the increase in size Ys* outweighed the decrease
in MSE error Yf (Figure 6D), but, for ck

Np100, lower values of
Yf. were obtained. With ck

N � 100 Yf did not improve further,
but there was the risk that links from the LD-PSN were
replaced with alternatives for which there was no prior
knowledge. Thus, ck

N¼100 appeared to be a near-optimal value
for penalizing new edges.

The search for new interactions recovered a family of
models in which Yf¼0.053, a lower value than the previous
best fit of Yf¼0.081 (Figure 6E). Since Yf

D¼0.024, this
represents an improvement in fit of B50% and was associated
with an increase in the true positive rate (see below). The new
models contained two new edges each, but the starting and
ending points of the edges varied with the solution (due to
non-identifiability). One set of edges linked linking nodes
between IL1R and p38 to MEK (green arrowheads in Figure 5)
and another linked nodes between EGFR and ERK to phospho-
serine IRS-1 (IRS-1S; purple arrowheads). Although absent
from LD-PSN, we nonetheless found literature support for a
connection between TRAF6 and MEK in non-transformed
human colonic epithelial cells (corresponding to the green line
in Figure 5, labelled 5; Rhee et al, 2004), and for a connection
between ERK and IRS-1 phospho-serine in primary adipocytes
(Figure 5, magenta line, labelled 6; Hers and Tavaré, 2005).
Hers and Tavaré (2005) also report the absence of a link
between mTOR and IRS-1 phospho-serine, in agreement with
our models, but different from what has been observed for
other cell lines (Ozes et al, 2001; Hers and Tavaré, 2005).

Model validation

To evaluate the performance of optimized Boolean models we
asked how well they could predict a ‘validation data set’ that
was distinct from the training set. New experiments were
performed in which HepG2 cells were treated with combina-
tions of two ligands (IL6þ IL1a or IGF-1þTGFa) in the
presence and absence of small-molecule inhibitors of p38,
MEK, PI3K, and EGFR (gefitinib; Herbst, 2002) protein kinases
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Figure 6 Summary statistics for Boolean modelling of HepG2 signalling.
(A) Average deviation from data for the untrained model superstructure (blue
bars), best-fit calibrated model (green bars), and extended model having two
added hyperedges (pink bars) sorted by ligand. (B) Average deviation as in panel
A but sorted by intracellular signalling protein. (C) Size and fit to data during
model assembly and optimization starting with full superstructure (blue), empty
model (dark blue), calibrated model (green), and extended model containing two
new hyperedges (pink). For simplicity, only one model of the family of solutions is
represented. The left panels depict model size (YS; left vertical axis) the and right
panel shows the normalized number of false positives, false negatives, and the
MSE deviation from data (right vertical axis). False-positive values arise when the
model incorrectly predicts induction of signal and false-negative values when the
model does not predict induction of signal that is found in the data. The empty
model has no hyperedges and thus all states but IkB are zero. (D) MSE error Yf

recovered upon training of the extended network with different values of the
weight for the new hyperedges (ck

N). (E) Computational cost of successive steps
in model assembly and calibration, and the average value of the objective
function achieved.

Data-driven logical model of signal transduction
J Saez-Rodriguez et al

12 Molecular Systems Biology 2009 & 2009 EMBO and Macmillan Publishers Limited



(Figure 7A). Phospho-protein measurements were made prior
to and 30 min after addition of exogenous ligand, as in the
training data. Sixty of the 88 conditions (77%) in the new
validation data set were different from those in the training
data set; overlap of the remaining 23% of the data allowed us
to control for experimental reproducibility. For simplicity, the
validation data was compared to simulations based on a single
calibrated model of the family of solutions. The deviation
between this model and the validation data was Yf¼0.096,
with a residual error Yf

D¼0.03. This fit was nearly as good as
the fit of the calibrated model to the training data (Yf¼0.081
and Yf

D¼0.024) and much better than the fit of the LD-PSN
superstructure (Yf¼0.28). Moreover, when the two data sets
were combined into a single training set, the structure of the re-
optimized models did not change, although identifiability
improved slightly (os4 decreased from 0.14 to 0.13).

