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Abstract 

Currently, the process design of fuel cells and the development of control strategies 

is mainly based on heuristic methods. Fuel cell models are often too complex for 

control purposes, or they are developed for a specific type of fuel cell and valid only 

in a small range of operation conditions. The application of fuel cell models to 

controller design is still limited. Furthermore, suitable and simple-to-implement 

design strategies for fuel cell control remain an open area. There is thus a 

motivation for simplifying dynamic models for process control applications and for 

designing suitable control strategies for fuel cells. This is the main objective of this 

work. As an application example, the 250 kW industrial molten carbonate fuel cell 

(MCFC) system HotModule by MTU CFC Solutions, Germany is considered.  

 

A detailed dynamic two-dimensional spatially distributed cross-flow model of a 

MCFC from literature is taken as a starting point for the investigation. In Chapter 2, 

two simplified model versions are derived by incorporating additional physical 

assumptions. One of the simplified models is extended to a three-dimensional stack 

model to deal with physical and chemical phenomena in the stack. Simulations of 

the stack model are performed in Chapter 3 in order to calculate the mass and 

temperature distributions in the direction perpendicular to the electrode area.  The 

other simplified model forms the basis for a low order reduced model that is derived 

in Chapter 4. 

 

The reduced-order model is constructed by application of the Karhunen-Loève 

Galerkin method. The spatial temperature, concentration and potential profiles are 

approximated by a set of orthogonal time independent spatial basis functions. 

Problem specific basis functions are generated numerically from simulation data of 

the detailed reference model. The advantage of this approach is that a small number 

of basis functions suffices in order to approximate the solution of the detailed model 

very well. The resulting reduced order model is of considerably lower order than the 
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detailed model and requires much less computation time. It is used for the 

development of a model based control strategy in Chapter 5. 

 

 

The purpose of control is to guarantee a fast and safe dynamic response of the fuel 

cell system during load changes; an optimal steady state electric efficiency is also 

desired. Taking both considerations a control strategy with three main loops is 

designed. The first loop is composed of a master controller that imposed a load 

change and sets fuel gas, the steam to carbon ratio, air number and cathode gas 

recycle ratio to their corresponding conditions for optimal steady state electric 

efficiency. The other two loops are feedback PID controllers that for given 

temperature limits (maximum temperature and maximum temperature difference) 

respond by changing the air ratio and steam to carbon ratio around the default sets 

by the master controller. It turns out that for load changes, the PID controllers can 

successfully take the maximum temperatures as well as the spatial temperature 

differences to their desired set-points. 

 

In cases, where the maximum temperature and the maximum temperature difference 

cannot be measured directly, the proposed control scheme has to be combined with 

a state estimator. A suitable state estimator is developed based on the reduced-order 

model and the control strategy with the observer shows reasonable results. 
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Kurzzusammenfassung 

 

Derzeit beruht die Entwicklung von Brennstoffzellensystemen und zugehörigen 

Prozessführungskonzepten hauptsächlich auf heuristischen Methoden. Verfügbare 

Brennstoffzellenmodelle sind oft zu kompliziert für die Anwendung auf 

Regelungsprobleme, oder sie sind nur für ein ganz spezielles 

Brennstoffzellensystem und nur in engen Betriebsbereichen gültig. Daher existieren 

sehr wenige modellbasierte Regelungskonzepte für Brennstoffzellen. Darüber 

hinaus existiert ein Bedarf an  geeigneten und einfach zu implementierenden 

Regelungsstrategien für Brennstoffzellen. Daraus ergibt sich die Motivation, 

dynamische Brennstoffzellenmodelle im Hinblick auf Prozessführungsaufgaben zu 

vereinfachen und mit Hilfe dieser Modelle Regelungsstrategien für Brennstoffzellen 

zu entwickeln. Dies ist das Hauptziel dieser Arbeit. Als Anwendungsbeispiel wird 

das industrielle Schmelzkarbonatbrennstoffzellensystem (MCFC-System) 

HotModule der Firma MTU CFC Solutions betrachtet, das eine elektrische Leistung 

von bis zu 250 kW liefert. 

 

Als Ausgangspunkt für die Untersuchungen dient ein detailliertes dynamisches, 

örtlich zweidimensionales Brennstoffzellenmodell aus der Literatur. In Kapitel 2 

werden von diesem Modell durch zusätzliche physikalische Annahmen zwei 

vereinfachte Varianten abgeleitet. Die eine Modellvariante wird zu einem 

dreidimensionalen Modell des Brennstoffzellenstapels erweitert, um zusätzliche 

chemische und physikalische Phänomene im Zellstapel zu erfassen. In Kapitel 3 

werden Simulationen mit dem Modell des Brennstoffzellenstapels durchgeführt, um 

Konzentrations- und Temperaturverteilungen senkrecht zur Elektrodenfläche zu 

erfassen. Die zweite vereinfachte Modellvariante dient als Grundlage für ein 

reduziertes Modell sehr niedriger Ordnung, das in Kapitel 4 hergeleitet wird.  
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Das reduzierte Modell wird mit Hilfe der Karhunen-Loève-Galerkin-Methode 

bestimmt. Dazu werden die örtlichen Temperatur-, Konzentrations- und 

Potenzialprofile mit Hilfe zeitlich konstanter orthonormaler Basisfunktionen 

approximiert. Aus Simulationsdaten, die mit Hilfe des detaillierten Modells 

gewonnen wurden, werden auf numerischem Wege problemangepasste 

Basisfunktionen generiert. Diese Methode bietet den Vorteil, dass eine kleine 

Anzahl von Basisfunktionen ausreicht, um die  Lösung des detaillierten Modells 

mit guter Genauigkeit zu approximieren. Das resultierende reduzierte Modell ist 

von viel niedrigerer Ordnung als das detaillierte Modell und benötigt erheblich 

weniger Rechenzeit. Es dient als Grundlage für die Entwicklung eines 

modellgestützten Regelungskonzepts für das HotModule, das in Kapitel 5 

entwickelt wird. 

 

Die Regelung hat die Aufgabe, ein schnelles und sicheres dynamisches Verhalten 

des Brennstoffzellensystems bei Lastwechseln zu garantieren. Darüber hinaus ist 

eine optimale Effizienz des Systems im stationären Fall wünschenswert. Unter 

Berücksichtigung dieser beiden Anforderungen wird ein Regelungskonzept aus 

einer Vorsteuerung und zwei PID-Reglern entwickelt. Die Vorsteuerung setzt die 

Brennstoffdurchflussmenge, das Verhältnis zwischen Dampf und Methan im 

Anodenzufluss, die Luftzahl des Brenners sowie den Anteil des zum Brenner 

zurückgeführten Kathodenabgases auf die optimalen stationären Werte bei einer 

gegebenen Lastanforderung. Die beiden PID-Regler dienen dazu, die örtlich 

höchste Temperatur sowie den örtlichen Temperaturgradienten auf vorgegebene 

Maximalwerte zu begrenzen. Sie korrigieren dazu die Luftzahl und die 

Zusammensetzung des Brenngases um die von der Vorsteuerung vorgegebenen 

Werte. Simulationsstudien zeigen, dass diese Strategie Erfolg versprechend ist.  
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In Fällen, wo die Maximaltemperatur und der maximale Temperaturgradient nicht 

gemessen werden können, muss das vorgeschlagene Regelungskonzept um eine 

Zustandsschätzung erweitert werden. Dazu wird basierend auf dem reduzierten 

Modell ein Beobachter entworfen und mit dem Regler kombiniert. Dies führt in 

Testsimulationen zu guten Ergebnissen. 
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Notations 

 

Latin symbols   
jArr  Arrhenius number of reaction j 

C  Correlation matrix 

c  Surface related charge capacity 

pc  Molar heat capacity 

jDa  Damköhler number of reaction j 

j,AE  Activation energy of reaction j 

F  Dimensionless Faradaic constant 

G  Molar flow  mol·s-1

g  Mass flow density  mol·m-2s-1

feedH  Combustion enthalpy of the fuel gas 

c/ah  Height  m  

cellI  Total cell current 

nI  n×n identity matrix 

i  Current density 

jK  Equilibrium constant of reaction j 

ek  Ion conductivity of electrolyte  m-1·Ω-1

hk  Heat exchange coefficient  W·m-2·k-1

KL  Cell size in direction k 

2l  Geometric aspect ratio 

3l  Geometric aspect ratio 

N  Number of snapshots 

in  Mass exchange flux density of component i 

jn  Number of electrons transferred in electrochemical reaction j 

P  Electric power 

sPe  Peclet number 

p  Pressure 

q  Heat exchange flux density 

sq  Heat source density 

R  Gas constant 

 xi



jr  Reaction rate of reaction j 

backR  The cathode gas recycle ratio 

CS  Steam to carbon ratio 

St  Stanton number 

T  Temperature K  

t  Time  s

cellU  Cell voltage 

V  Volume 

kz  Spatial coordinate k   m

  

  
Greek symbols  

±,jα  Transition factors for reaction j 

Γ  Total molar flow 

γ  Molar flow density 
0
ic hΔ  Standard combustion enthalpy of component i 

CjR gΔ  Free enthalpy of reaction j 
0
jRhΔ  Standard enthalpy of reaction j 

ε  Residual error 

dζ  Spatial coordinate 

η  Electric efficiency 

ϑ  Temperature 

eκ  Ion conductivity 

λ  Eigenvalue 

airλ  Air number 

sλ  Thermal conductivity  W·m-1·K-1

jμ  Lagrangian multiplier 

j,iν  Stoichiometric coefficient of component i in reaction j 

jν  Total mole change in reaction j 

ξ  Average mean-square residual error 

τ  Time 

iϕ  Partial pressure of component i 
Ф Electric potential 
φ  Orthonormal basis function 

j,iσ  Component i mass source due to the reaction j 

 xii



j,ϑσ  Reaction heat due to the reaction j 

iυ  Snapshot 

iχ  Mole fraction of component i 
ψ  Integration variable, temperature 
  
Lower indexes  
a  Anode gas phase 
air  Burner air 
as  Anode / solid phase exchange 
b  Boundary 
back  Cathode recycle 
c  Cathode gas phase 
cs  Cathode / solid phase exchange 
diff Difference 
e  Electrolyte 
FC  Fuel cell stack 

feed Fuel cell feed 
i  (usually) chemical species, component 
in  Inlet 
j  (usually) chemical reaction 
l  Chemical species, component 
max Maximum 
min Minimum 
out  Outlet 
r  Indirect internal reforming section 
s  Solid phase 
t  Total 
  
Upper indexes  
0  Thermodynamic standard 
θ  System specific standard 
~ (usually) dimensional variable 
^ Approximation 
T  Transported matrix 
 

 xiii



 

Chapter 1  

Introduction 

 

1.1 Background 
 

Fuel cell-based power plants convert the chemical energy in a fuel directly to 

electricity without the requirement of conversion of energy into heat. This results in 

high efficiency (50 - 60% before heat recovery). The molten carbonate fuel cell 

(MCFC) is a high-temperature fuel cell operated at 600°C - 700°C. Due to its high 

operation temperature, the MCFC offers advantages for the co-generation of heat 

and electricity. Furthermore, the high operation temperature enables internal 

reforming and makes the MCFC flexible with respect to the sorts of fuel that can be 

used. On the other hand, the operation temperatures and consequently the demands 

of the MCFC on thermal stability of the used materials are below those of solid 

oxide fuel cells (Carrette, Friedrich & Stimming, 2001). Those properties make the 

MCFC an attractive candidate for decentralized power generation. The first 

commercial MCFC systems are now close to market (Bischoff & Huppmann, 

2002). 

