A hierarchical control structure

for a class of timed discrete event systems

Danjing Li
Magdeburg

von der Fakultit IV - Elektrotechnik und Informatik
der Technischen Universitit Berlin
zur Erlangung des akademischen Grades

Doktorin der Ingenieurwissenschaften
— Dr.-Ing. —

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Manfred Opper
Berichter: Prof. Dr.-Ing. Jorg Raisch
Berichter: Prof. Dr.-Ing. Thomas Moor

Tag der wissenschaftlichen Aussprache: 28. November 2008

Berlin 2008
D 83

Contents

1 Introduction

1.1
1.2
1.3

2.1
22

2.3

24

2.5

2.6

Discrete event Systems
Literature reviewo e e e e

Max-plusalgebra

Hierarchical control structure for noncyclic DES

General control structureo
Upper level — supervisory block
22,1 Terminology
2.2.2 Max-plus algebra models — implicit and explicit
2.2.3 Feasible plans and feasible planset
2.2.4 Online plan optimisation
C/Dblock e
Lower level — implementationblock
241 EPETandLNET
2.4.2 Dijkstra’s algorithm and a new intuitive algorithm
Example
25.1 Feasibleplans. o oL
2.5.2 Closed loop simulationresults

Conclusions e e e

3 Hierarchical control structure for cyclic DES with a conservative condition 43

3.1 Conservative conditiono 44
32 Max-plusmodel 45
3.3 Optimisation on theupperlevel 47
3.4 Implementationlevel 50
3.5 Simulation. 53
3.6 Conclusion 56
4 Hierarchical control structure for general cyclic DES 57
4.1 Negativeorderarcs v v i it e e 58
4.1.1 Introduction of negative orderarcs 58

4.1.2 Control arc combinations on a shared resource 59

42 Feasibleplans 61
4.3 Strictly cyclic systems with negative orderarcs 63
4.3.1 Basic idea — eliminating negativeorder 63

4.3.2 Model representation 66

44 PFeasibleplanlist 68
4.4.1 Circuit order checkingmethod 68

4.4.2 Determining the maximum number of cycles to be checked 72

4.4.3 Feasibility checking procedure 73

444 Big-matrix checking method 75

4.5 Listsetupdating 76
46 Upperlevelmodel 77
47 Plan listoptimisation 84
48 Lowerlevel 85
4.9 Simulation. L 88
4.10 Conclusion e 90

il

5 Case study: high throughput screening plant

5.1 Problem description

5.2 Control of an HTS plant

5.2.1 Running mode: strictly cyclic vs. non-strictly cyclic

5.2.2 Reacting to disturbances

5.3 Conclusion

6 Conclusion

6.1 Summary

6.2 Future work

A Proofs

A.1 Shortest path and minimum energy trajectory

A.2 Shortest path of subpolygon P; of P

B Notation

iii

93
94
97
97
100
103

104
104
105

107
107
109

116

Zusammenfassung in deutscher
Sprache

Ein ereignisdiskretes System (“discrete event system”, DES) ist ein dynamisches System,
dessen Verhalten durch eine Ereignisreihenfolge beschrieben werden kann. Ereignisse
entsprechen dem Beginn oder Ende von Aktivitdten. Die Studie solcher Systeme hat in
den letzten Jahren immer mehr an Bedeutung gewonnen. In der heutigen, von digitalen
Systemen geprigten Welt finden sich viele Beispiele fiir ereignisdiskrete Systeme, bei-
spielsweise in Bezug auf Analyse, Optimierung und Steuerung von flexiblen Fertigungs-
systemen, Verkehrssystemen, Datenbankverwaltungssystemen, Kommunikationsnetzen,

Logistiksystemen, chemischen Prozessen und weiteren Anwendungen.

Viele ereignisdiskrete Systeme haben eine vorbestimmte Reihenfolge der Aktivitéten.
In der Realitit treten hidufig Storungen auf, so dass die vorbestimmte Reihenfolge ihre
Optimalitét verliert. Die derzeitigen Herausforderungen bei der Steuerung und Regelung
komplexer ereignisdiskreter Systeme umfassen die Koordination der Teilsysteme (“sub-
plants”, z. B. Ziige in einem Eisenbahn-Netz, Produkte in flexiblen Fertigungssystemen)
und die sachgemif3e Behandlung von Stérungen wie beispielsweise Blockierung oder me-
chanischer Ausfall. Unter solchen Umstédnden ist es wichtig, dass sich die Koordination
und die Implementierungsstrategie dem dynamischen Umfeld anpassen. Angeregt durch
die Einfachheit und die Wirksamkeit der Methode der Max-Plus-Algebra fiir ereignisdis-
krete Systeme, wird in dieser Arbeit ein neues hierarchisches Steuerungs- und Regelungs-
verfahren fiir ereignisdiskrete Systeme mit einem generischen Ansatz vorgeschlagen.

Fiir die Regelung von Max-Plus-Systemen sind hauptsédchlich zwei Ansédtze von Bedeu-
tung: Der erste Ansatz ist die Methode “model predictive control” (z. B. de Schutter und
van den Boom [87]). Der Hauptvorteil dieses Ansatzes ist die Moglichkeit, eine breite
Klasse von Zielfunktionen vorgeben zu konnen. Allerdings ist der erforderliche Rechen-

aufwand sehr hoch. Der zweite Ansatz ist die optimale Regelung auf Basis der “residua-

v

tion theory” (z. B. Cottenceau et al. [24, 25]). Dieser Ansatz findet sich in der Literatur
auch unter der Bezeichnung “Just-in-Time control” (z. B. Menguy et al. [71, 72]). Mit
der besonderen “Just-in-Time”-Anforderung als Zielfunktion kann die optimale Steue-
rung durch einfache algebraische Berechnungen ermittelt werden. Allerdings ist “Just-in-
Time” fiir viele Anwendungen als Zielsetzung nicht zweckméBig. In dieser Arbeit wird ei-
ne alternative, energieoptimale Zielfunktion fiir die Regelung spezifiziert. Im Kontext der
in dieser Arbeit betrachteten Anwendung ist dieser Ansatz giinstiger. Er erlaubt es den-
noch, die Vorteile der Max-Plus-Algebra (kompakte Darstellung, schnelle Berechnung)

Zu nutzen.

Die meisten in der Literatur betrachteten deterministischen Max-Plus-Algebra-Systeme
sind zeitinvariant. Ublicherweise treten dabei nur Systemmatrizen mit positiver Ordnung
auf. Dies bedeutet, dass der Zeitpunkt eines Ereignisses nur von den Ereignissen dessel-
ben Zyklus oder von Ereignissen friiherer Zyklen abhingen kann. Es gibt jedoch auch
Anwendungen, bei denen Ereigniszeitpunkte von Ereignissen spditerer Zyklen abhingen.
Diese Situation entspricht Systemmatrizen negativer Ordnung im Max-Plus-Algebra-
Modell. Bisher gibt es keine Studien zur optimalen Steuerung zeitvarianter Systeme mit
Systemmatrizen negativer Ordnung. Dieses Thema wird deshalb hier diskutiert.

In dieser Arbeit wird eine neue hierarchische Reglerarchitektur fiir eine Klasse ereignis-
diskreter Systeme ohne und mit zyklischen Eigenschaften vorgeschlagen. Die obere hier-
archische Ebene basiert auf einem Max-Plus-Algebra-Modell und aktualisiert anhand von
Information iiber den Systemzustand in Echtzeit die optimale Reihenfolge der Aktivititen.
Die aktualisierte Reihenfolgeinformation wird in der unteren Ebene in ein Referenzsi-
gnal iibersetzt, anhand dessen das physikalische System geregelt werden kann. Durch die
Ausnutzung der auf der unteren Ebene verbleibenden Freiheitsgrade wird der Gesamt-
energieverbrauch verringert. Die eingefiihrte Methode nutzt die zur Max-Plus-Algebra
duale Min-Plus-Algebra. Ein neuer, intuitiver Algorithmus beschleunigt die Berechnung
und erzeugt die global optimalen Referenzsignale. Diese Arbeit konzentriert sich auf die
Anwendung auf Schienenverkehrssysteme. Der vorgeschlagene Regelungsentwurf kann
jedoch ebenso auf andere ereignisdiskrete Systeme, wie zum Beispiel “High-Throughput-
Systeme”, flexible Fertigungssysteme, oder chemische Batchprozesse angewendet wer-

den.

Nach einer Einfiihrung in Kapitel 1 beschreibt Kapitel 2 die vorgeschlagene Reglerstruk-
tur im Allgemeinen und zeigt auf, wie sie fiir nicht-zyklische DES (d. h. fiir ereignisdis-
krete Systeme mit nur einem Zyklus) bei Schienenverkehrssystemen funktioniert. Kapi-
tel 3 erweitert die in Kapitel 2 eingefiihrte hierarchische Reglerarchitektur auf eine Klasse

ereignisdiskreter Systeme mit zyklischer Wiederholung. Kapitel 4 befasst sich mit dem
Regelungsproblem fiir zyklische ereignisdiskrete Systeme mit weniger einschriankenden
Bedingungen als im vorhergehenden Kapitel: Ereignisse in ein spiteren Zyklus diirfen
vor Ereignissen in den fritheren Zyklen stattfinden. Diese Eigenschaft wird im Max-
Plus-Modell durch Abhiéngigkeiten (Steuerkanten) “negativer Ordnung” représentiert.
Zusitzlich wird in Kapitel 5 die vorgeschlagene Reglerarchitektur auf ein modifiziertes
Schedulingproblem aus dem Bereich des “High-Throughput-Screening” [69] angewandt.

Vi

Chapter 1

Introduction

1.1 Discrete event systems

A Discrete Event System (DES, for more information on DES, see e. g. [12]) is a dynamic
system whose behaviour can be described by a sequence of events. Events correspond
to starting or ending of some activities. For example, an event may represent a batch
entering a resource, a product leaving a machine, or a disturbance occurring. The study
of such systems has become increasingly important and popular in recent years. Many
Examples of DES can be found in today’s digital world, including the industries related
to analysis, optimisation and control: flexible manufacturing systems, traffic systems,
database management systems, communication protocols, logistic service systems, and

chemical processes as well.

Many discrete event systems have predefined orders of activities. The activities either re-
peat themselves periodically or operate without any regular pattern. As a result, there are
two corresponding DES operation styles in general. The former operation style benefits
from the simplicity of the structure and the steady progress. Therefore it is widely used
in many application fields including manufacturing systems, chemical batch plants and
transportation systems. On the other hand, the latter includes more degrees of freedom
and may therefore, at least in principle, make better use of resources. In particular, Max-
plus algebra is a powerful modelling and analysis tool for discrete event systems in which

the order of competing activities on shared resources have been predetermined.

In reality, disturbances often happen in a way that the predetermined order loses its supe-

riority. Based on online information, the control system should then update the optimal

order in real time. The updated order information is passed to the lower level where it is
translated into a reference signal for the physical system to be controlled.

Fundamental difficulties in designing optimal control structures for both cyclic and non-
cyclic DESs motivate us to look for new research avenues in max-plus-based DES op-
timisation techniques. In this thesis, we particularly focus on the application of railway
transportation systems. It should be noted that the proposed control scheme can also be
applied to other discrete event systems such as high throughput systems, flexible manu-
facturing systems and chemical batch processing.

To effectively extend max-plus algebra based DES control into more generic settings, it
is beneficial to first review the general concept of max-plus algebra and its current role in
the area of discrete event system control.

1.2 Literature review

Max-plus algebra is a convenient tool to model and analyse timed DES. For technical
details, the reader is referred to the corresponding text books [3, 26, 50].

The initial motivation of max-plus algebra arises in modelling and analysis of the time
behaviour of DESs. The DES timing often involves maximum and addition operations.
The equations describing the behaviour of the system are nonlinear in the conventional
algebra, but are linear in the sense of max-plus algebra. As Gaubert and the Max Plus
working group point out in [39], max-plus algebra originated in the late fifties or even
earlier, and developed rapidly in the sixties, with contributions by Cuninghame-Green,
Vorobyev, Romanovskii, and more generally within the Operations Research community
on path algebra. Contributions to max-plus algebra can also be found under the head-

ings as “path-algebra”, “minimax algebra” and “dioid”’[20]. For years, a large number of

studies on max-plus algebra have been published.

The most studied and most important class of problems relates to the eigenstructure in
the sense of max-plus algebra. For example, the (max,+) Perron-Frobenius Theorem,
dealing with the eigenvalue determination for an irreducible matrix was proved by, for
instance, Romanovskii [83], Cuninghame-Green [26], Zimmermann [105], Gondran and
Minous [43], Baccelli et al. [2], Bapat et al. [7, 8] and Akian et al. [1]. The common way
to compute the eigenvalue relies on Karp’s Algorithm [56]. Many algorithms based on

Karp’s algorithm have been proposed, for example, by Megiddo [70], by Karp and Orlin

[57], by Young et al. [103], by Hartmann and Orlin [48], by Ito and Parhi [54], and by
Dasdan and Gupta [29]. The max-plus version of the Howard Algorithm, which is well
known in stochastic control (see e. g. [31]), leads to a very different eigenvalue computa-
tion method, see Cochet-Terrasson et al. [17]. The Power Algorithm, proposed by Braker
and Olsder [11], Elsner and van den Driesche [33], and Subiono and van der Woude [92],
computes the eigenvalue through computing the max power of the matrix. Furthermore,
based on Karp’s formula, Elsner and van den Driessche [34] modify the Power Method.
Cuninghame-Green and Yixun [28] and Olsder et al. [78] transform the graph theoretic
approach of the Karp algorithm into a linear program to calculate eigenvalue and eigen-
vectors. Besides the above algorithms, Van der Woude [97] provides an approach from
a different point of view. It resembles the well known simplex method in linear pro-
gramming. As an extension, Lahaye et al. [60] analyse the spectral problem of max plus
systems with periodically varying coefficients. Van der Woude and Olsder give a com-
plete proof of the general formulation of the spectral theorem in [98]. For the eigenvalue
problem of a reducible matrix, related results can be found in Wende et al. [101], Bapat
et al. [7, 8]. Finally, Dasdan and Gupta [29] compare the efficiency of Karp’s algorithm
and some other algorithms; Soto y Koelemeijer [102] studies the relationships between

the Power Algorithm and the Howard Algorithm.

Another important aspect is the residuation theory in the max-plus algebra context. Dis-
cussions from the system theoretic point of view include the work by the Max Plus work-
ing group [79], Cohen et al. [21], Gaubert et al. [39]. Short reviews of the interesting
problems within max-plus algebra can be found in [22, 27, 39, 81]. Olsder and colleagues
[75, 77] provide certain stochastic extensions in the context of max-plus algebra. Work in
this area has also been reported by Resing et al. [82], by Baccelli [2, 6], by Mairesse [66],
and by Heidergott et al. [51].

In a number of discrete event systems arising in operations research, control theory, com-
puter science, etc., the state evolution involves not only the maximum operation and ad-
dition, but also the minimum operation. The concept of min-max functions is introduced
in [20, 26, 47, 76] to describe the dynamic behaviour of such systems. Furthermore, Gu-
nawardena [46], Gaubert and Gunawardena [38], Cochet-Terrasson et al. [18, 19], van
der Woude [96], van der Woude and Subiono [99], Gavalec [40] analyse the dynamic
behaviour of min-max-plus systems indicated by systems’ eigenvalue or cycle time. An
algorithm which is similar to the Howard Algorithm in [17] is proposed by Cheng and
Zheng [15]. The Power Algorithm for min-max-plus systems is proposed in Suiono and

van der Woude [92]. Jean-Marie and Olsder [55] extend the concept of min-max-plus sys-

tems to stochastic min-max-plus systems. Recently, Cheng and Zheng [16] have provide
an algorithm to solve min-max inequalities which represent timing verification problems.

Application areas of max-plus algebra include computer communication systems [5],
telecommunication networks, parallel processors [13], robotic systems [4, 58, 100], man-
ufacturing systems (Chen et al. [14] apply max-plus algebra to a hot-metal rolling serial
production line, other applications include Di Febbraro et al. [35, 36], T.-E. Lee [61], J.-W.
Seo and T.-E. Lee [90], Zhu et al. [104], Elmabhi et al. [32]), chemical batch plants [84] and
transportation systems, see e. g. Car/Bus traffic [64, 73], train traffic [30, 62, 63, 68, 89].
Goverde and Odijk [45] propose an analytical tool called PETEP (Performance Evalu-
ation of Timed Events in Railways) to assess rail network performance indicators in a

deterministic setting.

Cohen et al. [20] discuss the relation between systems theory and max algebra. As in
many applications, a lot of work has been focused on performance analysis and, in par-
ticular, the performance of periodic systems. Consequently, the notions of eigenvalue and
eigenvectors in max-plus algebra sense play an important role. As Gaubert et al. claim
in [39]: “one might argue that 90% of current applications of (max,+) algebra are based
on a complete understanding of the spectral problem.” The concepts of stability, con-
trollability, reachability and observability have been discussed for example by Cohen et
al. [23], by Spacek et al. [91], by Gazarik and Kamen [41]. Starting from the late 1990s,
more attention was paid to control problems by Prou and Wagneur [80], Cottenceau et
al. [25], and, in the context of transportation networks (which will also be the main focus
of application in this thesis), for example, by de Vries et al. [30], Heidergott and de Vries
[49], de Schutter et al. [89].

There appear to be two main approaches for solving control problems for max plus sys-
tems. The first approach is model predictive control, studied in de Schutter and van den
Boom [87], van den Boom et al. [95], van den Boom and de Schutter [93, 94]. This control
approach has also been extended to min-max-plus systems [85, 86, 88]. The main advan-
tage of this approach is that it allows to specify a wide class of performance objectives.
However, the required computational load is heavy. The second approach is residuation
theory based optimal control as discussed in Cottenceau et al. [24, 25], Lahaye et al. [59].
This approach also appears under the names of “Just-in-Time control”(see e. g. Menguy
et al. [71, 72], Maia et al. [65]), “Internal model control” (see e. g. Boimond and Ferrier
[10]) and “Greatest subsolution method” (see Masuda et al. [67], Goto et al. [44]). With
the specific “Just-in-Time” performance requirement as the control objective, the optimal
control can be derived from simple algebraic calculations. Apparently, “Just-in-Time” is

not always the appropriate performance target for many applications. In this thesis, an
alternative, Energy Optimal Control requirement will be specified as an objective. This
makes more sense in the context of the application studied in this thesis while still taking

advantage of the simplicity of max plus algebraic calculations.

The most studied deterministic max-plus algebra systems are time invariant. Time varying
systems, i. €. systems whose parameters may change as functions of time while the system
structure remains unchanged have been investigated in e. g. Lahaye et al. [59, 60], Masuda
et al. [67] and van den Boom et al. [94]. A common feature for most investigated cyclic
systems is that only system matrices of Non-negative Order appear. This implies that the
timing of events only depends on events in the same or previous cycles (see Section 3.2).
Nevertheless, in many applications, certain events in earlier cycles are desired to depend
on events in later cycles, which corresponds to Negative Order system matrices. To the
best of our knowledge, the only study dealing with negative order system matrices for
time invariant systems is by Geyer [42]. Up to now, there are no studies of time varying
systems involving negative order system matrices and their optimal control. This topic

will therefore be discussed in this thesis.

1.3 Max-plus algebra

The basic mathematical theory of max-plus algebra used in this thesis is briefly presented
in this section. For further details on max-plus algebra and its properties, the reader is
referred to the textbooks [3, 26].

Definition 1 (Max-plus algebra) Max-plus algebra [3, 26] is the set R,,,,, = RU{—00},
endowed with two operations: addition @& and multiplication ®. Addition @ is defined
to be the maximum of two elements in conventional algebra, while multiplication ® is

defined to be conventional addition, i.e. Va,b € R, :

a®b = max(a,b), (1.1)
a®b = a+b. (1.2)

As in conventional algebra, the multiplication symbol is sometimes omitted and a ® b is
written as ab. The additive identity (neutral element of addition) in max-plus algebra is
—00, also denoted as €. The multiplicative identity (neutral element of multiplication) in

max-plus algebra is 0, also denoted as e:
Va € Ry, a®e=€da=a.
Va e Ry, a Qe=eQ@a =a.

Similar to conventional algebra, some important properties also hold in max-plus algebra:

Associativity of addition:

Va,b,c € Ry, @®b)Dc=a® (bdc).

Commutativity of addition:

VYa,b € Ry, a®b=>b&a.

Associativity of multiplication:

Va,b,c € Ryyyr, @®D)®c=a ® (b Q).

Distributivity of multiplication over addition:
Va,b,c € Ryux, @®b)@c=@®c)® (b c),
VYa,b,c € Ryux,c @ (a@®b)=(c®a) D (cRDb).
Matrix addition and multiplication in max-plus algebra are defined respectively as:

max >

m
Cij=(A®B);; =P A ®By; = max(Aik + Byj), A € RIXm B e Rmxn ¢ g RIxn

max > max:*
k=1

The power of a square matrix A is:

A ARA®R---®A .

k times

The identity matrix in max-plus algebra has the form of:

The null matrix in max-plus algebrais N, N;; = —o00 .

A very typical and important max-plus algebra problem is the spectral problem:
AQRuv, =1 R v,.

Similar to conventional algebra, A and v, are called eigenvalue and eigenvector of the

nxn

square matrix A € R} "",

respectively.

In the following, we need the notion of an irreducible matrix. A directed graph G [3] can
be defined as a pair (V, E), where V is a set of elements called vertices and where E is a
set the elements of which are ordered pairs of vertices, called edges. According to graph
theory, for any matrix A € R!'*", there is a corresponding graph G (A) whose weighted

incidence matrix is A: the weight of the edge from vertex j to vertex i takes the numerical

value of A;;. If A;; = e, the corresponding edge does not exist.

Definition 2 (Irreducible matrix) [/01] Let G(A) be a graph whose weighted incidence
matrix is A. If G(A) is strongly connected, i. e. from any node to any other node there
is a path, then A is called irreducible. If G(A) is not strongly connected, A is called

reducible.

Theorem 1 ((max,+) Perron-Frobenius Theorem) [39] An irreducible matrix A €

R*" has a unique eigenvalue,

n
. 1
L= EPra,
j=1
where tr (A7) is the trace @?zl(Aj)ii- In conventional algebra, this can be written as

Ai1i2+"'+Aiji1
A= max max -

I<j<niy,,ij J

and represents the maximal cycle mean of A.

Definition 3 (Min-plus algebra) Min-plus algebra is the set R,;;,, = R U {400}, en-
dowed with two operations: addition @' and multiplication ®'. Addition @' is defined
to be the minimum of two elements in conventional algebra, while multiplication ®' is
defined to be conventional addition, i.e. Va,b € R,,ij, :

a® b = min(a,b), (1.3)
a® b = a+b. (1.4)

For matrices A € RIX™ B e R™*" multiplication is defined by

max > max °
m
(A® B)j = @/Aik Q" Byj = H}(in(Aik + By;j). (1.5)
k=1

The min-max-plus algebra consists of the set R,,,, = R U {400, —0o}, endowed with

operations @, ®, @', ® and the additional rules:

(—00) ® (+00) = —00, (—00) ® (+00) = +o0. (1.6)

The following properties and inequalities hold if the involved matrices and vectors have
consistent dimensions (“—”’ is the conventional minus):

Ifx>y, thenA®x>ARy,AQ x>AR Yy, (1.7)

AR(BQR' C)<(A®B)Q'C, (1.8)

A®' (B®C)=(A®' B)®C, (1.9)

AR(-AT)® B)<B<A® (-AT)®B), (1.10)

AR (A @ x<x < (A1) ® A ®x, (1.11)

x® (AR (—AT) <x <x®((-A") & A). (1.12)

Definition 4 (Greatest subsolution) For A € R ", x e Rl b e R" . the greatest

subsolution X of equation Ax = b is defined as
X = max{x|Ax < b}, (1.13)

where max(x, y) is a vector with elements max(x;, y;) and “<” is taken elementwise.

Lemma 1 The greatest subsolution x of Ax = b is

x=(—-AT)Qb. (1.14)

Synchronisation and concurrency are two basic phenomena of DES dynamics. Synchro-
nisation requires the fulfilment of several conditions. Fig. 1.1 is a simple synchronisation
example. The happening of event ¢ depends on both happenings of event a and event b.
A discrete event system exhibiting only synchronisation properties can be easily mod-
elled as a linear system using max-plus algebra. For the system shown in Fig. 1.1, the
happening time of event c is:

.=2Qt; ®2R1.

2
Cc

Figure 1.1: Synchronisation

Concurrency corresponds to for example, the competition for shared resources or con-
fliction. For systems also exhibiting the concurrency aspect, an additional high level
scheduling module may be included.

Chapter 2

Hierarchical control structure for
noncyclic DES

For complex discrete event systems, challenging control issues include coordination of
sub-plants (for example, trains in rail networks, products in flexible manufacturing sys-
tems) and appropriate handling of unexpected or uncertain events such as blockings, me-
chanical failure. Under such circumstances, it is important that the coordination plan and
its implementation strategy should adapt to the dynamic environment. Inspired by the
simplicity and the effectiveness of max-plus algebra models for discrete event systems,
a new hierarchical planning and control scheme for DES control in a generic setting is
proposed in this research.

This chapter describes the proposed control structure in general and explains how it works
for noncyclic DES in railway transportation systems, i.e. for a DES with the feature of
“running only one cycle”. A general introduction of the proposed scheme is given in
Section 2.1. Sections 2.2-2.4 describe each part of the scheme in detail. Simulation results
for a noncyclic train-track system example are shown in Section 2.5. Finally, Section 2.6

provides the chapter conclusion.

2.1 General control structure

The proposed hierarchical control structure for discrete event systems is shown in Fig. 2.1.
This architecture can be used to solve DES control problems with or without cyclic fea-
tures. In general, it is composed of a two-level structure along with an independent C/D

10

Supervisory Block
(Max—plus model) ™

plan (plan list)
specification for
current cycle(s)

T upper level C/D
A
Implementation Block
(Min—plus)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, lower level
controlled variable|
Plant

- O
unexpected eve

Figure 2.1: Control structure

(continuous/discrete) module which transforms information from the continuous plant to
the timed DES framework. On the upper level, a max-plus algebra model is introduced to
determine the sequence of events (i. e. the time optimal plan for noncyclic systems, or, the
time optimal plan list for cyclic systems) which optimises the user-designated objective
function. It also provides the event time specifications needed by the lower level. On the
lower level, min-plus algebra not only coordinates the behaviour of sub-plants but also
minimises energy consumption. In brief, the control system has a hierarchical structure:
the upper level is a supervisory block, which produces the optimal plan or plan list for the
lower level. The lower level is an implementation block which operates on the basis of

the specifications generated by the upper level.

In most parts of this thesis, focus is on rail traffic DES applications. For such systems,
events correspond to specific trains crossing specific locations within the rail system. As
a result, a plan generated by the upper control level specifies the sequence of trains and
track segments where trains pass each other. The lower level generates velocity reference
signals for the trains to implement the given optimal plan. For other DES applications,
the terms “train” and “track (segment)” have of course to be replaced by different ones.

For example, in flexible manufacturing systems, “product” and “machine” can be used

11

instead. In a general context, “train” stands for “user” while “track (segment)” stands for

“resource”:
General context user resource
Train-track system train | track segment
Flexible manufacturing system | product machine
Chemical batch plant batch device / unit

2.2 Upper level — supervisory block

Max-plus algebra is a convenient modelling and analysis tool not only for cyclic systems
but also for systems with noncyclic behaviour. In this chapter, we will focus on the latter.
Before discussing the max-plus model on the supervisory level, appropriate terminology

for train-track systems is provided.

2.2.1 Terminology

N\

@ !
1
‘@
RN
@trainz train @

Figure 2.2: A simple train-track network

Consider the simple train-track network illustrated by Fig. 2.2, where two trains are trav-
elling along their tracks. This is pictured as a graph with nodes and arcs. Nodes signify
events where specific trains cross specific locations within the train-track system. For ex-

ample, node 1 and node 4 represent the starting events of train 1 and train 2 respectively.