To measure the predictive power of best-fit models, we
determined the rate of false-positive and false-negative
predictions. False positives corresponded to cases in which
the model predicted induction of signal (state¼1), but the
normalized experimental value was below 0.5. Analogously,
false negatives corresponded to the cases in which the model
did not predict induction of signal (state¼0), but the normal-
ized data was above 0.5. Both the binary rate (based on a
simple count of errors) and a weighted rate, in which each
error was multiplied by (Bk,l,t

E �Bk,l,t
M )2, were computed. The

weighted rate is less familiar but probably better since
errors are scaled by their magnitude (Figure 7D). Receiver
operating characteristic (ROC) curves using either error metric
show that the solution with a¼0.0001 (the value we chose
based on the cross-validation studies; Figure 4) exhibits the
best ratio of false negatives (0.33 and 0.28 for the binary
and weighted rates, respectively) to false positives (0.037
for the binary and 0.024 for the weighted rates). Values of a
higher than 0.1 marginally decreased the ratio of false
positives, but at the price of a significant increase in false
negatives (1�true positives). Furthermore, inclusion of two
new interactions (red data points in Figure 7D) improved
the false-negative ratio (from 0.33 to 0.21, and 0.28 to 0.15 for
the binary and weighted rates, respectively), with a
modest increase in false positives (0.031 and 0.049). From
these data we conclude that our optimized model has good
predictive power.

Discussion

In this paper we describe a method to combine literature
knowledge about mammalian signal transduction with func-
tional data on the responses of cells to extracellular ligands
and small-molecule drugs. Literature knowledge, in our case,
comprised a signed directed graph assembled by manual
curation of the literature (a PSN created using Ingenuity
databases and software). In principle, however, any signed
directed graph assembled from protein–protein interaction or
gene association data could be used. To train network graphs
against data we developed interoperable CNO and DataRail
software that performs five essential tasks: (i) transforming
graphs into compressed Boolean logic superstructures that can
be used to compute input–output relationships for the overall

network while containing the minimum number of non-
identifiable elements; (ii) normalizing biochemical data on the
states and activities of signalling proteins so that they can be
used to train discrete two-state models; (iii) calibrating models
to data based on an objective function that balances goodness
of fit with model complexity; (iv) identifying new links not
present in the starting graph that improve fit to data while
marginally increasing model size and false-positive rate; and
(v) manipulating calibrated models to enable their comparison
to the starting graph. In addition to the CNO-based workflow
for model assembly and calibration (Figure 2) we also describe
a series of computational procedures, involving data and
network randomization, derivation of Pareto frontiers, and
computation of ROC curves that serve as tests of the quality
and reliability of the modelling process.

We selected Boolean logic as the basis for the current work
because it is the simplest form of logical modelling and
involves no free parameters (for a given topology). Boolean
logic has previously been applied to modelling cell signalling
pathways, but the calibration of Boolean models to biological
data has not been described. It was, therefore, unclear at the
outset whether our approach would yield stable models with
good predictive capability. Specifically, we were concerned
that by assuming only two activity states for each element in
the network (on and off), fitting errors would be too large to
distinguish differences in pathway topology. However, we
found that calibration of a complex cell signalling network,
involving 82 species and 116 protein–protein interactions,
against a relatively rich set of B1000 protein measurements
yielded a family of Boolean models with good fit to
experimental data and relatively identifiable topologies.
Evidently, the crudeness of the two-state representation is
balanced by the feasibility of constructing a well-behaved
objective function and performing many training runs.

We find that calibrated Boolean models contain fewer links
than the PSNs on which they are based: whereas the starting
graph for our network of seven receptors and 82 proteins had
1.42 interactions per node, trained Boolean models averaged
0.9 links per node. The explanation for the relatively poor fit to
data a Boolean superstructure encoding the PSN is the large
number of false-positive predictions so that even a completely
empty model (one with no interactions) had a better overall fit.
Nonetheless, the PSN used as a starting point for the current
work is sparse compared with recently described networks.
For example, a network of signalling pathways in neurons
contained 545 nodes and 1259 interactions (2.3 edges per
node; Ma’ayan et al, 2005), and undirected PINs and
interactomes are even richer in edges per node: 3.5. for a
network involving 121 disease-associated proteins (Rual et al,
2005), and 4.6 for a network constructed around tumour
suppressors of breast cancer (Pujana et al, 2007). We therefore
speculate that significant reductions in network complexity
will be observed by applying the Boolean modelling approach
described in this paper to PSNs and PINs covering other
aspects of eukaryotic biology.