 

Currently, the development and operation of MCFCs as of other high temperature 

fuel cells is mainly based on experimental and empirical knowledge. However, an 

intuitive process understanding is difficult in this case, as an MCFC system is a 

highly integrated process whose behavior depends on numerous interactions 

between the electrochemical reaction steps, the internal reforming, mass transport 

processes, and the heat transfer inside a cell or stack. A deeper understanding of the 

physico-chemical processes in an MCFC can be obtained from mathematical 

models based on physical conservation principles. Model based process control and 

process design strategies can lead to a much better use of the fuel cells' capacities 
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and increase the efficiency of the system, but require suitable dynamic process 

models. Such models should offer good extrapolation qualities on the one hand, but 

must also be solvable in the framework of a real-time process control environment 

or an optimization algorithm. Today, the majority of MCFC models available in 

open literature are steady state models and therefore not suitable for process control 

(a survey is given in (Koh, Kang & Lim, 2001)). Only very few detailed dynamic 

MCFC models have been published (He & Chen, 1998; Heidebrecht & Sundmacher, 

2002; Heidebrecht & Sundmacher, 2003). Those models consist of systems of 

algebraic and nonlinear partial differential equations in several space coordinates, 

which are too complex for many process control purposes. As a consequence, most 

control studies of the MCFC have to rely on rather simple dynamical models, 

black-box type input output models, or qualitative knowledge-based approaches 

(Lucas, Lee & Ghezel-Ayagh, 2002; Kang, Koh & Lim, 2001; Shen et al. 2002; 

Sun, Cao & Zhu, 2001).  

 

The main contribution of the thesis is to develop suitable dynamic models for 

control purposes and to design a practicable control strategy for MCFC systems.  

The thesis focuses on three-dimensional MCFC stack model development; MCFC 

model reduction; temperature control of MCFC with internal reforming and state 

estimator design.   

 

1.2 Objectives 
 

In particular this thesis develops a simplified form of a detailed two-dimensional 

spatially distributed MCFC model. This model serves as a basis for the model 

reduction. A three-dimensional model for a MCFC stack is developed in order to 

have a better understanding of how the actual fuel cell stack performs and how the 

temperature in the stack distributes. The thesis then focuses on the development of 

the reduced-order model, which is also a basis of the temperature controller and the 

observer design.   
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The objectives include:  

(1) A detailed two-dimensional spatially distributed model of a planar MCFC with 

cross flow is derived from energy, mass, and charge balances. This model is used as 

a starting-point and reference for the reduced model. A reduced set of model 

equations is developed by applying the Karhunen-Loève Galerkin method to the 

reference model. The resulting model approximates a detailed spatially distributed 

model with good accuracy. 

(2) A three-dimensional model based on a ‘HotModule’ stack is established to deal 

with physical and chemical phenomena in the stack and to calculate the mass 

distribution in the direction perpendicular to the electrode area. 

(3) A control system framework based on a ‘HotModule’ fuel cell is constructed to 

satisfy high electric efficiency over a long range of electric load change and to keep 

the fuel cell safe. 

(4) A Luenburger state observer is designed based on a reduced model of the 

‘HotModule’ fuel cell. The state estimator and the control scheme are combined 

together in order to obtain a practical application of the control scheme. 
 

1.3 Outline of the Thesis 
 

Chapter 2 first briefly reviews some general methods for fuel cell modeling and 

control, and then focuses on a detailed nonlinear dynamic model of a planar MCFC 

with direct internal reforming (DIR) that serves as a reference and a basis for the 

approaches proposed in this work. A simplified model and three-dimensional stack 

model are then built based on this detailed model. 

 

Chapter 3: The simplified model built in Chapter 2 is validated by comparison to 

the detailed model and also presents the three-dimensional simulation.  

 

A reduced form of the nonlinear dynamic model of the planar MCFC is described in 

Chapter 4. 
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A control scheme based on the detailed dynamic model is designed in Chapter 5. Its 

practical application is implemented by incorporating a state estimator which is 

constructed based on the reduced order model. 

 

The main benefit of the work is summarized in Chapter 6. 

 

1.4 Originality 
 

The three-dimensional model simulation, the nonlinear model reduction using 

Galerkin Karhunen-Loève approach and the temperature control strategy are all 

original. The work has been presented at various symposia and conferences 

(Mangold & Sheng, 2003; Mangold et al. 2004a; Mangold et al. 2005), published in 

Chemical Engineering Science (Mangold et al. 2004b), in Fuel Cells (Mangold & 

Sheng, 2004), in a book chapter (Mangold & Sheng, 2006), and also in the Journal 

of Power Sources (Sheng, Mangold & Kienle 2006). 
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Chapter 2  

Background to the MCFC Principle and MCFC Modeling 
 

First this chapter briefly reviews the basic principle of MCFC, and then introduces a 

two-dimensional MCFC model developed by Heidebrecht (2005), which serves as a 

basic model for the three-dimensional stack model, model reduction and controller 

design proposed in the later chapters. 

 

2.1 Overview of MCFC 
 

Among the various fuel cell types, the molten carbonate fuel cell (MCFC) is a very 

promising technique which is now about to become commercially used. It will 

mainly be applied for stationary generation of electric energy together with the 

production of highly valuable heat and is thus suitable for many industrial 

applications as well as for decentralized power supply. Although, natural gas is the 

preferred fuel, the cell can be fed by a wide variety of fuels containing non-oxidized 

carbon or hydrogen, as can be found in many industrial processes. Due to high 

operating temperatures, internal reforming can be applied in this fuel cell type. The 

MCFC with an internal reforming is very attractive for the co-generation of 

electricity and heat. However, it requires further research efforts to make high 

temperature fuel cells economically competitive. A better process understanding 

and an improved process operation can help to exploit the potential of the cells to a 

higher degree than it is done today. Process operation is challenging, because 

industrial high temperature fuel cell stacks are highly integrated processes, which 

combine the internal generation of hydrogen by steam reforming, the mass coupling 

between anode and cathode gas channels, and the heat integration of endothermic 

reforming reactions and exothermic electrochemical reactions in one apparatus. The 

process operation is further complicated by the limited measurement information 
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available online. Currently, most high temperature fuel cell stacks are operated 

manually, based on experience and heuristic knowledge. This approach requires 

large safety factors and therefore is unsatisfactory. 

 

2.2 MCFC Working Principle 
 

The basic structure and the working principle of an MCFC with direct internal 

reforming (DIR) is shown in Figure 2-1. The MCFC consists of two porous 

electrodes, an electrolyte layer between them and gas channels above each electrode. 

Necessary fuel and oxidant reactants are conveyed and distributed onto anode and 

cathode electrode through gas channels. In order to make full use of the fuel gas and 

to improve the performance of fuel cell, special baffles are introduced in the anode 

gas channel (Figure 2-2), which results in an even distribution of the fuel gas. The 

anode channel is fed with a mixture of natural gas (methane)，carbon monoxide, 

carbon dioxide, hydrogen and steam which come from a pre-reformer. The 

following reactions occur in the pre-reformer: 

4 2CH H O CO 3H+ ↔ + 2

2

−

  Reforming                                                            (2.1) 

2 2CO H O CO H+ ↔ +  WGS (water-gas shift)                                                   (2.2) 

In the anode gas channel, the natural gas that is not completely reacted in the pre-

reformer continues to be oxidized to hydrogen and carbon monoxide in an internal 

reforming step. Then both  and are oxidized electrochemically, consuming 

carbonate ions from the molten salt electrolyte and producing free electrons on the 

anode electrode: 

2H CO

Anode2
2 3 2 2H CO H O CO 2e−+ ⎯⎯⎯→ + +                                                 (2.3) 

Anode2
3 2 2CO CO H CO 2e− −+ ⎯⎯⎯→ + +   (2.4) 

The anode exhaust gases consist of unreformed feed gas, reforming products and 

oxidation products. The anode exhaust gases are mixed with fresh air, and in some 

cases with a part of cathode exhaust gas and then fed into a catalytic combustion 

section (also named as burner or Anode Gas Oxidizer). In the burner, all 

combustible species are completely oxidized. The outlet of the burner (a mixture of 
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O2 and CO2) is then fed back into the fuel cell cathode gas channel. The oxygen and 

carbon dioxide in the oxidant stream undergo a reduction reaction under 

consumption of electrons from the electrode to form new carbonate ions : 2
3CO −

Cathode 2
2 2

1 O CO 2e CO
2

−+ + ⎯⎯⎯→ 3
−                                             (2.5) 

The electrons from the anode are transferred to the cathode via an external electric 

circuit, where they perform electric work.  

 
Figure 2 - 1: Considered scheme of the MCFC system, which consists of a pre-

reformer, the cell stack, and a burner between anode side and cathode side. 

 

The input parameters of the model describe the amount of anode feed gases (in 

terms of dimensionless molar flows, Γ), their composition (in terms of mole 

fractions, χi) and their temperature (ϑ ) as well as at the air inlet to the burner and 

the cathode gas recycle ratio (Rback). Depending on the operation mode of the cell, 

either the cell voltage φΔ  (potentiostatic operation) and the cell current Icell 

(galvaniostatic operation) or the resistance of an external electric load can be 

considered as further input variables. The output variables are identical to the state 

variables. The remaining variables are fluxes of mass, energy and charge, among 

them is the current density i. All constants describing the properties of the system 

are system parameters. 
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Figure 2 - 2: Top view of anode gas channels 
 

 

In order to provide enough electrical power density, individual fuel cells are 

aggregated to a cell stack. A MCFC stack generally consists of several fuel cells 

and indirect internal reforming sections between several, e.g. eight to ten fuel cells. 

The power generated by a fuel cell stack depends on the number and size of single 

fuel cells.  A basic MCFC stack structure is shown in figure 2 - 3, in which natural 

gas is internally reformed to hydrogen, partially in an internal reforming unit and 

partially at the cells’ anode gas channels, which is a combination of indirect internal 

reforming (IIR) and direct internal reforming (DIR). Top and bottom of the stack 

are two indirect internal reforming sections. The gas phase through the reformer is 

in counter-flow to the anode gas channels in order to provide better temperature 

distribution. The structure of an indirect internal reforming section is shown in 

Figure 2 - 4. Not all MCFC stacks consider both steps, some may have no 

reforming catalysts in the cell anode gas channels and hence have no direct internal 

reforming step.  