12

Node 3 and node 6 represent the events of train 1 and train 2 arriving at their terminal sta-
tions. The arcs between the nodes represent the minimum time needed. For example, the
event represented by node 2 may not happen earlier than 5 time units after the event time
of node 1. The arc 21 (from node 1 to node 2) is a travelling arc representing minimum
train travelling times. The light grey part of Fig. 2.2 represents the crossing area, which
only one train can occupy at any instant of time in order to ensure safe crossing. Node 5
represents the event of train 2 entering the crossing area. Node 2 represents the event of
train 1 leaving the crossing area. A “control arc” (dashed arc from node 2 to node 5 in
Fig. 2.2) is also introduced. This control arc reflects a safety requirement: the earliest
time at which train 2 is allowed to enter the crossing area is 1 time unit after train 1 has
left it.

The time associated with an arc is called weight of the arc. The weights of the arcs can
be represented by matrices Ag; and Ag>. The elements of Ag; correspond to weights
of travelling arcs while the elements of Ay, correspond to weights of control arcs. For
example, the element (Ag1);; is the weight of travelling arc ij, i. e. the minimum travelling
time needed from node j to node i. If such an arc does not exist, the corresponding matrix
element is € = —oo which means that there is no time constraint from node j to node i.
Thus, in this thesis, the elements (Ag1);;, (A2)ij € RT U{—00, 0}. The matrices Ag; and
Aqp for the example shown in Fig. 2.2 can be represented as:

M M M M L M
A M N B~ M M

M M M M M M
M LW M M M M
~N ™M MM M™MM™ M
M M M M M M

>

S

Il
M M M M M M
M = M M M M
M M M M M M
M M M M M M
M M M M M M
M M M M M M

A path is a sequence of arcs connecting a sequence of nodes. When the initial and the
final node coincide, it is called a circuit [3]. The length of a path or a circuit is equal to
the number of arcs of which it is composed. The weight of a path or a circuit is the sum
of the weights of all arcs contained in the path or the circuit. For physically meaningful

systems, the graph does not contain circuits.

For systems with noncyclic behaviour, the supervisory block on the upper level will have
the goal of determining the optimal plan. A plan in general is a sequence of events.
Specifically, in train-track systems, a plan shows the sequence of trains and the track

segments where trains pass each other.

13

While determining the optimal plan is an online task, generation of all feasible plans can
be done offline. In this thesis, we assume that the network is not too large, so that the
complete set of feasible plans can be established. Once all feasible plans are given, it is

possible to select the optimal plan online and pass it to the implementation block.

2.2.2 Max-plus algebra models — implicit and explicit

For the train-track network shown in Fig. 2.2, let x; denote the event time for node i.

Then, x; is the earliest possible event time for node i, i. e. the lower bound of x;. Train 1

2

and train 2 start their trips at time 0. The input to the system is a vector u € Rj .

representing the earliest starting times: u = [0 0]7. The output of the system is defined

by the earliest possible arrival times of the trains, ¥ = [x3 56]T. It can be conveniently

computed by
[€ € € € € €] [€ € € € € €] e € |
S € € € € € € € € € € € € €
€ 4 € € € € € € € € € € € €
X = RX @ RX ® Qu, (2.1)
€ € € € € € € € € € € € € e
€ € € 3 € € € 1 € € € € € €
| € € € € T € | | € € € € € € | | € € |
€ € € € €
= [‘ } ® X, 2.2)
€ € € € € e
where X =[x x5 x3x, X5 £6]T is the earliest possible event time vector.
In general, (2.1) and (2.2) can be written as:
X = AnX® ApX @ Bu, (2.3)
Y = CX, (2.4)

where the elements of matrix Ao represent minimal travelling times, the elements of
matrix Ao, represent minimal times associated with control arcs and B, C are appropriate

input and output matrices.

Of course, we can combine the two matrices Ag; and Agp into one matrix:

Ao = Ao1 @ Apa. (2.5)

14

For noncyclic systems, the general max-plus model therefore has the following form:

X = AQX®B®u, (2.6)

Y = C®X. (2.7)

The appearance of X in the right hand side of equation (2.6) implies that the max-plus
model (2.6)-(2.7) is an implicit model. Repeated insertion of (2.6) into itself provides:
X = A)®(ARXPBRuU)PBQu

= Aj®X @ [A)® 1] ® Bu

= AJR(A)RX®BRu) ® [A)® I]® Bu

= AJRX O [Ai0 A I]® Bu

= AX®[A'®---® Ay ®1]® Bu, (2.8)

where 7 is the dimension of the square matrix Ag. It is also the number of nodes of the
network represented by Ag. Recalling the definition of “®” for matrices, we have

(ADij = (Ao ® Ao)ij = EP(A0)ik + (Ao))) (2.9)
k

i. e. the element (A%),- j 1s the largest weight of all paths with the following two properties:

1. The path is from node j to node i,

2. The length of the path is 2.

Similarly, the element (Ay);; is the largest weight of all paths from node j to node i with
length n. Furthermore, for a n-node network, if a path is of length n, then at least one
node appears twice in the path. Thus, for a n-node network, there must be a circuit in a
path of length # if the path exists.

For a physically meaningful system, the graph associated with Ay does not contain cir-
cuits, i.e. the largest weight of all paths of length n is €, i.e. Aj will only contain €

elements. In fact, we have

A§ = N,Vk > n. (2.10)

Therefore, in the absence of circuits, the last identity in (2.8) represents an explicit max-
plus algebra model:

X = A;®BQ®u, (2.11)

Y = CRX, (2.12)

15

where
A=A @ - @ Ag 1. (2.13)

Assume that the system input u consists of initial values of lower bounds for the state
vector X, i.e. u = X _in (see Section 2.3 for further information), then (2.11) and (2.12)

can be rewritten as:

X = AJ®B®X.in, (2.14)
Y = CQRA;Q@BQ®X.in. (2.15)

2.2.3 Feasible plans and feasible plan set

A complex train-track network usually contains track segments which are used by sev-
eral trains. For safety reasons only one train is allowed to occupy such a resource at
any instant of time. For each resource (track segment), there are several possible train
sequences, usually causing different combinatoric possibilities. Correspondingly, for the
whole system consisting of a number of trains, there are several feasible plans. For exam-
ple, while the control arc in Fig. 2.2 realises a special feasible plan, another feasible plan
is to make train 2 pass the crossing area before train 1 enters it. Of course, to model this
plan there is the need of adding nodes to the graph in Fig. 2.2. It is straightforward to find
the time optimal plan within the set of feasible plans by simulating the max-plus model
for each feasible plan.

In the following, it is shown by use of an example, how the set of feasible plans and their

max-plus models can be determined.

Matrix Ag; contains minimum travelling times for segments of the network. Clearly, these
times can be easily determined from the length of tracks and the achievable maximal speed
of trains, if acceleration and braking can be neglected, i. e. if it were possible for trains to
always move with maximal velocity.

On double-line track segments, passing trains will not interfere with each other. This
is different for single-line track segments, which can only be occupied by one train at
a time. So control arcs are necessary to ensure safe travelling of trains on these track
segments. The structure of the control arcs carries the information about the sequence
of trains. The weight of a control arc determines a possible safety time that should pass
between the trains’ movements. If two trains compete for the travel on one single-line

track, there are two possibilities: either train 1 or train 2 can go first. If a train-track

16

J
7
1

---0
0

N N

i ai b]_i i a b2§

Yo I
N A

Figure 2.3: A network with all possible control arcs

network includes several single-line track segments, the different combinations of those
possibilities generate different plans (with different Agzs). Of course, some of them could

be infeasible, namely cause blocking.

Fig. 2.3 demonstrates the directed graph of a simple network with two single-line track
segments and two trains, where train 1 moves from right to left and train 2 moves in
opposite direction. For single-line segment I, the control arc labelled a;, with a; > 0
represents the fact that train 2 may occupy this segment at the earliest a; time units after
train 1 has left it. The control arc labelled b; states the reverse sequence. Accordingly,
only one of those two arcs can exist in any one plan. Instead of erasing a non-existent arc
from a graph, we can also label it by €. Hence, by definition, non-existing arcs have weight
—oo. Similarly, in segment II, the arcs labelled a, and b, represent the two possibilities.
Table 2.1 shows all four combinations of the selection of arcs. Among these combinations,
the case a; > 0, b, > 0 causes a conflict (blocking), thus this is an infeasible plan. This

situation is illustrated in Fig. 2.4.

For large train-track network systems, we need a simple criterion to determine whether a
plan is infeasible or not. Fig. 2.4 shows that the conflict of combing a; > 0 and b, > 0
comes with a circuit in the directed graph. A circuit with a positive weight causes a
contradiction, because the events within the circuit would have to “happen some time
before they actually happen”. So the problem of determining infeasible plans can be

solved by checking for the existence of circuits.

Within the A matrix, the diagonal entry A (i, i) represents an arc from node i to node i
itself. If Ag(i, i) is not €, there is a circuit of length 1 containing node i. Consider now
the set of all circuits of length 2 containing node i. From the matrix product definition
under the max-plus scheme, A2 = Ay ® Ay, A(Z)(i , 1) represents the largest weight of any

17

Table 2.1: Combinations of control arcs

combination | segment where train 1 and train 2 pass plan
ap,a >0 .
b — b double-line track segment on the left of area I plan 1
1 =02 =€
bi,ay >0 :
b double-line track segment between area I and area Il | plan 2
ap =by =€
ai,br >0 . .
not feasible, see Fig. 2.4 /
bl =da) =€
bi1,by >0 . .
double-line track segment on the right of area II plan 3
ay =dadj) =€
twan1
@) m @)
@) O @) O
N N
3 aj bz 3
g @) O @)
© [N~ I ©
“train2

Figure 2.4: Combination of a; > 0 and b, > 0 causes a circuit

circuit of length 2 containing node i. Hence, if A(z)(i, i) is not €, there is at least one circuit
of length 2 containing node i. Similarly, if A’é(i ,1) is not €, there is at least one circuit
of length k from node i to node i. On the other hand, if there is a circuit, the possible
maximum length is n. In order to determine whether a plan is infeasible, we just need to

calculate Ag, k < n, in the max-plus sense. Then we have:

3k < n, Af(i,i) > € & Ag is infeasible. (2.16)

Correspondingly, for a feasible plan, considering (2.10), the following properties hold:
Vk,i € Z',k <n,i<n, AkG, i) =¢, (2.17)

VkeZ ,k>n, Af=N. (2.18)

Based on the set of max-plus models for all feasible plans, the supervisory block finds the
optimal plan by simulation. Note that this seemingly offline task usually should also be
resolved online so that the supervisory level can handle unexpected events promptly. The

18

Figure 2.5: Control arcs for plan 1 and plan 2

number of feasible plans reduces as the trains progress through the network. As described
above, building the set of feasible plans is based on the different possible combinations of
control arcs at the single-line track segments. During runtime, once a train enters a single-
line track segment, there is no need to consider the competing control arcs on this track
segment because the choice has already been made. The plans which correspond to the
competing control arcs may be eliminated from the set of feasible plans. The described
online update of the set of feasible plan can be performed by observing the occurrence of

events corresponding to in-nodes.

Definition 5 (In-node) Consider a control arc of a plan preventing collision of two trains
on a single-line track segment. The node to which the control arc points is called an in-

node of the plan with respect to the considered trains and the considered track segment.

Going back to the example from Fig. 2.3, Fig. 2.5 shows the control arcs of plan 1 and
plan 2. The in-nodes of plan 1 and plan 2 with respect to train 1, train 2 and track segment
IT are the same (node 4), which shows that both plans include the same control arc for
track II. When the system runs under either of the two plans, it is always possible to
switch to the other plan, at least in the circumstance where track II is the only single-line
track segment in the system. However, there is another single-line segment. The in-node
of plan 1 with respect to train 1, train 2 and track segment I is node 3. The corresponding
in-node of plan 2 is node 2. For the system already running with one plan, it is impossible
to switch to the other plan once the event corresponding to node 3 or node 2 has occurred.
Specifically, in the case shown in Fig. 2.5, suppose the current plan is plan 1. It is then

impossible to switch to plan 2 if train 1 passed the location corresponding to event 2.

If the system is operated under a certain plan, the set of feasible plans can be updated
using the following procedure:

19

Step 1 List the sets of in-nodes, Ins1 and Ins2, for the operated plan and for the plan
to be checked, respectively. The in-nodes in both sets should be listed in the same
order with respect to the track segments and pairs of trains in considered. For

instance, in Fig. 2.5, Ins1 and Ins?2 are:

operated plan:plan 1 | Ins1={3, 4}
plan to be checked:plan 2 | Ins2= {2, 4}

Step 2 For the plan to be checked, find the key in-node set (denoted by kins), whose
elements are not in the intersection of corresponding 1-entry-subsets of /ns1 and
Ins2:

kins = | J(Ins1; SETXOR Ins2;). (2.19)
i
where Insl;, Ins2; are the sets consisting of the ith element of /ns1, Ins2 respec-

tively and
Ins1; SETXOR [Ins2; := (Insl; U Ins2;)\(Insl; N Ins2;).
Again in Fig. 2.5, the kins for plan 2 can be found as follows:

(Ins1); SETXOR (Ins2); = {3} SETXOR {2} = (3,2},

(Insl), SETXOR (Ins2), = {4} SETXOR {4} = ¢,
2

kins = | J(Insl; SETXOR Ins2;) = {3,2} U # = {3,2}.
i=1

Since the elements of /ns associate to pairs of competing trains on corresponding
shared single-line track segments, instead of from 1-entry-subsets of Ins, kins can
be easily obtained from subsets corresponding to pairs of competing trains. Denote
by Inslg, j the subset of Insl related to train i and train j on the considered
segment. Then:

kins = | J Inslg) SETXOR Ins2g,j). (2.20)
i
j>i

In Fig. 2.5, there is only one pair of trains competing, thus

kins = Inslg SETXOR Ins2q = {3,4} SETXOR {2,4} = {3,2}.

20

Similarly, for plan 3 which is not shown in Fig. 2.5, its kins is {1, 2, 3, 4} in which
event 1 and event 2 relate to the movement of train 1, event 3 and event 4 for
train 2 as well. There is a further simplification: if a kins set contains several
nodes relating to the same train, we only need to retain the node corresponding to
the earliest event for this train. The resulting set is called “Kins”. In this way, the
maximum number of elements for a Kins is the number of the trains in the network.
For example, for the kins set of plan 3, nodes 2 and 1 relate to the same train, with
the event corresponding to 1 occurring earlier. Hence node 2 can be dropped. With
the same argument, node 4 can be omitted. Thus, the resulting Kins sets for plan 2

and plan 3 are:

Kinsplan 2 =1{2,3}, Kinsplan 3 = {1, 3}.

We can store Kins information in a K N matrix:

+o00 +00
KN = 2 3 ,
1 3

where the elements 400 in the first row mean that no events will deactivate plan 1.
(KN);j shows the key in-node of train j for the plan i(i # 1) which needs to be
checked. Note that for each plan, a different K N matrix is computed off-line and
stored.

Step 3 Update the feasible plan set online. If a certain plan is in operation, i. e. the corre-
sponding K N matrix is valid, we only need to check whether an event occurs that
is listed in one or more of the rows of K N. If this happens, the plans corresponding
to these rows become infeasible.

In practice, (K N);; can be simplified further if there is a fixed temporal order for
the events corresponding to nodes in one row. E. g., if plan 1 is in operation, node 3
in row 2 and 3 of the K N matrix can be neglected. The resulting K N is

+o0 +00
KN = 2 4o
1 +00

Note that Step 1 and Step 2 are implemented offline. Therefore, for each plan, there is a
corresponding K N matrix which can be used online to check the possibility of switching
to other plans. The shrinking of the feasible plan set while trains progress through the
network also helps to speed up the online optimisation.

21

2.2.4 Online plan optimisation

During runtime, the progress of the trains is observed by the supervisory block. At regular
time instants (e. g. in an equidistant discrete time scheme), simulation is performed for all
feasible plans to compare the values of the designated objective function. The objective
function is evaluated from the output vector Y. An example for the objective function

would be the last train’s arrival time, i. e. we want to minimise max; (Y;).

2.3 C/D block

Based on the set of max-plus models for all feasible plans, the optimal plan with respect
to a specific objective function can be easily determined by simulation. As indicated
in the system control structure diagram (Fig. 2.1), to generate the optimal plan for the
sequence and timing of the trains, the supervisory block not only needs information on
the track topology but also real time information on the current status of the trains. Max-
plus simulation of each plan is based on the assumption that there is no unexpected event
and that each train either waits for a synchronisation condition to be met or otherwise may
move at its maximum velocity. If any unexpected incident happens, it may affect some
trains’ travelling times either directly by blocking them or indirectly via synchronisation
with other trains. If it does happen, the runtime event times will not match the event
times calculated by a-priori model simulation any more. In order to achieve online plan
optimisation, rescheduling has to be performed at runtime. For this, the state vector needs
to be reinitialised based on the current status of the trains at time #;, where f#; is a time
instant in a regular sampling grid. The reinitialised state vector is denoted by X _in. In
general, it contains three different kinds of elements:

1. For an event j which already happened, the reinitialised state value is the actual event
time, 1. €.
)_c,inj(tk) =Xj. (2.21)

2. For the next event of any train, the reinitialised state has to be calculated based on the

current position of the respective train.

Suppose at a time instant ¢, the distance a train has to move before it reaches the location

associated with the next event j is d; (). As x_in; is the earliest possible event time for

22

event j, the reinitialised value will be:

) e + @ unblocked trains
xein (1) = " . (2.22)
fret + = blocked trains,

where t,.; is the estimated release time for the blocked train. If this time cannot be es-
timated beforehand, recalculation of the plan is based on the assumption of immediate
release, 1. €.

lrel = I (2.23)

3. For other events j in the future, the reinitialised state variables still remain undefined,
1.e.
x_inj(ty) = e. (2.24)

Therefore, the reinitialised state variable at time #;, is:

Xj Jj 1s a past event
x_inj(tx) = | from (2.22) j is a next event for any train (2.25)
€ otherwise.

Then, the updated vector of event times can be obtained for all feasible plans by simu-
lation, i.e. by evaluating (2.11) with u = X_in(t) and B = I (B;; = e, Bjj = € for
i #)
X(t) = Ap® X-in(t), (2.26)
Y(r) = C®A;Q X in(ty). (2.27)

2.4 Lower level — implementation block

The upper level of the proposed DES control structure determines the sequence of events
optimising the given objective function as well as the detailed time specifications for
events. These results are implemented by the lower level. With the help of min-plus
algebra, the lower level exploits the remaining degrees of freedom and provides an energy

saving implementation while maintaining event times determined by the upper level.

24.1 EPET and LNET

The output of the supervisory block generates the time optimal plan, i. e. the time speci-

fications X for the events. X provides the earliest possible time for each event to occur,

23

and is therefore referred to as EPET (earliest possible event time) specification. If EPET
were implemented, trains would always move at maximum speed, or otherwise stop to
wait until the synchronisation conditions are met. Clearly, this is undesirable from an en-
ergy saving point of view. However, an overall optimisation approach, minimising energy
consumption for all trains in common, yields a large nonlinear problem and therefore is
not realizable for large systems. Instead, a suboptimal more conservative approach is used
here in determining a velocity signal separately for each train. This is done as follows:
first, as an upper bound for the event times, LNET (Latest Necessary Event Time) is de-
rived for each train. This is done in such a way that the train’s arrival time at the final
destination according to EPET will be met. It is also ensured that LNET does not vio-
late the EPET schedule of the other trains. In order to generate the LNET specifications,

min-plus algebra, the dual system of max-plus algebra, is used.

Let QS be the index set for all events corresponding to the arrival of trains at their fi-
nal destinations and P S, the index set for all events related to train m, then the LNET

specifications X, for train m can be calculated as

Xn(t) = (—(A))" @ XR,, (1), (2.28)
where
(XR,)i (tx) = [xi(l), i€ QSori g PSy (2.29)
+o00, otherwise.

The min-plus algebra equation (2.28) represents “backward simulation”. Note that the
following relation holds for the % and %’ operations of max-plus algebra and min-plus
algebra:

(—ATY = —(a"T. (2.30)

Therefore, (2.28) can be rewritten as

Xn(te) = (—(ADT) ® XR,, (1) (2.31)

In fact, we have the following corollary about LNET:

Corollary 1 (LNET) For system without cyclic behaviour, the LNET specification X,
for train m which ensures the earliest final event time of trains as well as the earliest
event times of other trains can be calculated by (2.29) and (2.31).

Proof Since the greatest subsolution of Ax = bis X = (—AT) ® b (see Lemma 1),

(2.31) represents the greatest subsolution of Aj ® X, = XR, . From the definition of

24

greatest subsolutions (Definition 4), it is immediately clear that
A5 ® X < XR,,, (2.32)

and
VX € {XmlA§ @ Xon < XR,,)}, Xon < X (2.33)

(2.32) means that X,, calculated using (2.31) ensures the event times specified by XR, .
Furthermore, considering (2.33), X represents the largest and therefore the latest neces-
sary event times LNET.

O

X represents the earliest possible event times for all trains. Therefore, now, for each train
m, its EPET and its LNET X,, are available. Within this corridor, the velocity signal can
be optimised locally for each train.

For the problem of driving a train from one station to the next, an energy optimal policy
consists of four subsequent parts: maximum acceleration, speedholding, coasting and
maximum breaking e. g. [37, 53]. For long distances, the speedholding phase becomes
dominant. Then, assuming the journey must be completed within a given time, the holding
speed (i. e. the energy optimal velocity) is approximately the total distance divided by the
total time between adjacent nodes [52]. In the following, we neglect acceleration and

braking effects, and an energy optimal trajectory results from minimising

S = / w2, (2.34)

where integration is between starting and arrival time of train m. Then,

= (Si — Si1)?

J, = - - (2.35)

" ; (ti —ti—1)

s.t.
tn = O (2.36)
S —S;_
1 P R (2.37)
(Um)i

he< t =<tL (2.38)
he< h =t (2.39)
th-1DE < tim1 = tu-1)L (2.40)
hg = In =L, (2~41)

25

position 4 obstacle corridor
node i+ 2}
node i+ 1 /
node i F EPET LNET
current _
position/time time

Figure 2.6: Energy optimal trajectory(bold line)

where So =0, S; (i = 1,2, ---,n) is the distance from the current position of train m to
the place where event i happens. t,¢ and ¢,,;, are EPET and LNET of event n, respectively.
Minimisation of (2.35) with respect to #;,i = 1,---,n — 1 gives the energy optimal
trajectory. An example for an energy optimal trajectory is given in Fig. 2.6.

It may take a long time to solve the above nonlinear optimisation problem when the num-
ber of events is large. Also, sometimes instead of the global optimal, the numerical so-
lution is likely to be only a local optimal. To ensure globally optimal solutions, two
computational geometry algorithms can be used here. One involves the famous Dijkstra’s
algorithm and may also be quite slow to get the solution. The other is a proposed intuitive
algorithm which speeds up the computational procedure. Both algorithms are described

in the next subsection.

2.4.2 Dijkstra’s algorithm and a new intuitive algorithm

Before discussing the detailed algorithms, we first show the solutions for our minimal

energy problem and the shortest path problem coincide.

In Fig. 2.7, O and F are two points with fixed coordinates. The s-coordinate of an inter-
mediate point M is also fixed. x is the directed horizontal distance from M to the straight
line O F. Fig. 2.7 (a) and (b) correspond to the situations when M is located on the right
and on the left of O F respectively. In Fig. 2.7 (a), x > 0 and M is restricted within the
gray area corresponding to by, 1.e. x € [by, g—b), where 0 < b < (g—b). In Fig. 2.7 (b),
x < 0and M is restricted within the gray area corresponding to b, i.e. x € (—b, —b3],
where 0 < by < b. The first problem is to find the value of x so that the path OM F is

the shortest path.

The second problem is to find the minimum energy trajectory. It can also be depicted

26

Sy Sy

R F 1 [rmmmmmmmme e . F

a f-------- - M a B l

S bb+b, b+x bia t O pb+x b-b, b bla t
(a) (b)

Figure 2.7: Minimum energy / shortest path

graphically as Fig. 2.7. The coordinate s represents location of events, and ¢ represents
the corresponding time specification. For example, in Fig. 2.7 (a), for the intermediate
event M which is located on the right of O F, its s-coordinate is fixed. According to the
EPET and the LNET specifications, event M is expected to happen during time [b+b1, 2),
i.e.x € [by, % — b). Similarly, in Fig. 2.7 (b), x € (—b, —b>] and event M can happen
during time (0, b — b>]. The solutions to these two problems coincide (see Appendix A.1
for the proofs):

Solution 1: Shortest path problem In Fig. 2.7, it is clear that the shortest path between
point O and point F' without any constraints is the straight line O F. But for an
OMF path, the shortest one is the path with x = by if M 1is located on the right
of OF. When M is located on the left of OF, the shortest path is OM F with
x = —by. In a word, the smallest absolute value |x| gives the shortest path.

Solution 2: Minimume-energy trajectory problem In Fig. 2.7, the minimum-energy
trajectory between event O and event F' without any constraints is the straight line
O F. If there is an intermediate event M with time constraint, when M is located on
the right of O F, the minimum-energy trajectory is O M F with x = b;. When M is
located on the left of O F, the minimum-energy trajectory is O M F with x = —b;.

In a word, the smallest |x| gives the minimum-energy trajectory.

If an algorithm based on the idea of Solution 1 can be used to solve more complicated

shortest path problems, which have more intermediate-point constraints, the algorithm

27

node i+2

73
P3 LNET

/@p node i+1

1
2

P2
cPT
Figure 2.8: Shorten Figure 2.9: Visibility graph of Fig. 2.6

should also work for similar minimum-energy trajectory problems, which have more

intermediate-event constraints. These two problems are equal in this regard.

In the field of computational geometry (see e.g. [9]), typical problems concern motion
planning. Specifically, the task is to find the shortest path from the start position to the
target position without colliding with any of a given set of obstacles. From Fig. 2.6, it
is immediately clear that the minimum-energy trajectory problem can be interpreted as a
special motion planning problem: the complement of the EPET-LNET corridor (which is
composed by a simple polygon') is interpreted as the obstacle, the current position (CPT)
as starting position, and LE (the EPET of the last event) as the target position, respectively.
Note that unlike in general motion planing problems, in the minimum-energy trajectory
problem, the “obstacle” has a very specific structure: For example, the EPET and the
LNET of event i are always at the same horizontal level (i. e. they are a pair of same-level
vertices). And, EPET; | locates always above EPET;.

The intuitive algorithm proposed in this section specifically applies to the velocity deter-

mination problem, it might be extended to more general motion planning cases.

A commonly used algorithm for motion planning problems is to construct a visibility
graph and then apply Dijkstra’s single-source shortest path algorithm to the graph. The
idea is introduced in the following, for more detailed information, the reader is referred
toe.g. [9].

Let P be a corridor of our minimum-energy trajectory problem and it is a simple polygon
having n vertices, and let CPT be a given source vertex of P. For each vertex v of P, the
shortest path from CPT to v is denoted by 7 (CPT, v). Then, 7 (CPT, v) is a polygonal
path whose corners are vertices of P. This can be proved by considering a shortest path

7 which violates the above mentioned features, for detailed information, the reader is

In geometry, a simple polygon is a polygon which does not intersect itself anywhere.

28

node i+ 2 node i+2 node i+2 ,
7 7

EPET LNET EPET ,/ LNET EPET //’//’/ LNET
node i+1 node i+1 ////) .
ot cPT o
Figure 2.10: Step 1 Figure 2.11: Step 2 Figure 2.12: Step 3

referred to [9]. For example (Fig. 2.8), let a corner of 71 be a point p; inside P. Within P,
itis always possible to find a small circle centred at p, thus the part of path 71, i. e. the part
which is inside the circle, can always be shortened by a straight line segment connecting
two intersecting points of the circle and 7q. If the corner p; is a non-vertex point on an
edge of P, it is always possible to find a small circle centred at p;, and half of the circle
is inside P. Again the part of 7o which is inside this half circle can be shortened by a
straight line segment. Similarly, suppose that part of 73 is not a line segment. Since 73 is
inside P, itis always possible to find a small circle centred at any point p3 on that part, so
that 73 can be shortened by the straight line segment connecting two intersecting points.
All these shortenings contradict the “shortest” property of 7. Therefore, the shortest path
is a polygonal path whose corners are vertices of P.