At least three explanations can be advanced to explain the
reduction in the number of interactions per node, and the
improvement in ROC characteristics, between starting PSNs
and calibrated Boolean models: (i) interactions in the PSN
are culled from several organisms, cell types, and growth
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conditions, and only a subset of these interactions are relevant
to a single cell type exposed to a limited set of ligands;
(ii) interactions in the PSN are collapsed in time so that
immediate-early and late events are indistinguishable,

whereas our Boolean model is relevant only for events
occurring within 30 min of ligand addition; and (iii) some
interactions in PSNs are incorrect and—being based on
two-hybrid, co-purification or other interaction assays—
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overestimate the number of functional connections between
proteins. In the future, it should be possible to distinguish
among these possibilities by collecting data at multiple time
points from multiple cell lines and then comparing a series of
optimized models for each time point and cell type.

Comparing approaches to modelling complex
protein networks

Reverse engineering has received considerable attention as a
means to infer the topology of biological networks directly
from patterns of co-variation in data. The use of prior
knowledge distinguishes our work from standard reverse
engineering (Sachs et al, 2005; Bonneau et al, 2006; Perkins
et al, 2006; Bansal et al, 2007; Cho et al, 2007; Nelander et al,
2008), including reverse engineering using Boolean logic
(D’haeseleer et al, 2000; Laubenbacher and Stigler, 2004).
Moreover, we include in our decompressed graphs intermedi-
ate species that are not subject to experimental measurement,
whereas latent or hidden variables are rarely included in
reverse-engineered networks because they are supported only
on the basis of prior knowledge. The absence of prior
assumption in reverse-engineered networks is usually re-
garded as a significant advantage. However, our use of prior
knowledge in the form of a PSN substantially improves the
modelling process. This point is emphasized by the analysis of
scrambled experimental data or randomized PSNs, neither of
which yields models with as high a probability as real data and
literature-based PSNs. Moreover, given the amount of bio-
chemical and structural data available on mammalian signal
transduction proteins, it seems unnecessarily restrictive to
ignore prior knowledge completely. Doing so decouples
reverse-engineered networks from mechanistic understanding
and vastly increases the demands for rich multi-factorial data.
Perhaps this explains why pure reverse engineering of
mammalian networks has been most successful with networks
containing o20 nodes.

At the other extreme, attempts to assemble accurate pictures
of signal transduction based entirely on literature mining
result in amalgamated maps—derived from many different cell
types and even different organisms—that do not accurately
describe or predict the behaviour of particular cells. Here we
show that a middle road exists between the extremes of
literature curation and reverse engineering that starts with
construction of a network graph from the literature followed
by pruning the graph through calibration to yield a model
that is predictive for a specific biological situation. Reverse

engineering methods should be highly complementary to the
methods described here. Reverse engineering can uncover
interactions in data that are not present in the literature and
might, therefore, be missed. The fact that we identify two
interactions as improving fit to data supports the assumption
that other unidentified links undoubtedly exist in our PSN.

Several useful extensions of the CNO software described in
this paper should be feasible. First, the approach can be
extended to handle data collected at different time points.
Simulation based on the computation of logical pseudo-steady
state might not be the most appropriate way to capture the
causality of dynamics of processes (e.g., it cannot describe
phenomena such as oscillations), but it can be used to model
reactions that operate on different time scales (Klamt et al,
2006). Second, we are implementing tools that extract PSNs
from public sources such as Pathway Commons and to add
data from PINs (Rual et al, 2005). These undirected graphs can
serve as a source of information for adding edges to optimized
models, but in this case we would need to evaluate four
possible edges for each undirected edge, representing two
directions and two signs. The different ‘quality’ of the prior
knowledge can also be encoded by assigning different
weights to the edges, as we do to search for links absent in
the starting PSN.

A third area for development is optimizing the design of
experiments that increase model identifiability. The Boolean
model in the current work is non-identifiable given the
available data, and this seems likely to be true of all similarly
complex models of mammalian biology given practical
constraints on experimentation. However, it will undoubtedly
be possible to improve the modelling of certain nodes and
edges by choosing the right combinations of biological stimuli,
small-molecule inhibitors, and protein measurements. Further
exploration of the landscape of the objective function, based
for example on synthetic data derived from the model
described here, should yield valuable insights into this issue.