 

 

 8



 

Feed 

Server 
cells 

Flow direction of anodes (cathode in cross flow) 

Figure 2 - 3: basic cell stack structure with internal reforming 
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80% 

20% Feed 

Four sections with different 
catalyst density (increasing 
from right to left) 

 

 9



 

A complete MCFC system is a highly integrated process that may couple the 

dynamics of several hundreds fuel cells in one single vessel with a thermal 

management system, anode gas burner/oxidizer (AGO), and power conditioning 

unit. In other words, a complete MCFC system is the sum of all equipment for safe 

operation as well as the technical coordination of all concerned parts of a power 

plant. An example of the MCFC system is the HotModule by MTU CFC Solutions, 

Germany (Bischoff & Huppmann, 2002), which includes 342 fuel cells that can 

deliver up to 200 kW of electrical power. A pilot plant installation of the 

HotModule exists at the Magdeburg university hospital, Germany (Figure 2 - 5). 

The name of the HotModule was chosen to highlight the fact that all hot cell parts 

are assembled in just one single vessel. Further devices are assembled in the so-

called media supply. Here, a desulphurizer with activated carbon, a heat exchanger 

and a humidifier, an external pre-reformer and several heat exchangers serve for the 

pre-treatment of the fuel gas. Within this work, the focus is on the cell stack vessel, 

the media supply is not treated. 

 

 
Figure 2 - 5: The HotModule exists at the Magdeburg university hospital, Germany 

 10



 

2.3 MCFC Modeling with respect to Process Control Purposes 
 

Mathematical modeling of fuel cells has concentrated on such issues as physical and 

transport properties, kinetics, and static performance. Simple dynamic 

representations of fuel cells and peripheral components (thermal management 

system, anode gas burner, and power conditioning unit) are instead preferred for use 

in control applications. To this end, several developments have been reported in the 

literature based on particular assumptions. In literature one can find a number of 

steady state models for MCFCs, most of them considering the system under various 

aspects such as temperature distribution or pressure profile, electric efficiency or 

fuel usage (Yoshiba et al., 1998; Bosio, Costamagna, & Parodi, 1999). Many of 

these models contain strongly empirical approaches, valid only for the system 

discussed in the respective article. Also assumptions are made that only apply to a 

few cases. The number of transient models is far smaller. Cell geometry effects and 

complex mass distributions have been included in a dynamic model for a MCFC 

with external reforming (He, 1994; He & Chen, 1995). Alternatively, a dynamic 

model for a MCFC with internal reforming has been developed assuming chemical 

reactions at equilibrium and negligible mass storage (Ernest, Ghezel-Ayagh & Kush, 

1996). He and Chen (1998) developed a transient stack model using a 

computational-fluid-dynamics (CFD) program in order to simulate the temperature 

profile in a MCFC stack. But the model describes only the states of the temperature 

in the stack. Lukas, Lee & Ghezel-Ayagh (2002) have developed a model for a 

single cell with indirect and direct internal reforming based on the assumption of 

lumped parameters. The model cannot describe spatial distributions in the cell. 

Heidebrecht & Sundmacher (2003) developed a transient mathematical model for a 

single counter-flow cell of a molten carbonate fuel cell. Heidebrecht (2005) also 

developed a two dimensional cross-flow MCFC model. The model is based on the 

description of physical phenomena related to the concentration, temperature and 

potential field within the gas and solid phases. The model results include the steady 

states of the system as well as the transient functions of concentrations, temperature, 
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current densities and cell voltage. But the model consists of systems of algebraic 

and nonlinear partial differential equations in several space coordinates, which are 

too complex for many process control purposes. As a consequence, most control 

studies of the MCFC have to rely on rather simple dynamic models, black-box type 

input/output models, or qualitative knowledge-based approaches (Shen et al. 2002; 

Kang, Koh & Lim, 2001; Sun, Cao & Zhu, 2001; Aguiar et al. 2005).  

 

2.3.1 A 2-D MCFC model developed by Heidebrecht (2005) 

 

This thesis is mostly concerned with the experimental and theoretical analysis of the 

so-called HotModule by MTU CFC Solutions, Germany (Bischoff & Huppmann, 

2002), a detailed model for this particular system was developed by Heidebrecht 

(2005).  

 

The model by Heidebrecht (2005) is based on a simplified scheme of the MCFC 

system as depicted in Figure 2 - 1. The fresh anode feed consisting of steam and 

methane first enters a pre-reformer where a part of the methane is converted to 

hydrogen, and then is distributed to the anode gas channels of the cell stack. The 

outlet flow on anode side goes into a burner. The burner is supplied with air from 

the ambient and oxidizes unconsumed methane and hydrogen. The burner outlet is 

fed to the cathode gas channels. Finally, a part of the cathodic exhaust gases may be 

recycled to the burner. 

 

The Heidebrecht model serves as a reference and as a basis for the model reduction, 

state estimator and controller design in this thesis. The main assumptions of the 

model are: 

• The gas phases are isobaric and behave like ideal gases 

• In all channels, plug flow is assumed 

• In the fuel cell, spatial gradients in the direction of ζ1 and ζ2 axis, i.e. in the 

direction of the anodic and cathodic gas fluxes are taken into account 
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• A pseudo-homogeneous energy balance is formulated for the solid parts of 

the cell, assuming an identical temperature in the anode, the electrolyte and 

the cathode 

• Reversible potential kinetics is used to describe the internal reforming in the 

cell; for the electrochemical reactions, Butler-Volmer kinetics are used 

• The electrodes possess infinite electrical conductivity 

• Charge transport in the electrolyte occurs only perpendicular to the ζ1 and ζ2 

axis; the electrolyte is modeled as a ohmic resistance, the concentration of 

carbonate ions is assumed to be constant; a spatially distributed potential 

field and a spatially distributed current density field are computed 

• The pre-reformer has a negligible hold-up; all reactions in the pre-reformer 

occur instantaneously; CO is converted completely to CO2; a constant rate 

of conversion for CH4 is assumed 

• The burner has a negligible hold-up and works with total conversion 

 

Dimensionless numbers 

 

The Heidebrecht model equations were written completely in dimensionless terms. 

The meanings and physical interpretations of all state variables, the cell current and 

the most important model parameters are given in the following. The list of 

dimensionless quantities can be found in Heidebrecht (2005). 

 

Because the mole fraction xi in a dimensional equation system already is 

dimensionless it can be used directly. Only a Greek symbol is used to distinguish 

dimensionless equations from dimensional ones. 

ii x=χ   (2.6) 

The partial pressures, pi,are related to a standard pressure, pθ . 

θϕ
p
pi

i =   (2.7) 

The temperature, T, is made dimensionless by relating it to a standard temperature, 

Tθ . 
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θϑ
T
T=   (2.8) 

Extensive molar flows, G, are related to a standard value of a molar flow which is 

characteristic for the MCFC operation, Gθ. 

θΓ
G
G=   (2.9) 

In gas channels the intensive molar flow density, g, is related to a standard molar 

flow density, g, resulting from the division of the standard molar flow by the 

respective cross sectional area. 

θγ
G

hLg a2a
a =   (2.10) 

θγ
G

hLg c1c
c =   (2.11) 

The electric potential,φ , becomes dimensionless by multiplying it by the Faraday 

constant, F~ , and dividing it by the gas constant, R, and the standard temperature, Tθ. 

θφφ
RT

F~~ ⋅=   (2.12) 

The dimensionless total cell current, Icell, is defined as the dimensional total cell 

current divided by the stoichiometrically possible current under standard conditions, 

Iθ . 

θI
I~

I cell
cell =   (2.13) 

The Damköhler number for the quasi-homogeneous gas phase reactions in the 

anode channel reads: 

θ

θθ

G
hLLr

Da 21ref
ref =   (2.14) 

The Damköhler number for the electrochemical (surface) reactions is defined as: 

θ

θ

G
LLr

Da 21red,ox
red,ox =   (2.15) 

In both cases a characteristic volume or surface related reaction rate under certain 

conditions (standard concentrations and temperature) is divided by a characteristic 

volume or surface related molar flow density. 
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The Arrhenius number describes the temperature dependence of a reaction rate. It is 

defined as: 

θRT
E

Arr j,A
j =   (2.16) 

j,AE  is activation energy of reaction j. 

The Stanton number is a measure for the heat exchange capability at certain 

interfaces. Here a heat exchange coefficient for the complete exchange interface is 

related to the heat capacity of the standard convective flow: 

θθ
p

21
h

cG
LLk

St =   (2.17) 

The heat conductivity of the solid phase is described by the Peclet number. In 

analogy to the Stanton number it relates a characteristic measure for the conductive 

heat flux to the characteristic convective heat flux: 

θθ

λ

p

ss

cG
h

Pe
1 =   (2.18) 

Directly connected to the Peclet number is the ratio of the geometrical cell 

dimensions. 

1

2
2 L

L
l =       

1

3
3 L

L
l =   (2.19) 

 

The equations and boundary conditions of the model are introduced in the following.  

 

Material balances  

 

Component and total material balances on the anode side:   

( ) jj
refj

jj,ij,i
l

as,la,ias,i
1

a,i
a

a,i

a

a rDann
V ∑∑

=
−+−+

∂
∂

−=
∂

∂
νχνχ

ζ
χ

γ
τ

χ
ϑ

 (2.20) 

 15



( ) ( )( )

∑ ∑

∑ ∫ ∑

=

=

+

++

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−+⋅+

∂
∂

−=

i refj
jjjaas,ia

i refj
asjja

0
jRi,pas,i

a,p1

aa

rDan

qrDahdcn
c
10

s

a

νϑϑ

ϑΔΨΨ
ζ
ϑγ ϑ

ϑ  

(2.21) 

∑
=

=
oxj

jjj,ias,i rDan ν   (2.22) 

In the above equations, the subscript a stands for the anode, s means the solid and c 

is the cathode; the subscript i is a component index for the seven gas components 

CH4, H2O, H2, CO, CO2, O2, N2; V  is volume; 1ζ  is spatial coordinate; is mass 

exchange flux density from solid to anode; 

i asn ,

i j,ν  is the stoichiometric coefficient of 

component i in reaction j; ∑=
j

j,ij νν  is total mole change in reaction j; rj is the 

dimensionless reaction rate;  and is molar heat capacity; p ic , p ac ,
0
jRhΔ  is standard 

enthalpy of reaction j; q is heat exchange flux density; the other variables are 

constant model parameters.  

 

The first term of the Equation 2.20 on the right hand side describes the effect of 

convection of the gas through the anode channel along the ζ1 coordinate. The 

second and third terms describe the effect of mass exchange between gas phase and 

electrode. The second term simply considers the direct effect of mass entering or 

leaving the gas phase. The third term can be interpreted to compensate mole 

fraction changes due to the dilution effects of overall mass transfer between the gas 

phase and the solid phase. The last term expresses an increase or a decrease in 

molar gas flow density along the channel for the gas phase reforming reactions. 

While the first part describes the source density for component i due to the 

reforming reactions the second one calculates the dilution/concentration effect of 

reactions with changes in total mole numbers.  

 

As for the total mass balance Equation 2.21. The first term is the spatial derivative 

of a product of the molar flow density and the temperature. The next three terms 

 16



consider thermal expansion effects due to the temperature change connected to 

mass exchange with the electrode, heat of reforming reaction and convective heat 

transfer. The last two terms consider the increase of total molar flow due to mass 

exchange between gas and electrode as well as due to the reforming reactions. 