The visibility graph contains one vertex for each obstacle vertex and one edge for each
pair of obstacle vertices that are mutually visible. Two vertices are called mutually visible
if the edge connecting these two vertices does not intersect the interior of any obstacle.
The visibility graph for Fig. 2.6 is shown in Fig. 2.9.

Now, we briefly review the basic idea behind Dijkstra’s algorithm. The first step of
Dijkstra’s algorithm is to start from the single-source which is CPT as in Fig. 2.9 and
store the lengths? of edges in which one of the vertices is the single-source, i. e. the edge
“CPT-EPET;” and the edge “CPT-LNET;” in the visibility graph, see the dashed lines in
Fig. 2.10. At this moment, the set of all vertices is partitioned into two sets: Set 1 con-
tains only the single-source (shown in black) while Set 2 consists of all the other vertices

(shown in grey) since they haven’t been considered yet.

In the second step, find the minimum length of all stored lengths (in Fig. 2.10, it is the
length of the edge “CPT-EPET;”, which is shown as a black solid line in Fig. 2.11). This
means the shortest path 7 (CPT, EPET);) is the edge “CPT-EPET;”. Move the end vertex
(i.e. EPET;) of the shortest path from Set 2 to Set 1. Thus, in Fig. 2.11, the vertex EPET;

The term “length” in this subsection has its normal meaning instead of the definition in Section 2.2.1.

29

node i+2 , node i+2 node i+2
4/ v
77 771

7 7]
LNET EPET /////// | LNET EPET
/// s ’/

LNET

node i+1 node i+1

CPT CPT CPT

Figure 2.13: Step 4 Figure 2.14: Step 5 Figure 2.15: Step 6

is the second vertex to be considered, i.e. we now investigate all edges not considered
so far if one of their vertices is EPET;. In our example, these are the edges: “EPET;-
LNET;”, “EPET;-EPET, ", “EPET;-LNET;1” and “EPET;-EPET;,”. Connected to
the shortest path 7 (CPT, EPET)), each of these edges provides a path starting from the
source via the currently considered vertex (EPET;) to the end point of the respective
edges. Calculate the lengths of these paths, store them together with all the lengths stored
in the previous step(s) except those of the paths whose two end vertices are the source and
a vertex in Set 1, respectively. In our example, the lengths of the paths (black) related to
the dashed lines in Fig. 2.11 are all stored.

The second step is now repeated: we select the shortest of the stored paths. In our ex-
ample, this is the edge “CPT-LNET;”. Hence, the end vertex of this edge (LNET;) is
moved from Set 2 to Set 1, and the shortest path 7z (CPT, LNET;) has been determined.
We proceed in an analogous fashion until Set 2 is empty, i. e. until the shortest paths from
the single-source CPT to all the other vertices including EPET, , are found (Fig. 2.12-
Fig. 2.15). For systems consisting of a large number of vertices, although the algorithm
is straightforward, it still takes quite a long time for both visibility graph construction and
searching. For a graph with n vertices, the worst-case running time of Dijkstra’s algorithm
is O (n?).

However, we are not concerned with the general problem of finding the shortest path be-
tween two vertices in an arbitrary directed graph. As our problem is much more specific,
it can be solved by a computationally less demanding, intuitive algorithm. It operates
directly on P, the polygon representing the corridor provided by EPET and LNET. By
noticing that the shortest path is a polygonal path with some vertices of P as its corners,
the proposed intuitive algorithm finds the shortest path by searching these key vertices
(kv) using the idea of Solution 1 (thus the algorithm also applies to the energy optimal
trajectory problem). Following is the detailed description for this proposed method. Note

CPT and LE are always key vertices. All other key vertices are called intermediate key

30

vertices.

Step 1 Initialisation. Set new key vertex nko=CPT, last key vertex /ko=LE. Store nkv in
the set sp which contains all key vertices found so far.

Step 2 Starting from nkov, check the straight line segment “nkv-lkv”.

1. If the straight line segment is contained in P, store the last key vertex /kv in

sp to complete the shortest path and finish searching.

2. Otherwise, along the straight line segment “nkv-lkv”, find a temporal key
vertex tkv:
— Along “nkv-lkv”, search from lkv to nkv, identify the point a where this
line first leaves the polygon P.
— Below «, identify the pair of same-level vertices v, which is the closest
pair to a.
— For two v, vertices, set the one which is closer to line ‘nkv-lkv” as tkv.

Step 3 Update tkv. Check the straight line segment “nkv-tkv”. If the straight line seg-
ment leaves P, similar to Step 2.2, search from tkv to nkov along the straight line
segment “nkv-tko” and replace tkv with the new one. Repeat Step 3 until finding a
tko so that the straight line segment “nkv-tkv” does not leave P. This tko is a key

vertex kv . Finally replace nkv with the latest kv (i.e. kv) and store it into sp.

Step 4 Repeat Step 2-3.

node i+ 2

EPET 7/ | LNET

node i+ 1,;i/
node i

CPT

Figure 2.16: Search energy optimal trajectory using the intuitive algorithm

Fig. 2.16 shows the procedure of finding the energy optimal trajectory using the intuitive
algorithm for the polygon depicted in Fig. 2.6. From lkv (which is EPET;5) to nko

31

(which is CPT, the first key vertex kv1), Step 2 gives EPET; ;| as tkov. Itis then replaced by
EPET; in Step 3. And since new “nkv-tkv” does not leave P, this latest tkv (i.e. EPET;)
is then the second key vertex kv, and therefore also the new nkov for the next step. In
the next step, it directly gives kv (i.e. EPET;) as kv3. Thus the optimal trajectory is
“CPT-EPET;-EPET; ,,”.

We now pick any key vertex (except the source vertex CPT and the target vertex LE) and
call it “kv;”. The key vertex above it is called kv; 41 while the key vertex below it is called
kv;—1. We now consider the subpolygon P; of P: In subpolygon P;, the lowest vertex
kv;_1 is the source vertex of P;, the highest vertex kv;; is the target vertex of P;, all
the vertices and corresponding edges located above kv;_; but below kv; 11 in P are also

vertices and edges of P;. Then we have the following Lemma.

Lemma 2 For all key vertices kv; (except the source vertex CPT and the target vertex
LE) given by the intuitive algorithm, the path “kv;_1-kv;-kv;4+1” is the shortest path of
the subpolygon P; of P.

The proof of the lemma is given in Appendix A.2. To facilitate the proof, we introduce
the concept of auxiliary temporary key vertices rtkv; for every key vertex kv; with the
exception of CPT and /kv. It is the last element in the list of temporal key vertices in the
construction of kv; with the exception of kv; itself. In the example on page 31, there is
only one auxiliary temporary key vertex, namely rtkv; = EPET; ;. In the following, we
prove that the intuitive algorithm provides the optimal path solution.

Lemma 3 From CPT to LE, the path sequentially connecting all key vertices is the short-
est path in the simple polygon P.

Proof If the shortest path is a single straight line inside P, the algorithm gives it at the
first step: a straight line directly connecting CPT and LE.

A path in P is called convex inward- P if every point on the line connecting any two points
on the path is in P. A path in P is called concave inward- P if inside P, we cannot find a
straight line connecting two points on the path. If the shortest path is not a straight line,
it cannot be convex inward- P, because a convex part of the path can always be shortened
by a straight line segment inside P. Also according to Solution 1, if kv; is an LNET (or
an EPET), then within P;, “kv;_1-kv;-kv; 1", the shortest path from kv;_; to kv;y1, is

concave inward- P; and kv; 1 is at the right (or left) of straight line “kv;_-kv;”.

Except CPT and LE, if there is only one intermediate kv, according to Lemma 2, the

32

12

1
kvi : LNET

kvi—1

(@)

Figure 2.17: Different paths ¢ which do not contain any intermediate key vertex

optimal path is “CPT-kv-LE”. So we only need to consider the cases when there are two
or more intermediate kvs located between CPT and LE. In the following, we prove that
CPT-kv-kv,-LE is the optimal path for two intermediate kvs case. For the cases of more
than two kwvs, it can be proved similarly.

First, for a P with two intermediate kvs, if one kv, e.g. kvi, is on the shortest path,
then the other one, e.g. kv,, must also be on it and the path “CPT-kv-kv,-LE” is the
shortest path. Otherwise according to Lemma 2, the subpath, e.g. from kv to LE, can
always be shortened by “kv1-kv2-LE”, which is the shortest path of P, i. e. the upper half
subpolygon of P.

Second, suppose the overall shortest path is 7 which does not contain any intermediate
ko, 1. e. the corners of 7 are not intermediate kvs. Note that a kv is either L (LNET) or E
(EPET) type, the possible combinations of two sequential intermediate kvs could be L-L,
E-E, L-E or E-L. For an intermediate kv;, ¢ does not pass it at its right side when kv; is
an LNET or at its left side when kv; is an EPET. This is clearly shown in Fig. 2.17 when
kv; is an LNET (for an EPET kov;, the situations are similar): 7; and 7, are impossible to
be the optimal path in P since kv; is the most right vertex of P at this level. For the two-
intermediate kv case, let CPT = kv;_1, it is for sure that a path 73 (see (b) in Fig. 2.17)
which crosses the line segment “CPT-kv;” and then passes kv; at its left side, if it exists,
cannot be the optimal path since the part “CPT-x-z-y” at least can be shortened by “CPT-
z-y” (even by “CPT-y” if it is inside P). Here x and y are non-kov vertices of P, z is an
intersecting point of 73 and “CPT-kv;”. Thus if kv; is an LNET, to be a shortest path, 7
needs to pass the line segment “CPT-kv;” at its left side and does not cross it. An example
is 74 shown in (c) of Fig. 2.17. Here, x is the lowest “above-kv;” corner of z4. Under kv;,
for 74, there could be many corners, but the best possible case is that the path from CPT

to the vertex x is a straight line segment.

33

If the next key vertex kv;41 is also an LNET, 7 is always at the left of path “CPT-kv;-
kv;+1-LE” which is a concave inward path. Therefore, 7 cannot be the shortest path. It
can always be shortened by the concave inward path. If kv;4; is an EPET, since it is
impossible to pass an EPET at its left side, the best possible path looks like 74, z and y
are the intersecting points of 74 and the line passing through CPT and kv;, 74 and the line
segment “kv;-kv;41” respectively. Clearly, such a path 7 cannot be the shortest one. The
part “CPT-x-z-y” can be shortened by the path “CPT-kv;-z-y” and furthermore by “CPT-
kv;-y”. This contradicts an overall shortest path assumption of r. Therefore, the overall
shortest path does contain intermediate kv. Considering the first result (i. e. if one of the
intermediate ko is on the shortest path, the other kv is also on it), it can be concluded that
for P with two intermediate kvs, the intuitive algorithm gives the overall shortest path.

Now consider P with more than two intermediate kvs. According to the algorithm, each
kv; is derived from a similar procedure, except that the source vertex of each search pro-
cedure is not always CPT, the source of P, but kv;_;. Let LE = kv;4,, (i > 1), directly
applying the above shortest path solution (for a simple polygon with two intermediate key
vertices) leads to the result that the shortest path z;_1 from kv;_; to LE is “kv;_1-kv;-
kv;+1-LE”. This shortest path result for a polygon with two intermediate key vertices can
be also applied to other subpolygons of P. For example, with kv;_, and kv;4; as the
source vertex and the target vertex, respectively, the shortest path from kv;_; to kv;41 is
“kvi_2-kv;_1-kvi-kv;4+1”. Now, consider the shortest path z;_» from kv;_» to LE. We
know that if kv;_ is on 7; 5, then 7;_1 is a part of 7;_,. Suppose 7;_» is 7 which does
not contain kv;_;, thus 7 does not contain kv; either, since kv;_; is the corner of the
shortest path from kv;_» to kv;. Similarly, kv;41 is not on t either. In a word, if 7 does
not contain the first intermediate key vertex kv;_1, it does not contain any intermediate

key vertices.

Repeat the analysis as shown in Fig. 2.17. Suppose the shortest path is ¢ whose corners are
not key vertices, note that this time there are three sequential intermediate kvs (i.e. kv;_1,
kv;, kv;41), the possible combinations are L-L-L, L-E-L, L-E-E, L-L-E, E-E-E, E-L-E,
E-L-L, E-E-L (Here we again only discuss the cases where kv;_1 is an LNET. EPET cases
can be easily discussed using the same idea). In the cases of L-E-E and L-E-L, since there
is only one LNET key vertex under the first EPET key vertex, the situations are the same
as (c) of Fig. 2.17. The case of L-L-L is also the same as the L-L case which has been
discussed before. The new combination case is L-L-E, or generally speaking, there is
more than one LNET key vertex under the first EPET key vertex. Fig. 2.18 shows the

case of an L-L-E combination. Actually, from the source vertex, no matter how many

34

LNET type intermediate key vertices there are under the first EPET key vertex, the best
possible path looks like 75. Its first corner is below the first EPET key vertex but above
the LNET key vertex which is located right below that EPET. As shown in Fig. 2.18, 75
can be shortened by “kv;_>-kv;_1-kvi-y”. This contradicts the shortest assumption of .
So the shortest path 7;_; contains kv;_ and therefore it is “kv;_»-kv;_1-kv;-kv;11-LE”.

kvi+1 : EPET

kvi : LNET
Kvi_1: LNET

kvi_2

Figure 2.18: L-L-E combination of key vertices and a ¢ with non-kv corners

If CPT is still below the current source vertex kv;_», continuously repeat the above steps
with a new source vertex which is the nearest key vertex below the current one until the
new source vertex kv;_;(j > 2) is CPT. The whole procedure shows that in the simple
polygon P the path sequentially connecting all key vertices is the shortest path from CPT
to LE. O

For applying the intuitive algorithm to a simple polygon P composed by an EPET-LNET
corridor, the worst cases are either its right or left border is concave inward. For such a
polygon P with n vertices, there are all together 1 + (n/2) events. Then for these worst
cases, the running time of the algorithm is

2

I+o-D+(I+o-4 - 42+1=2 41
2 2 8 4

Now we consider possible improvements. As stated in the proof of Lemma 3, it is clear
that if the right border of P is concave inward, the optimal path from CPT to LE is the
exact right border. There is then no need to repeat Step 2 and 3 to find intermediate kv;s.
All LNETs located above CPT but below LE are the corresponding kv;s. Similarly, the
left border is the optimal path if it is concave inward. Furthermore, the search direction
of key vertices does not influence the solution, i.e. , we can search from CPT to LE, or
we can search from LE to CPT as long as there is the corresponding change for search
direction for tkv. Therefore, to reduce the search space during the search procedure, both
search directions can be included in the algorithm, i.e. not only nkv but also kv keeps

being updated during the procedure.

35

The final intuitive algorithm is the following:

Step 1 Initialisation. Set new key vertex nko=CPT, last key vertex [ko=LE. Store nkv in
the set sp which contains all key vertices found so far (direction: forward). Simi-
larly, store lkv in the set sp1 (direction: backward).

Step 2 Starting from nkv, check the straight line segment “nkv-lkv™.

1. If the straight line segment is contained in P, store all vertices of sp1 into sp
to complete the shortest path and finish searching.

2. Otherwise, if the straight line segment “nkv-lkv” is completely outside P
(except nkv and lkv) and for the subpolygon P,; 3, if its border, which is the
one closer to “nkv-lkv”, is concave inward- P,;, store sequentially all vertices
(except nkv and lkv) on the border and all vertices of sp1 into sp to complete
the shortest path, finish searching.

3. Otherwise, along the straight line segment “nkv-lkv”, find a temporal key
vertex tkov:
— Along “nkv-lkv”, search from lkv to nkv, identify the point a where this
line first leaves the polygon P.
— Below a, identify the pair of same-level vertices v, which is the closest
pair to a.

— For two v, vertices, set the one which is closer to line ‘nkv-lkv” as tkv.

Step 3 Update rkv. Check the straight line segment “nkv-tkv”. If the straight line seg-
ment leaves P, similar to Step 2.3, search from tkv to nkv along the straight line
segment “nkv-tkv” and replace tkv with the new one. Repeat Step 3 until finding a
tko so that the straight line segment “nkv-tkv” does not leave P. This tko is a key

vertex kv . Finally replace nkv with the latest 7kv and store it into sp.

Step 4 Repeat Step 2 but in opposite direction: Starting from /kv, check the straight line

segment “nkv-lkv”.

1. Same as Step 2.1: If the straight line segment is contained in P, store all

vertices of sp1 into sp to complete the shortest path and finish searching.

3In subpolygon P,;, the lowest vertex nko is the source vertex of P,;, the highest vertex [kv is the target
vertex of P,;, all the vertices and corresponding edges located above nkv but below lkv are also vertices
and edges of P,;.

36

2. Same as Step 2.2: Otherwise, if the straight line segment “nkv-lkv” is com-
pletely outside P (except nkv and lkv) and for the subpolygon P,; , if its
border, which is the one closer to “nkv-lkv”, is concave inward- P,,;, store se-
quentially all vertices (except nkv and lkv) on the border and all vertices of

spl into sp to complete the shortest path, finish searching.

3. Otherwise, along the straight line segment “nkv-lkv”, find a temporal key
vertex tko:
— Along “nkv-lkv”, search from nko to lkv, identify the point a where this
line first leaves the polygon P.
— Above «, identify the pair of same-level vertices v, which is the closest
pair to a.

— For two v, vertices, set the one which is closer to line ‘nkv-lkv” as tkv.

Step 5 Repeat Step 3 but in opposite direction: Update tko. Check the straight line
segment “/kv-tkv”. If the straight line segment leaves P, similar to Step 4.3, search
from tko to lkv along the straight line segment “/kv-tkv” and replace tkv with the
new one. Repeat Step 5 until finding a kv so that the straight line segment “/kv-
tkv” does not leave P. This tkv is a key vertex kv . Finally replace kv with the
latest tkv and store it into sp1.

Step 6 Repeat Step 2-5.

By applying the proposed intuitive algorithm on the lower level, we can obtain the global
optimum very quickly. More importantly, since for online operation, we only need the
current velocity, i.e. it is not necessary to find all key vertices. The key vertex which is
located right above CPT is sufficient to determine the velocity. In this case, the running

time of the algorithm to determine the current velocity is O (n).

2.5 Example

The effectiveness of the hierarchical control architecture proposed in the previous sections
is illustrated by a small rail traffic example (Fig. 2.19) involving 3 trains and 3 tracks.
Initially, train 1, 2 and 3 are located at the end points of the 3 tracks, i.e. in points A, B
and C, respectively. The trains move along the tracks in the directions shown in Fig. 2.19.
In the middle of both track AO and track CO, double-line track segments are available,

37

which makes it possible that two trains pass between points Ny and M, and between
points N> and M, respectively. As in any real world application, unexpected events
(e. g. blocking of the track, mechanic failure) may occur and have to be handled by the

controller.

tranl

A ~_ " ;’C

1l

train 2

Figure 2.19: A simple rail traffic network

2.5.1 Feasible plans

First, a set of feasible plans is computed offline. Single-line track segment AN can either
be occupied by train 1 or train 2. Nevertheless, the order is predetermined, as the track
is already occupied by train 1 in the beginning. The same situation occurs for segments
BO and CN,. Therefore, although there are five single-line track segments, the order can
only be chosen for segments OM| and OM,;. The proposed approach yields a total set of
3 feasible plans pictured in Fig. 2.20, Fig. 2.21 and Fig. 2.22. In plan 1, train 1 occupies
track segment OM just after train 2 leaves it. Similarly, train 1 enters track segment OM,
after train 3 leaves it. In plan 2 the sequence of trains is reversed in both segments. Plan 3
is similar to plan 1 except of the trains’ order on OM;. Fig. 2.23 shows the directed graph

for plan 1 including the control arcs needed to enforce this plan.

38

Figure 2.20: Plan 1 (OMj: train2 trainl, OM>: train3 trainl)

Figure 2.22: Plan 3 (OM;: train2 trainl, OM;: trainl train3)

2.5.2 Closed loop simulation results

Max-plus simulation of the system under plans 1, 2, and 3 reveals that plan 1 is the time
optimal plan if there is no unexpected event. Fig. 2.24 shows the movements of the trains
under the proposed hierarchical control scheme. In detail, train 3 moves a little bit slower
than train 2 before train 2 empties the track segment BO. Train 1 moves much slower
than the other two trains at the beginning since it is expected to pass train 2 on track
segment N1M;j. In case of a disturbance (here train 2 is blocked on track BO at time 2),
the supervisory level checks if it is necessary to change the plan. Such a situation is
illustrated in Fig. 2.25. After train 2 has been blocked for some time, it is optimal to

change from plan 1 to plan 2. This is determined by the supervisory block on the upper

39

] O
X11 \05 /OX17
K 4
i train 3
train 2
15 15

A 4
O O
X10 X3

Figure 2.23: Directed graph for plan 1

level and implemented by the implementation block on the lower level. This changes the
operation sequence of trains. Now, train 3 occupies track segment OM; after train 1 leaves
it, train 2 enters track segment OM| after train 1 empties it. If the blocking is removed
at time 12, this control policy will ensure that all trains arrive at final destinations at time
42.4. For comparison, Fig. 2.26 gives the result when there is no plan change. This implies
that the original plan is maintained during the blocking and after it has been removed.
Clearly it takes longer for the trains to finish their travel, as the last train arrives at 50.2.
In Fig. 2.25 and Fig. 2.26, no matter if there is a plan change after blocking happens,
the synchronisation of trains is always ensured by the max-plus model and the min-plus
backward calculation. Note that in the case of blocking, the continuous adjustment of
velocity signals leads to non-straight trajectories in Fig. 2.25 and Fig. 2.26.

2.6 Conclusions

A novel hierarchical control architecture for a class of discrete-event systems without
cyclic features has been proposed in this chapter. It has been applied to a simple rail

40

30

251 : . I : B 4

PN Train 1 ||
4 ~ Train 2
—— Train 3

I I I I I I
0 5 10 15 20 25 30 35 40 45 50 55

Figure 2.24: Simulation result under normal situation

30 v = T - 30

A 2 I e Train 1 p
sr : : :] o Train 2 | :
| . —— Train3 g
e N A Trainl |
.~ | Tran2| |

—— Train 3

I I I I I I I I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50 55 0 5 10 15 20 25 30 35 40 45 50 55

Figure 2.25: Change of plans due to un- Figure 2.26: Comparison study: No
expected events change of plans

traffic network. Based on a max-plus algebra model, the sequence of resource allocations
is chosen such that minimum overall time is achieved. An upper level supervisory block
ensures the optimal sequence of train movements even under disruptive conditions. A
lower level implementation block provides reference velocity signals for each train. By
exploiting the remaining degrees of freedom, overall energy consumption is reduced. The
implemented policy is generated by use of the dual min-plus algebra model. A new intu-
itive algorithm speeds up computations and gives the globally optimal reference velocity
signals.

The method has been illustrated by means of a small rail traffic example. Simulation
results show the effectiveness of the approach.

With respect to the extension of the method to large systems as well as for similar discrete-
event systems in other fields, such as flexible manufacturing or chemical process control,

two aspects have not been treated in this chapter. The first is to find methods to cope

41

with combinatoric explosion during the computation of the set of feasible plans for large
systems; the second is the extension of the method to cyclically repeated processes where
the advantages of the max-plus scheme can be further exploited. Both of them will be the

focus of the next chapters.

42

Chapter 3

Hierarchical control structure for cyclic
DES with a conservative condition

In Chapter 2, we proposed a general hierarchical two-level control architecture but dis-
cussed each level in detail only for a class of discrete event systems without cyclically
repeated features (i.e. for systems “running only one cycle”). In practice, many DES
applications in areas like transportation, flexible manufacturing and chemical batch pro-
cessing exhibit cyclically repeated features. In such cases, cooperation and competition
issues among different cycles have to be addressed, which is beyond the scope of Chap-
ter 2. The corresponding control problem is harder than for the noncyclic case, especially

under disruptive conditions.

Section 3.1 proposes a conservative assumption for the DES discussed, Section 3.2 de-
scribes the max-plus models for the upper level with cyclically repeated features. Sec-
tion 3.3 discusses in detail the optimisation issues on the upper level. This section also
explains how the optimal plan is then chosen efficiently in an online procedure. Sec-
tion 3.4 elaborates how the plan generated at the upper level can be implemented on the
lower level in the more general setting of cyclical behaviour. A case study is provided in
Section 3.5 to illustrate the effectiveness of the proposed approach. Finally, a conclusion

is given in Section 3.6.

43

3.1 Conservative condition

In Section 2.2.1, there are two kinds of arcs: travelling arcs and control arcs. The former
represent an integral property of the system while the latter are related to shared resources
and differ for different plans. For system with cyclicly repeated behaviour, several cycles
may exist concurrently. Therefore, control conditions have to be extended such that,
e. g., trains from different cycles will not occupy the same track segment simultaneously.
Hence, additional control arcs have to be introduced. Also, additional travelling arcs are

needed to represent the passage of trains from one cycle into the subsequent cycle.

In Chapter 2, the events connected by either travelling arcs or control arcs are the events
from the same cycle. For cyclic DES, arcs may connect events from different cycles. An
arc that connects events related to the same cycle is a “zero order arc”, an arc that connects
events related to two sequential cycles is a “first order arc”. In general, there can also be
“second order arcs” and so on. To keep our example reasonably simple, we introduce the

following conservative condition.

Conservative condition: For each track segment used in several cycles, trains in a latter

cycle may not occupy it unless all trains in the previous cycle have left it.

With such a condition, there is no need to introduce arcs with order higher than 1. Besides
the zero order arcs, for cyclicly running DES, there are first order control arcs and first
order travelling arcs. The former correspond to the conservative condition imposed above
while the latter correspond to the transition of trains from one cycle into the subsequent

one.

In Chapter 2, for the simple rail traffic network in Fig. 2.19, all trains immediately stopped
after they arrived at their destinations (i. e. after one cycle). Now, however, each train will
start a new cycle, e. g. a given number of time units after train 1 arrived at C, it will start
the next route to go to B, which represents a new cycle. Fig. 3.1 shows the different kinds

of control and travelling arcs for this network.

Note that “first order control arcs” ensure the safe resource sharing between cycles and
“first order travelling arcs” ensure that each train starts its new journey (cycle k + 1,
k > 1) a specified number of time units after its arrival at its destination in cycle k.
Although there are optional control arcs of zero order, all first order control arcs are fixed
according to the proposed conservative condition.

44

‘...
j) - -llIO
. ‘
(of %
.
. O"..' '.--
* e ¢
., e A
. ,’,’ .
~), .
[

Sap o ‘
@] -w O ‘O
“ p - .. “ P
\s .(.0‘ .0 l
* A . ' ‘
Sap o :) .
. amw
* ‘,-"'0‘ “ (
. .A’O.;,-..;_._‘:OAO mme “‘
\
= ___ . Travelling arc fork'" cycle:
. zero order
a
- _ Fixed control arc for
. kth cycle: zero order

_______________ _ Oﬁtional control arc for
th cycle: zero order

. Travelling arc fromk!" cycle
. to (k + 1)t" cycle: first order
.
O

====pp Control arc: first order

-

Figure 3.1: Control arcs and travelling arcs for Fig. 2.19.
3.2 Max-plus model

With our conservative assumption in place, for systems with cyclicly repeated behaviour,
in addition to the zero order matrix Ap, we now have a first order matrix A corresponding

to first order arcs. For cycle k, the implicit max-plus algebra model is:

X(k) = Aog(k)X (k) & A1 X(k—1) & Bu, (3.1
Y(k) = C ® X (k). (3.2)

As Ao, the matrix A is the max-plus sum of two matrices Aj; and A, i.e.
(3.3)

Al =A@ A,

where the elements of A1 correspond to “first order travelling arcs” representing the time
needed for a train to start a new cycle after finishing the previous cycle. The elements of
A1, correspond to the control arcs for trains belonging to two subsequent cycles. Unlike

45

Aoz, A1z cannot represent different choices. Therefore, A; is a constant matrix while Ag
will depend on the specific plan to be implemented in the k-¢4 cycle and may be varying
with k.