Fourth, it should be possible to replace the deterministic
approach used here with a more rigorous probabilistic
approach in which each interaction is associated with a P-
value. This P-value would derive both from the calibration
process, in which case it would reflect the identifiability of
the interaction based on the data, and also from the degree
of confidence in the starting PSN. Bayesian approaches
obviously represent an effective means to encode both the
prior and consequent probabilities in such a network; progress
in this direction can be found in the work of Gat-Viks and
Shamir (2007). Moreover, probabilistic Boolean networks
(Shmulevich et al, 2002) are a natural extension of the

Figure 7 Model validation involving prediction of a set of measurements not present in the training data. (A) Design of experiments in the validation data set depicting
the use of four ligands in six combinations and five drugs in 11 combinations. Measurements were performed following the scheme outlined for the training data in
Figure 4A. (B) The CSR data set obtained in HepG2 cells. Rows represent the measures of 15 intracellular signals assayed at the time of stimulation and 30 min later.
For each combination of ligands and readout, a combination of the four inhibitors was used as described in panel A. Data are coded in blue to highlight induction. The
data were processed using the DataRail software (Saez-Rodriguez et al, 2008). (C) Comparison of model prediction Bk,l,t

M to normalized experimental data Bk,l,t
E . If the

absolute value of the difference Dk,l,t¼|Bk,l,t
M �Bk,l,t

E |¼1 (strongest disagreement), the corresponding box is coloured in red; if Dk,l,t¼0 (best agreement) it is in green; if
Dk,l,t¼0.5 it is in white. Intermediate values of Dk,l,t were mapped to shades of red and green as shown. (D, E) The ROC curve of the trained model showing the ratio of
true positives (1�the ratio of false negatives) and false positives. In panel E, the region of the ROC curve between 0 and 0.07 false-positive rate is shown in expanded
form for clarity. The dots in the black curve correspond to the binary rates for models recovered over a range of size penalties (from a¼0 to 10, keyed to the legend). The
complete superstructure is designated as a blue circle. The set of models shown in Figure 5 (a¼0.0001) is marked with a green circle and the extended model having two
additional inferred links, with a red circle. The blue lines and circles correspond to the weighted ratio of false positives and negatives as described in the text. Source data
is available for this figure at www.nature.com/msb.
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deterministic Boolean networks used in this work. Finally, it
may prove useful to add multilevel logic (Thomas and D’Ari,
1990), discrete Petri nets (Fisher and Henzinger, 2007;
Chaouiya et al, 2008), Fuzzy-logic (Aldridge et al, 2009), or
Boolean-based ODE systems (Mendoza and Xenarios, 2006;
Wittmann et al, 2009) that can encode intermediate levels of
protein activity. Some of these extensions will also make it
possible to describe the dynamical process more accurately.
Looking forward we anticipate that Boolean models of specific
cell types should be useful in interpreting genetic data
obtained from patients. PINs have been shown to improve
the predictivity of gene expression classifiers used to
discriminate disease states (Chuang et al, 2007), and it seems
highly likely that logical models specific to a disease will prove
even more effective in this role.

Materials and methods

CellNetOptimizer

CNO is a stand-alone Toolbox implemented in MATLAB that executes
the Boolean logic and calibration procedures described in this paper. It
can be used alone or in combination with DataRail, which manages
experimental data according to a previously published MIDAS
standard (Saez-Rodriguez et al, 2008). All functions are accessible
either via scripting or graphical user interfaces. CNO can import
models from ProMoT (Saez-Rodriguez et al, 2006) and CellNetAna-
lyzer (Klamt et al, 2007). In the near future, automatic population of
CNO models from graphs in the BioPAX format (http://www.biopax.
org/) and those stored in databases such as Pathway Commons,
(http://www.pathwaycommons.org/) will be implemented. The
models generated from CNO can be stored in DataRail as a data array,
making it possible to store models alongside the data used for training.
CNO is freely available at http://www.cdpcenter.org/resources/
software/cellnetoptimizer/.