 

In the following, a justification of Equations 2.20 and 2.21 will be given. In fact, the 

Equation 2.20 comes from a dimensional form of the partial mass balance Equation 

2.23 and total mass balance 2.24: 

( )i a i as
a i a i j

j refa

c n
jg r

t z d
, ,

, ,
1

χ ν
=

∂ ∂= − ⋅ + +
∂ ∂ ∑   (2.23) 

t a t asa
j j

j refa

c ng
r

t z d
, ,

1

ν
=

∂ ∂
= − + +

∂ ∂ ∑   (2.24) 

As 

i a i a i a i a t a

t a t a t a

c c
t t c c t c

, , , ,

, , ,

1χ χ⎛ ⎞∂ ∂∂= = = ⋅ − ⋅⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

c
t
,∂

 (2.25) 

Insert into the above Equations 2.23 and 2.24, which will lead to the Equation 2.20 

in dimensional form. As for the Equation 2.21, only after the total mass balance 

2.24 and enthalpy balance in temperature form 2.33 are inserted into: 

t a t aa a

a a

c cT Tp p
t R t RT t T t

1
,

2

−∂ ∂ ∂
= = − ⋅ = − ⋅

∂ ∂ ∂
aT, ∂

∂

( )

 (2.26) 

by some manipulation, the dimensional form of Equation 2.21 can be achieved. The 

detailed derivation can be found in (Heidebrecht 2005). In above equations, zk is the 

spatial coordinate, and t is the time. 

 

The boundary conditions for Equation 2.20 and 2.21 read: 

( ) τχτζζχ in,a,i21a,í ,,0 ==   (2.27) 

( ) ( ) ( )τΓτγτζζγ in,ain,a21a ,,0 ===   (2.28) 

 

In a similar way, component and total material balances on the cathode side can be 

derived: 
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∑−+
∂
∂

−=
∂

∂

l
cs,lc,ics,i

2

c,i
c

c,i

c

c nn
V χ

ζ
χ

γ
τ

χ
ϑ

  (2.29) 

( ) ∑∑ ∫ +⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⋅+

∂
∂

−= +

i
cs,ic

i
csi,pcs,i

c,p2

cc nqdcn
c
10

s

a

ϑΨΨ
ζ
ϑγ ϑ

ϑ

 (2.30) 

The boundary conditions for Equation 2.29 and 2.30 read: 

( ) ( ) ( )τχτχτζζχ m,iin,c,i21c,i ,0, ===             (2.31) 

( ) ( ) ( )τΓτγτζζγ min,c21c ,0, ===   (2.32) 

The first term of the Equation 2.29 on the right hand side describes the effect of 

convection of the gas through the cathode channel along the ζ2 coordinate. The 

second and third terms describe the effect of mass exchange between gas phase and 

electrode.  

 

As for the total mass balance Equation 2.30. The first term is the spatial derivative 

of a product of the molar flow density and the temperature. The next two terms 

consider thermal expansion effects due to the temperature change connected to 

mass exchange with the electrode and convective heat transfer. The last terms 

consider the increase of total molar flow due to mass exchange between gas and 

electrode. 
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Energy balances 

 

Anode side: 

( )

( )( )∑

∑ ∫

=

+

+−+

⋅+
∂
∂

−=
∂

∂

refj
asjja

0
jR

i
i,pas,i

1

a
a,pa

a

a

a,p
a

qrDah

dcnc
c

V
s

a

ϑΔ

ΨΨ
ζ
ϑγ

τ
ϑ

ϑ

ϑ

ϑ  

(2.33) 

Equation 2.33 is the dynamic enthalpy balance in temperature form for the anode 

gas. Convective enthalpy transport is considered in the first term on the equation’s 

right hand side. The second term is heat transfer due to the mass flow densities 

between gas phase and electrode pores. The heat of the reforming reactions is 

considered in the third term, while the last term describes the convective heat 

exchange between gas and solid phase. 

 

The boundary conditions for Equation 2.33 read: 

( ) ( )τϑτζζϑ in,,,0 a21a ==               (2.34) 

Cathode side: 

( )∑ ∫ +⋅+
∂
∂

−=
∂
∂ +

i
csi,pcs,i

2

c
c,pc

c

c

c,p
c qdcnc

c
V

s

c

ϑ

ϑ

ΨΨ
ζ
ϑγ

τ
ϑ

ϑ
      (2.35) 

Equation 2.35 is similar to the Equation 2.33. Convective enthalpy transport is 

considered in the first term on the equation’s right hand side. The second term is 

heat transfer due to the mass flow densities between gas phase and electrode pores, 

while the last term describes the convective heat exchange between gas and solid 

phase. 

 

The boundary conditions for Equation 2.35 read:  

( ) ( ) ( )τϑτϑτζζϑ min,c21c ,0, ===   (2.36) 
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Solid side: 

( ) ( ) ( ) ( )∑ ∑ ∫∫ +−−⋅−+⋅−+

∂
∂

+
∂
∂

=
∂
∂

−−

i i
scsasi,pcs,ii,pas,i

2
2

s
2

2s
2
1

s
2

s

2s
s,p

qqqdcndcn

lPe
1

Pe
l

c

c

s

a

s

ϑ

ϑ

ϑ

ϑ

ΨΨΨΨ

ζ
ϑ

ζ
ϑ

τ
ϑ

 

(2.37) 

The first two terms on the right hand side of the enthalpy balance describe the heat 

conduction along both coordinates. The next two terms consider the temperature 

effect caused by components flowing into the porous electrodes and being heated up 

or cooled down to solid temperature. The fifth and sixth term stand for the 

convective heat exchange between both gas phases and the solid phase. The last 

term contains all heat induced into the solid by the electrochemical reactions. 

 

The boundary conditions for Equation 2.37 read: 

0s =
∂
∂

δζζ
ϑ

  (2.38) 

( ) ( 210,s21s ,0,, )ζζϑτζζϑ ==   (2.39) 

In the above equations,  is Geometric aspect ratio, that equal to Cathode channel 

length divided by Anode channel length; 

2l

sPe  is Peclet number. 

 

Reaction kinetics 

 

In this model two different kinds of reactions occur: the chemical reactions of the 

methane reforming process in the anode channel and the electrochemical reactions 

inside the electrode pores. These are the methane steam reforming reaction (indexed 

"ref1"), the water-gas shift reaction (indexed "ref2"), the anode oxidation reactions 

of hydrogen (indexed "ox1") and carbon monoxide (indexed "ox2") and the 

reduction of oxygen (indexed "red") at the cathode.  
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The kinetic expressions are listed in the following: 

 

( ) ⎟
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⎜
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−⋅= 3
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111Arrexpr χχ
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ϑϑ
  

(2.40) 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⋅

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⋅= a,Ha,CO

a2ref
a,OHa,CO

a
0

2ref
2ref2ref 222 K

111Arrexpr χχ
ϑ

χχ
ϑϑ

  

(2.41) 
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In the above equations, Φ is Electric potential, φi is Partial pressure of component i. 

 

Charge balances 

 

The density of current production by the reactions is calculated from a 

dimensionless Faraday law: 

( ) ( )∑
=

=
oxj

L
ajjj

L
aa rFDani ΦΦ           (2.45) 

( ) ( )∑
=

−=
redj

S
c

L
cjjj

S
c

L
cc ,rFDan,i ΦΦΦΦ      (2.46) 

The ionic current through the electrolyte is assumed to be linearly depending on the 

corresponding potential difference: 

( ) ( )L
c

L
ae

L
c

L
ae k,i ΦΦΦΦ −⋅=                    (2.47) 

The total currents are calculated from: 

∫∫∫ ===
A

cc
A

ee
A

aa diI;diI;diI ζζζ  (2.48) 

The spatially distributed potentials in the electrode near the anode and cathode 

double layer change depending on the current density from the electrode, i, and the 

current density produced by the electrochemical reaction, ia and ic, respectively: 

( )a
a

L
a ii

c
1

t
−⋅−=

∂
∂Φ

                            (2.49) 

( ) ( )e
e

a
a

L
c ii

c
1ii

c
1

t
−⋅−−⋅−=

∂
∂Φ

             (2.50) 

The cathode electrode potential depends on the differences of the overall currents 

produced by the electrochemical reactions respectively the overall current through 

the electrolyte from the given total cell current: 

e

celle

c

cellc

a

cella
S
c

c
II

c
II

c
II

dt
d −

+
−

+
−

=
Φ

       (2.51) 

In the above equations, ia is the electrical current densities of anode, and cathode; 
S
aΦ , S

cΦ are the electrical potentials of the anode and the cathode; L
aΦ , L

cΦ are the 

electrical potentials of the electrolyte membrane on anode side and on cathode side; 
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jn  is number of electrons transferred in oxidation reactions; F  is the dimensionless 

Faraday constant; the factor, , is the dimensionless ion conductivity of the 

electrolyte layer. 

ek

 

The resulting model is a system of hyperbolic and parabolic partial differential 

equations for the temperatures in the gas and solid phases, for the composition of 

the gases, and for the electrical potentials. It describes the concentration in the 

anode and cathode channels, temperatures in gas and solid phase as well as the 

potential field in the electrode/electrolyte compound. The whole model is derived in 

dimensionless form describing characteristic properties of the system. It consists of 

17 hyperbolic and parabolic partial differential equations, 2 ordinary differential 

equations in space, 8 ordinary differential equations in time, and additional 

algebraic equations. 

 

2.3.2 A simplified 2-D MCFC model based on Heidebrecht (2005) 

 

Heidebrecht’s model (2005) serves as a reference and as a basis for the model 

reduction, state estimator and controller design in this thesis. The model reduction 

will be done in two steps. In a first step, which is described in this section, some 

additional physical assumptions are made in order to simplify the model equations 

slightly. In the second step, mathematical projection techniques will be used to 

achieve a stronger reduction in the system order. This will be the topic of Chapter 4. 

The time constants of electric potential equations and the time constants in the gas 

phases are much smaller than the time constant of the energy balance of the solid. 

As the slow dynamics of the solid temperature dominates many process control 

problems, the electric potential fields as well as the anode and cathode gas channels 

can be considered as quasi-stationary. And for conveniences of numerical solution, 

some other parts (constant heat capacities, constant heat of reaction) also have been 

simplified. However, the use of a dynamic equation for the cathode gas temperature 

turns out to be advantageous for the numerical solution. The reason is that a change 
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of the cell current causes a jump of the cathode gas temperature if quasi-stationarity 

is assumed. 