Repeated insertion of (3.1) into itself provides:

X(k) = Ach)®X(k) ® A @X(k—1) ® BQu
= Ao(h) ® [Aok) ® X(k) ® A1 @ X(k — 1)
OBRul ® Ai®@X(k—1) ® BQu
= A} @X(K) ® [A(kh) ®I1® A
®X(k—1) @ [Ak) D I1®@B®u

= AR @ X(k) ® [AL' (k) @--- @ Ao(k)
SNOARX(Kk—1) & [A] (k) ® -
D Aok)DIQ® B® u. (3.4

As explained in Chapter 2, for physically meaningful systems, Af (k) will only contain €

elements. The last identity then represents an explicit max-plus algebra model:

Xk) = A(K)QA @X(k—1) D Aj(k) @ BRu, (3.5)
Y(k) = CQX(k), (3.6)

where
Ay = [AL (k) @ -~ @ Ao(k) @ I1. (3.7)

As in Chapter 2, assume B ® u = I ® X _in(k), (3.5) and (3.6) become

Xk) = Ak)@X(k—1) & Ajk) ® X_in(k), (3.8)
Y(k) = C®X(k), (3.9

where A(k) depends on Ag(k):

A(k) = Aj(k) ® Aj. (3.10)
For a given system with cyclicly repeated behaviour, the additional matrix A is fixed.

Aqp differs corresponding to different plans, and, (2.16) still can be used to eliminate

infeasible plans and the corresponding max-plus models.

46

3.3 Optimisation on the upper level

After all feasible plans have been generated, the supervisory level may simulate feasible
max-plus-models (3.8), (3.9) over the required total number of cycles to determine the
optimal sequence A(k),k = 1,2, --- corresponding to an optimal sequence of plans or
a plan list, for short. This is initially done in an offline fashion, i. e. before the system is
started. For rail track systems, a typical offline objective function is

all feasible
plan lists

Tosiine = min (D Yith), @.11)

where k; is the required total number of cycles and Y; (k;) is the arrival time of train i in
the k;-th cycle. With @ representing max, the physical meaning is to choose the plan list
which provides the minimum final arrival time, i.e. the minimal arrival time of the last
train in the last cycle. When performing offline computation, X in(1) only carries the
starting event time. Furthermore, (X);(0) is set to €. The resulting optimal plan list is

then implemented via the lower control level.

Max-plus simulation in this step is obviously based on the assumption that there is no
unexpected event. Thus if any unexpected incident happens, it may affect the travelling
time of trains either directly by blocking them or indirectly via synchronisation with other
trains. If this happens, the runtime event time will not match the event time calculated by
a-priori model simulation any more. To address such difficulties, an online simulation is

integrated to update the aforementioned optimal plan list.

At time f#;, for each of the concurrently existing cycles [/ (e.g. [= k,k + 1),
[(X(D)](t), [Y (D)](#) will be updated by using (3.8), (3.9) with [X _in(l)](#) provided
by the C/D block. Here, X (/) is X vector in cycle [, by [X (1)](#), it is the vector X (/) at

time .

The online objective may be the same as the offline objective (3.11), i.e.
Jonlinel = Joffline- (3.12)

It may also be different from the offline objective, for example, it may state that after
unexpected delays all trains have to catch up with the timetable corresponding to the

original offline plan list as fast as possible. In this case,

JonlineZ = mln KAa (313)
all feasible
plan lists

47

where K 5 is the index of the earliest cycle so that all delayed trains can start (or end) their
cycle trips according to the timetable, i. e.

Vi, Ai(l) = 0. K
3, A1) >0. I <K,
A () = tyar, (1) — timetable; (1), (3.15)

where f54,4, (1) is the actual starting time of train i in cycle [and timetable;(l) is the
starting time according to the timetable of train i in cycle /.

In real world applications, it is often preferable that a system exhibits a strictly cyclic
pattern, i.e. in each cycle the same plan is implemented. Among all feasible plans, to
maximise the throughput of the system, the plan which has the minimal eigenvalue 4
is chosen. Note that this will in general not coincide with the optimal plan list for a

predefined cycle number k;.

With a strictly cyclic pattern, starting-times in each cycle tend to be regular, i.e. after
enough cycles:
Lstart; (l + 1) = Istart; (l) + 4.

Consider the eigenspace problem in max-plus algebra, since
AQRuv, =1 Qv,,

if the system starts with X(0) = v,, then X(1) = A ® X(0) = 1 ® v, and in general
X (k) = 2* ® v,. Thus, for strictly cyclic systems, a timetable is determined by the
corresponding eigenvector beforehand. Note that in practice a timetable will always be
chosen to include a safety margin 7§,. Otherwise, an unexpected delay will never be

recovered as changes of plans are not allowed within a strictly cyclic pattern.

Hence, for strictly cyclic systems, the cycle time T, is
T, = timetable;(I + 1) — timetable; (1) = A + Ty,. (3.16)

If a delay lasts for 74,4y time units and always the case for strictly cyclic system, the delay

can be recovered in N,, cycles, where

z
Nye =1 delay-l’ (317)
Tsm
. . . Idelay
and [] denotes the closest integer which is greater or equal to T

48

y1(0) y1(1) y1(2)
y2(0) y2(1) y2(2)
y3(0) y3(1) y3(2

Figure 3.2: Reducing the search space

Online optimisation with objective (3.13) can speed up the recovery by temporarily chang-
ing to other suitable plans. After delay recovery, the system may go back to the original

strictly cyclic pattern at cycle KA.

Besides the shrinking of the feasible plan set as described in Section 2.2.3, during online
optimisation the search space can be reduced further by several other steps to enhance
optimisation efficiency.

First, if the online objective is Jyuiine2 and if N, < k; — k, instead of covering the prede-
fined total number of cycles k;, the search range only covers N,, cycles. For example, if
the number of elements of the feasible plan set F'(j) in cycle j is M (), the search space
is reduced from H];’: L M(j) to Hy;e/:rk M (j). Second, for the objective Jyjinen, if Ik*,
k < k* < Nye + k (k is the index of the cycle at which the unexpected event happens),
such that there exists a plan list which recovers the timetable in cycle k*, the search space
may be reduced to H’;*:k M (j). Third, for a designated objective Jypjine1 OF Joniine2, bY
comparing with Y;(j) for either every feasible plan (if j = k) or plan list (if j > k) after

simulation for cycle j, the search space can be reduced further by deleting some plans or

49

plan lists according to the following rules:

(PL), . (PL) vy .

v Gy = v (), Vi = discard PIj, (3.18)
Yl.(Pll’Plf)(j) > Yi(Plz’Plh)(j), Vi, for a specific 4 and for any f € F(j)

— discard (Ply, ---). (3.19)

Pl; represents plan i. For example, as shown in Fig. 3.2, Vi, Yl.(PIZ)(l) > Yi(Pll)(l), hence
we can discard Pl;. Since y§Pl3)(1) < yéPll)(l), it is still necessary to continue searching
with Pl3 as a possible option in the first cycle. In cycle 2, (3.19) is used to delete all plan
lists starting with Pl3.

In brief, the supervisory level involves both offline and online tasks. The offline process is
used to find both the set of all feasible plans based on the system topology, and an offline
optimal plan list which can be interpreted as a timetable. The online part updates both the
feasible plan set and the optimal plan list. It also provides the time specification X (k) to

the lower level.

3.4 Implementation level

It is clear that the output EPET specification from the upper level is not always necessary
to follow from an energy saving point of view. With the remaining degrees of freedom,
we need to find the LNET for each train as an upper bound for the event times.

Lemma 4 Given Vi, V, € R . G, Gy, H, Hy € RIX", and consider the following set

mm’ max’

of equation in Z1 and Z»

Vi = Gi1Z19 HZ,, (3.20)
Vo = GoZ1 ® HyZs. (3.21)

The greatest subsolution for (3.20) and (3.21) is given by
Zy = (-GnHe'Vi & (-GN & Vs, (3.22)
Z; = (H)H @' VI & (—H)") & V2. (3.23)
Proof For all possible Z;, Z, which satisty (3.20), we have

GI®Z; Vi, (3.24)

H®Z, < V. (3.25)

A

50

That is, for (3.24),

PG ® (Z)w) < (V)i Vi=1,2,....n.

k=1
Thus,
Gu®Z)r < V)i, VYk,i=1,2,...,n.
Z)e = M)i— Gk, Yk,i=1,2,...,n

(_(Gl)lk)—i_(vl)l’ Vkal = 1,2,...,]’1
(_(GI)T)ki+(Vl)i’ Vkal = 172,"':n
Zx < (=G Vik, Vk=1,2,...,n.

The last inequality shows that for all Z; satisfying (3.20),
Z1<Zy=(—(GD") & V.
Similarly, for all Z; satisfying (3.21),
Zi < Zy=(—(G)") & Va.
Thus, for all Z; satisfying (3.20) and (3.21),

ZI<Z1=Z248 Zp= (=G & VI & (—(G)") & Wa. (3.26)
Similarly, for all Z, satisfying (3.20) and (3.21),
Zy<Zy=(-H)H & Vi & (~(H)") & V2. (3.27)
On the other hand,

n

[Gi® Zili = PGu® Zr. Yi=1,2,....n
k=1
n

= PG ® Za & Zph. Yi=12...n
k=1

IA

PG ® Zow, Vi=1,2,....n
k=1

= PGrue ((—(Gl)T) Q' Vl)k’ Vi=1,2,....n
k=1

n

= PGae (PU-GNy & (1), Vi=12...n
k=1

J=1
n

= B (D16 e -GNy)l), Yi=12..n

k=1 j=I

51

Fori = j and (G1);x = —o0, we have
[(G1ix ® (—(G1))k & (Vi))] = —oo0.
Fori = j and (G1);x € R, we have

[(GDik ® (—(G1) ;& (VD] = (Gik + (—=(G) ki + (V1) = (Vi)

Therefore,)
®/[(Gl)ik + (=G + (V)1 = V),
j=1
and
n
Gi® Z1i = W), Yi=1,2,....n
k=1

= V)i, Yi=1,2,...,n.

This result can also be obtained by directly applying the first inequality of (1.10) to the
right hand side of
GI®ZI =Gi®(~(GNH e V.

Similarly,

H1® Zo < (Vi)i, Yi=1,2,...,n,
(G2® Zil;, < (Va)i, Vi=1,2,....n,
H® Zo <= (Va)i, Yi=1,2,....n.

IA

This means that Z; and Z, calculated by using (3.22) and (3.23) form a subsolution of
(3.20), (3.21). Furthermore, considering (3.26) and (3.27), Z, and Z, are the greatest
subsoltion of (3.20), (3.21). O

Note that Z, Z> can be interpreted as vectors of latest necessary event times that satisfy
event times specified by V| and V5.

Based on Lemma 4, the following corollary holds:

Corollary 2 Given V; and G;; (V; € R} Gij € Ri", 0 = 1,2,...,1, j =

mm?>

1,2,...,m), for Z;, (j = 1,2, ..., m) which satisfy

m
j=1

52

the latest necessary event times for Z; ensuring all V; (i =1,2,...,1) are
1
Zi =P (=Gip" &' V). (3.29)
i=1

Using Lemma 4, the LNET of each train for cyclic systems can be easily determined.
Recall that for systems with non-cyclicly repeated features, LNET is defined in such a
way that the event time of the final event for each train according to EPET will be met.
In addition, it is also ensured that LNET does not violate the EPET schedule of other
trains. For systems with cyclicly repeated features, we have the additional requirement
that LNET should not violate the EPET schedule of the sequential cycle.

Suppose QS(;j) is the event index set for all final events of trains in cycle j and PS,,(j)
is the index set for all events related to train m in cycle j. According to the max-plus
model (3.8) and Lemma 4, at time #;, the LNET specifications [X (J)]1(t) for train m in

cycle j can be calculated as

[Xu(DI®) = (—(Ac(NHT) & [XR,, ()](%)
& ATG+1D))® X(+ 1), (3.30)

where

[x;(DI@), i€ Q(j)ori & PSu(j)

[(XR,)i ()](1) = [oo, otherwise. (3.31)

Within the corridor specified by EPET X(j) and LNET X,,(j), the velocity signal can

then be optimised locally for train m using the algorithms discussed in Chapter 2.

3.5 Simulation

We still use the small rail traffic example depicted in Fig. 2.19 to illustrate the effec-
tiveness of our hierarchical control architecture for timed DES with cyclicly repeated

behaviour.

First, a fixed time-optimal plan list is derived from offline simulations. The system is
expected to run according to this list. If unexpected events happen and block some trains,
the supervisory level will decide whether and how to change the plan list.

Let the total number of cycles be k; = 5. Fig. 3.3 shows the movements of the trains. The
optimal plan listis [122 1 2],1i.e.incycle 1, plan 1 is implemented, in cycle 2, plan 2, etc.

53

1

]

I

!

---- Train 1
Train 2
—— Train 3

200

250

---- Train 1 [
Train 2
— Train 3

200

250

Figure 3.5: Blocking time is unknown beforehand, new plan list: [12 1 2 2]

54

/i Train 1
Train 2
—— Train 3

200 250

Figure 3.6: Blocking time is known beforehand, stick to original plan list: [1 22 1 2]

The last cycle is finished at time 190, if no disturbance occurs. In case of a disturbance
(here, train 3 is blocked on track MN; during the time interval [6, 46]), the supervisory
level checks if it is necessary to modify the plan list using the objective function Jypjine1-
This scenario is presented in Fig. 3.4 and Fig. 3.5, respectively. In Fig. 3.4, the blocking
time is known a-priori. With this information, the supervisory level changes the plan list
immediately in order to reduce the delay time caused by the obstacle on the track. The

required 5 cycles are finished in about 219 time units.

If the blocking time is unknown beforehand, the supervisory level keeps the original plan
list until the status of the trains (including the blocked train) evolve to such a point where
another plan list optimises the online objective J,,jine1- In this example, as shown in
Fig. 3.5, the supervisor changes the plan at time 8 to [1 2 1 2 2]. In this case, the required

5 cycles still can be finished in 219 time units.

As a comparison, Fig. 3.6 illustrates what happens if the original plan list is kept. In this

case, the required 5 cycles are finished in about 228 time units.

Under the same blocking situation, with different online objectives, the supervisory level
may change to different plan lists. Suppose, for example, the required number of cycles is
7, and train 3 is blocked on track M;N» during the time interval [6, 26] which is unknown
beforehand. If the online cost function J,,;ine2 s used, the supervisory level changes the
plan listfrom [1 22 1222]to[1 21222 2]. And the offline timetable is recovered after
the 6th cycle. With Jy,jine1, the plan list is changed to [1 2 1 2 2 1 2], which minimises

the required time. However, for this policy, the timetable is not recovered.

55

3.6 Conclusion

This chapter extends the hierarchical control architecture proposed in Chapter 2 to a class
of discrete-event systems with cyclicly repeated features. Based on a max-plus algebra
model, an upper level supervisory block ensures the optimal sequence of train move-
ments and the optimal sequence of cycle plans even under disruptive conditions. A lower
level implementation block then provides reference velocity signals for each train. By
exploiting the remaining degrees of freedom, the resulting control strategy reduces over-
all energy consumption. Note that the implementation policy is generated by use of the
dual min-plus algebra model. Simulation results for a small rail traffic example illustrate
the effectiveness of the presented approach. We expect the method to be also useful in
other DES applications which exhibit cyclicly repeated features, such as those in flexible

manufacturing systems and high throughput screening plants.

56

Chapter 4

Hierarchical control structure for
general cyclic DES

In Chapter 3, we considered the control problem for cyclic systems under a conservative
condition. With this condition, the users in a latter cycle may not occupy the shared re-
sources before all the users in the previous cycle release them. Consequently, the resulting
max-plus model is rather simple and involves a constant first order system matrix Aj. Itis
only the zero order system matrix Ao which is time-variant and embodies different plans.
In reality, there is a natural desire to relax this conservative condition in many application
fields since it is rather rigid. For example, in a cyclic system, two users TA and TB both
want to use the resource RC. If for some reason TB is not ready to occupy RC for a long
period of time after TA has released it, it is better to let TA in the next cycle occupy RC
first again. Consequently, performance will be improved at the expense of simplicity of
the relevant max-plus model. This chapter focuses on control problems for cyclic DESs

with less restrictive conditions than in the previous chapter.

This chapter is organised as follows: Section 4.1 introduces “negative order arcs” for
more general systems and discusses possible combinations of optional control arcs on a
shared resource. Section 4.2 enhances the method for determining feasible plans from
Section 2.2.3. Section 4.3 briefly summarises a control method for strictly cyclic systems
and discusses remaining problems. Section 4.4 discusses a new problem arising in the
considered, more general, class of systems, that is, how to find the feasible plan lists
for non-strictly cyclic systems. Section 4.5 solves the problem in terms of updating the
feasible plan list set. Section 4.6 studies the upper level max-plus model for the more

general system. Section 4.7 discusses the problem of plan list optimisation. Section 4.8

57

provides the lower level implementation. Section 4.9 shows the simulation results for a
train-track system. Finally, a conclusion is given in Section 4.10.

4.1 Negative order arcs

4.1.1 Introduction of negative order arcs

As discussed before, we use travelling arcs to model the relation between event-times of
the same physical train within a cycle or when transiting into its next cycle. Control arcs
are used to model the relations between event-times of different trains. For systems with
cyclicly repeated behaviour, a train starts a new cycle only after it finishes the previous
one. Thus zero order and first order arcs are sufficient for the travelling arcs. Also, with
the conservative condition imposed in Section 3.1, only zero and first order control arcs
are needed.

Now we relax this condition so that trains on different routes competing for a shared re-
source do not have to wait for each other just because one of the trains is still in a previous
cycle. Such a relaxation results in a new requirement for negative order control arcs. It
represents a situation where a train in a previous cycle may not occupy a single-line track
segment before a corresponding train in a later cycle leaves it. Note that identical events

in different cycles are ordered by

xi(k) < xi(k + 1). 4.1

With (4.1), on a certain route of a train, the number of the events, or correspondingly, the
number of the zero order travelling arcs, limits the number of cycles existing concurrently
on the route. In this chapter, we always consider the most complicated situation in which

the event number is large enough to admit each train in a different cycle.

Thus for a system having N; trains, the possible maximum number of cycles existing
concurrently is N, = Ny, i.e. each train in a different cycle, successively, taking the
same route. In this case, the maximum cycle difference is N, — 1 = N; — 1. Depending

on the specific application, N, may be a lower number.

To distinguish graphically negative order arcs and positive order arcs, we add small circles
to negative order arcs and small slashes to positive order arcs. An arc without a circle or
a slash is a zero order arc. Fig. 4.1 shows a single line track segment which is part of

some train track system. The first order control arc labelled a; represents the fact that the

58

train Lincyclek -
D 0 ®
0 o) (k+1)Q CA> (kA+1) (Ak)
" o
S ay by ® ag | O @& by © i :b3
TN ! & E <;<> K
° O (T Wy Y
2
o R
train2incyclek + 1 train 2

Figure 4.1: +1-order arc and —1-order Figure 4.2: Three groups of control arcs

arc

earliest time for train 2 in cycle (k + 1) to enter the track segment is a; time units after
train 1 in cycle k has left it. The —1-order control arc labelled 51 means the opposite: train
1 in cycle k£ may not occupy the track before b time units after train 2 in cycle (k + 1)
has left it. Obviously, only one of these two control arcs can exist in a feasible plan. A

2nd order arc is represented by two slashes etc.

4.1.2 Control arc combinations on a shared resource

Suppose the minimum and maximum order of control arcs for the system in Fig. 4.1
is —1 and 1 respectively. Then, there are three groups of optional control arcs relating
train 1 and train 2 on this track segment, as shown in Fig. 4.2. The first group, (a1, b1),
represents the event sequence between train 1 in a previous cycle k and train 2 in a latter
cycle (k 4+ 1), while the second group, (a3, by), represents the event sequence between
train 1 in a latter cycle (k + 1) and train 2 in a previous cycle k. The third group, (a3, b3),
relates the event times of train 1 and train 2 in the same cycle k. To ensure the safe
sharing, in each group, one of the control arc needs to be chosen. In any plan, there are
three control arcs coming from these three groups accordingly. To simplify the discussion,
from now on we assume the weights of control arcs are identical. From (4.1), it is clear
that for any set of control arcs pointing from node i to node j, the arc with the lowest
order automatically implies the arcs with higher order. For example, for three control arcs
labelled a; (i = 1, 2, 3), the —1-order control arc labelled a; means that train 2 in cycle k
can only enter the track segment a; time units after train 1 in cycle (k+ 1) has left it. Thus
train 2 in cycle k can of course enter the track segment at the earliest a; time units after
train 1 in cycle k has left it. As the weights of arcs are assumed to be identical, this implies

the zero order arc labelled a3. The same argument applies for the first order arc labelled

59

ay. Furthermore, in each group of optional control arcs (a;, b;, i < 3), choosing one arc
(say a;) implies not choosing the other one (say b;). So in order to describe a possible
combination (a;, bj, i, j < 3) of control arcs on a single-line track, only its lowest order

arc labelled a; needs to be considered.

@) (@) (@) (@) @) (@) 0) O

A S b A N) IERRAN % ~ SN A A
: P 1 1 L G
s a bp v 1b3 aiaa by + ag 1 Ora by ©. ibg
v/ N Y/ N Vi N\ / N
o o} o o a0 o} o O b,

(@) (b) (© (d)
Figure 4.3: Combinations of optional control arcs

For example, in Fig. 4.3 (a), we illustrate the case where the lowest order arc labelled a; is
the first order arc a;, which means that there are no control arcs a; and a3. Instead, there
are control arcs by and b3. In Fig. 4.3 (b), the lowest order arc labelled a; is the zero order
arc asz, so this combination contains control arcs as, a; and b,. If we choose the —1-order
arc a, as the lowest order arc labelled a; (Fig. 4.3 (c)), we need to consider ayp, az, as.

Fig. 4.3 (d) shows the case where we have neither of the arcs labelled ay, az, a3.

In general, for a system with N, = N;, let N, denote the absolute value of the lowest
possible order of all control arcs related to any two trains of the system. Considering the
group of zero order control arcs, there are 2 x N, + 1 groups of optional control arcs.

Therefore, the total number of possible combinations of control arcs is:

Neom =2 X No+1+1=2x(N,+1). 4.2)

Since higher order control arcs are implied by the corresponding lower order control arcs,
the combinations shown in Fig. 4.3 can be as shown in Fig. 4.4. Note that in Fig. 4.4 (¢),
the absence of a -2nd order arc with an a-label implies the presence of a 2nd order arc
with a b-label. This is the lowest order arc with a b-label. Similarly, in Fig. 4.4 (d), the
absence of a -2nd control arc with label b implies the presence of a 2nd order arc with
label a. It is clear that for a single-line track segment, the differences of plans only lie in

the different orders of its related control arcs.

60

o o e} O O O O O
‘ i) ~ A ™~ N
N I— Ly ‘
s bs | &g by - ©ag bs = [b1 ®
% N N Ny ¥ N
@) @)

(@ (b) © (d)

Figure 4.4: Combinations of optional control arcs—simplified

4.2 Feasible plans

For a system with several single-line track segments, different choices of control arcs
result in different plans. It is first necessary to identify and eliminate plans that lead to
blocking. Such plans are called infeasible. For cyclic systems, there are non-zero order
arcs controlling the sequence of events in different cycles. Blocking may happen within

a single cycle or between cycles.

In Section 2.2.3, we detected blocking by checking for the existence of circuits in a di-
rected graph and identified infeasible plans by calculating AX, k < n (see 2.16). Unfor-
tunately, this method is not appropriate for the more general class of system investigated
now. This is due to the introduction of negative order arcs. For example, in Fig. 4.1, we
know that there is a blocking if the arcs labelled by a; and by are both included in a plan.
This will not be reflected in AS, since neither arc is zero order. On the other hand, because
of the existence of positive order arcs, not every circuit in the directed graph necessarily
corresponds to a blocking. For example, in Fig. 4.4, each combination contains a circuit,
but none of them corresponds to an infeasible plan. To explain this more clearly, we in-
vestigate an extended graph, where events in different cycles are represented by different
nodes. For example, the scenario shown in Fig. 4.4 (a) is now represented by the graph
in Fig. 4.5. Fig. 4.6 shows the extended graph related to the scenario of Fig. 4.4 (¢). The
solid arcs between cycles are the first order travelling arcs.

<=0 O =<0 lek O --—<—
cyclek + Ty Cycle
bz | | bz |
e 6 o | /' | o 6 o
Ccyclek + 1N " d cydek 4

Figure 4.5: Sequence relation for Fig. 4.4 (a)

61

- =F~ - = = —

"7 Ty /v\/ ba N
\
\Cyclek+g/o ﬁgo\ CVC|ek+;/O 4‘740\ cyclek / |
[) . [) f/. []

! a2
@ o/C}/Cle—k-Fé\oﬂ_}:Z mO/Q 7@ cyclek

Figure 4.6: Sequence relation for Fig. 4.4 (c)

In the following, we will need to refer both to the extended graph (as in Fig. 4.5 and
4.6) and the underlying condensed graph (as in Fig. 4.4). To find a method for detecting
blocking in the considered general class of systems, we introduce the definition of the
order of a circuit or a path. We always assume the weight of the circuit or the path is a

positive real number.

Definition 6 (Order of a circuit/path) In a directed graph, the order of a circuit C; (or
a path), denoted as od(C), is the sum of the orders of all arcs which form the circuit (or
the path).

For example, the order of the circuit in Fig. 4.4 (a) is 1. Note that in the extended graph

in Fig. 4.5, this circuit corresponds to an open path.

Lemma 5 In the directed graph of a strictly cyclic plan, a circuit C; causes blocking if
and only if the order of the circuit od(C) < 0.!

Proof It is obvious that circuits with nonpositive order in the condensed graph correspond
to circuits in the extended graph. Blocking occurs if and only if the extended graph

contains circuits.
O

Circuits in the condensed graph will be referred to as “potential circuits”. Some of them
may correspond to a closed path in the extended graph. These will simply be referred
to as “circuits” and will cause blocking. We introduce the notion of a “circuit pattern”
by removing the order information from the control arcs in a potential circuit. Hence,

different potential circuits may correspond to the same circuit pattern.

In the last section we concluded that the maximum number of nonblocking combinations

I'To be more accurate, the order of a circuit is 0. The reason that sometimes it is negative is because we

do not count the implicitly existing +1-order travelling arcs between cycles.

62

@) O
- L\ /A
R lp-""77
first order I control arc
travelling arc /ﬁl b
g |

O

Figure 4.7: An ending / starting single-line track segment

of control arcs on a single-line track segment is N, = 2 X (N,+1). If a single-line track
segment is an ending and starting track segment (i. e. for a physical train, the segment is
not only the final part of its route in cycle k, but also the starting part of its new route in
cycle k 4 1), the number of possible non-blocking combinations is less than 2 x (N, + 1).
There is a first order travelling arc at the ending (or starting) part of the track because a
train in the previous cycle will start a new trip in the latter cycle. Thus the lowest order
of arcs at this place is less or equal to 1, no matter which order a control arc at this place
takes (such a control arc is called a cycle-changing control arc). For such a single-line
track segment as shown in Fig. 4.7, from Lemma 3, it follows that blocking occurs if b is

a negative order arc.

According to Lemma 5, we can find all infeasible plans for the generalised systems. The
blockings are caused by control arcs on single-line track segments: either by combining
this kind of control arcs for different single-line tracks, or by combining them with other
kinds of arcs (such as travelling arcs as well as other control arcs). To check the feasibility
of plans, we only need to check the order of circuits of the condensed graph containing
any of these control arcs. Note that the condensed graphs corresponding to different plans
will have the same travelling arcs but will differ with respect to the control arcs. This
can be used to make required computation of the orders of circuits more efficient. For
generalised systems, this method is applied for those plans which have negative order

arcs. If the plans only have non-negative order arcs, the simpler method (2.16) is enough.

4.3 Strictly cyclic systems with negative order arcs

4.3.1 Basic idea — eliminating negative order

The introduction of negative order arcs implies that some events in a previous cycle de-
pend on the occurrence of events in later cycles. For a plan where the lowest order arc has
order —K, (0 < K,, < N,), the possible maximum order is K,, + 1 (see page 60) and the

63

corresponding max-plus algebra model can be represented as:

X(k) = Ak, ()X(k+Ky) ©--- @A ()X (k+1) © Ag(k)X (k) &

GAIk - DXk -D® - ® Ag, 41k — Ky — DXk - K, —1) &

® Bu, (4.3)
Y(k) = C®X(k). (4.4)

The elements of A_; (k) correspond to the negative order arcs pointing from cycle (k + 1)
tocycle k, (0 <i < K,,). The elements of A; (k — i) correspond to the non-negative order
arcs pointing from cycle (k — i) to cycle k, (0 < i < K, + 1). Since X (k) depends on
X(k+1i), (1 <i < K,), the control is difficult for such systems.