Model formalism

We use the Boolean modelling formalism as introduced by Klamt et al
(2006) for modelling signal transduction networks. Nodes in the
Boolean network represent biological species and have an associated
logical value (‘on’ (1) or ‘off’ (0)) determining whether the species is
active/present or not. The signalling events are encoded by Boolean
operations on the network nodes. We describe the Boolean functions
using the sum-of-products (SOP; also called the (minimal) disjunctive
normal form (DNF)) representation (Mendelson, 1970) that uses only
AND, OR, and NOT operators. A SOP expression is a sum (i.e., OR
connection) of terms where each term is either a single, possibly
negated Boolean variable or a product (i.e., AND connection) of
(possibly negated) Boolean variables. Any logical operation can be
represented in this way. For example, an XOR gate is described in the
SOP formalism as (A is ON and B is OFF) OR (A is OFF and B is ON).

A Boolean network in which Boolean functions are given as SOPs
can be represented as a directed hypergraph. A directed hypergraph
consists of a set of nodes and a set of directed hyperedges. Each
hyperedge connects two sets of nodes, the tail (containing the start
nodes) and the head (containing the end nodes). Tail and head can
contain several nodes, although in this paper they have only one head
(end) node. A conventional graph is simply a special case of a
hypergraph in which the cardinality of the tails and heads is 1 for all
edges (Klamt et al, 2009). By using the SOP formalism, a logic network
can be converted to a hypergraph in a straightforward manner. Each
hyperedge pointing into node i represents one term of the Boolean
function (i.e., an AND connection or a single Boolean variable)
describing the activation mechanism of species i and thus represents
one way of activating the node. All hyperedges ending in a node are
implicitly linked via OR logic (Klamt et al, 2006).

Network preprocessing

An implementation of the Floyd–Warshall algorithm (Floyd, 1962),
drawn from CellNetAnalyzer, is used to find paths among species. This
algorithm makes it possible to identify non-observable and non-
controllable elements: if no path can be found from a species (node) to
any readout, the species is non-controllable; if no path can be found
from any cue (stimulus or inhibitor) to a species, the species in
non-observable.

Model simulation and comparison to experimental
data

Based on time-resolved experiments, we identified 30 min after ligand
stimulation as the time point at which phosphorylation levels differed
maximally from those of untreated controls (time point 0). We
assumed these values reflected a state achieved on a time scale on
which fast events are relevant, but slow events (such as protein
degradation) have a relatively insignificant effect. Qualitatively, these
states can be computed as logical steady states in the Boolean network
describing the early events (Klamt et al, 2006). We therefore computed,
for each model candidate, the logical steady state associated with the
input values determined by each experiment k and compared the
values of the readouts Bk,l,30

M with the normalized experimental values
Bk,l,30

E using the MSE deviation as explained in the main text.
We compute the logical steady state resulting from the input stimuli

by propagating input signals along logical (hyperarc) connections
(Klamt et al, 2006). Whether or not we can resolve a complete and
unique logical response of all nodes for a given set of input stimuli,
depends on the functionality of positive- or negative-feedback loops in
the network (e.g., negative-feedback loops may prevent the establish-
ment of a logical steady state). If the state of a readout is undetermined
(i.e., if no unique logical response for this node can be resolved), the
resulting model is penalized as if it were incorrectly predicting the data
for that experiment. The simulation can be extended to multiple time
points by considering that each time point is a characteristic time scale
where a certain pseudo-steady state is reached; however, this is not
implemented in the current work. Boolean models can be used to
analyse cyclic attractors, using either synchronous or asynchronous
updates (Thomas and D’Ari, 1990). Cyclic attractors are associated
with oscillatory behaviour, which is absent from our data set, and we
have, therefore, not explored the use of CNO with cyclic attractors yet.
Each node has an associated default value corresponding to the
‘resting’ network (no stimuli present), which is 0 (inactive) for all
nodes except for IkB and GSK3 (which act as negative regulators that
are on at the start of the experiment). The value of a node that has no
input is given by its default value, but the value of all other nodes is
overwritten by signals propagated from the inputs.

Computer routines to perform simulations (in particular, to
compute logical steady states that are generated by a certain
combination of stimuli and inhibitors) are original to this work or
are adapted from CellNetAnalyzer (Klamt et al, 2007).

Reduction of search space using Sperner systems

For n nodes upstream of a given node (with fixed sign for each edge),
there are h(n)¼2n�1 possible hyperedges (one for every subset of
{1,y,n} nodes minus the empty set). Combining h hyperedges, we
can construct gðnÞ ¼ 2h ¼ 22n�1 Boolean functions; each of these
functions can be represented by a binary vector indicating which
hyperedge is part of the function (1) and which is not (0). g(n)
corresponds to the number of possible vectors of length h. However,
many of those Boolean functions will be redundant in the sense that
some of them have the same truth table.