 

Material balances 

 

Assuming quasi-stationarity in the anode gas channels, Equations 2.20, 2.21 and 

2.22 can be combined to yield the following simplified component material 

balances: 

( ),
, ,

1

0a i a
i as i refn

γ χ
σ

ζ
∂

− + +
∂

= 2

2 ,

           (2.52) , ,4 2i CH H O CO=

2 4 2, , , ,1.0H a CH a H O a CO aχ χ χ χ= − − − − CO aχ  (2.53)  

( )
4 2 2

4 2 2

, , , , ,

, , , , , , , ,
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χ χ χ χ γ γ

χ χ χ χ
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i ,ref i , j j j
j ref

Da rσ ν
=

= ∑   (2.55) 

The Equation 2.54 comes from the following derivation: 

( )4a CH ,a
ref 1 ref 1

1

0 D
γ χ

ζ
∂

= − −
∂

a r   (2.56) 

( )4a H O ,a
ox1 ox1 ref 1 ref 1 ref 2 ref 2

1
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ζ
∂

= − + − −
∂

a r  (2.57) 

( )a CO ,a
ox 2 ox 2 ref 1 ref 1 ref 2 ref 2

1

0 Da r Da r D
γ χ

ζ
∂

= − − + −
∂

a r  (2.58) 

( )2a CO ,a
ox1 ox1 ox 2 ox2 ref 2 ref 2

1

0 Da r 2Da r D
γ χ

ζ
∂

= − + + +
∂

a r
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 (2.59) 

( ) ( ) ( ) ( 59.257.256.2358.22 +−×+×  will lead to: 

(( 4 2 2a CO ,a CH ,a H O ,a CO ,a
1

0 2 3γ χ χ χ χ
ζ
∂= − + − +

∂ ))  (2.60) 
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From Equation 2.60, the following equation can be get: 

( )
( )

4 2 2

4 2 2

a CO ,a CH ,a H O ,a CO ,a

a ,in CO ,a ,in CH ,a ,in H O ,a ,in CO ,a ,in

2 3 const .

2 3

γ χ χ χ χ

γ χ χ χ χ

+ − + =

= + − +
 (2.61) 

Summation of the above equations 2.52, 2.53 and 2.54 yields to total material 

balance of anode side: 

, ,
1

0a
i as t refn

γ σ
ζ

∂
− + + =

∂ ∑   (2.62)  

t ,ref i ,ref
i

σ σ=∑   (2.63) 

For cathode side; one obtains: 

( ),
,

2

0c i c
i csn

γ χ
ζ

∂
− +

∂
=           (2.64) 2i CO=

2 2, , , , /H O c H O c in c in cχ χ γ γ=   (2.65) 

2 2, , , , /N c N c in c in cχ χ γ γ=   (2.66) 

2 2 2, , ,1.0O c CO c H O c N c2 ,χ χ χ χ= − − −   (2.67) 

Also summation of the equations 2.64, 2.65, 2.66 and 2.67 yields the total material 

balance of cathode side: 

,
2

0c
i csn

γ
ζ

∂
− + =

∂ ∑   (2.68) 

The boundary conditions remain unchanged. 

 

Energy balances 

 

For the energy balances, quasi-stationarity was applied to the anode side and 

constant heat capacity was assumed, which lead to: 

a
a p a i as p a as ref as

1

0 c n c h q, , , ,ϑ
ϑγ
ζ

∂
= − + ⋅ + + +

∂ ∑ σ

)−

 (2.69) 

ash  is enthalpy flux density from solid to anode, defined as: 

( ) (
2 2as p a H O as CO as s ah c n n, , , ϑ ϑ= + ×   (2.70) 
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,refϑσ  is reaction heat due to the reforming reaction, defined as: 

( )0
,ref R j a j j

j ref
h Daϑσ Δ ϑ

=

= −∑ r   (2.71) 

All other equations remain unchanged. 

 

Reaction kinetics 

 

This part remains unchanged. 

 

Charge balances 

 

a c e j j j
j ox

i i i n FDa r
=

= = = −∑   (2.72) 

cell e
A

I i dζ= ∫   (2.73) 

( ) ( ) ( )S S S L L L L
cell c a c c c a a aU Φ Φ Φ Φ Φ Φ Φ Φ= − = − + − + − S  (2.74)  

 

In the above equations, Icell is the total cell current; is the total electric potential.  cellU

 

2.3.3 A nonlinear 3-D MCFC model with IIR internal reforming section 

 

The two-dimensional dynamic model is useful for providing possible solutions for 

control strategy of fuel cells, especially during start-up, shut-down and the load 

changes. The two-dimensional models assume that all cells behave more or less in 

the same fashion. Because of that, the 2-D models neglect the influence of both 

ends of the fuel cell stack, that is the system boundary. So the 2-D model only can 

provide the average two-dimensional spatial temperature distribution of the fuel 

stack. In order to have a better understanding of how the actual fuel cell stack 

performs and how the temperature in the stack distributes, a three-dimensional 

model is necessary. 
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Figure 2 - 6: Scheme of the MCFC system, which consists 

of two indirect internal reformers, eight fuel cells, and a 

burner between anode side and cathode side. 

The cell stack structure considered here is shown in Figure 2 - 6, which is an 

integrated MCFC system with a cell stack of eight cells; above and below those 

cells there are two reforming sections. The fresh fuel gas, consisting of steam and 

methane, first enters both indirect reforming sections, where most of the methane is 

converted to hydrogen, and then is distributed into the anode gas channels of eight 

cells. The flows on anode and on cathode side are orthogonal to each other, thereby 

inducing a cross flow. In this cell structure, both indirect internal reforming and 

direct internal reforming are considered. 

 

Due to limited computational resources, it is necessary to simplify the 2-D model of 

2.3.2 further. In order to enable the simulation of the total cell stack, the following 

additional model assumptions are made: 

• Identical temperatures of anode gases, solid and cathode gases are assumed. 

The uniform temperature distribution is computed from a pseudo-

homogeneous energy balance of all three phases. 
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• The oxidation reaction  is neglected. 2
3 2CO CO 2CO 2e−+ → + −

 

Indirect internal reforming section 

 

In the indirect internal reforming section, the two reactions 2.1 and 2.2 were 

considered. 

 

Reaction kinetics of indirect internal reforming section 

 

The reaction kinetics 2.40 and 2.41 are used for these reactions. 

 

Energy balance of the indirect internal reforming section 

 

The energy balance is expressed as enthalpy balance in dimensionless temperature: 

( ) (p r r r
r r p r i j j j rFC FC r rb b

j refr

c
V c Da r St St,

, ,
1

0
ϑ ϑ )rγ ν ϑ ϑ

ϑ τ ζ =

∂ ∂
= − − + + − + −

∂ ∂ ∑ ϑ ϑ

2

 (2.75) 

The boundary conditions read: 

( ) ( )r z r in2 ,, , ,ϑ τ ζ ζ ϑ τ ζ=  

z

r

2
1 , ,

0
τ ζ ζ

ϑ
ζ

∂
=

∂
  (2.76) 

In the above equations, the  is the total thermal capacity of the system;  ,p rc rFCSt  

and rbSt  are the Stanton numbers，that can be used as a dimensionless heat transfer 

coefficient between the indirect internal reforming section and the cells/boundary; 

the subscript FC means fuel cell and b suggests the boundary. 

 

Material balances of the indirect internal reforming section 

 

( )r i r
i j j j

j ref
Da r,

,
1

0
γ χ

ν
ζ =

∂
= − +

∂ ∑          (2.77) 4 2, 2 , , ,i CH H O CO CO H= 2
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r
i j j j

i j ref
Da r,

1

0
γ ν
ζ =

∂
= − +

∂ ∑ ∑   (2.78) 

 

Reaction kinetics of the MCFC stack 

  

For the anode reactions in the cell, we consider reaction 2.3. The reaction rates for 

the electrochemical reaction are the same as 2.42. 

For the cathode reactions in the cell, we consider reaction 2.5. The reaction rate for 

this reaction in MCFC is usually running backwards with the same reaction rate 

expression. 

The current density is connected to this reaction rate by a conversion factor F which 

is the same as 2.72. 

Except the above reactions, for the anode side direct internal reforming reactions 

also have been considered here which can be switched off. The reaction kinetics are 

nearly the same as Equation 2.53 and 2.54, only the dimensionless temperature of 

indirect internal reforming section was replaced by the dimensionless pseudo 

homogeneous temperature of stack

rϑ

FCϑ . 

 

Energy balance of the MCFC stack 

 

The energy balance of the MCFC stack in the form of a parabolic partial differential 

equation of the temperature has the following structure, where a pseudo-

homogeneous temperature is assumed: 

( )

p a p c FC FC FC
a p s c a p a c p c

FC FC

L LFC FC FC
ox red ref a c e

s s s

c c
V c V c c

l l
i

Pe l Pe l Peϑ ϑ ϑ

ϑ ϑ ϑγ γ
ϑ ϑ τ ζ ζ

ϑ ϑ σ σ σ Φ Φ ϑ
ζ ζ ζ

⎛ ⎞ ∂ ∂ ∂
= − − − − − −⎜ ⎟ ∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂
+ + + + + − +⎜ ⎟∂ ∂⎝ ⎠

, ,
, , ,

1 2

2 2 2
2 2

, , ,2 2 2
1 2 2 3 3

0

1 ∂
∂ 2

 (2.79) 
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The boundary conditions read: 

( ) ( ) ( )FC a in FC c inϑ τ ζ ζ ϑ τ ζ ϑ τ ζ ζ ϑ τ ζ= =1 3 , 1 2 3 , 2, ,0, , ,0, , ( , )  

z y

FC FC

L Lτ ζ τ ζ

ϑ ϑ
ζ ζ

∂ ∂
= =

∂ ∂
1 2

1 2, , , ,

0 0    

( )( )
1 2 N

FC
rFC r FC 1 2 N

3 , , ,L

St , , ,L
τ ζ ζ

ϑ ϑ ϑ τ ζ ζ
ζ

∂
= −

∂
    

( )( )
1 2 1

FC
rFC FC 1 2 1 r

3 , , ,L

St , , ,L
τ ζ ζ

ϑ ϑ τ ζ ζ ϑ
ζ

∂
= −

∂
  (2.80) 

In the above equations,  is reaction heat term due to oxidation reactions; 

is reaction heat term due to reduction reactions; 

,oxϑσ

,redϑσ .refϑσ  is the heat source due 

to DIR; .refϑσ  will vanish, if no DIR takes place; l  is Geometric aspect ratio, that 

equals to fuel cell thickness divided by Anode channel length;  

3

 

Material balances and charge balances of the MCFC stack are identical with the 

simplified model which was described in section 2.3.2.  
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Chapter 3  

Model comparison and validation 

 
3.1 Introduction 
 

In Chapter 2, a 2-D MCFC model developed by Heidebrecht (2005) was first 

reviewed. A pseudo-homogeneous temperature 3-D stack model with/without DIR 

and a quasi-stationary simplified 2-D model were then built based on the detailed 

model. In this Chapter, the simplified 2-D model will be validated at the beginning, 

and then the simulation results of the 3-D stack model without DIR will be shown. 

 

All these models are implemented in the process modeling tool ProMoT (Tränkle, et 

al. 2000). A finite volume method is used for the spatial discretization of the partial 

differential equations. The resulting differential algebraic system is solved by the 

simulation tool DIVA (Köhler et al. 2001). 

 

3.2 Validation of the simplified model 
 

As a validation experiment for the simplified model introduced in 2.3.2, the cell 

current is varied randomly between 0.7 with 0.8. Figure 3 - 1 shows the comparison 

between the simplified model and the detailed model. All diagrams in Figure 3 - 1 

use a dimensionless time coordinate, one dimensionless time unit corresponding to 

about 12.15 s of real time. 
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Figure 3 - 1(a): Random input signal (the dimensionless cell current) 

 
Figure 3 - 1(b): Cell voltage of the simplified model and the detailed model 

 
Figure 3 - 1(c): Maximum anode temperature of the simplified model  

and the detailed model 



 33

 
Figure 3 - 1(d): Maximum solid temperature of the simplified model  

and the detailed model 

 
Figure 3 - 1(e): Maximum cathode temperature of the simplified model  

and the detailed model 

 

From these tests it can be seen that the simplified model describes the behaviour of 

the MCFC system with good accuracy and can be used as a basis for model 

reduction. 