Fortunately, for many application fields such as manufacturing systems, chemical batch
plants and transportation systems, a strictly cyclic operation style is widely used. This
simplifies the task of control, even for plans with negative order arcs. In the strictly cyclic

case, the system matrices of the max-plus model are constant, thus (4.3) becomes

Xtk)y = A, Xk+K,) D - A1 X(k+1) & AoX (k) &
OAXKk—-1) D - - @ Ak, 1 X(k— K, —1) @ Bu. 4.5)

Geyer [42] proposed a simple control strategy for systems of the type (4.5). The idea
behind it is to shift certain states (events) in each cycle several cycles forward or backward

so that all negative order arcs are eliminated:

shift one cycle forward: x;(k) < x;(k—1), for some i,

shift one cycle backward: x;(k) < x;(k+1), for some .

Fig. 4.8 illustrates the method of eliminating negative order arcs by shifting some events
one cycle forward. After event 1 and event 2 in cycle kK — 1 have been shifted one cycle
forward, they are treated as events in a new cycle, Ncycle k. The original negative order
arc a; now becomes a zero order arc. Besides, the original zero order arcs a3 become first
order arcs while the original +2-order arcs b4 also become first order arcs. In fact, if an
event is shifted / cycles forward, the orders of the arcs pointing to it increase by / while
the orders of the arcs pointing from it decrease by /. The situation is the opposite when
an event is shifted / cycles backward. As a result, although the cycle index for the shifted

events have been changed, the sequence relations between events remain unchanged.

It is not necessary that all shifted events are shifted the same number of cycles. It also

could happen that some events are shifted forward while some other events are shifted

64

-7 bs ~
- o 4 3 \\
- 0 o o
| R
1 a3 ;18 1ag /
‘ fo v
— Vageksd, Yodek N Ydek—D
T D T 2
a
, ~ \/\b4 4 3
O\ ovclek + of o oeek ° Ocyclek —1.°
\Cy—)(- /- w N - Vs u
-~ & i ap T &
= s ="\
1 2
Ncyclek + 1 Ncycle k Ncyclek — 1

Figure 4.8: Eliminate negative order

backward. To solve the problem of eliminating negative order arcs, we can first shift
every event i by f; cycles forward (where f; € Z). For any arc a;; with order oc(a;;), its

new order is required to be greater than or equal to 0, i.e.
oclaij) + fi — fj =0, 1=<i,j=<n. (4.6)

The solution f;, (i = 1, - - - , n) satisfying the above inequalities can be used to eliminate
negative orders. The solution, if it exists, may be non-unique. For the problem shown in
Fig. 4.8, we have

-1+ fi—f1>0, 0+ f1i— fa =0,
O+/f—/fi=0, 0+ fa— f3>0,
2+ f3—f2=0.

Thus, 2+ f3 > fo > f1 = fa > f3and fi > 1 + f4. Among the possible solutions,
f1i = fo =1, f3 = fa = 0 1is the solution shown in the figure. If f3 = f4 = 0 holds,
another possible solution is f| = f, = 2 which means shifting event 1 and event 2 in each
cycle by 2 cycles forward. Because of the 4-2-order arc b4, two is the maximum number
of cycles event 2 can be shifted forward when event 3 is kept un-shifted.

65

4.3.2 Model representation

The max-plus model (4.5), after eliminating negative orders, becomes
Xk = AoX(k) @ AiXk—1) ® A2X(k—2) @
@ - ® A X(k — ki) ® Bu, 4.7

where k1, B and 1’47 (j =1, -, k1) depend on the particular shifting solution. This event-
shifting method for eliminating negative orders only works for strictly cyclic systems,

where the system matrices A; are constant and the sequences of events are fixed.

From the original system matrices A; to the new :47 , the process of eliminating negative
orders can be interpreted as a matrix transformation. This is described in [42] and is
briefly presented in the following. With the introduction of the y -transformation,
X =P xm ek, vy)=Purw @, (4.8)
keZ keZ
(4.5) can be represented as

Kn+1

X(y)=A()X(y)®BU(y), where Ay) = P Aiy'. (4.9)
i=—K,

The transformation matrix 7 is a diagonal matrix which satisfies

X()=T®X(y) and T '®X()=X(©),
where 7 ! represents the max-plus inverse of 7,i.e. 7! ® T = I.
With the transformation matrix 7, (4.9) can be transformed to

X()=A)X(y)®TBU(y), with A(y)=TA@y)T " (4.10)

Then ;lv] can be directly derived since A (y) = EBI;IZO ;17)) J. To eliminate the negative
order, the elements of the diagonal matrix 7 = diag[y hooon, y In] are determined such
that A—:, E, -+ vanish in the max-plus sense. The transformation matrix represents
the shifting of events. Specifically, 7 shifts event i(i = 1,---,n) f; cycles forward.
T A(y) implies the order increasing of the arcs pointing to the forward shifted events
while A(y)7 ~! represents the order decreasing of the arcs pointing from the forward
shifted events. In Fig. 4.8, the corresponding 7, 7', A(y), A(y) are

yf1 € € € yl € € € y_l € € €
5 1 -1
7 e yh e € _ € y € € -1 _ € y € €
- - b - b
€ € yf3 € € € e € € € e €
€ € € yf4 € € € e € € € e

66

€ € € (A_)1ay '@ (Ao)14

A(y) = (Ao)21 € € € ’
e (A)ny? € €
€ € (Ao)43 €
€ € € (A_1)14 ® (Ag)1ay!
i) = (Ao)21 € € €
e (A)xny! e €
€ € (Ao)43 €

From A (y), we can get Zfo and ZI which means k; = 1. In many cases, however, k; > 1.
To simplify control, (4.7) is transformed further by introducing new state variables. For a
system with n events, suppose there is one event, say event 3, whose event time in cycle k
(i.e. x3(k)) depends on some event times in cycle k — 2, e.g. x3(k) = (74;)35 ® x5(k —2).
Then a new state variable x,1(k) = (74;)35 ® Xs(k — 1) is introduced so that x3(k)
depends on event time in cycle k — 1, i.e. X3(k) = X,,4-1(k — 1).

Note that this parallels the standard procedure in continuous control to transform a higher

difference equation to a first order equation.

Generally, for system with Ag,---, Ay, (ki1 > 2), if a matrix element (Ay);; # e,
1 < k < ki, then there are correspondingly k — 1 new state variables to be introduced
to make (Ay)j; = €. The resulting matrices Agpew, Bnew and Apeyw are:

A() ‘ € B
AOnew = P Bnew = | 1>
€ ‘N(k—l)x(k—l) €

Aq e € <~

Alpen = € jt line

€ € | Ig—2)x(k—2)
€ -+ € (Aji € - € € €

1 it row

67

Now, system (4.7) with k; > 2, can be transformed finally to the following form:
X(k) = AgX(k) ® A1 X(k — 1) ® Bu. (4.11)

With this new system representation, system performance can be conveniently analysed
through the eigenvalue of Ap. Recall that the derivation of the new system representation
is based on the idea of event-shifting. After shifting different events several cycles either
forward or backward, different original negative order models may be transformed to the
same non-negative order system representation A and therefore the same {;fo, A 1} rep-
resentation. This means that different plans could have the same {Xo, A 1} model. Since
event shifting only works for strictly cyclic systems, i.e. for systems in which the event
relations are identical for different cycles, plans cannot be changed during the run-time
of the system. The delay caused by unexpected events can therefore only be recovered
by the introduction of a safety margin between the cycle time and the system eigenvalue.
In order to make it possible to change plans when a delay happens, a more general mod-
elling method for systems with negative order arcs needs to be studied. This topic will be

discussed in the next sections.

4.4 Feasible plan list

Strictly cyclic patterns benefit from simple structure and steady progress, but they might
not make the best use of resources. In many applications, a non-strictly cyclic pattern is
preferred. For systems operating without a regular pattern, the modelling method based on
event shifting is not applicable. For strictly cyclic systems, the method does not support
a possible change of plan when delays happen. Before discussing a more general way to

describe systems with negative order arcs, we first need to find feasible plan lists.

We discuss two methods to find feasible plan lists. The “circuit order checking” method
is based on Lemma 5 and is an extension of Section 4.2, while the “big-matrix checking”

method is based on the method described in Section 2.2.3.

4.4.1 Circuit order checking method

For cyclicly repeated systems, because of the existence of negative order arcs, not every
feasible plan can be connected to arbitrary feasible plans. It is no problem to connect any

feasible plan to a previous non-negative order plan though. Things are different when the

68

cyclek + 2

cyclek + 2

a

Figure 4.9: Blocking
(@) @)
al /1/)//b4

(cycle'! ! lek
L — é(cyce)

Figure 4.10: Nonblocking

plan in the previous cycle has negative order arcs. Although a feasible negative order plan
(i. e. a plan with negative order control arcs) can be repeated periodically without causing
blocking, it is not safe to operate a different plan immediately after the previous cycle.
As negative order arcs create a path from the following cycle to the previous cycle, the
combination of different plans in sequential cycles may cause blocking. Although both
are feasible plans, if the negative order plan 4.4 (¢) (in cycle k) is followed by the plan
shown in 4.4(a) (in cycle k + 1), —1-order arc a; of cycle k and zero order arc b3 in cycle

k + 1, together with some travelling arcs will result in blocking, see Fig.4.9.

Lemma 5 is used to check if a plan can follow a negative order plan without causing
blocking. Similar to the identification of a feasible negative order plan by checking the
orders of its circuits, now we need to check the orders of every potential circuit which

satisfies the following requirements:

1. The potential circuit contains more than one control arc.

2. The plan implemented in the first cycle contains at least one negative order control
arc.

3. The plan implemented in the second cycle contains at least one control arc.

For example, in the condensed graph shown in Fig.4.10, we do not need to check the
potential circuit composed of control arc b4 in cycle k and control arc a; in cycle k + 1,
because requirement 2 fails.

69

circuit pattern cyclek cyclek +1 cyclek + 2

g o akeno A
Pt ak) e %
b bK) S bk + 1)

// e > — - @ L, N . N

o _-Tc¢ dk el dk41), ek + D)
| ~ 3 (k),- N , B

\ ~

NC

Figure 4.11: A circuit pattern and its selections

As discussed in Section 4.1, different plans have the same circuit patterns pac ;. For cycle
k, which implements a negative order plan PI(k), and cycle (k + 1), which implements
a plan PI(k + 1), there are the potential circuits C;(k) and C;(k + 1) respectively, both
of them corresponding to the same circuit pattern pac;. Because the two cycles are
connected sequentially, some control arcs of C; (k) and some other control arcs of C; (k +
1) may form more potential circuits which still have the same pattern pac;. In other
words, a specific pattern pac; composed of k. control arcs, can correspond to different
combinations of control arcs, e.g. i control arcs from cycle k and (k. —i) control arcs from
cycle (k+1) for 1 <i < k.— 1. Generally, for two sequential cycles, without considering
C;(k) and Cj(k + 1), a specific pattern pac; may correspond to up to K. = Zf;_l] C ,ic
different selections, where C,’Q_ = k.!/(@i!(k. — i)!). But as stated by requirement 2, we
only need to consider potential circuits with at least one negative order arc in the plan
implemented in the first cycle. So K,.; can be reduced. Let the number of negative order

arcs in cycle k be ky¢, (kyc < k), then the number of combinations is

min(kyc,ke—1 c—Jj—1

)k .
Ksel = Z (C]nc z C;(C_])
i=0

j=1

Note that not each combination corresponds to a potential circuit. Sometimes a combi-
nation is even not a path. An example is shown in Fig. 4.11. For a pattern containing
control arcs a, b, ¢, d and plans implemented in cycle k£ and cycle k + 1 as shown in
Fig. 4.11, the combination of {b(k), d(k),a(k 4+ 1), c(k + 1)} is not a circuit: although
a(k + 1), b(k), c(k + 1) lead to a path in the extended graph, the control arc d (k) starts
from cycle k, while c(k+ 1), the expected predecessor of d according to the circuit pattern
pac;, points to a later cycle k + 2 instead of cycle k. There is no path from c(k + 1) to
d(k).

To find out if a combination corresponds to a circuit, we introduce the following notation:

70

cca(i, j): the number of cycle changes between a control arc i and its
successor control arc in circuit pattern pac;
sel(l, j): a combination of control arcs corresponding to circuit pattern pac;,l < Ky,
isuc(i, j): the index of successor control arc for control arc i in pac;
ipre(i, j): the index of predecessor control arc for control arc i in pac;
oc(i, k): the order of control arc i chosen by the plan in cycle k
CI(i, sel): cycle index of control arc i in combination sel
la(i, k): the index of the cycle to which the control arc i in cycle k points

Oal(i, k): the index of the cycle from which the control arc i in cycle k points

In a combination sel, for control arc i, we have

la(i,CI(i,sel)) = CI(i,sel) + max(0, oc(i, CI(i, sel))),
Oa(i,CI(i,sel)) = CI(i,sel) —min(0, oc(i, CI(i, sel))).

A combination sel (i, j) corresponds to circuit (i. e. causes blocking) if and only if it has
the following property:

Vi, la(i, CI(i, sel)) + cca(i, j) < Oaliz, (i, j), CI(i, sel)). (4.12)

For the circuit pattern shown in Fig. 4.11, cca = 0 holds for all four control arcs. The
successors of control arcs are ig,.(a) = b, isuc(b) = c,izue(c) = d,isuc(d) = a. In
combination {b(k), d(k),a(k + 1), c(k + 1)},

Cl(b,sel)=Cl(d,sel) =k, Cl(a,sel)y=ClI(c,sel) =k+1,
oc(b,k)y=—1; oc(d,k)=1, ocla,k+1)=—-1; oc(c,k+1)=1,
la(b, k) = k + max(0, oc(b,k)) =k, Oa(b,k) =k —min(0, oc(b, k)) =k + 1,
la(d, k) = k + max(0, oc(d, k)) = k + 1, Oa(d, k) = k — min(0, oc(d, k)) = k,
la(a,k+1) = k+ 1+ max(0,o0c(a,k+ 1)) =k+1,
Oa(a,k+1) = k+1—min(0,o0c(a,k+ 1)) =k + 2,
la(c,k+1) = k+ 1+ max(0,o0c(c,k+ 1)) =k+2,
Oa(c,k+1) = k+1—min(0,o0c(c,k+1))=k+ 1.

Since
la(c,k+1)+ccalc)=k+2+0> Oad, k) =k,

71

the combination {b(k), d(k), a(k 4+ 1), c(k + 1)} cannot form a circuit. Another combi-
nation {b(k), c(k), a(k + 1), d(k + 1)} satisfies (4.12). It must be a circuit.

For two sequential cycles with different plans,

if 3 pac;, and 3 a combination sel(/, j) which has the property (4.12),
= the plan list is infeasible. (4.13)

Using (4.13), for every negative order plan, we can find all plans which can not directly

follow it. A matrix Pf is used to store the related results:

1 if plan j can directly follow plan i,
(Pf)j = [P y P (4.14)

0 otherwise.

Of course, for a non-negative order plan i, (Pf);; is always 1.

4.4.2 Determining the maximum number of cycles to be checked

The matrix Pf provides the feasibility information of plan lists which contain two plans.
Suppose that in the first cycle of such a feasible list a negative order plan is implemented.
If the order of the negative order plan is lower than —1 or if the feasible plan implemented
in the second cycle is also of negative order, i.e. if there is a negative order control arc
pointing from another plan attached to the entirety of two sequential cycle, it is still nec-
essary to check the feasibility of lists with k; sequential cycles (k; > 2). We can always
computes the maximum number of cycles, denoted as k;,,,, over which the feasibility test

needs to extend.

For a given system, k;,, not only depends on the number of control arcs which form each
circuit pattern pac;, but also on the lowest negative order (i.e. —N,) of the control arcs

in the system.

To find out the maximum possible value k;,,, we always consider the worst case. Suppose
K, = N,. If the plan implemented in the first cycle is a negative order plan, there is a
negative order control arc a in the first cycle with — K, as its order. Suppose a circuit

pattern pac; contains a.

e For the simplest case, suppose pac; contains only two control arcs a and b.

1. If =K, = —1, control arc a in the first cycle points from the second cycle. To

form a circuit, control arc b should also point to the second cycle. Since the

72

lowest negative order of the system is —1, the possible orders of b are 0 or —1,
and b is in the second cycle (Note that with order higher than 0, b is in first
cycle or even earlier, there is no need to consider such situations). Apparently
kim = 2.

2. If —K,, = —2, control arc a in the first cycle points from the third cycle. To
form a circuit, control arc b should point to the third cycle. If —K,, < oc(b) <
0, b is in the third cycle; if oc(b) = 1, b is in the second cycle and there is no

need to consider other possible orders. Thus k;,, = 3.

3. Clearly, for a with order — K, it points from cycle (K,, + 1). The possible
orders of b are —K,, < oc(b) < K, — 1 and k;;,, = K, + 1.

This argument can be easily extended to k. control arcs with minimum order — K.

e Generally, for a circuit pattern pac; with k. control arcs, if the lowest possible order
of the system is — K, the worst case for which a circuit may exist is that there is a
corresponding negative order control arc of order — K, points from cycle (1 + K},)
to cycle 1, from cycle (1+2 x K,) to cycle (1+ K,,), - - -, from cycle (1 + k. x K},)
to cycle (1 + (k. — 1) x K,). The maximum possible number of cycles a plan list
needs to be checked is then

kim = 1+ (ke — 1) x K. (4.15)

Thus for a plan list starting with a negative order plan, if the cycle number of the list
ki > ki, only the feasibility of subparts of the original list need to be verified instead of
doing so in the whole list. Each subpart starts from a negative order plan of the original
list and contains its successive (ks; — 1) plans, where kg — 1 = min(k;,, — 1, k; — k) and

kp is the cycle index of the plan.

4.4.3 Feasibility checking procedure

Suppose 2 < k;, < k;. The method of checking the feasibility of a list containing two
sequential cycles is similar to the method of checking the feasibility of a list containing
kim cycles, both are based on (4.13). Up to (k;,, — 1) steps are required to find all feasible
lists of k;,,, cycles. Ineachstepk =1, --- , k;, — 1, feasible lists with (k + 1) cycles are
found based on the result of both the last step accordingly and (4.13).

73

Step k: For a feasible list fI containing k cycles, let the cycle indices be [1, 2, - - - , k]
and the plan of cycle k be plan i.

1. Assign a plan ji4 to cycle (k + 1) if (Pf);j,., = 1 and if the k-cycle plan
list [£ jxy1] is feasible. fI’ is the same as fI except that it does not include
the first cycle (i.e. cycle 1) of fI. So we have a plan list of (k + 1) cycles:
(1,2, - ,k,k+1].

2. Similar to two-cycle case, check the feasibility of the new (k + 1)-cycle plan
list. If the added plan ji1; is the same one as the last plan in the k-cycle
list f1, it can be directly concluded that the new (k + 1)-cycle list is feasible.
If plan jx 1 is different to the last plan in fI, we use the same requirements
corresponding to the feasibility test of two cycle case (page 69). Consider
every circuit pattern pac, which contains more than one control arc. Within
these control arcs, it is required that:

e the plan implemented in the first cycle contains at least one negative order
control arc, 1. e.

diy e {ili € ACyy,0c(i, 1) <0}, CI(iy,sel) =1, (4.16)

where AC,, is the index set of control arcs contained in pacy,.

e the plan implemented in the last cycle contains at least one control arc,
i.e.
i, € ACy,, Cl(in,sel) =k +1, ir #ij. (4.17)

If these requirements are met, we use (4.13) to check the feasibility of the new

plan list.

3. For each plan j;4; which could be implemented in cycle (k + 1), use the
feasibility test in step k(2) to find all feasible (k 4 1)-cycle lists whose first k
cycles are f1.

4. For each feasible list f/, find all corresponding feasible (k + 1)-cycle lists.

Since k; > kj,, based on all (k+1)-cycle feasible lists (k =1, - - - , k;;, — 1), the feasibility
of a k;-cycle list can be judged by checking its sublists starting with the negative order
plans.

74

4.4.4 Big-matrix checking method

In the above step k (2), for the case that plan ji4 is different to the previous cycle’s
plan i, if the number of circuits containing control arcs is very large, checking the fea-
sibility of the plan list using (4.13) may take a very long time. To speed up feasibility
checking for such systems especially when the dimension of the system is small, we build
a block matrix A for a plan list PL so that we can use (2.16) to check the feasibility of

the list, 1. e.
dk <n, Ak(i, i) > € < theplanlist PL is infeasible.
For system (4.3), let the maximum number of the cycles in a plan list be &;, and denote
X=[X"() X'@ - X"(k—1) X" k)" (4.18)

The corresponding system matrix can be represented as

Aoy AL - Agn(D) A_gon(D)]
Ai(1) Ao(2) 0 A_@-3(2) A_-2(?2)
A= . (4.19)
Ap-2(1) Aw-3»2) -+ Aglkh—1) A_1(k—1)
L A -n(1) Ag-—22) - Ak —1) Ao(ky)

Each block (A);; shows the time influence of cycle j on cycle i,
(A)ij = A;—j(min(i, j)). (4.20)
Note that if — K, is the most negative order of the plan implemented in cycle k, then
A_j(k) = N, fori > K,,
Aij(ky = N, fori > K, + 1.

This big-matrix checking method can also be used effectively to find infeasible plans
by holding all A;(k) constant. Many factors influence the efficiency of the feasibility
checking methods: system dimension n, number of feasible plans, number of feasible
negative order plans, number of cycles, number of circuit patterns with multi control arcs
etc. Generally, this big-matrix checking method is faster than the circuit order checking
method for relative smaller system. For example, for a system (n = 16) with 29 multi-
control arc circuit patterns and with 64 feasible plans (in which 40 plans are of negative
order), the big-matrix checking approach takes less time than the circuit order checking
approach when k; = 2. But if k; > 2, the circuit order checking approach takes less time.
To make better use of two methods, they can be combined.

75

4.5 List set updating

For a rail transportation application, the number of feasible plan lists is usually very large
for high order systems. However, once a train enters a shared single-line track segment, a
lot of lists can be deleted from the list set. In Section 2.2.3, for system with only +1-order
arcs, the updating of the feasible plan set is based on the key in-node set Kins and the
corresponding matrix K N. If a train j has passed the location corresponding to the key
in-node (K N);;, it is impossible to change from the currently implemented plan to plan
i, 1.e. plan i can be deleted from the feasible plan set. This idea is also applied here to
update the set of feasible plan lists.

For cyclic systems, the plans are different because the orders of the control arcs on shared
single-line track segments are different. A control arc with order oc, on the shared single-
line track segment also satisfies the constraints described by control arcs on the same
location with order oc > oc,. However, it violates the constraints of the ones with order
oc < oc,. Suppose the currently operated plan in cycle £ has a control arc with order oc,
and another plan j has the same control arc but it has a order oc which is less than oc,.
If the in-node event corresponding to the control arc happens, then all plan lists which
operate plan j in cycle k should be deleted from the list set.

_tanl 4, _tanl

O (@) O O
! P

8 planl by Oap plan2by
e N N
O O O o
2 tran2 - 2 train2 _

Figure 4.12: Key in-node

Fig. 4.12 shows the control arcs of plan 1 and 2 on the same single-line track. Plan 1 is
shown in the left part of the figure, plan 2 in the right part. The in-node set Ins1 = {1 2}.
In plan 1, the order of the control arcs related to the in-node set is Oinl = [1 0].
Correspondingly, for plan 2: Ins2 = {1 2} = Insl, Oin2 = [2 — 1]. Suppose the
currently operated plan in cycle k is plan 1 and train 1 in cycle k has passed in-node 1.
Since b; has order 1, train 2 in cycle (k — 1) has already left the track. As the order of b,
is less than the order of b4, it does not violate control arc b4. It is still possible to change
current plan 1 to plan 2. On the other hand, if train 2 in cycle k has passed in-node 2,

plan 2 will become infeasible since the order of a3 is greater than the order of a;. Thus

76

the key in-node (of train 2) for changing plan 1 to plan 2 is in-node 2. The in-node 1 is
not a key in-node in this case.

The corresponding K N matrix is

train 1 train 2

\ \
KN — 400 +00 < plan 1
400 2 < plan2

In general, for the currently operated plan in cycle k, its in-node set is Ins. Each element
in Ins (i.e. (Ins);) corresponds to an event on a shared single-line track segment and is
pointed to by a control arc. The order of the control arc related to the in-node (Ins); is
(Oin);. Also, let the order of the same control arc of another plan j be (Oinj);. Then, in

order to change to plan j, (/ns); is an element of the key in-node set kins if
(Oin); > (Oinj);. (4.21)

As we discussed before, the kins can be simplified to a “Kins” set and results in K N
matrix. When the event corresponding to a key in-node (K N);; happens, all plan lists

containing plan j in cycle k should be deleted from the list set.

4.6 Upper level model

For a cyclicly-running system with — N, as the lowest order of control arc, an appropriate

model is given by

Np+1 N,
X(k) = Ao X(k) @D Ailk —)Xk —i) DA ()X (K +1). (4.22)

i=1 i=1
It is an implicit model containing event times in future cycles, X (k+1i). As in the previous
chapters, the corresponding explicit model is required. For a given feasible plan list, if
there is no negative order plan, each cycle can be viewed as an independent unit in the
sense that the unit does not depend on its successor cycles, i.e. A_; = N fori > 1. If
there are negative order plans in the list, besides the single-cycle units, there are units
which contain a sequence of cycles. For such a unit containing cycles k: ky, - - - , k,, the
first cycle (i.e. cycle k1) is a negative order plan. k, is determined in such a way that

starting from cycle k1, cycle k, is the first cycle satisfying the following condition: there

7

is no negative order arc pointing from its subsequent cycles to any cycle k € {ky, --- , k,}.
Thus, as an independent unit, it does not depend on its successor cycles. This situation

happens when either

e there is no negative order arc pointing from subsequent cycles into the unit, this, of
course, implies that cycle k, implements a non-negative order plan.

e or, the cycle sequence k = [k, - - - , k,] is the last part of the original feasible plan
list so that there is no subsequent cycle and cycle k, is the last cycle of the plan list.

In this case, cycle k,, may also implement a negative order plan.

In both cases we have

Ny+1

Xk) = Aotk)X(ka) @ Ailky —)X (ky — i)
i=1

No+1

= Alk,) ® [@ A (ky — i) X (ky — i)i| . (4.23)
i=1

Of course, (4.23) also can be written as X (k,) = @lN:”le Ag(ky)Ai(ky — 1) X (ky — 7).

Thus, for cycle (k, — 1), its lowest possible order would be —1. Since the highest order

of the systemis N, + 1, A; = N, fori > N, + 1. Hence, we get for cycle (k, — 1):

No+1
Xk =1 = Aoty = DXy = 1) D Aihky =1 = DX (ky = 1 = 1)
i=1

DA (ky — DX (ky).
By inserting (4.23), we get

Xky—1) = [Aotky —1) ® A_y(ky — DAG(ky)A1(ky — D] X(ky — 1) @
No+1
P {41t = DAGEI A1 Kk =1 =D @ Aithy — 1=)] ©
i=1
®X(k —1 1)}
No+1
= Aoky — DXy —1) P Aitky =1 = DXy —1—1i), (424
i=1
where Z?)(ku —1) = Aoky —1)®A_1(k, — 1)Afj(ky) A1 (k, — 1) contains both direct and
indirect time influences of cycle (k, — 1). A, (ky —1—i)=A_1(k,—1)Aj(ky)Aj11(ky —

78

O,/—@\O .__ku.—3 kg—2 kull/.@\gy

® Y —> @ k
ku_?/—//rku \M u
Aok, — 1) Atky—1—10), i=12---

Figure 4.13: Direct and indirect time influence

1—i)® A;(k, — 1 —1) represents the direct time influence of cycle (k, — 1 — i) on cycle
(k, — 1) as well as the indirect time influence of cycle (k, — 1 — i) on cycle (k, — 1) via

cycle k,, see Fig. 4.13 in which each black dot corresponds to a vector X in each cycle.