As an example, let nodes X and Y lie upstream of node A, that is, X
and Yare predecessors of A. Then we have n¼2 inputs from which we
can construct h¼3 hyperedges: (h1) X-A, (h2) Y-A, and (h3) (X
AND Y)-A. One function we can construct consists of (h1) X-A plus
(h3) (X ANDY)-A (that is,‘X OR (X ANDY) leads to A’). However, this
Boolean function has the same truth table as the one consisting solely
of (h1) X-A. Overall, only five possible truth tables exist despite the
presence of eight Boolean functions, making three of them redundant
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(h1þ h2, h1þ h3, and h1þ h2þh3). Optimization of the objective
function (equation (1) in the main text) is made considerably more
efficient by omitting redundant Boolean functions.

Formally, in the SOP representation, redundant Boolean functions
may occur if the terms (the AND connections corresponding to the
hyperedges) contain more variables than necessary and can thus be
simplified by removing some of the variables contained in them.
Irreducible terms are called prime implicants. In the example, ‘X OR
(X ANDY) leads to A’ is redundant as it can be replaced by ‘X leads to A’
(the term ‘X AND Y’ is not a prime implicant because ‘X’ is a subset).
Accordingly, we say that a set of hyperedges is non-redundant if it
encodes a non-redundant Boolean function (consisting only of prime
implicants) and this is true if and only if there is no hyperedge whose
tail contains a tail of another hyperedge, that is, if they form a Sperner
system (Bollobas, 1986). Therefore, during the optimization routine,
instead of checking all subsets of possible hyperedges (2h ¼ 22n�1), we
restrict ourselves to checking only those that form a Sperner system.
There is no general expression for the number S(n) of Sperner systems,
but as an example, for n¼1,2,3,4,5, the number of Sperner systems
S(n) are S(1)¼1, S(2)¼4, S(3)¼18, S(4)¼166, and S(5)¼7579. In
contrast, the number of all SOP representations of the Boolean
functions is g(1)¼2, g(2)¼8, g(3)¼128, g(4)E3 �104, and g(5)E2 �109.

We have developed an extension of our optimization procedure that
considers Sperner systems within CNO. To implement this concept,
CNO defines a vector S. Each element si can have a value 0, 1,y, S(ni),
where S(ni) is the number of Sperner systems for the node i. Each value
of the vector S can be mapped to a value of the vector P in equation (1),
so that the Sperner hypergraphs can be evaluated and therefore the
optimal model can be identified.

In the networks in this paper, the use of Sperner systems reduced the
search space to approximately the square root of the original size.

Genetic algorithm for optimization

To search over the possible models encoded in the superstructure
when enumeration is not feasible, we implemented in CNO a
previously described genetic algorithm (Goldberg, 1989) according
to the following rules:

(1) Start: A population of model variants (encoded in vectors P; see
equation (1)) is initialized. We explored different initialization
strategies, including random networks, a full superstructure, and
an empty model, obtaining the same results for all cases.

(2) Fitness: The fitness of each individual (model variant encoded in
a vector P) is determined as a function of its objective function Y.
We explored two methods to assign fitness: Ranking, where the
fitness is based on the rank of the individual in the population in
terms ofYand Proportional with sigma scaling, where the value is
proportional to Y and scaled to the standard deviation to avoid
premature convergence. Preliminary studies showed both meth-
ods to yield similar results, but Ranking was slightly better, and
that is what we chose.

(3) Generation of new population: We used the following steps:
(a) Selection: Individuals are selected from the population to
reproduce, assigning a higher chance of reproduction to indivi-
duals with higher fitness using Stochastic Uniform Sampling
(Mitchell, 1998). (b) Crossover: Individuals mate (following
uniform crossover) so that the offspring inherit certain parts of the
vector P from each parent. (c). Mutation: Individuals can mutate
at specific loci in the chromosome (vector P). We explored
different values for the mutation probability without an effect on
the solution; most results were obtained with a probability 0.5.

(4) Replace: A new population replaces the old one. We implemented
elitism, where the five best individuals of each generation were
directly passed onto the next generation.