 

3.3 Simulation results of the 3-D stack model without DIR 
 

Using the model derived in 2.3.3, it is possible to simulate the steady state as well 

as the dynamic behaviour of the cell over a wide range of electrical load changes. 
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One of the 3-D simulated results of most interest is the spatial temperature 

distribution, which is shown in Figure 3 - 2. Because the cell stack structure is 

symmetrical, only the results of the first reforming section and the cells 1 - 4 are 

shown. In the reforming section, the temperature decreases very fast in ζB1B-direction 

(Figure 3 - 2 (a)) due to the strong cooling effect of the reforming reaction, the heat 

exchange between the reforming section and fuel cells causes temperature gradients 

also in ζB2 B-direction. As no internal reforming takes place in cells, the exothermic 

electrochemical reaction causes a temperature increase in the cell, and the cell is 

only cooled by the incoming gas flows and heat transfer between cells and the 

reforming section. Therefore, the mean temperature increases from cell 1 - 4 (Figure 

3 - 2 (b)-(e)).  
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Figure 3 - 2 (a): Temperature distribution in the first reforming section 
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 Figure 3 - 2 (b): Temperature distribution in cell 1 
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Figure 3 - 2 (c): Temperature distribution in cell 2 
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Figure 3 - 2 (d): Temperature distribution in cell 3 
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Figure 3 - 2 (e): Temperature distribution in cell 4 
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Most parts of this model are developed based on the 2-D model (Heidebrecht & 

Sundmacher 2003), so the benefits of that 2-D model are carried on, for instance, 

the dimensionless notation. This work can be applied for system analysis with 

respect to multiple steady states, sensitivity and stability. As can be seen in this 

model, the indirect internal reforming section greatly influences the behaviour of 

the cell stack. This model makes it possible to directly compare the effectiveness of 

different operating parameters for the MCFC with indirect internal reforming, and 

make better operating strategies. But the drawback of the 3-D model is also obvious: 

the 3-D model takes much more CPU time, and the 3-D model is much harder to 

solve. From the above results, one can find when the IIR was introduced, that the 

2-D model cannot always replace the 3-D stack model. The cooling effect of the 

reforming section strong influences the temperature distribution of nearby fuel cells. 

Nevertheless, experimental validations of the 2-D model show that the 2-D model 

describes the process behaviour of the HotModule with sufficient accuracy for 

process control purposes (Gundermann, 2006). Therefore, in the remainder of this 

work, the 2-D model is used as a basis for process control design. 

 



 

Chapter 4  

Nonlinear Model Reduction of a Two-Dimensional MCFC 

Model with Internal Reforming 

 

4.1 Introduction 
 

Fuel cells utilizing internal reforming of natural gas can eliminate the need for a 

large external reformer to produce hydrogen fuel and can simplify the plant 

configuration. A rigorous spatially distributed model of the HotModule system was 

developed by Heidebrecht (2005) and has been reviewed in Chapter 2. But for 

process control purposes, simple dynamic models are required. A simplified form of 

this detailed model was developed in chapter 2 and validated in chapter 3. A 

reduced set of model equations is derived by applying the Karhunen-Loève 

Galerkin procedure to the simplified model. The reduced model is of considerably 

lower order than the original one and requires much less computation time. Finally, 

the reduced model is validated in test simulations by comparison with the detailed 

model.  

 

4.2 Derivation of the Reduced MCFC Model 
 

4.2.1 Galerkin procedure 

 

For the model reduction of parabolic partial differential equations (PDEs) like 

(2.37), orthogonal projection methods have become a frequently used technique 

(Hoo & Zheng, 2001; Baker & Christofides, 2000; Atwell & King, 2001).  

 

The basic idea is to represent the unknown variable, e.g. the solid temperature , by 

an infinite sum of products. 

sϑ
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( ) ( ) (s 1 2 i s i 1 2
i 1

,, , ,ϑϑ )ζ ζ τ ϑ τ φ ζ ζ
∞

=

=∑                    (4.1) 

In Equation (4.1), (i 1 2,ϑ )φ ζ ζ  are orthonormal basis functions with the following 

property:  

( ) ( )
1 2

1 2

L L

i 1 2 j 1 2 1 2
0 0

0 for i
d d

1 for i
, ,

ζ ζ

ϑ ϑ

ζ ζ

φ ζ ζ φ ζ ζ ζ ζ
= =

≠⎧
= ⎨ =⎩

∫ ∫
j
j

)

 (4.2) 

The model reduction is achieved by approximating the infinite sum by a series with 

a finite number of elements and neglecting the higher order terms: 

( ) ( ) (
N

s 1 2 i s i 1 2
i 1

ϑ

ϑϑ ζ ζ τ ϑ τ φ ζ ζ
=

=∑ ,
ˆ , , ,      (4.3)           

In general, the approach (4.3) will not solve the equation (2.37) exactly, but a 

nonzero residual Re s  will remain. The Galerkin method of weighted residuals 

requires that the residual Re s  must vanish, if weighted by a basis function, i.e 

1 2

1 2

L L

i 1 2
0 0

s d d
!

Re
ζ ζ

ϑ

ζ ζ

φ ζ ζ
= =

=∫ ∫ 0      i 1          (4.4) N, , ϑ=

This approach leads to conditions for the time dependent functionsϑN ( )τϑi
~ . 

Consequently, the partial differential equation (2.37) is replaced by  ordinary 

differential equations in the reduced model.  

ϑN

 

For the model reduction of the MCFC model, not only the profile of the temperature, 

but also those of the molar fractions in the anode and in the cathode gas channels, as 

well as the profiles of the total molar flow rates have to be approximated by basis 

functions. Using the notation    

( ) ( ) ( )
j

j a
N

j a 1 2 j a i i 1 2
i 1

χ

χχ ζ ζ τ χ τ φ ζ ζ
=

= ∑ ,
, , ,ˆ , , : ,    4 2 2j CH H O CO, ,=        (4.5) 

( ) ( ) ( )
j c

j c
N

j c 1 2 j c i i 1 2
i 1

χ

χχ ζ ζ τ χ τ φ ζ ζ
=

= ∑
,

,
, , ,ˆ , , : ,     2j CO=               (4.6) 
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( ) ( )
a

a

N

a a i i 1
i 1

γ

γ
2γ γ τ φ ζ ζ

=

=∑ ,ˆ : ,

2

             (4.7) 

( ) ( )
c

c

N

c c i i 1
i 1

γ

γγ γ τ φ ζ ζ
=

=∑ ,ˆ : ,

)2

                (4.8) 

( ) (
a

a

N

a a i 1
i 1

ΔΦ

ΔΦΔΦ ΔΦ τ φ ζ ζ
=

= ∑ˆ : ,   (4.9) 

 

one obtains the following set of reduced model equations by applying the weighted 

residual condition to the energy, material balances and charge blances: 

aa
a p a i as p a t ref as j 1 2

1

0 c n c q d, , , ,
ϑϑ

dγ σ φ ζ ζ
ζ
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= + ⋅ − +⎨ ∂⎩ ⎭

∑∫∫ ⎬  (4.10) 

ci c c
c p c c p c i cs p c cs c j 1 2

2
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c
e j 1 2 j j j j 1 2

j ox
0 i d d n FDa r d dΦ cΦφ ζ ζ φ ζ ζ

=

= + ∑∫∫  (4.18) 

The charge balances and (2.59) complete the reduced model. In summary, the 

reduced model is a differential algebraic system of differential index one for the 

unknowns ,iϑ̂ i aχ ,ˆ , i cχ ,ˆ , aγ̂ , cγ̂ , ,aΔΦ̂ sΔΦ̂ , . The quality of the reduced model, 

i.e. its deviation from the original model, mainly depends on two factors. The first 

one is the number of terms considered in the approximations (4.3), (4.5) - (4.9). The 

second is the choice of the basis functions. A good approximation of the complete 

model by a low order reduced model is achievable, if suitable problem-specific 

basis functions are chosen. One possibility would be to linearize the original 

spatially distributed system and to use the eigenfunctions of the linearized problem 

as basis functions (Hoo & Zheng, 2001).  In this contribution, another approach, 

the Karhunen-Loève decomposition method is applied, because by that method it is 

also possible to incorporate the nonlinear behavior of the system in the basis 

functions. 

cΔΦ̂

 

4.2.2 The Karhunen-Loève decomposition 

 

The Karhunen-Loève decomposition (K-L decomposition) was originally developed 

for the description of stochastic data (Loève, 1955), also known as principal 

component analysis (PCA). By applying the K-L decomposition to a given 

stochastic field, eigenfunctions are obtained that can reproduce the data with a 

certain accuracy and with a minimum number of degrees of freedom. 

 

For the solution of partial differential equations, the K-L decomposition method can 

be used to generate basis functions for the Galerkin procedure (Park & Cho, 1996).  

 

The key issue in this approach is to determine suitable basis functions from 

simulation results with the original model, taken at discrete time points ti, i=1,...,N. 

The simulation results are called snapshots and are denoted as (i 1 2,υ )ζ ζ . By the 

K-L decomposition, it is possible to extract the most typical or characteristic 
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structure from these snapshots in the form of empirical eigenfunctions ( )i 1 2,φ ζ ζ .   

 

As it is shown in (Park & Cho, 1996), the basis functions ( 21 , )ζζφi  can be written 

as: 

( ) ( )
N

T
i 1 2 i i 1 2

i 1
, ,φ ζ ζ α υ ζ ζ

=

= ⋅∑                 (4.19) 

In (4.19),  is the eigenvector of an N×N matrix C whose elements are given by: iα
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M
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For the eigenvalue , the following correlation holds (Christofides & Daoutidis, 

1996):  
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( )2
i i n,λ φ υ=          (4.24) 

Therefore,  may be interpreted as a measure of how well an eigenfunction λi φi  is 

able to approximate the time average of the snapshots. In this sense, the 

eigenfunction φ1  corresponding to the largest eigenvalue  is the most typical 

structure of the snapshots.  