By inserting (4.24) into itself repeatedly, we get
Xki—1) = Ag'(ku—1)® Xy — 1) @

N,+1
o[Aoky — @ 1] ® [@ Ktk =1 = D)X (ky — 1 — i)}
i=1

= A= DXk — D) ®[A) k=)D B

N,+1
®Aoky — 1) ®1]® [@ Ajlly =1 = DX (ky =1 = i)}
i=1
No+1

= Ay —1D® [@ Ay —1—)Xy — 1 — i)i| . (4.25)

i=1
The last identity results from A" (k, — 1) = N which is a consequence of the feasibility
of the plan list.
For cycle (k, — 2), the possible lowest order of control arc is —2, thus

No+1
Xtk =2 = Aolku =X (ki =2) €D Aiku =2~ DX (ky =2 ~1)
i=1
DA_1(ky —2)X(ky —1) & Az (ky —2) X (ky).
We can replace the last two items in the above formula by

Ak —2)X(ky) = A-a(ky —2)Agki)Ar(ky — DX (ky — 1) @

No+1
DA (ky — 2)Af (k) ® {@ Ailky — D)X (ky — i)} :

i=2

79

A—l(ku - Z)X(ku - 1) ® Aok, — 2)X(ku) =
No+1
Aty =X (ky — 1) @ Aa(ky — 2)Af (k) ® [@ Ailky —)X (ky — i)} :
=2
where A—j(k, —2) = A_1(ky —2) & Aa(ky — 2) A} (ki) A1 (ky — 1)
Therefore,

No+1
Xk =2) = Aotky =Xy —2) D Ailhky =2 = DX (ky =2 1)
i=1
®A_1(ku =X (ky = 1) @

No+1
DA (ky — 2)AS(k,) ® [@ Aj(ky —)X (ky — i)} :

=2
Inserting (4.25) then gives
Xky —2) = |Aolky —2) ® A_1(ky —2)A0" (ky — DA (k, —2) ®

DAk, — 2)Aj(ki) Aotk —2) | Xk, —2) @

™ No+1
@ Ailky —2 — D)X (ky —2 — i)i| ®

| i=1

N,+1
DA (ky —2)A0 (ky — 1) ® [@ Ailky =1 = D)X (ky — 1 = i)}
i=2

No+1
DA-2(ky — DA (k) © [@ Aily = DX (ky - z‘)} . (4.26)
i=3

Denote the coefficients of X (k, —2 — i) as Av,-(ku —2—i)fori=0,---,N,+ 1,1.e.
Ailky—2—1i) = Aitku—2—-0)®
SA_ 1 (ky — D A0 (ky — DAip1(ky —2— 1) &
DA_r(ky —2)Ap (ki) Aiya(ky —2 —i).

Finally, X (k, — 2 — i) can be described as (4.27). Fig. 4.14 shows the components of
A (ky —2), of Ag(ky —2) and of A;(ky —2—i),i=1,---, N, + 1.

80

ki —2

e WA A W
ku
A1k — 2) Aotky — 2)

Akg—2-1)
i:1,2,...

Figure 4.14: Components: E (ky —2), Za(ku —2) and Av,- (ky —2—1)

No+1
Xk —2) = Aolky —2)X(ky —2) PlAG,—2-i)&
i=1
DA (ky — D A0 (ky — DAip1(ky =2 =) ®
@A—Z(ku - Z)AS(ku)AH-Z(ku —-2- l)]X(ku —-2- i)
No+1
= Aotky =X (ky —2) P Aiky —2 -)X (ky —2— 1)
i=1
No+1
= Av =[P Ailky =2 - D)Xy =2-D1. (427
i=1

Now it is clear that inside an independent unit the influence of subsequent cycles on pre-
vious cycles can be included into corresponding new system matrices A; (k). In general,

given an implicit model

Ny+1 N,
X(k) = Ao X (k) P Aik —)Xk —i) DA ()X (k+i)® X in(k), (4.28)
i=1 i=1

for an independent unit k = [kq, - - - , k,], which, by definition, does not have negative

order arcs pointing into the unit from the outside, the corresponding explicit model is:

No+1
X (k) = A" ()X in(k) @ A" (k) A; (k —)X (k — i), (4.29)
i=1

or equivalently, if we denote Ao*(k)Az_;(j), j < k by AKJ(k, j),

81

k—1

X(k) = A WXink) @ AKIk HX(). (430)
j=k—Ny—1

The following equations and figures show the corresponding in/l’l(k), A (k) and
Aik—i)fork = [ky, kuy — 1, , ki].

Nn
Xin(k) = X-in(k) D A= () A" (k +)X -in(k +i). (431
i=1

[}
k k+1 k+2 k+ No

Figure 4.15: Components of X,\l.l/’l(k)

No
Ay = ALi(k) D A—j(R) A (k+ DAj-itk+1), i=No.No—1,---,1,0.
j=i+1
(4.32)
No+1
Ak —i) = Aitk—i) @ A_G(OAS (k—i+ jAjk—i)
j=i+1
Nyo+1 o
= Ailk—i) @@ A ny(WAKI(k—i+j.k—i), (433)
j=i+1

/@\ N0+1—|
5 Ci /_‘Q\
/Q:W O .ﬁ%;».k”_@\ O

! k+| iR N W"J“NO“

AT (k) N-~-_| Ak—i) No + 1

Figure 4.16: Components: A_;(k) and A; (k — i)

82

Note that not every plan contains control arcs of every order between —N,, and N, + 1,
thus the actual number of max-plus algebra addition (&) in the above equations may be

less than stated. For example, for cycle k,,, there is no negative order arc, i. e.
Xin(k,) = X-in(ky), A i(k,)=A_i(k) =N, Ajk—i)=A;k—i).
In conclusion, if the maximum order of cycle k is mp(k), the minimum order of cycle k

is —mn(k), (mn(k) > 0), the explicit model for an independent unit consisting of cycles
k = [kla"' :ku]is

k—1
X(k)=AS"0OXink)y P AKIK HX(), (4.34)
j=k—N,—1
where, for k = [k, k, — 1, ---, k1],
o mn (k) o
X in(k) = X_in(k) @) A () Ay (k +)X in(k + i), (4.35)
i=1
mn(k) o
ALl = Asi() D A—j (A kA< k+D), i =mn(k), mn(k)=1,---, 1,0
j=i+1
(4.36)
n—1
A" (k) = 1€D A0’ (), (4.37)
=1
mpk—i)
Aik—i) = Aitk—i) @ A_-nWA) (k—i+ Ak —1i)
j=i+1
mp(k=i)
= Ak—i) @ A nWAKI(k—i+j.k—i), (438)
j=itl
i=1,---,Ny+1
AKJ(k, j) = Ao" (k) Ax—;(j), j <k. (4.39)

Although k > kj in (4.38), k — i could be less than k1, i.e. a cycle (k — i) could preceed
the independent unit [ky, - - - , k,]. It may have an indirect influence on cycle k via some

negative order arcs inside the unit. In addition, althoughi = 1,---, N, + 1 in (4.38),

83

if mp(k — i) < i, there is no need to calculate Ak — i), ie Ak —i) = Ai(k —).
AK J(k, j) represents the overall influence of a previous cycle j to a subsequent cycle k.

For a cyclicly-running system with a required number (k;) of cycles, the simulation is not
based on each cycle, but based on each independent unit. An entire plan list assigned
for the k; cycles may consist of several independent units. The number (N,,;) of cycles
contained in each unit may be different. The minimum possible value of N,,; could be
1 which means an independent non-negative order cycle. Not every non-negative order

cycle is independent though, it could be a component cycle inside an independent unit.

As mentioned in Section 4.1, for a system with N; trains, denote the number of cycles
existing concurrently by N,.. Then the maximum value for N, is N;. At a certain time in-
stance, if the first currently existing cycle is the one which starts an independent unit, and
if No < Nyuni, then some cycles in the unit are future cycles for which the corresponding
initial vector X in(k) can be set to a e-vector. To facilitate the backward simulation of

the lower level, the states of these future cycles are also passed to the lower level.

4.7 Plan list optimisation

Within runtime, the upper level of the proposed hierarchical control architecture will au-
tomatically update the optimal plan list if unexpected events happen. The real time in-
formation on status of current events, X in(k) is generated by the C/D block which is
described in Section 2.3. The optimisation objective could be the same one as (3.13) or
(3.12), i.e. either to catch up with the timetable which is interrupted by the delay, or to
finish the total required number of cycles as fast as possible. If there are several plan
lists which optimise the same objective, the one which has the minimum sum of all ar-
rival times (thus the minimum overall running time of trains) will be implemented via the

lower level, i. e. we have a secondary optimisation problem with cost function

. k[Nt
min
Jsecundary = all feasible Z Z Y; (k)’ (440)
plan lists _1 ;—q

where k; is the required total number of cycles, NV; is the total number of trains and Y; (k)

is the arrival time of train i in the k-th cycle.

Assume the delay occurs during cycle k;. If several cycles exist concurrently with cy-
cle k4, the plans of previous cycles k (k < kg) do not need to be changed when there is a

fixed timetable. The search space only covers feasible plan lists which coincide with the

84

currently implemented plan list for (k < kg). With the exception of (3.18) and (3.19), the
procedure for reducing the search space discussed in Section 3.3 can also be applied here.

4.8 Lower level

With the event times specification provided by the upper level, it is possible to apply
Corollary 2 proposed in Section 3.4 to get the corresponding LNET specification. In gen-
eral, Corollary 2 means that if the influence of a vector of event times Z;(j = 1,2, ..., m)

on several other vectors of event times V;(i = 1,2, ...,[) is described by

m
VZZ@GUZ],VZZI,2,,I,
j=1

then the LNET specification for Z; is
1
Zi=P'(-Gp" & V).
i=1

Because of the existence of cycles with negative order arcs, the upper level simulation
is based on independent units instead of cycles. An independent single cycle influences
both itself and the subsequent cycles. A cycle inside an independent unit containing more
than one cycle may influence both the subsequent cycles and—via the term X in(k) (see
(4.34) and (4.35))—the previous cycles.

/@6\ K+1
e --- [} .4—@—@%. k;i_z...k—i_’\.lo—i_l

@) N.o.-.‘r 1

Figure 4.17: The influence of cycle k

As shown in Fig. 4.17(a), a cycle inside an independent unit can influence at most the
following (N, + 1) cycles and the previous N, cycles. The numbers may vary according
to different plans. Assume cycle k influences all its previous N, cycles, then according to
(4.35),
mn(k—j)
Xintk—jy=Xintk—j) @ A-itk—HA k- j+)X intk — j+1i),
i=1

85

i.e. the influence of X _in(k) in cycle k on cycle (k — j) is indicated not only by
AZj(k — Ao (k)X _in(k), but also by Ay, (k— j)Ag" (k — j k)@ X in(k — j+k;).
(I <kj < j—1). This fact is due to the influence of X_in(k) on X_in(k — j + k;) as
shown in Fig. 4.17(b). A_ j(k — j) (the “influence matrix™) is used to indicate the total
influence of X in(k) on cycle (k — j), thus,

forj=1, A_j(k—1)=A_i(k— DA, (k),
forj =2, A s(k—2)=A »(k—2)Ag (k) ®A_(k—2)Ag (k — DA_j(k — 1),

In general, for an independent unit with cycles k = [k,, k, — 1,---, k1], the influence
matrix from cycle (k + j) to cycle k is

j—1
A_jk)y = AZj() A" (k+) @D AZi) Ag" (k+i)A_ (i (k+i), j=1,2,...,mn(k).
i=1

(4.41)
Then,
— mn (k) A
X_in(k) = X in(k) @ A_;(0) X in(k + j), (4.42)
j=1
For k = [ky, - -+ , k], by inserting (4.42) into (4.34), we get
k—1
X(k) = A'®OXink) P AKIK HX(G)
j=k—N,—1
mn(k) k—1
= Ao () | Xin) P A_ ()X intk+j)| P AKJIGk. HX()
j=1 j=k—N,—1
mn(k) k—1
= Ay WXint) P A;WXink+)) P AKIKk HX()
j=1 J=k=N,—1

where A_j (k) = Ao (k)A_; (k).
Seen from another point of view, cycle k influences (apart from itself) subsequent cycles
via

Xk+1) = - @®AKI(k+1L,OXK) &,

Xtk+mpk) = ---®AKJ(k+mpk), k)X k) &---,

86

and may influence previous cycles via

Xk=1) = - ®A_ (k- DX.ink) &,
Xtk—kl) = - @Ak —kDX ink) @ ---,

where k1 satisfies 1 < k1 < N, and k—k1 > k. Note that forcycle j (1 < j < kl)tobe
influenced by cycle k, it is necessary that mn(k — j) > j,i.e. cycle (k — j) has negative

order arcs pointing from cycle k.

Considering all influenced cycles listed above, the LNET for cycle k can be derived di-
rectly from Corollary 2. For train m, in cycle k, LNET should not violate the EPET
schedule of the other trains and the EPET schedule of the final event of each train. In ad-
dition, the EPET schedules of the corresponding sequential cycles and the corresponding

previous cycles should also be met.

Suppose that for a certain time instance, there are N, concurrently existing cycles with
cycle indices k = [1,---, N.]. Note that the cycles are not necessarily required to be
in the same independent unit. They may belong to several sequential independent units
ITu; with i =1, ...,ny,, where ny, is the number of independent units within the N,
concurrently existing cycles. Suppose unit /u; contains cycle [kiy, - - - , ki,;]. For train
m, the LNET specifications of each cycle k = [kiy;, ki,, — 1,--- ,ki1](i = npy,..., 1)
are

mp (k)

Xnk) = (—(Ag ()HXR, (k) P "(—(AKIk+ j, k)X K+ j) &
j=1

k1
P @Ak — NHXEk - j), (4.43)
j=1

where
[x;(k)], i€ QS(k)ori g PSy(k)

i (4.44)
+o00, otherwise.

[(XR,)i(k)] = [

Note that Q S(k) is the event index set for all final events of trains in cycle k and P S,, (k)

is the index set for all events related to train m in cycle k.

With EPET and LNET specifications for train m, the velocity signal can then be optimised
locally by exploiting the remaining degrees of freedom as discussed before.

87

4.9 Simulation

For the three-train network shown in Fig. 2.19, the maximum number of concurrently
existing cycles is 3 when each train belongs to a different cycle. The lowest order of
control arcs is N, = N; — 2 = 1 while the maximum order is N, + 1 = 2. With the
introduction of negative order arcs on single-line track segments OM| and OM,, besides
the original three non-negative order plans, there additionally are 2 feasible negative order
plans shown in Fig. 4.18 and Fig. 4.20, respectively.

Figure 4.18: Plan 4 (OM: trainl train2, OM>: trainl _cyclek + 1 train3_cyclek)

In plan 4, after train 2 in cycle 1, denoted by 2(1), arrives at its destination, it becomes

Figure 4.19: Directed graph for plan 4

trainl _cyclek, OMj: train3 trainl)

30

Figure 4.20: Plan 5 (OM;: train2_cyclek + 1

25

20

15+

4
’
’

.
4 4 10}

T
I
]
i
L}
L}
I
L}
i
i
I
i
L]
H
N
i
-1
o
1
1
1

---- Train A

---- Train A

~ Train B |4 sl ~ Train B |
— TrainC /! — TrainC
: : zéo , 360‘ 350

250 300 350 50 100 150 200

Figure 4.21: Plan 4 Figure 4.22: Plan 5

train 1 in cycle 2, denoted 1(2), and starts a new journey in which it passes train 3 in
cycle 1 at point M,. Fig. 4.19 shows the directed graph for plan 4. The dotted arcs
are the corresponding control arcs on single-line track segments OM; and OM,. These
arcs distinguish plan 4 from other plans. In plan 5, after train 3 in cycle 1 arrives at its
destination, it becomes train 2 in cycle 2 and passes train 1 in cycle 1 at M;. Fig. 4.21 and
Fig. 4.22 show the 5 cycles simulation results for plan 4 and plan 5, respectively. Note
that in these figures, physical trains are represented. Train A starts as train 1 in cycle 1,
train B as train 2 in cycle 1, and train C as train 3 in cycle 1.
If there are no disturbances, it takes plan 4 or plan 5 more time to finish all required
cycles than the non-negative order plan 1. However, during runtime, if an unexpected
delay happens, plan 4 or plan 5 could be better in terms of minimal final arrival time. In
Fig. 4.23, the system initially operates based on the plan list [1 1 1 1 1] implying that
a train in a later cycle may not enter a shared track segment until all trains in previous
cycles have left it. During runtime, the system sticks to the original plan list although
train 1 in cycle 1 (i.e. the physical train A) is blocked on the segment M|N; from time

89

unit 12 to 50. Thus, train 2 in cycle 2 (i. e. the physical train C) has to slow down to wait
until train 1 in cycle 1 leaves OM;. It takes a total of 227 time units to finish all 5 cycles.
If the system changes to plan list [5 3 2 1 2] (Fig. 4.24) after blocking happens, train 2
in cycle 2 (the physical train C) occupies OM; before train 1 in cycle 1 enters it. In this
case, the required 5 cycles finish in 217 time units. In fact, the new plan list is the one that
optimises objectives (3.12) and (4.40).

30

20

15+

10

- Train A

---- Train A --
o A I BRY (g TrainB | o7 [0 | Train B
— TrainC — TrainC
g — o s s
Figure 4.23: Plan list [1 1 1 1 1] Figure 4.24: Plan list [53 2 1 2]

We now investigate the the strictly cyclic case, where a timetable is fixed. All trains
start their trips according to the timetable and a plan strictly repeats itself in every cycle.
For example, in Fig. 4.25, plan 2 is repeated within 5 cycles. In each cycle k, train 1 (in
cycle k) and train 3 (in cycle k) pass each other at M. In Fig. 4.26, train 3 is delayed from
time unit 18 to 67 and it becomes impossible for trains to meet the timetable. To recover
the timetable as fast as possible, the supervisory block on the upper level switches the
original strictly cyclic plan 2 to plan list [4 2 1 2 2]. In the new plan list, train 1 in cycle 2
(physical train B) occupies the segment OM; before train 3 in cycle 1 (physical train C)
enters it. With the new plan list, the timetable is recovered at cycle 5, and from this cycle
on, the system is back to normal working status and is able to repeat plan 2 according to
the timetable. For comparison, Fig. 4.27 shows the situation where nothing has been done

to handle the unexpected delay, clearly the timetable cannot be recovered within 5 cycles.

4.10 Conclusion

This chapter discusses the control of cyclic systems in a more general setting: it allows

that events in a later cycle happen before events in previous cycles. Such a feature is

90

30

25

20

15

10

T
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1

--- Train Ai
“““““ Train B
— TrainC

250

Figure 4.25: Strictly cyclic system under plan 2without disturbance

30 L T
B S
---- Train A BN
“““““ Train B B
- —— Train C N 1
HE B
1 S
1 o
1 N 1
20] e 4
1 o
1 N 1
] N
1 [
1 1
s 5 .
1: S
[S
[S
1 : 1
1 T
10+ 1 N |
1 z
1 :
' :
! :
1 .
1 N
S5 : . 7
/| Timetable
) recovery
0 l, I | | ———
0 50 100 200 250

Figure 4.26: Change of
recovered at cycle 5

plan after disturbance, new plan list [4 2 1 2 2], timetable is

91

'rainA
~ Train B
— Train C

30

251

20

151

10

T
1
1
1
1
1
1
]
1
]
1
1
1
(IS
1 -
1
1
1
]
]
1
]
]
]
1
I

50

100

Figure 4.27: No change of plan, no timetable recovery within 5 cycles

represented by negative order control arcs. By introducing the concept of negative order

arcs, there are more options to express sequences of events on a shared single resource.
To check feasibility of the combinations of control arcs on different single-line track seg-
ments, the orders of circuits are calculated. Two methods of finding feasible plan lists
are discussed in detail. A typical way to analyse and control strictly cyclic systems with

negative order arcs is based on the idea of cycle shifting so that there are no negative
order system matrices in the system model. Unfortunately, this method is not applicable

for general systems which have negative order control arcs. Additionally, cycle shifting
makes it impossible for the system to react to unexpected events. Facing such difficulties,
an independent unit based model is proposed in this chapter to solve these problems. A
train track network is used to show the effectiveness of the resulting control strategy.
It should be pointed out that although the control mechanism for this more general setting
is useful in many fields, it is likely to run into complexity problems for large systems. With
the introducing of negative order control arcs, the number of feasible plans “explodes” for

large systems.

92

Chapter 5

Case study: high throughput screening
plant

In the previous chapters, the proposed hierarchical control structure has been applied to
railway transportation systems by using train-track examples. It can also be used in other
applications such as manufacturing systems, chemical batch plants, and High Throughput
Screening (HTS) plants.

A typical control task for an HTS system is to adjust timing parameters of some activities
so that the throughput is maximised. High throughput screening plants are used, e. g. in
the pharmaceutical industries to analyse a large number of substances. It is often required
that HTS systems are operated in a strictly cyclic way. Then, throughput maximisation is
equivalent to minimisation of the cycle time. A strictly cyclic operation pattern implies
of course that there is no ability of automatically reacting to unexpected delays. How-
ever, in reality, unexpected delays are likely to happen and they decrease the throughput
of the HTS plant. Hence, an automatic online reaction ability embedded in the adopted
control mechanism is strongly desired in order to cope with a temporally changing envi-
ronment. In this context, the proposed hierarchical control structure is an attractive option
for improving the HTS operating performance.

In this chapter, the proposed control structure is applied to a specific scheduling problem
derived from an HTS application [69]. The chapter is arranged as follows: Section 5.1
provides a detailed case description. We are especially interested in the similarities be-
tween a train-track system and the studied example. In Section 5.2, it is pointed out how

the solution for the train track example from the previous chapters can be carried over to

93

the HTS example at hand. Finally, conclusions are given in Section 5.3.

5.1 Problem description

A typical HTS plant contains several resources such as incubators, readers, transport de-
vices etc. Substances are aggregated in batches, which are realised by microplates. Each
batch undergoes a sequence of activities, and each activity allocates a resource. Hence,
the batches occupy the resources according to a time scheme which is usually identical for
each single batch. It may well be possible that a single batch occupies the same resource
several times.

The starting time o; (or the ending time r;) of activity i is not necessarily the entering
time (or the leaving time) of the corresponding batch on the resource because there may
exist either pre-processing or post-processing time requirements. Fig. 5.1 shows the time
scheme of a specific single batch. There are 3 different resources and 6 activities, 4 of
which are related to resource 1. It is inspired by the example in [69]. In [69], the task is to
determine certain timing parameters (such as the one showing the time relation between
r» and 03) and the event sequences (under normal conditions) so that the cycle time is
minimal. Here, we assume that the corresponding timing parameters have been fixed at
their optimal values, and our task is to find optimal control for the resulting system under

disruptive conditions.

1 24 7
O=0—="——=0"+0
Resource 3 O Acti. 6 ro
5 24 1
O~0—=——=0—=>0 3 0
Resource 2 0s 3 Acti. 5 0o s
reource1 |0—-030| |otbB-01—108-020| |0208-0
01 Acti.1 1| |02 Acti.2 f2 03 Acti.373 |04 Acti.4 "4

Figure 5.1: Time scheme for a single batch

For a single batch shown in Fig. 5.1, the 6 activities are performed in the following or-
der: activity 1 — activity 5 — activity 2 — activity 3 — activity 6 — activity 4. At
a given time instance, there could be more than one batch existing in the system, e. g.
there could be three batches, with each batch locating one resource. When compared to

the train-track problems in the previous chapters, a “batch” corresponds to a train and a

94

resource to a track segment. We now translate the HTS problem into a corresponding
train-track network. For a given single batch time scheme, there may exist different cor-
responding train-track systems involving different numbers of trains. For example, the six
train system in Fig. 5.2(a) and the four train system in Fig. 5.2(b) both correspond to the
time scheme shown in Fig. 5.1 with the exception of the pre- and postprocessing times.
Note that the additional arcs at the bottom of Fig. 5.2 (a) and () reflect the additional

requirement that a new batch may start 3 time units after the previous is finished.

24 2%

thy thaO0=-0 O O
tb

02 4 s Lo 02 o 3 o
3i +o 3i thy 0 |

O O O O O O

tbg tbs

8 8 8 8 8 8 8 8
thy ths thy 30 |thg
O O—+—~0 O O O—+—=0 O

3 3

@ (b)

Figure 5.2: Corresponding train-track systems

Fig. 5.2(a) consists of 6 different ¢bs (“train-batches”), each of them has a “trip” to take.
Four tbs, i.e. thy, ths, ths and tbg, may not exist concurrently since all of them use the
same resource. Moreover, all “trips” of tbs consist of only two events. Correspondingly,
there is only one travelling arc (one activity) on each trip. In previous chapters, for a train-
track system with N; trains, we always assumed that it is possible for all N, different
trains, each in a different cycle, to take the same route concurrently. This is because
in our train-track examples, the number of travelling arcs on the route is usually larger
than the number of trains. For such systems, the maximum possible cycle difference of
trains taking different routes is as high as (N; — 2). But for a train-track system like
Fig. 5.2(a), it is impossible for more than one train to travel on the same route at a same
time. Considering the small number of activities on a trip, the maximum number of cycles

existing concurrently on the same route is
Nmer = min(Na: Nt), (51)

where N, is the maximum number of activities (or zero order travelling arcs) on any

route. For Fig. 5.2(a), Ny, = 1, thus there is no train in a different cycle taking the same

95

trip concurrently. However, this does not always mean that there is no need to consider
non-zero order control arcs. If b and tb, of cycle 1 in Fig. 5.2(a) start operating at the
same time, after #b; finishes its trip, it cannot start its next cycle trip because the required
resource is still occupied by #b1. But if there is a buffer between resource 1 and resource 2,
tby can leave resource 1 so that other ¢bs, including some b in a later cycle, can use it.
For example, before tbs starts its first cycle trip, #b3 can start cycle 2 directly after its first
cycle. In fact, if there is no constraint on the number of buffers, there is no limitation
on the order of control arcs. In this chapter, in order to clarify the relation between HTS
plants and train-track systems, we consider systems in which there is no negative order

control arc.

For the 6-tb system shown in Fig. 5.2(a), the different combinations of control arcs on
resource 1 result in different plans. Specifically, the possible combinations of control
arcs will provide 24 feasible plans. A 4-tb system shown in Fig. 5.2(b) has the same 24
feasible plans since there is no additional constraint when compared to the 6-tb system.
Although the number of ¢b (i.e. N;) contained in a cycle decreases, it will not lower the
performance of the HTS plant. In the 4-1b system, a tb still represents a single batch.
However, instead of the fact that each 7b only has one activity in a cycle, now there are
two activities to be finished on the “trips” of tb; and tb3, respectively. The different time
interdependencies inside a cycle of Fig. 5.2 (a) and (b) both correspond to the single

batch’s time scheme shown in Fig. 5.1.

Note that, because the 4-1b and the 6-tb systems in Fig. 5.2 correspond to the HTS exam-
ple in Fig. 5.1, they retain all degrees of freedom. Specifically, in both cases we will get
24 feasible plans corresponding to 24 ways of constructing a cyclic scheme out of the sin-
gle batch time scheme. Obviously, for the original single batch time scheme, there could
be other corresponding train-track systems which provide the same number of feasible
plans. For example, there must be at least one 5-7H system that has the same 24 plans as
the two systems in Fig. 5.2. However, the number of ¢bs (/N;) may not be too small — it
is clear that the resources will be not fully used if N; is less than the number of resources.
Furthermore, compared to the systems in Fig. 5.2, there should not exist additional control
arcs as they imply a loss in the degree of freedom. For example, if we neglect the time
distance between rp and 03, consider another similar train-track system with 3 ¢bs, i.e. a
system having the same tb, and tb3 as shown in Fig. 5.2(b) and a new tb| containing 3
activities, two of which are the same activities as the ones of ¢b; in Fig. 5.2(b), the re-
maining activity of ¢b; as the activity of b4 in Fig. 5.2(b). Such a system has less degrees
of freedom.