(5) Test stop criteria: Several stop criteria are checked for each
generation, including tolerance from a perfect fit, as well as
number of generations without improvements in the fit of the best
individual (stall generations). We chose a number of stall
generations (10 000) large enough to make sure that the solution
reached was stable.

(6) Loop: If any of the stop criteria are fulfilled, the optimization
stops. Otherwise, it iterates to step 2.

(7) Post-processing: A genetic search does not necessarily yield the
lowest value of the objective function, so a post-processing step is
performed where individual interactions are pruned: We evaluate
exhaustively the effect that removal of individual interactions has
on the value of the objective function. If the fit to data does not get
worse, the interaction is removed from the final solution to
minimize model size.

Construction of a signed directed graph of growth
and inflammatory signalling

Our model of inflammatory and growth signalling pathways in liver
started with a graph assembled from pathways in the Ingenuity IPA
software (www.ingenuity.com) that summarize the relevant literature
(see Supplementary Table 1 for the full names of the abbreviations). As
it is based largely on biochemical and molecular data, the Ingenuity-
derived graph is signed and directed. However, the description of
IRS-1 biology in Ingenuity is poor and we, therefore, added additional
information from the literature as follows: the species IRS-1 as
described in Ingenuity was considered to describe tyrosine phosphor-
ylation of IRS-1, and was renamed accordingly as IRS-1Y. The
activation of IRS-1Y, which is dependent on IGF-1 stimulation, was
considered to be inhibited if the serine site was phosphorylated
(Hotamisligil et al, 1996; Saltiel and Kahn, 2001). We therefore added
a node (IRS-1S) for the serine site of IRS-1. IRS-1S, in turn, was
considered to be dependent on mTOR activation (Ozes et al, 2001).

Data generation

The design and execution of multiplex experiments is described
elsewhere (Alexopoulos et al, 2009, in preparation). Briefly, HepG2
cells were plated in 96-well plates coated with collagen type-I (Becton
Dickinson), with 100ml phenol-free Williams’ Medium E (WEM;
Sigma-Aldrich) with media supplements and fetal calf serum. Cells
were cultured overnight on collagen, starved for 6 h in 180 ml of WEM
lacking serum, and then exposed to kinase inhibitors and ligand cues.
Cells were lysed in 90ml of manufacturer’s lysis buffer (Bio-Rad) and
intracellular signals were measured using high-throughput sandwich
immunoassays (Luminex xMAP assay; Austin, TX, USA). Specifically,
a 17-plex phospho-protein bead set from Bio-Rad was used to assay the
phosphorylation of the following proteins: p70S6K (T421/S424), CREB
(S133), p90RSK (T359/S363), p38 (T180/Y182), MEK1 (S217/S221),
JNK (T183/Y185), HSP27 (S78), ERK1/2 (T202/Y204, T185/Y187),
c-Jun (S63), IRS-1 (S636/S639), STAT3 (Y705), IkB-a (S32/S36),
histone H3 (S10), p53 (S15), GSK-3a/b (S21/S9), and AKT (S473). The
training data set can be downloaded as a MIDAS file (Saez-Rodriguez
et al, 2008) from http://www.cdpcenter.org/resources/data/alexopou-
los-et-al-2009/ and the test data set from http://www.cdpcenter.org/
resources/data/saez-rodriguez-et-al-2009/ or from the article’s webpage.

Reagents

Ligand cues
TNFa, IGF-1, and TGFb1 were obtained from PeproTech; LPS and IL-6
were from Sigma-Aldrich; IL-1a and TGFa were from R&D Systems;
and IFN-g (hIFN-g) was from Roche Diagnostics GmbH. Other than
LPS, TLR ligands were obtained from InvivoGen as follows: Pam3CSK4
for TLR1/2; HKLM for TLR2; poly(I:C) for TLR3; Salmonella
typhimurium flagellin for TLR5; FSL1-Pam2CGDPKHPKSF for TLR6/2;
imiquimod for TLR7; ssRNA40 for TLR8; and ODN2006 for TLR9.

Kinase inhibitors
Inhibitors for IKK2 (BMS-345541), PI3K (ZSTK474), GSK3b (inhibitor
XI), JNK (SP600125), and mTOR (rapamycin) were purchased from
Calbiochem.

Inhibitors for p38 (PHA818637) and MEK (PD325901) were kindly
provided by Pfizer Pharmaceuticals.
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