λ1

 

The derivation of how the basis functions can be obtained from the K-L 

decomposition method is as follows: 

Consider N snapshots (k is the order of the vector space), , for 

which a basis 

k
jυ ∈ℜ j 1, , N=

φ  is to be determined in such way that an approximation jυ̂  of jυ  

can be obtained by a linear combination of m orthogonal basis vectors: 
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m

j i j i
i 1

,υ̂ λ φ
=

=∑      (4.25) j 1, , N=

By the orthogonality of iφ  (i=1, …, N) and by the imposition of an additional 

constraint that iφ  has the unit norm, it follows: 

T
i i 1φ φ =   

T
i j 0φ φ =      (4.26) i ≠ j

Where  is the weighting coefficient of basis vector i jλ , iφ  formed by taking the 

inner product of jυ  with iφ : 

T
i j j i,λ υ φ=   (4.27) 

Now, the problem is to obtain the basis functions iφ  such that the residual error in 

approximating jυ  with jυ̂  is minimized: 

k

j j j i , j
i m 1

ˆε υ υ λ iφ
= +

= − = ∑      (4.28) j 1, , N=

A suitable criterion is the minimization of the average mean-square residual error: 

N N2 T
j j j j

j 1 j 1

1 1ˆ
N N

ξ υ υ ε ε
= =

= − =∑ ∑   (4.29) 

Since the basis functions iφ  are orthonormal it follows that: 
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From Equation 4.27, one can see that: 

( ) ( ) ( )22 T T T T T
i , j j i i j j i i j j iλ υ φ φ υ υ φ φ υ υ φ= = =  (4.31) 

Defining T
j j jC υ υ= , we arrive at the final form for the quantity ξ  to be 

minimized: 

N k k N k
T T
i j i i j i i i

j 1 i m 1 i m 1 j 1 i m 1

1 1C C
N N

TCξ φ φ φ φ φ φ
= = + = + = = +

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑ ∑  (4.32) 

We can express the minimization as a multi-variate differential equation by using a 
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set of Lagrangian multipliers jμ , the equation will be written in: 

( ) ( )
k

T T
i i i i i

i m 1

F C 1 iφ φ φ μ φ φ
= +

= + −∑   (4.33) 

After that, the derivative of the expectation of the mean-square error with respect to 

the basis components jφ  is set to zero. 

( ) ( )i i i i
i

F 2 C 0φ φ μ φ
φ
∂ = −

∂
=  Where i m  (4.34) 1, ,k= +

It is well known that the solutions to this equation constitute the eigenvectors of the 

correlation matrix C. Thus, the problem is equivalent to finding the eigenvectors of 

the correlation matrixC . Since the columns of Φ  are now determined to be the 

eigenvectors, we can re-express the residual error as the sum of the eigenvalues of 

the unused portion of the basis:  

k

i
i m 1

ξ μ
= +

= ∑   (4.35) 

And the solution to the minimization reduces to ordering the basis vector iφ  such 

that the columns with the smallest eigenvalues occur in the unused portion of the 

basis. 

 

In order to determine suitable basis functions for the MCFC model, the response of 

the complete model to an increase of the cell current from 0.7 to 0.8 and subsequent 

decrease to 0.7 is computed numerically by using the method of lines. The basis 

functions for the reduced model are computed from the transient solution of the 

complete model. For the temperature profile, 8 basis functions are chosen. For the 

other variables of the reduced model, anode side: 
4CHχ ,7; 

2COχ , 10; 
2H Oχ , 6; aγ , 

10; , 8; , 6; 
2CO asn , CO asn , 2H asn , , 6; cathode side: CO2, 2; cγ , 9; , 8; , 6; 

for other components: , 10 and , 9 basis functions are found to be 

sufficient.  

2CO csn , 2O csn ,

aΔΦ cΔΦ
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4.2.3 Choice of snapshots 
 

An important factor that affects the accuracy of the reduced model, i.e. its deviation 

from the simplified model is the choice of the basis functions. The K-L 

decomposition method uses numerical simulation results at discrete time points, 

so-called snapshots, obtained from dynamic simulations with the simplified model. 

In the case of MCFC system, the snapshots n
j R∈υ , J,,3,2,1j =  give the 

value of the state vector at discrete time points. Since the system is rather complex, 

the simulation process may generate tens of thousands of snapshots. The number of 

snapshots may cause numerical trouble in order to solve the constructed covariance 

matrix C from these snapshots. Therefore, some representatives should be chosen 

from these snapshots in order to get a complete picture of the possible solution 

profiles of the simplified model. Prud’Homme et al.(2002) developed guidelines for 

certain linear problems, but to our knowledge, there are no strict rules on how to 

choose snapshots for a nonlinear problem as considered here. A practical approach 

is to perform a high number of test simulations under different operation conditions 

and obtain a huge number of snapshots. From all these snapshots only several 

hundreds are chosen from the following procedure as representatives. 

 

In the MCFC system considered, each spatially discretized state variable describes a 

curve in the n×n dimensional space. During one simulation process, the system 

generate tens of thousands points (snapshots) to describe the curve. The aim is to 

choose a few hundred from all these tens of thousands snapshots to depict the curve 

as well as possible. To achieve this, the following heuristic procedure is used in this 

work. A reference distance is first chosen. From a selected starting point (snapshot), 

record the distance between this point and the next. If the distance is less than the 

reference distance, the next point is neglected; otherwise select this point and 

continue searching from this point. Repeat this searching procedure until all the 

points are visited. If the number of selected points is too large, re-choose the 

reference distance until the number of selected points is in the order of hundreds. 
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4.2.4 Treatment of boundary conditions 
 

There are several approaches to take care of the boundary conditions in the Galerkin 

approach. The first one used e.g. in (Park & Cho, 1996) is to include the boundary 

condition in the weak problem formulation through integration by parts. However, 

this approach cannot guarantee that the approximate solution resulting from the 

Galerkin method fulfills the boundary conditions accurately. In the case of the 

HotModule, this approach leads to poor results. 

 

Another method suggested by Finlayson (1972) for one-dimensional problems is to 

replace some of the residual conditions (4.4) by the boundary conditions (2.39). By 

this way, the approximate solution resulting from the Galerkin method will fulfill the 

boundary conditions exactly. However, there is no guideline, which residual 

condition should be dropped, and the extension of the method to a two-dimensional 

problem is difficult. 

 
A different approach is tried in this work. Instead of dropping residual conditions, 

additional variables are introduced in order to fulfill the boundary conditions. The 

additional variables are the values of the states at the boundary points, e.g. 

 for( τζϑ ,2
,∗s ) )( τζϑ ,,0 2 . These variables are still undefined because of the way 

how the basis functions iφ  are determined: The iφ  follow from a numerical 

solution of the detailed reference model using a spatial discretization on finite 

volumes, are only known at discrete grid points. In a next step, the spatial gradient 

1ζϑ ∂∂  or 2ζϑ ∂∂  is approximated by finite differences and inserted into the 

boundary conditions in order to obtain equations for the newly introduced variables, 

e.g. 

( ) ( )
2

s
1 2 2

1 10

0
ζ

ϑ ζ ζ τ ϑ ζ τϑ
ζ Δζ

∗Δ −∂ ≈
∂

, !

,
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Finally, the boundary values are used in the numerical quadrature of the integrals 

terms in Equation (4.4). As the above equation can be solved explicitly 

for , the introduction of additional unknowns does not increase the order 

of the reduced model. 

( τζϑ ,2
,∗s )

 

4.3 Simulation Results of the Reduced MCFC Model 
 

Test simulations are made in order to validate the reduced model by comparison 

with the original Heidebrecht model. Special emphasis is laid on the extrapolation 

qualities of the reduced model. The first test consists in the simulation of a 

randomly varying cell current identical to the test signal for the validation of the 

simplified model in chapter 3 Figure 3 - 4(a). The results for a cell are shown in 

Figure 4 - 1. It can be seen that the maximum temperature error of the anode, 

cathode and solid phase between the detailed model and reduced model is quite 

small. The cell voltage of the reduced model matches the result of the detailed 

model nearly perfectly. The K-L decomposition technique leads to a considerable 

reduction in terms of the order of the system as well as in terms of the computation 

time. This is also illustrated from Figure 4 - 1: After a spatial discretization, the 

complete model consists of about 4,759 equations. Its numerical solution requires 

about 3200 s of a CPU time on a PC (AMD Athlon(tm) 64 3200+). In comparison, 

the reduced model consists of 131 equations. Its numerical solution takes about 82s 

of CPU time on the same PC. The decrease of the computational time achieved by 

the model reduction is not quite as strong as the decrease of the order of the system. 

The reason is that the evaluation of the reduced model equations is more 

complicated as it requires a numerical quadrature. 
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Figure 4 - 1 (a): Maximum temperature error of the reduced model  

 

 
Figure 4 - 1(b): Cell voltage of the reduced and the detailed model 

 

A second test is the response of the reduced model to a change of the 

steam-to-carbon ratio in the feed. This test is more challenging than the first one, 

because the basis functions for the reduced model were obtained from simulations 

with a fixed steam-to-carbon ratio. Nevertheless, the agreement between the 

reduced and the detailed model is still very good, as can be seen in Figure 4 - 2.  
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Figure 4 - 2 (a): Ratio of the water and methane concentration in the feed 

 

 

 

 
Figure 4 - 2 (b): Maximum anode temperature of the reduced  

and the detailed model 
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Figure 4 - 2 (c): Maximum solid temperature of the reduced  

and the detailed model 

 

 
Figure 4 - 2 (d): Maximum cathode temperature of the reduced  

and the detailed model 
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Figure 4 - 2(e): Cell voltage of the reduced and the detailed model 

 

4.4 Summary 
 

The detailed physical modeling of fuel cell systems deepens the process 

understanding and is an important first step in the design of process control 

strategies. Dynamic spatially distributed models, however, are too complex for 

many real-time applications. In this chapter, a reduced model of a MCFC was 

obtained by applying the Karhunen-Loève Galerkin method to a simplified model 

of a two-dimensional spatially distributed cross-flow model which was described in 

chapter 2. The basic idea of the method is to approximate the profiles of the 

spatially distributed variables by basis functions obtained from test simulations with 

a detailed reference model. For the MCFC model considered here, this technique 

proves to be successful. The reduced model produces results that are very close to 

those of the detailed model, and it reduces the computation time significantly.  

 

It may be regarded as a certain drawback of the K-L decomposition method that the 

resulting eigenfunctions depend on the choice of the numerical test simulations or 

snapshots. However, the results of the previous section indicate satisfactory 

extrapolation qualities of the reduced model of the MCFC. That may be explained 

by the fact that only the basis functions of the reduced model are obtained 
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numerically. The reduced model itself is given in an analytical form and still 

contains the information on the physical correlations in the detailed model.  

 

Due to its properties, the reduced model seems to be suitable for applications in the 

field of model based process control. An example are model based measuring 

techniques, where the reduced model can be used in the framework of a Luenberger 

observer or a Kalman filter in order to estimate quantities of a fuel cell that are not 

accessible to direct measurements. The reduced model developed here will be used 

in the next chapter for the design of a Luenberger observer to aid the realization of 

the proposed control strategy. 
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Chapter 5  

Model-Based Dynamic Performance and Control of a 

Molten Carbonate Fuel Cell System 

5.1 Introduction 

Temperature is always a main issue in high temperature fuel cell operation. In an 

MCFC stack a high temperature may cause carbonization, carbon deposition in the 

anode channel, and the temperature difference may cause mechanical damage of the 

fuel cell.  
 

An industrial MCFC stack is characterized by a high degree of system integration, 

as the process behavior depends on numerous interactions between the 

electro-chemical reaction steps, the internal reforming, mass transport processes, 

and the heat transfer inside a cell or stack. An understanding of the 

physical-chemical processes in an MCFC can be obtained from mathematical 

models based on physical conservation principles as was shown in the previous 

chapters. Model based process control and process design strategies can lead to a 

much better use of the fuel cells’ capacities and increase the efficiency of the 

system. 