96

There are three activities on the trip of the new ¢b;. Unlike normal train-track systems,
in this 3-¢b system, since two out of three activities (called resource repeated activities)
are allocated sequentially on the same resource, the later activity (the one corresponding
to tby of (b)) in cycle k should always happen before the earlier activity (the one cor-
responding to thg of (a)) in cycle (k 4+ 1). The possible negative order control arcs do
not exist. For the original time scheme of the single batch, this 3-#b system loses some

possible plans.

In the following, we apply the proposed hierarchical control structure to the 4-¢b system
to demonstrate the control results for the HTS example.

5.2 Control of an HTS plant

For an HTS problem with the single batch time scheme shown in Fig. 5.1, the correspond-
ing train-track systems (a) and (b) shown in Fig. 5.2 have the same operating sequences,

1. e. the same feasible plans. In the following, we consider the control on the 4-tb system.

5.2.1 Running mode: strictly cyclic vs. non-strictly cyclic

In many cases, the strictly cyclic-running mode is preferred for its simplicity. There are
totally 24 feasible plans, each corresponding to a specific A-matrix. A-matrix with the
minimal max-plus algebra eigenvalue allow minimal cycle time and therefore maximal
throughput. Fig. 5.3 shows the tb trajectories of the corresponding optimal plan for the
4-tb system and the corresponding Gantt chart which shows the cyclic schedule for the
original HTS problem. The numbers in the Gantt chart are the indices of different batches.
The pre- and post-processing times of the HTS problem are considered in the Gantt chart.

The 4-tb system operates for 5 cycles and ¢b trajectories are shown in black lines or gray
lines for different cycles, respectively. In the Gantt chart, the corresponding cycles are
shown in gray or white. A cycle contains 6 different activities of 4 different tbs. On
the other hand, from the Gantt chart of Fig. 5.3, it can be seen clearly that a single batch
consisting of 6 activities covers 4 cycles. For example, the first activity of batch 4 happens
on resource 1 in the first cycle. The second and the third activities of batch 4 both happen
in cycle 2 (also see tb; trajectory of cycle 2). In cycle 3, batch 4 has its fourth activity
which is allocated on resource 1. Finally, on resource 3 and resource 1 respectively, the

last 2 activities of batch 4 are in cycle 4. After batch 4 has been finished, in cycle 5, a new

97

= D 2 el . [
|oCycle time_ o

00 . WEE s 000N

3 ‘_a_sijnglebatch .,

NS 452 BIGIEEE | - 4 5| FSIENE

0 50 100 150 200 250

Figure 5.3: Strictly cyclic plan for maximal throughput

batch 8 starts with its first activity occupying resource 1. Generally, if a single batch i has

been finished, a new batch (i 4+ 4) will start provided that the system continues running.

Although there is no negative order control arc in the 4-¢b system and the activities in a
subsequent cycle may not occupy a resource before the ones in all previous cycles have
released it, for a specific resource, the activities of a later batches may happen before the
activities of a previous batch happen. For example, in Fig. 5.3 on resource 1 of cycle 1,
the activity of batch 1 happens after the activities of batch 4 and batch 3 have finished.

In strictly cyclic mode, not only the plans are repeated strictly, the batches are also strictly
cyclic operated. For example, in each cycle both resource 2 and resource 3 are occupied
by a new batch and the batch indices are increased monotonically. On resource 1, which
is shared by 4 kinds of activities, the batch index for each kind of activity is also mono-
tonically increased, see Table 5.1. From left to right, the order of the activities in the table

shows their sequences in a single batch.

98

R1, acti. 1 | R2, acti. 5 | R1, acti. 2 | R1, acti. 3 | R3, acti. 6 | R1, acti. 4
cycle 1 batch 4 batch 3 batch 3 batch 2 batch 1 batch 1
cycle2 | batch 5 batch 4 batch 4 batch 3 batch 2 batch 2
cycle3 | batch 6 batch 5 batch 5 batch 4 batch 3 batch 3
cycle4 | batch7 batch 6 batch 6 batch 5 batch 4 batch 4
cycle5 | batch 8 batch 7 batch 7 batch 6 batch 5 batch 5

Table 5.1: Cycles and batches

As illustrated in Fig. 5.3, there are several cycles as well as several other active batches
during the time interval needed for a single batch. The resources (especially resource 1)
are used as fully as possible, therefore the cycle time is less than the time a single batch
requires. This strictly cyclic plan has the maximum throughput. However, there is still
some free time for this resource that can be used if we give up the requirement of strict
cyclicity.

If we do not stick to the strictly cyclic mode, it is possible to make use of the resources in
a more efficient way. For a total of 5 cycles, with the objective function (3.12), i.e.

= min (@ Y; (5))

all feasible
plan lists

the optimal plan list is [20 9 19 4 13]. It makes full use of resource 1, see Fig. 5.4.
The indices of the batches are still monotonically increased not only on the non-shared
resources 2 and 3 but also on the shared resource 1 for each kind of activities. The
relations of cycles and batches shown in Table 5.1 still hold. However, unlike in Fig. 5.3,
the order of different kinds of activities on resource 1 is not always the same for different

cycles.

For the optimal strictly cyclic mode in the Gantt chart of Fig. 5.3, the maximum number
of batches existing at a certain time instance is only 2, i.e. at any time, the number of
batches using all 3 resources is no more than 2. Note that this fact does not depend on the
number of ¢bs contained in the system.

In the Gantt chart of Fig. 5.4, the maximum number of batches existing at a certain time
instance is 3. The operating mode with the plan list [20 9 19 4 13] makes a better use
of resources. For both resource 2 and 3, during the processing of 5 different batches, the
free time is less than that of Fig. 5.3. Although there is still free time for resource 2 or

resource 3, it can not be reduced further because there is no free time for resource 1.

99

- [. e« [
- e« BEN . W
o SN s s 42 [ENEHAEIS | 7 4 o ISIETEE]

0 50 100 150 200 250

Figure 5.4: Resource 1 is fully used, plan list [20 9 19 4 13]

5.2.2 Reacting to disturbances

For the strictly cyclic mode of the optimal plan shown in Fig. 5.3, the cycle time is set
to the eigenvalue of the system’s A-matrix. Based on a corresponding eigenvector, a
timetable can be fixed. The system is operated according to the fixed timetable. If an
unexpected delay occurs and interrupts the timetable, the strictly cyclic system has no

ability to recover from the delay.

Normally, without any delay, the system can finish 7 cycles in 322 time units. If some
batch is delayed unexpectedly, for example, in cycle 2, batch 2 (i.e. tbs in cycle 2) is
delayed on resource 3 for 10 time unites (from 70 to 80), the strictly cyclic system finishes

7 cycles in 332 time unites as depicted in Fig. 5.5.

After delay occurs, the supervisory block updates the plan list to [20 20 9 20 9 19 12] with
the objective function (3.12) in order to finish 7 cycles as soon as possible. As shown in

100

R3

R1

BBl 4 s B - W

(SI4EIR) 45| 12([5l81 Bl 7 4 s [l [Blis o) o - BiO il
Il

50 100 150 200 250 300 350
Figure 5.5: Strictly cyclic plan with delay

R3

R1

350

OB 4 -ﬁ:'.:'] B -

____&H LE.L?»-EL?T%?EF@-

50 100 150 200 250 300 350
Figure 5.6: New plan list: [20209 209 19 12]

101

Timetable recover

! th

>

T T 7 7 SR) |
SN EEEEEE N .
back to
S : T L : normal strictly
- ¢ [s BN e (B ccicrunming
mode

T 1o NI
| | |

0 50 100 150 200 250 300 350

Figure 5.7: Timetable recover

Fig. 5.6, the system finishes 7 cycles in 316 time units and resource 1 is fully used with

the new plan list.

Although the strictly cyclic mode itself cannot recover the timetable, it is possible to
eliminate the influence of the delay and to recover the timetable with the help of an upper
level supervisory block in the proposed control structure. The cost function (3.13) (earliest
recovery of timetable) is being minimised by the plan list [20 20 9 20 9 20 20]. Then
timetable can be recovered in cycle 7 (Fig. 5.7). And as in the normal case (i. e. strictly
cyclic mode without unexpected delay), all 7 cycles are finished in 322 time units. If
the system is expected to run for a large number of cycles, all later cycles can operate
according to the timetable. Note that for the original HTS plant, during the first 6 cycles,
it is possible for some activities of some single batches to start operating according to
the timetable. But this does not mean that the entire plant is able to return to the normal

operating orbit, because later on there are still other activities which do not start on time.

102

In addition, although the timetable is recovered at cycle 7, which contains activities of 4
batches (batch 7~10), at least two batches (batch 7 and 8) do not operate normally from
an entire single batch point of view. In cycle 7, it is batch 10 whose first activity belongs
to this cycle, therefore only the later batches (including batch 10) are ensured to operate
as in normal situation. Moreover, since in cycle 6, b3, which corresponds to the first
activity of batch 9, is already able to start operating according to the fixed timetable, the

batch plant actually returns to the normal strictly cyclic mode with batch 9.

5.3 Conclusion

In this chapter, we examined the applications of the proposed hierarchical control struc-
ture to an HTS plant processing area. To control the HTS plant, a single batch consisting
of several sequential activities can be considered, for example, as a “train” (¢b) travelling
in several sequential cycles while in each cycle there is only one resource as well as one
activity for the “train”. NV, i.e. the number of “trains”, is identical to the number of activ-
ities contained in a single batch. It is also possible to consider the HTS plant as another
train-track system with less “trains”. In general, the number of 7bs should be no less than

the number of the resources.

For the control of HTS plants, even when there is no negative order control arc, it is still
possible for activities in latter batches to happen before the activities in previous batches
do, for a batch is not the same as a cycle.

In many cases, the operating schemes of HTS plants are strictly cyclic, with the event
sequences specified by the plan which provides the maximum throughput. Sometimes
with this plan, the resources are still not fully used. Instead, a list of different plans may
make a better use of the resources. The supervisory block of the control structure also
makes it possible for the HTS plant to reduce or eliminate the influence of unexpected

delays. These effects are illustrated by simulation results.

103

Chapter 6

Conclusion

6.1 Summary

In this work, a hierarchical control structure is proposed for the control of discrete event
systems. Application fields are traffic systems, especially train-track networks, and High
Throughput Screening plants. It can be used for DESs with or without cyclicly repeated
features. Given the topology of the DES, i. e. the information about resources and users,
competition and cooperation amongst users and cycles are automatically organised by
the proposed control structure so that the system provides optimal operation even under
disruptive conditions. The system can return to the normal strictly cyclic schedule in
minimum time after being delayed unexpectedly. The new approach also makes it possible
to control a specific DES with non-strictly cyclic mode to provide a higher throughput in
a given time period. Furthermore, the proposed method is not restricted to the case where

events in a later cycle may not happen before events in previous cycles.

Major contributions of this research are as follows:

1. Instead of simply implementing the “Just-in-Time” solution, or LNET, this thesis
proposes an energy optimal implementation within the corridor of EPET and
LNET specifications by exploiting the remaining degrees of freedom.

2. Competition and cooperation issues between users as well as cycles are handled
by introducing of appropriate control arcs. While travelling arcs represent the

activities of the users, control arcs of different orders ensure the safe sharing of

104

resources and nonblocking.

. The proposed structure has the ability of optimal reaction to unexpected events.
The supervisory level has the goal of finding online an optimal operating strategy.
It updates the optimal EPET specifications for the lower level. The lower level then

generates the LNET and provides the energy optimal implementation accordingly.

. For small systems, we extend the structure to a more generalised setting, introduce
and analyse the resulting negative order systems which could provide better
performance. For this class of generalised systems, including non-strictly cyclic

systems, we provide the corresponding max-plus models and control.

. Besides train-track systems, we also discuss the application of the proposed struc-
ture in the field of High Throughput Screening. The differences and similarities
between applications in these fields are presented by comparing a specific HTS

plant to its corresponding train-track counterpart.

. A novel intuitive algorithm for efficiently finding the shortest path of a class of
simple polygons (also for finding the energy optimal trajectory) is developed for
the lower level of the proposed control structure. On the upper level, to enhance
the efficiency of optimisation, a procedure for reducing the search space is provided.

6.2 Future work

As for the future, there are several aspects to improve or to extend the work in this thesis.

First, for the control of DESs containing negative order arcs, more efficient optimisation

algorithms and more efficient methods for checking feasible plan lists are strongly desir-

able. The current approach works well for “small” negative order systems. With more

shared resources, there are more feasible plans, and this combinatoric explosion is the

most important problem which limits the work from being used in large scale systems.

Although this problem cannot be completely avoided, there are possible ways to enhance

optimisation efficiency. For example, in [69], computational efficiency is improved by

105

using mixed integer optimisation. This approach can also be used for the problems dis-
cussed in this work.

Second, although there are several different definitions on the stability of max-plus sys-
tems, this issue has been studied neither deeply nor widely so far. Some thoughts are
as follow. For instance, for the TEG (timed event graph) corresponding to a max-plus
system, stability means that tokens do not accumulate indefinitely inside the graph ([22]).
Heidergott et al. give the definition of stability for a cyclic system with a timetable in [50]:
“a scheduled system is called stable if any finite delay settles in finite time.” Similar to
the definition of Lyapunov stability in conventional continuous-time systems, Necoara et
al. [74] proposed a definition of stability for strictly cyclic systems with a state feedback
controller: “a closed-loop system X (k) = AX(k — 1)@ BU (X (k — 1)) is stable iff the
state remains bounded, i. e. for every 6 > 0 there exists a real-valued function 8(J) > 0
such that | X (0) — X/l < 0 implies || X (k) — X¢illoo < 8(9) for all £k > 0.” In gen-
eral, for a fixed timetable, the scheduled event time X,(k) = X;(1) + (k — 1) x T,
where T, is the cycle time. Note that in this definition, time has been normalised such
that the scheduled event times take the same value for different cycles: X,(k) = X,(1).
In addition, || X (k) — X¢/lloo = maX;e, {(X (k) — X¢1)i, (X — X (k))i}, where X,; is the
largest equilibrium state corresponding to the normalised setpoint X;, X,; < X,. Stabil-
ity of max-plus system is an interesting topic for strictly cyclic systems and may also be

extended to systems which have no regular operating pattern.

Finally, it is expected that the proposed control structure can be applied to other DES
application areas such as the manufacturing industry.

106

Appendix A

Proofs

A.1 Shortest path and minimum energy trajectory

1. Solution to the shortest path problem
Proof We only discuss the case when M is located on the right of line O F. The case
when M is located on the left of line O F is analogous.

As shown in Fig. A.1, the horizontal distance from M to O F is x with x € [by, g —b).
We want to show that the length of the path OMF is minimal for x = b;.
If we denote the point (b + by,a) by M*, this is equivalent to showing that
length(OM*F) < length(OMF) for all M # M*. Denote the intersection of lines

S
1 ity 4 F
7
/ |
/" 4 q:
s |
< |
148 |
a [F-------- - XM
. I
e
1 1 I |
1 I I !
I I I |
I I I !
I I I |
! o,
O b b+by btx 2 t

Figure A.1: Shortest path

107

OM* and FM (M # M¥) by q. Then,

length(OMF) = length(OMgq) + length(qF)
> length(Oq) + length(qF)
= length(OgqF)
= length(OM™) + length(M*qF)
> length(OM™) + length(M*F)
= length(OM*F)

O

2. Solution to the minimum energy trajectory problem
Proof For the trajectory O M F, no matter whether M is located on the right of OF (
x €[b, 2 —b)with0 < by < (2 — b)), oron the left of OF (i.e. x € (—b, —b;] with

0<by <b),
IJn = /uidr
b+x 2 g 1 — 2
:/ (a)dt+/ (—a)dt
0 b-l—x b+x ——b—X
B a® (1 —a)?
 b+x g—b—x
B a® n a(l —a)? A1)
"~ b+x b—ab—ax’ '
, dJy —a? a’*(1 — a)?
J, = = +
dx b+x)? (b—ab—ax)?

(%)2 [X 5 ax 2
_ 1+ —(1——)] (A2)
2 _
R -

When x € [b1, 2=b), (1+3) > 1,0 < (1= 525) < 1, thus (14+3)* = (1= 5% 5)* > 0
and J;, > 0, i.e. J,, increases strictly monotonically in x. The trajectory O M F with

x = by is therefore the minimum energy trajectory.

When x € (=b,—b2],0 < (1+3) <1, (1 - b(l)) > 1 since a < 1 (see Fig. 2.7
or Fig. A.1), thus (1 + %)2 — (1 - b(l))2 < 0and J), <0,i.e. J, decreases strictly
monotonically in x. Therefore the trajectory O M F with x = —b5 is the minimum energy

trajectory.

108

Finally, the above two results also imply that if M is located on the straight line O F,
i.e. when M is located on the “right” of O F with x = b; = 0 or if M is located on the
“left” of OF with x = by = 0, both the corresponding J,, have the (same) minimum
value. Therefore, the minimum energy trajectory between event O and F without any
constraints is the straight line O F. In conclusion, the smallest absolute value |x| gives
the minimum energy trajectory. 0

A.2 Shortest path of subpolygon P; of P

Proof Based on Solution 1“kv;_1-rtkv;” (page 27), for a subpolygon P; with the source
vertex kv;_ and the target vertex kv; 1, we prove the key vertex path “kv; _1-kv;-kv;41”
is the shortest path by considering the following different cases in terms of the properties
of key vertices, e. g. the types (EPET or LNET), locations, etc. Here we suppose kv; is
an LNET. For an EPET type kv;, the proof is similar.

Case1 ko;4 is the auxiliary temporal key vertex related to kv; (i.e. rtkv;).
According to step 3 of the key vertices’ search procedure, “kv;_1-kv;-kv;4+1” obviously is

the shortest path from kv;_; to kv;4; within P;.

Case 2 kv;1 and the auxiliary temporal key vertex rtkv; are same level vertices, but
not identical. This case has two possibilities.

1. rtko; is LNET and kv; 1 is EPET.

Since both kv; and kv;y; are key vertices, according to step 3 of the key vertices’

Figure A.2: rtkv;: LNET, kv;41: EPET. kv; 41 is at the right of “kv; _1-kv;”

search procedure, “kv;_1-kv;-kv;11” is either inside P; or part of the border of P;. rtkv;

109

Figure A.3: rtkv;: LNET, kv;+1: EPET. kv; 1 is at the left of “kv;_1-kv;”

(LNET;) is located at the right of “kv;_;-kv;” since kv; is an LNET (otherwise the
straight line “kv;_1-rtkv;” is inside P;). If EPET;;, 1.e. kv;41, is also at the right of
“kv;_1-kv;”(see for example Fig. A.2), according to Solution 1, it is clear that from kv;_

to kv;+1, the shortest path of P; is “kv;_1-kv;-kv;4+1”.

Now we assume that EPET; is at the left of “kv;_1-kv;”, see Fig. A.3. In the following,
we show that such an EPET; | does not exist, i. e. the assumption is not true.

As kv;41 is an EPET, rtkv;1 has to be on the left of “kv;-kv;41” and of course also on
the left of both “kv;_1-kv;” and “kv;_1-rtkv;”. Because EPET; | is kv;1, at the right of
“kv;-kv;41”, there are no EPET vertices located in the gray area below rtkov; 1 but above
EPET; | and LNET; ;. In other words, if there are vertices at this area, all of them are
LNETs. On the other hand, since LNET; is rtkv;, tkv,, the kov;-related tko! which
is the one located right above LNET;; is at the right of “kv;_i-rtkv;”. If this tkv, is
located below rtkv;1, as it is an LNET, there is rkvy, another kv;-related tkv which is
located above tkv, and to the right of “kv;_1-tkv,” and “kv;_i-rtkv;”, ...

In brief, if there are kv;-related tkovs located in the gray area, all of them are LNETSs. If
tkovp is located above tkv,, it also located to the right of the line “kv;_-tkv,”. Thus,
no matter whether there are kv;-related tkovs located in this area or not, the kv;-related
tkv (denoted as tkv,,) located just above the area, if it exists, has to be at the right of
“kv; _1-rtkv;”.

With the above preparations, we can prove that the assumption cannot be true.

lkv;-related tko are all the temporal key vertices involved in the procedure of finding kv;, together with
lkv

110

First, since it is at the left of “kv;_1-rtkv;”, rtkv;y1 is not tkv,, and thus it cannot be a
kv;-related tko, tkv,, (if it exists) is located above rtkv;11. Second, rtkv; 1 is not an
LNET. Otherwise it becomes a kv;-related tkv because the straight line “kv;_1-tkv,,”
violates the restriction of rtkv;;1. Furthermore, rtkv;;; is not the target vertex of P,
i.e. LE, the EPET of the last event. Otherwise there is an immediate contradiction, be-
cause from the kv;-searching point of view, it is a kv;-related tkv and has to be at the
right of “kv;_-rtkv;” as well. For such a non-LE EPET rtkv;,, there should exist a
2rtkv;y1,1.e. the kv;4-related tko which is the one just above rtkv; 11 and located at the
left of “kv;-rtkv;y1”, “kv;—1-kv;” and “kv;_1-rtkv;”.

Similar to the above analysis, it can be concluded that 2rtkv; 11 is an EPET (but not LE)
and there should also exist jrtkv;y; (j = 3,...,n), i.e. all kv;;-related tkvs. They
are non-LE EPETs and located at the left of “kv;_1-rtkv;”. Apparently, as the highest
jrtkvii1, nrtkv; 1 has to be LE, this contradicts the feature of non-LE. Thus, there is no
corresponding jrtkv;y1 (j = 2,...,n) and rtkv;;+1; which make EPET; | located at the

left of “kv;_1-kv;” be kv; 41, the assumption is not true.

EPETi+1 LNET 4

Kvj 41

Kvi_1
Figure A.4: rtkv;: EPET, kv;1: LNET

2. rtko; is EPET and kv, is LNET.

Assume such a kv, exists. Being rtkv;, EPET; | is at the right of “kv; _1-kv;”. Hence
kviy1 (1.e. LNET; ;1) must be also at the right of “kv;_1-kv;”, see Fig. A.4. Obviously,
the straight line “kv;_1-kv;4+1” is not contained in P;. Therefore, according to Solution
1, the path “kv;_1-kv;-kv;4+1” is the shortest path of P;. Moreover, such a kv; | actually
does not exist if we analyse in a similar way as shown in Fig. A.3.

Hence, for Case 2, in P;, the shortest path from kv;_1 to kv; 41 is “kv;_1-kvi-kv;4+1”.

Case3 kv; is located above kv; but below rtkv;.
The fact that kv; 4 is located above kv; but below rtkv; implies that EPET; | is at the

111

left of “kv;_1-rtkv;” and LNET; is at the right of “kv;_-rtkv;” as well as “kv; _1-kv;”.
If LNET, is the kv; 1, according to Solution 1, obviously the shortest path from kv;_|
to kv; 41 1s “kv;_1-kvi-kv;41”. The result also holds if EPET; | which is located at the
right of “kv;_1-kv;” is the (i + 1)st key vertex kv; 4.

For EPET; | which is kv; 1 and is located at the left of “kv;_1-kv;” (see e. g. Fig. A.5),
its rtkv;4+1 has to be at the left of “kv;-kv;11”. In the following, we show that such an
rtkv; 41 and thus the corresponding kv; 1 do not exist.

Figure A.5: rtkv;: LNET, kv;41: EPET

1. Assume rtkv; is an LNET.
In Fig. A.5a, rtkv;4+1 is located above rtkov; and it is similar to Fig. A.3 except that the
gray area of Fig. A.5a includes the additional area below rzkv; which does not influence

the problem. It can be concluded that such rtkv; 1 and kv;41 do not exist.

In Fig. A.5b, rtkv; 1 is located below rtkov; (here rtkv; is LNET; ;). According to step
3 of the kv; search procedure, at the left of “kv;-rtkov;”, all vertices including rtkv;4 in
the gray area below rtkv; but above LNET; and EPET; are EPETs. Similarly, suppose
the kv; 41-related tkv which is located above the area is tkv,,, it could be either EPET;
or some other vertex which is located above EPET, ;. Since EPET,;, is an EPET, no
matter which one tkv,, is, right above EPET, ;,, there is always a kv, -related tkv at
the left of “kv;-rtkv;+;” and “kv;-kv;+1”. Since at the right of the line “kv;-tkv”, the
vertices in the bold line area below tkv but above EPET;;, and LNET,,;, are all LNETsS,
the rest of the problem is similar to Fig. A.5a and Fig. A.3. Therefore, finally it can be
concluded that the corresponding kv; 1 does not exist, if rtkv; is an LNET.

2. Assume rtko; is an EPET.
If rtkv; 4+ is located above rtkv; as shown in Fig. A.5a (instead of LNET;;,, now rtkv;

112

is EPET;1;,), all vertices in the gray area are LNETSs. This contradicts the rtkv;. Thus
the corresponding kv;1 does not exist.

EPET.i,
rtkvj

Figure A.6: rtkv;: EPET, kv;1: EPET

If rtkv; 41 is located below rtkv; as shown in Fig. A.6, which is similar to Fig. A.5b,
all vertices in the gray area are EPETs and all the kv;-related tkovs in the area are at
the left of “kv;-kv;4+1”. Suppose the kv;-related tkv which is located right above the
area 18 tkv,, which is higher than EPET;;, and at the left of “kv;-rtkv;+1” and “kv;-
kv;y1”. Located at the right of “kv;-kv;11”, EPET;y;, is also a kv, -related tkv which
contradicts the kv;|-related tkovs in the gray area. Hence the corresponding kv; 4| does
not exist.

Therefore, for Case 3, the shortest path from kv;_; to kv; 4 is “kv;_1-kv;-kv;41”.

Case4 ko;y is located above rtko;.

Since “kv;-kv;+1” is not outside P; and kv, is located above rtkv;, kv;41 is at the right
of “kv;-EPET;;,” but at the left of “kv;-LNET,;,”, EPET;;;, and LNET;,,;, are the
EPET and the LNET of rtkv; event.

Kvi_1

Figure A.7: rtkv;: EPET

113

1. Assume rtkv; is an EPET (EPET; ;).

Since rtkv; is located at the right of “kv;_1-kv;” (note that kv; is an LNET), kv; 1 is also
located at the right of “kv; _1-kv;”, see Fig. A.7. As kov; is an LNET, according to Solution
1, the shortest path from kv;_; to kv; 41 1s “kv;_1-kv;-kv;11”.

2. Assume rtkv; is an LNET (LNET; ;).

2.a Assume kv; 1 is at the left of “kv;-rtkv;” but not at the left of “kv;_-rtkv;”.

Figure A.8: rtkv;: LNET

As an example shown in Fig. A.8, because of the vertex rtkv;, i.e. LNET; 4, from kv; 4
to kv; 11, inside P;, a direct path “kv; _1-kv;4+1” is impossible. For the best situation, when
the straight line “rtkv;-kv;+1” is not outside P;, considering the constraints of vertices
EPET,;;, and LNET,,,,, the shortest path is “kv;_1-LNET;;,-kv;+1”. However, the
lower half part: “kv;_1-LNET, ;,” is outside P; because of the vertex kv; (i.e. LNET;).
Considering the constraints of vertices EPET; and LNET;, “kv;_1-LNET;-kv;4” is the
shortest path and it is not outside P;, i.e. the shortest path from kv;_; to kv;41 is “kv;_1-
kl)i—kl)l’+1”.

2.b Assume kv, is at the right of “kv;-EPET;;,” but at the left of “kv; _;-rtkv;”.
In the following, we prove that this kind of kv; | does not exist.

Suppose kv; 4 1s at the right of “kv;-EPET;;,” but at the left of “kv;_1-rtkv;”. As “kv;-
kv;+1” is not outside P;, all vertices in the gray area shown in Fig. A.9 are LNETSs. In the
area, if above rtkv;, there are kv;-related tkvs, they are all at the right of “kv;_-rtkv;”.
tkv,,, the kv;-related tkv which is located right above the gray area has to be at least
at the right of “kv;_-rtkv;”. Thus kv;y is not a kv;-related tkov and tkv,, (if it exists)
is located above kv; 1. Moreover, such a kv;4 has to be a non-LE EPET. Otherwise
there is an immediate contradiction. Then the corresponding rtkv; 4 is located at the left
of “kv;-kv;41” and the vertices of P in the bold line area (at the right of “kv;-rtkv;41”,

114

above kv;41 but below rtkv;;1) are all LNETs. Therefore tkv,p, the kv;-related tko
which is located right above the bold line area, is at the right of “kv;_-rtkv;”. Again,
rtkv; 41 is not a kv;-related tkv and it has to be a non-LE EPET. Similarly, there should
be jrtkvi+1(j = 2,...,n) which are non-LE EPETs and are located at the left of “kv;-
kv;+1” and therefore also at the left of “kv;_1-rtkv;”. As the highest jrtkv; 1, nrtkv;4
has to be LE which contradicts the feature of non-LE. Thus, there is no corresponding
jrtkvi 1 (j =2,...,n), rtkv;+1 and kv; 4.

Kvj _1

Figure A.9: rtkv;: LNET, kv, is located above rtko;

Thus, for Case 4, the shortest path from kv;_; to kv; 41 1s “kv;_1-kvi-kv;4+1”.

Considering all 4 cases, we can conclude that for P;, the shortest path from kv; 1 to kv; 4+
is “kv;_1-kv;-kv;y1”. O

115

Appendix B

Notation

Abbreviations

C/D Continuous/discrete
CPT Current position

DES Discrete event systems

EPET Earliest possible event time

HTS High throughput screening

LE EPET of the last event

LNET Latest necessary event time

TEG Timed event graph

th train-batch

Latin Symbols

Ao(k) 0-order system matrix of cycle k

Ao1 (k) system matrix of cycle k corresponding to zero order travelling arcs
A (k) system matrix of cycle k corresponding to zero order control arcs
A (k) 1-order system matrix of cycle k

Aq1(k) system matrix of cycle k corresponding to first order travelling arcs
Aqa(k) system matrix of cycle k corresponding to first order control arcs
A; (k) j-order system matrix of cycle k

A(y) system matrix after y -transformation on A ; with all j

;47 j-order system matrix after eliminating negative orders of control arcs
A (7) transformed A(y) with transforming matrix 7~

Continued on next page

116

Continued from previous page

cca(i, j)
CI(,sel)
dj(t)

e

fi

1

Ins
ipre(i, J)
Isuc (i,)
la(i, k)
Ka

ke

kq

0-order system matrix after eliminating high (i.e. j > 2) orders in :47
1-order system matrix after eliminating high (i.e. j > 2) orders in :47
— j order influence matrix, 1 < j < mn(k)

— j order synthesised influence matrix, 1 < j < mn(k)

index set of control arcs contained in the circuit pattern pac;

input matrix

output matrix

a circuit or a potential circuit

number of cycle changes between control arc i and its successor in pac;
cycle index of control arc i in a combination sel

distance a train has to go to reach event j at time #;

0, neutral element of multiplication in max-plus algebra

number of cycles a event i being shifted forward

identity matrix in max-plus algebra

In-node set

index of predecessor control arc for control arc i in pac;

index of successor control arc for control arc i in pac;

index of the cycle to which the control arc i in cycle k points

index of the timetable recovered cycle

number of control arcs contained in a circuit pattern pac;

index of the cycle where a delay occurs

number of cycles in a plan list

maximum number of cycles over which the feasibility test needs to extend
number of negative order arcs contained in cycle k

key vertex on the shortest path

absolute value of the lowest order of a plan

key in-node set

refined kins

matrix storing Kins information

absolute value of the minimum order of the plan in cycle k

maximum positive order of the plan in cycle k

null matrix in max-plus algebra

maximum number of activities on the routes of train-batches

number of cycles existing concurrently during runtime

Continued on next page

117

Continued from previous page

PI;
PSn(j)
0S(@j)
R

Rnax
Rinin
Rym
rtkv;
sel(l, j)
sp

tko

Irel

T,

Tsm

T
u
v

Ve

number of combinations of control arcs on a shared resource
maximum number of cycles existing concurrently

maximum number of cycles existing concurrently on a same route
absolute value of the lowest negative order of control arcs in a system
number of cycles needed to recover timetable without plan changing
number of trains

number of cycles contained in an independent cycle unit

index of the cycle from which the control arc i in cycle k points
order of control arc i chosen by the plan in cycle k

order of the circuit C;

order of the (Ins); related control arc

order of the (/ns); related control arc of plan j

circuit pattern j

simple polygon

subpolygon of P

matrix storing feasibility information of 2 sequential plans

plan i

index set for all events related to train m in cycle j

index set for destination-arrival events in cycle j

set of real numbers

{R, —o0, @, ®}, max-plus algebra structure

{R, +00, @, ®'}, min-plus algebra structure

{R, —00, +00, ®, ®, &', ®'}

auxiliary temporary key vertex of kv;

combination / of control arcs corresponding to pac;

set of all key vertices of the shortest path

temporal key vertex

estimated release time for the blocked train

cycle time

safe margin between eigenvalue and cycle time

transforming matrix, eliminates negative orders in A(y) to get A (7)
system input

vertex of P

eigenvector

Continued on next page

118

Continued from previous page

Om velocity of train m

Vmax maximum velocity

X; event time for event i

X; EPET (earliest possible event time) of event i

X EPET (earliest possible event time) vector

X(y) EPET vector after y -transformation on X

XR,, reformed X for train m

X.in reinitialised state vector

Xom LNET (latest possible event time) vector for train m

X (7) transformed X (y) with transforming matrix 7~

X EPET vector corresponding to system matrices Ao and A,
231/1 reinitialised state vector after eliminating negative orders of control arcs
Y system output

Z set of integers

Y/ set of positive integers

Greek Symbols

€ —o00, neutral element of addition in max-plus algebra

A eigenvalue

7 (CPT, v) shortest path from CPT to v inside P

T a path inside P

Operations

&) addition in max-plus algebra, a ® b = max(a, b)

® multiplication in max-plus algebra,a @ b =a + b

@’ addition in min-plus algebra, a @ b = min(a, b)

®’ multiplication in min-plus algebra,a @ b = a + b

* for physically meaningful max-plus system matrix A, A* =1 AP --- § A"}
Subscripts

0 0-order

1 1-order

119

Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

M. Akian, R. Bapat, and S. Gaubert. Asymptotics of the perron eigenvalue and
eigenvector using max-algebra. C.R.A.S., 327:927 — 932, 1998.

F. Baccelli. Ergodic theory of stochastic petri networks. The Annals of Probability,
20(1):375 — 396, 1992.

F. Baccelli, G. Cohen, G.J. Olsder, and J.-P. Quadrat. Synchronization and Linear-
ity. Wiley Series in Probability and Mathematical Statistics. Wiley, 1992. Available

online: http://www-rocq.inria.fr/metalau/cohen/SED/book-online.html.

F. Baccelli, B. Gaujal, and D. Simon. Analysis of preemptive periodic real-time
systems using the (max, plus) algebra with applications in robotics. IEEE Trans-
actions on Control Systems Technology, 10:368 — 380, 2002.

F. Baccelli and D. Hong. Tcp is max-plus linear. In Proc. of ACM-SIGCOMM 00,
volume 30, pages 219 -230, Stockholm, September 2000.

F. Baccelli and J. Mairesse. Ergodic theory of stochastic operators and discrete
event networks. In J. Gunawardena, editor, Idempotency, volume 11, pages 171
— 208. Publications of the Isaac Newton Institute, Cambridge University Press,
Cambridge, 1998.

R. B. Bapat. A max version of the perron-frobenius theorem. Linear Algebra and
Its Applications, 275-276:3 — 18, 1998.

R. B. Bapat, D. P. Stanford, and P. van den Driessche. Pattern properties and
spectral inequalities in max algebra. SIAM Journal on Matrix Analysis and Appli-
cations, 16(3):964 — 976, 1995.

M. DE Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer-Verlag, 2000.

120

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

J.-L. Boimond and J.-L. Ferrier. Internal model control and max-algebra: Con-
troller design. IEEE Transactions on Automatic Control, 41(3):457 — 461, 1996.

J. G. Braker and G. J. Olsder. The power algorithm in max algebra. Linear Algebra
and its Applications, 182:67 — 89, 1993.

C. G. Cassandras and S. Lafortune. Introduction to discrete event systems. Kluwer
Academic Publishers, 1999.

C. Chang, R. Nelson, and D.D. Yao. Scheduling parallel processors: Struc-
tural properties and optimal policies. Mathematical and Computer Modelling, 23
(11/12):93 —114, 1996.

W. Chen, J. Xu, and Q. Liang. Period of processing on serial production line,
optimal scheduling and application. Discrete Event Dynamic Systems, 9:9 — 21,
1999.

Y. Cheng and D. Zheng. A cycle time computing algorithm and its application in
the structural analysis of min-max systems. Discrete Event Dynamic Systems, 14
(1):5-30, 2004.

Y. Cheng and D. Zheng. Min-max inequalities and the timing verification problem
with max and linear constraints. Discrete Event Dynamic Systems, 15(2):119 —
143, 2005.

J. Cochet-Terrasson, G. Cohen, S. Gaubert, M. Gettrick, and J. P. Quadrat. Nu-
merical computation of spectral elements in max-plus algebra. In Proceedings 5th
IFAC Conference on System Structure and Control 2, pages 667 — 674. Elsevier,
1998.

J. Cochet-Terrasson, S. Gaubert, and J. Gunawardena. Dynamics of min-max
functions. Technical Report HPL-BRIMS-97-13, HP Laboratories Bristol, August
1997. Available online: http://www.hpl.hp.com/techreports/97/HPL-BRIMS-97-
13.pdf.

J. Cochet-Terrasson, S. Gaubert, and J. Gunawardena. A constructive fixed point
theorem for min-max functions. Dynamics and Stability of Systems, 14(4):407 —
433, 1999.

121

[20] G. Cohen, D. Dubois, J.P. Quadrat, and M. Viot. A linear system-theoretic view of
discrete event processes and its use for performance evaluation in manufacturing.
IEEE Transactions on Automatic Control, AC-30(3):210 —220, 1985.

[21] G. Cohen, S. Gaubert, and J.-P. Quadrat. From first to second-order theory of linear
discrete event systems. In Proc. 12th IFAC World Congress, Sydney, Australia, July
1993.

[22] G. Cohen, S. Gaubert, and J.-P. Quadrat. Max-plus algebra and system theory:
Where we are and where to go now. Annual Reviews in Control, 23:207 — 219,
1999.

[23] G. Cohen, P. Moller, J.P. Quadrat, and M. Viot. Linear system theory for discrete-
event systems. In Proceedings of the 23rd IEEE Conference on Decision and Con-
trol, volume 1, pages 539 — 544, Las Vegas, NV., December 1984.

[24] B. Cottenceau, L. Hardouin, J.-L. Boimond, and J.-L. Ferrier. Synthesis of greatest
linear feedback for timed event graphs in dioid. IEEE Transactions on Automatic
Control, 44(6):1258 — 1262, 1999.

[25] B. Cottenceau, L. Hardouin, J.-L. Boimond, and J.-L. Ferrier. Model reference
control for timed event graphs in dioids. Automatica, 37:1451 — 1458, 2001.

[26] R. Cuninghame-Green. Minimax-Algebra, volume 166 of Lecture Notes in Eco-

nomics and Mathematical Systems. Springer, 1979.

[27] R. A. Cuninghame-Green. Minimax algebra and applications. Fuzzy Sets and
Systems, 41(3):251- 267, 1991.

[28] R. A. Cuninghame-Green and Y. Lin. Maximum cycle-means of weighted di-
graphs. Appl. Math. JCU, 11:225 — 234, 1996.

[29] A. Dasdan and R. K. Gupta. Faster maximum and minimum mean cycle algo-
rithms for system performance analysis. IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, 17(10):889 — 899, 1998.

[30] R. de Vries, B. De Schutter, and B. de Moor. On max-algebraic models for
transportation networks. In Proc. 4th Workshop on Discrete Event Systems
(WODES’98), pages 457 — 462, Cagliari, Italy, August 1998.

122

[31] E. V. Denardo and B. L. Fox. Multichain markov renewal programs. SIAM Journal
on Applied Mathematics, 16(3):468 — 487, 1968.

[32] I. Elmahi, O. Grunder, and A. Elmoudni. A max plus algebra approach for mod-
eling and control of lots delivery: Application to a supply chain case study. In
2004 IEEE International Conference on Industrial Technology, pages 926 — 931,

Hammamet, Tunisia, December 2004.

[33] L. Elsner and P. van den Driesche. On the power algorithm in max algebra. Linear
Algebra and its Applications, 302-303:17 — 32, 1999.

[34] L. Elsner and P. van den Driesche. Modifying the power method in max algebra.
Linear Algebra and Its Applications, 332-334:3 — 13, 2001.

[35] A. Di Febbraro, S. Grosso, and R. Minciardi. Max-plus algebra and incremental
scheduling problems in manufacturing systems. In Proceedings of the 33rd IEEE
Conference on Decision and Control, pages 1583-1587, Lake Buena Vista, FL,
USA, December 1994.

[36] A. Di Febbraro, R. Minciardi, G. Parodi, A. Prati, M. Profumo, and S. Grosso.
Performance optimization in manufacturing systems by use of max-plus algebraic
techniques. In Proc. IEEE Int. Conf. on Systems Man and Cybernetics, pages 1995—
2001, San Antonio, TX, October 1994.

[37] R. Franke, M. Meyer, and P. Terwiesch. Optimal control of the driving of trains.
At - Automatisierungstechnik, 50(12):606-613, 2002.

[38] S. Gaubert and J. Gunawardena. The duality theortem for min-max functions. C.
R. Acad. Sci., 326:43 — 48, 1998.

[39] S. Gaubert and Max Plus. Methods and applications of (max,+) linear algebra. In
R. Reischuk and M. Morvan, editors, /4th Symp. on Theoretical Aspects of Com-
puter Science, Liibeck, Germany, volume 500 of Lect. Notes in Comp. Sc., pages
261 — 282, Berlin, 27 Feb.- 1 Mar. 1997. Springer-Verlag.

[40] Martin Gavalec. Monotone eigenspace structure in max-min algebra. Linear Alge-
bra and its Applications, 345:149 — 167, 2002.

[41] M. J. Gazarik and E. W. Kamen. Reachability and observability of linear systems
over max-plus. Kybernetika, 35(1):2 — 12, 1999.

123

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

F. Geyer. Analyse und Optimierung zyklischer ereignisdiskreter Systeme mit Rei-
henfolgealternativen. Diplomarbeit, IFAT, Otto-von-Guericke-Universitat Magde-
burg, 2004.

M. Gondran and M. Minoux. Linear algebra in dioids: A survey of recent re-
sults. In R. E. Burkard, R. A. Cuninghame-Green, and U. Zimmermann, editors,
Algebraic and Combinatorial Methods in Operations Research, volume 19 of An-
nals of Discrete Mathematics, pages 147 — 164. Elsevier Science Publishers B. V.
(North-Holland), 1984.

H. Goto, K. Takeyasu, S. Masuda, and T. Amemiya. A gain scheduled model pre-
dictive control for linear-parameter-varying max-plus-linear systems. In Proceed-
ings of the American Control Conference, pages 4016 — 4021, Denver,Colorado,
USA, June 2003.

R. M. P. Goverde and M. A. Odijk. Performance evaluation of network timetables
using PETER. In J. Allan, E. Andersson, C. A. Brebbia, R. J. Hill, G. Sciutto,
and S. Sone, editors, Computers in Railways VIII, pages 731 — 740. WIT Press,
Southampton, 2002.

J. Gunawardena. Cycle times and fixed points of min-max functions. In G. Cohen
and J.-P. Quadrat, editors, Proceedings of the 11th International Conference on
Analysis and Optimization of Systems, volume 199 of Lecture Notes in Control
and Information Sciences, pages 266 — 272, Sophia-Antipolis, France, June 1994.
Springer-Verlag: London.

J. Gunawardena. Min-max functions. Discrete Event Dynamic Systems, 4(4):377
—406, 1994.

M. Hartmann and J. B. Orlin. Finding minimum cost to time ratio cycles with small
integral transit times. Networks, 23(6):567 — 574, 1993.

B. Heidergott and R. de Vries. Towards a (max, +) control theory for public trans-
portation networks. Discrete Event Dynamic Systems, 11:371 — 398, 2001.

B. Heidergott, G. J. Olsder, and J. van der Woude. Max Plus at Work: Modeling
and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its
Applications. Princeton University Press, 2006.

124

[51] B. Heidergott, J. van der Woude, and G. J. Olsder. An ergodic theorem for stochas-
tic max-plus linear systems. In Proceedings the IFAC Workshop on Discrete Event
Systems (WODES’04), pages 97 — 102, Reims, France, September 2004.

[52] P. Howlett. The optimal control of a train. Annals of Operations Research, 98:
65-87, 2000.

[53] P.G. Howlett, I.P. Milroy, and P.J. Pudney. Energy-efficient train control. Control
Eng. Practice, 2(2):193-200, 1994.

[54] K. Ito and K. K. Parhi. Determining the minimum iteration period of an algorithm.
J. VLSI Signal Processing, 11(3):229 — 244, 1995.

[55] A. Jean-Marie and G. J. Olsder. Analysis of stochastic min-max-plus systems:
Results and conjectures. Mathematical and Computer Modelling, 23(11/12):175 -
189, 1996.

[56] R. M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete
Mathematics, 23(3):309 — 311, 1978.

[57] R.M. Karp and J. B. Orlin. Parametric shortest path algorithms with an application
to cyclic staffing. Discrete Applied Mathematics, 3(1):37 — 45, 1981.

[58] J. R. Kok and N. Vlassis. Using the max-plus algorithm for multiagent
decision making in coordination graphs. In Proceedings of the 9th Inter-
national RoboCup Symposium, Osaka, Japan, Jul. 2005. Available online:
http://staff.science.uva.nl/~jellekok/publications/2005/Kok0O5robocup.pdf.

[59] S. Lahaye, J.-L. Boimond, and L. Hardouin. Optimal control of (min,+) linear
time-varying systems. In 8th International Workshop on Petri Nets and Perfor-
mance Models, pages 170 — 178, Saragosse, Spain, September 1999.

[60] S. Lahaye, J.-L. Boimond, and L. Hardouin. Analysis of periodic discrete event
systems in (max,+) algebra. In R. Boel and G. Stremersch, editors, Discrete Event
Systems: analysis and control, pages 93 — 102. Kluwer Academic Publishers, 2000.

[61] T.-E. Lee. Stable earliest starting schedules for cyclic job shops: a linear system
approach. International Journal of Flexible Manufacturing Systems, 12(1):59 — 80,
2000.

125

[62] D. Li, E. Mayer, and J. Raisch. A novel hierarchical control architecture for a class
of discrete-event systems. In 7" IFAC Workshop on DISCRETE EVENT SYSTEMS
(WODES’04), pages 415 — 420, Reims, France, September 2004.

[63] D. Li, E. Mayer, and J. Raisch. A new hierarchical control scheme for a class of
cyclically repeated discrete-event systems. In Proceedings of the 2nd International
Conference on Informatics in Control, Automation and Robotics, volume IV, pages
30 — 36, Barcelona, Spain, September 2005.

[64] P. A. Lotito, E. M. Mancinelli, and J.-P. Quadrat. A min-plus derivation of the
fundamental car-traffic law. IEEE Transactions on Automatic Control, 50(5):699 —
705, 2005.

[65] C. A. Maia, L. Hardouin, R. Santos-Mendes, and B. Cottenceau. Optimal closed-
loop control of timed event graphs in dioids. [IEEE Transactions on Automatic
Control, 48(12):2284 — 2287, 2003.

[66] J. Mairesse. Products of irreducible random matrices in the (max,+) algebra. Ad-
vances of Applied Probability, 29(2):444 — 477, 1997.

[67] S. Masuda, H. Goto, T. Amemiya, and K. Takeyasu. An inverse system for linear
parameter-varying max-plus-linear systems. In Proceedings of the 41st IEEE Con-
ference on Decision and Control, pages 4549 — 4554, Las Vegas, Nevada, USA,
December 2002.

[68] E. Mayer. Ereignisdiskrete Modellierung und Analyse eines Schienennetzes. Stu-
dienarbeit, ISR, Universitét Stuttgart, 1997.

[69] E. Mayer and J. Raisch. Time-optimal scheduling for high throughput screening
processes using cyclic discrete event models. Mathematics and Computers in Sim-
ulation, 66:181 — 191, 2004.

[70] N. Megiddo. Combinatorial optimization with rational objective functions. Math-
ematics of Operations Research, 4(4):414 — 424, 1979.

[71] E. Menguy, J.-L. Boimond, L. Hardouin, and J.-L. Ferrier. A first step towards
adaptive control for linear systems in max algebra. Discrete Event Dynamic Sys-
tems, 10:347 — 367, 2000.

126

[72] E. Menguy, J.-L. Boimond, L. Hardouin, and J.-L. Ferrier. Just-in-time control of
timed event graphs: Update of reference input, presence of uncontrollable input.
IEEE Transactions on Automatic Control, 45(9):2155 — 2159, 2000.

[73] A. Nait Sidi Moh, M.-A. Manier, and A. El Moudni. A control policy for a public
transport network modelled by petri nets and max-plus alebra. In Proceedins of the
Sth Biannual World Automation Congress, pages 59 — 64, 2002.

[74] 1. Necoara, T.J.J. van den Boom, B. De Schutter, and J. Hellendoorn. Stabilization
of max-plus-linear systems using receding horizon control — The unconstrained
case. In Proceedings of the 2nd IFAC Conference on Analysis and Design of Hybrid
Systems (ADHS 06), pages 148 —153, Alghero, Italy, June 2006.

[75] G. J. Olsder. Applications of the theory of stochastic discrete event systems to
array processors and scheduling in public transportation. In Proceedings of the
28th Conference on Decision and Control (CDC89), pages 2012 — 2017, Tampa,
Florida, December 1989.

[76] G.J. Olsder. Eigenvalues of dynamic max-min systems. Discrete Event Dynamic
Systems, 1(2):177 — 207, 1991.

[77] G.J. Olsder, J. A. C. Resing, R. E. DE Vries, M. S. Keane, and G. Hooghiemstra.
Discrete event systems with stochastic processing times. IEEE Transactions on
Automatic Control, 35(3):299 — 302, 1990.

[78] G.J. Olsder, K. Roos, and R.-J. van Egmond. An efficient algorithm for the critical
circuits and finite eigenvectors in the max-plus algebra. Linear Algebra and its
Applications, 295:231 — 240, 1999.

[79] Max Plus. Second order theory of min-linear systems and its application to discrete
event systems. In Proc. 30th Conf. Dec. and Cont., Brighton, England, December
1991. Available online: http://www-rocq.inria.fr/metalau/quadrat/cdc91.pdf.

[80] J.-M. Prou and E. Wagneur. Controllability in the max-algebra. Kybernetika, 35
(1):13 — 24, 1999.

[81] J.-P. Quadrat and M. Plus. Max-plus algebra and applications to system theory and
optimal control. In Proceedings of the International Congress of Mathematicians,
Zurich, 1994, pages 1502 — 1511. Basel: Birkaiiser Verlag, 1995.

127

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

J. A. C. Resing, R. E. DE Vries, G. Hooghiemstra, M. S. Keane, and G. J. Olsder.
Asymptotic behavior of random discrete event systems. Stoch. Proc. and Applica-
tions, 36:195 — 216, 1990.

I. V. Romanovskii. Optimization of stationary control of a discrete deterministic
process. Kibernetika, 3(2):66 — 78, 1967. English translation in Cybernetics and
Systems Analysis 3(2), pp.52-62, 1967.

G. Schullerus and V. Krebs. Input signal design for discrete event model based
batch process diagnosis. In 4th IFAC Workshop on On-Line Fault Detection and
Supervision in the Chemical Process Industries, pages 69 — 74, Jejudo Island, Ko-
rea, June 2001.

B. De Schutter and T. van den Boom. Model predictive control for max-min-plus
systems. In R. Boel and G. Stremersch, editors, Discrete Event Systems: Analysis
and Control, pages 201 — 208. Kluwer Academic Publ., 2000.

B. De Schutter and T. van den Boom. Model predictive control for max-min-plus-
scaling systems. In Proceedings of the 2001 American Control Conference, pages
319 — 324, Arlington, Virginia, June 2001.

B. De Schutter and T. van den Boom. Model predictive control for max-plus-linear
discrete event systems. Automatica, 37(7):1049 — 1056, 2001.

B. De Schutter and T. van den Boom. Model predictive control for max-min-
plus-scaling systems — efficient implementation. In Proceedings of the 6th In-
ternational Workshop on Discrete Event Systems (WODES’02), pages 343 — 348,
Zaragoza, Spain, October 2002.

B. De Schutter, T. van den Boom, and A. Hegyi. A model predictive control
approach for recovery from delays in railway systems. Transportation Research
Record, (1793):15 - 20, 2002.

J.-W. Seo and T.-E. Lee. Steady-state analysis and scheduling of cyclic job shops
with overtaking. International Journal of Flexible Manufacturing Systems, 14(4):
291-318, 2002.

P. Spacek, A. El Moudni, S. Zerhouni, and M. Ferney. Max-plus algebra for dis-

crete event systems - some links to structural controllability and structural observ-

128

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

ability. In Proceedings of the IEEE International Symposium on Intelligent Control,
pages 579 — 584, Monterey, CA, USA, August 1995.

Subiono and J. van der Woude. Power algorithms for (max, +)- and bipartite (min,
max, +)-systems. Discrete Event Dynamic Systems, 10:369 — 389, 2000.

T. van den Boom and B. De Schutter. Model predictive control for perturbed max-
plus-linear systems. Systems and Control Letters, 45:21 — 33, 2002.

T. van den Boom and B. De Schutter. Modelling and control of discrete event
systems using switching max-plus-linear systems. In 7/ IFAC Workshop on DIS-
CRETE EVENT SYSTEMS (WODES’04), pages 115 — 120, Reims, France, Septem-
ber 2004.

T. van den Boom, B. De Schutter, G. Schullerus, and V. Krebs. Adaptive model
predictive control using max-plus-linear input-output models. In Proceedings of

the 2003 American Control Conference, pages 933 — 938, Denver, Colorado, June
2003.

J. van der Woude. A characterisation of the eigenvalue of a general (min, max,
+)-system. Discrete Event Dynamic Systems, 11(3):203 — 210, 2001.

J. van der Woude. A simplex-like method to compute the eigenvalue of an irre-
ducible (max, +)-system. Linear Algebra and its Applications, 330:67 — 87, 2001.

J. van der Woude and G. J. Olsder. On a proof of the general version of the spectral
theorem in max-plus algebra. In Proceedings of the 44th Conference on Deci-
sion and Control, and the European Control Conference 2005, pages 7804 — 7809,
Seville, Spain, December 2005.

J. van der Woude and Subiono. Conditions for the structural existence of an eigen-

value of a bipartite (min, max, +)-system. Theoretical Computer Science, 293:13
— 24, 2003.

N. Vlassis, R. Elhorst, and J. R. Kok. Anytime algorithms for multiagent decision
making using coordinationgraphs. In Proceedings of the IEEE International Con-
ference on Systems, Man and Cybernetics, volume 1, pages 953 — 957, The Hague,
The Netherlands, October 2004.

129

[101]

[102]

[103]

[104]

[105]

C. Wende, Q. Xiangdong, and D. Shuhui. The eigen-problem and period analysis
of the discrete-event system. Systems Science and Mathematical Sciences, 3(3):
200 — 230, 1990.

G. Soto y Koelemeijer. The power and howard algorithm in the (max,+) semir-
ing. In R. Boel and G. Stremersch, editors, Discrete Event Systems: analysis and
control, pages 193 — 200. Kluwer Academic Publishers, 2000.

N. E. Young, R. E. Tarjan, and J. B. Orlin. Faster parametric shortest path and
minimum-balance algorithms. Networks, 21:205 — 221, 1991.

Q. Zhu, W. Sheng, and N. Xi. Max-plus algebra model for on-line task scheduling
of a reconfigurable manufacturing work-cell. In Proceedings of 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 1245 — 1250,
Sendai, Japan, 2004.

U. Zimmermann. Linear and Combinatorial Optimization in Ordered Algebraic
Structures, volume 10 of Annals of Discrete Mathematics. North-Holland, 1981.

130