 

As the overall fuel-to-electricity conversion efficiency is the most important for 

power industries, a maximum electric efficiency is desired not only when the cell is 

operated at constant load over a long period of time but also during dynamic load 

changes. In the former situation an optimal electric efficiency can be achieved 

through a steady state optimization procedure (Heidebrecht, 2005); whilst in the 

latter situation a fast and safe transition must also be taken into consideration. To 

keep the process safe, the solid temperature must not exceed a minimum and a 
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maximum temperature, and also the maximum temperature difference within the 

solid phase is limited. This chapter tries to construct a framework (Aguiar, 2005) for 

satisfying high electric efficiency over a larger range of operation points and at the 

same time controlling the solid temperature when power load changes. For 

simulation, optimization and control of MCFC processes mathematical models are 

required. The detailed spatially two-dimensional model of the MCFC presented in 

previous publications (Heidebrecht & Sundmacher, 2002; 2003) was introduced in 

Chapter 2. A control strategy is constructed based on this model, which achieves the 

optimal electric efficiency by a steady state optimization and at the same time 

satisfies the solid temperature constraints by involving two PID controllers. As will 

be shown in the later sections, the control approach proposed includes the control of 

spatial dependencies (the control of stack temperature difference). It combines a 

feed-forward branch based on a detailed physical model and feedback PID 

controllers. A suitable state estimator is finally designed to make the control method 

applicable. The reduced version of the model derived using the model reduction 

method proposed in Chapter 3 serves as the basis for the state estimator. 

 

5.2 The Control Strategy 

 
Performance and availability of molten carbonate fuel cells stack are greatly 

dependent on their operating temperature. Control of the operating temperature 

within a specified range and reduction of temperature fluctuation are highly 

desirable. The models of MCFC stacks existing are too complicated to be suitable 

for design of a controller because of the lack of clear input-output relations. In 

literature, only a few publications about model based control of MCFC are available. 

Lucas & Lee (2005) describe a first principle-based non-linear dynamic model and 

also obtain reduced-order models, but no spatial gradients are considered. Kang, 

Koh & Lim (2001) derive a linear 3×3 transfer function matrix model from an 

experimental study, which will simplify the design of controllers but will limit 

application of the controller to the vicinity of a chosen operating point. Shen et al. 

(2002) present an adaptive fuzzy control procedure for the temperature of a MCFC 
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stack based on a neural network identification model. As the dynamic model is also 

empirical, the applicability of the controller is restricted to operating conditions, 

where this model is valid. Because of the assumptions they made, these models 

have limitations for control with large-scale load changes.  

 

Lukas, Lee & Ghezel-Ayagh (2002) presented a simulation of a group of control 

loops in an MCFC power plant with cycling load demand. The control loops 

involved such as stack temperature, stack differential pressure, natural gas flow, etc. 

are all single-loop and PI-type. Although these control loops are practically 

important, the coupling between various loops was not taken into consideration, and 

the spatial gradient was also not considered. 

 

Golbert & Lewin (2004) describe a model-based controller for the regulation of a 

proton exchange membrane (PEM) fuel cell. The model accounts for spatial 

dependencies of voltage, current, material flows, and temperatures in the fuel 

channel. Analysis of the process model shows that the effective gain of the process 

undergoes a sign change in the normal operating range of the fuel cell, indicating 

that it cannot be stabilized using a linear controller with integral action. 

Consequently, a nonlinear model-predictive-controller based on a simplified model 

has been developed, enabling the use of optimal control to satisfy power demands 

robustly. The model predictive control framework tackles problems such as 

nonlinearity in the vicinity of the peak power density and assurance of efficient 

operation during transients and when extreme load changes are imposed.  

 

Model predictive control (MPC) is part of a family of optimization-based control 

methods, which are based on on-line optimization of future control actions. Using a 

process model, the optimizer predicts the effect of past inputs on future outputs. 

Then, using the same model, it computes a sequence of future control actions, such 

that an objective function, including penalties on the trajectory of the predicted 

tracking error, is minimized. The first part of the future control actions is 

implemented, and the entire optimization is repeated from the next step on, and so 
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on, and infinitum. Feedback is used to compensate for the model’s inaccuracies and 

to ensure convergence. But because of the on-line optimization requirement, MPC 

will consume more CPU resources than regular PID controllers. When the plant 

model is too complex, the optimization may require more powerful calculation tools 

which may be very hard to be implemented on line.                                       

 

Aguiar, Adjiman & Brandon (2005) designed a control strategy for a solid oxide 

fuel cell (SOFC) with frequent load changes due to variable power demand. A 

dynamic SOFC model, which consists of mass and energy balances and an 

electrochemical model that relates the fuel and air gas compositions and 

temperature to voltage, current density, and other relevant fuel cell variables, is used. 

A master controller and two typical feedback PID temperature controllers have been 

implemented. The master controller imposes a current density disturbance 

representing a change in power demand and sets the fuel and air flow rates 

proportional to that current (keeping the fuel utilization and air ratio constant). The 

PID controllers respond to the outlet fuel temperature by changing the air ratio and 

the molar flow around the default set. As there is no special requirement for the 

model structure, this kind of control strategy can be easily applied to other types of 

fuel cells. The controller design in an MCFC that will be proposed in Chapter 5 of 

the thesis is inspired by this strategy and a few other factors that will influence the 

performance of the MCFC are considered.  

 

To control an MCFC System described in section 5.2 a fast and safe dynamic 

response during the cell current change is required. As the power load does not 

change very frequently an optimal steady state electric efficiency is also desired. In 

the ideal case the electric efficiency is dynamically optimized such that both 

demands can be achieved at the same time. However, the optimization of a complex 

nonlinear fuel cell model in real time is very difficult. To overcome this problem, 

the approach adopted here is to achieve the optimal state electric efficiency in 

offline optimization and then to make sure that the dynamic response is as fast and 

safe as possible. That is, when the power load changes (i.e. the cell current changes) 
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a master loop switches the operating variables to their new static conditions that 

satisfy an optimal electric efficiency at the new load. Then in the inner loop, 

feedback controllers satisfy the dynamic performance criteria. This approach is 

similar to the control concept proposed by Aguiar et al. (2005) for an SOFC stack. 

However, in contrast to their work, a spatially two-dimensional temperature field is 

considered in this work. Furthermore, the concept proposed here controls the 

maximum temperature and the maximum spatial temperature difference at the same 

time. This leads to a multiple-input / multiple-output (MIMO) control problem, 

where the choice of suitable manipulated variables is more difficult than in the 

single-input / single-output case. 

 

The steady state optimization will be introduced first and temperature response tests 

will then be performed in order to decide which operating variable controls which 

controlled variable. The control scheme and results will be given thereafter. 

 

5.2.1 Steady state optimization 

 

Heidebrecht (2005) optimizes the input parameters of a single cross flow cell at 

given cell current to yield an optimal electric efficiency while fulfilling several 

temperature restrictions and avoiding carbonization in the anode channel. The 

optimization is performed at different cell currents, so that several points of a 

current voltage curve with optimal operating conditions are evaluated. 

 

The electric efficiency which is used as the objective function of the optimization 

relates the total electric cell power diminished by the system’s parasitic power 

consumption to the combustion enthalpy input of the fuel gas. The optimization has 

several constraints concerning the solid temperature and the possibility of 

carbonization. The temperature must not exceed a minimum and a maximum 

temperature, and also the maximum temperature difference within the solid phase is 

limited. Three operation parameters, which can be adjusted easily in the HotModule, 

are chosen as optimization variables. The first optimization variable is the total 
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amount of fuel gas ( feedΓ ) fed to the system. In the case of the HotModule, the fuel 

gas consists of steam and methane. The ratio between the flux of steam and the flux 

of methane fed to the system, i.e. the steam to carbon ratio (S/C), is chosen as the 

second optimization variable. The third optimization variable is the air number 

( ), defined as the ratio between the amount of air actually fed to the burner and 

the amount of air required under stoichiometric conditions. Those three variables 

must be adjusted to meet the power demands from an external load on the cell in an 

optimal way. For simplicity, the effect of the external load is modeled by setting the 

total cell current (I

airλ

cell) to a fixed value within each optimization. Also the 

temperatures of feed gas and air are assumed to be constant. The following 

objective function was suggested by Heidebrecht (2005): 

( ) ( )
el,system cell blower

el feed air back 0
feed feed i,feed C i

i

P P P
Γ , S / C , ,R max!

H Γ Δ h
η λ

χ
−

= = →
⋅ ⋅ −∑

 

(5.1) 

subject to  

( )( )s smin ϑ ζ ϑ≥ ,min

s,max

s,min

0 [ ]1 2

                      (5.2) 

( )( )smax ϑ ζ ϑ≤                      (5.3) 

( )( ) ( )( )s smax minϑ ζ ϑ ζ Δϑ− ≤               (5.4) 

cell cell,minU U≥                           (5.5) 

( ) ( )( )R Cj a 1 2 feed 1 2j : Δ g , , ,ϑ ζ ζ χ ζ ζ∃ ≥  at every , 0 1;0 1ζ ζ ∈ … …  (5.6) 

and additionally the steady state fuel cell model equations as equality constraints. In 

the above equations Rback is cathode recycle ratio; Pel,system is total electric cell power 

(Pcell) diminished by the system’s parasitic power consumption (Pblower); Hfeed is 

combustion enthalpy of the fuel gas;  is standard combustion enthalpy of 

component i;

0
C iΔ h

i,feedχ  is fuel gas mole fraction of component i; sϑ is solid phase 

temperature; Ucell is cell voltage; and R CjΔ g is free enthalpy of reaction j. Equations 

5.2 and 5.3 demand that the solid temperature does not exceed a minimum and a 
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maximum temperature at any point in the cell. In Equation 5.4 the difference 

between the highest and the lowest temperature is limited, and Equation 5.5 

demands that the cell voltage stays above a certain level. According to Equation 5.6, 

at least one carbonization reaction at every location of the cell must have a positive 

free enthalpy of reaction in order to avoid carbon deposition.  

 

Some typical input quantities (Icell=0.5, 0.6, 0.7, 0.8, 0.9 and 1.0) at the optimum 

operating points together with additional information like temperature are listed in 

Table 5 - 1. The results were obtained using the simplified model introduced in 

section 2.3.2. For the control purpose the number of steady state optimization points 

should be infinite to obtain optimal steady state performance at arbitrary cell 

currents. In order to have more possible operation points, the table by Heidebrecht 

(2005) was extended by specifying Icell change by 0.01 from 0.5 to 1.0. When an Icell 

change is less than 0.01, the optimized variable values between two nearest points 

are interpolated. For an Icell change, the master controller looks up the table, locates 

the column of the desired Icell state and sets the three variables ( feedΓ , S/C, ) to 

their corresponding numbers.  

airλ

 

Icell 0.5 0.6 0.7 0.8 0.9 1.0 
feedΓ  0.6783 0.8296 0.9841 1.114 1.2859 1.2920 

S/C 2.4304 2.4707 2.4903 2.4321 2.3106 1.7049 
airλ  2.0250 2.0659 2.1913 2.3447 2.6071 2.9574 

minϑ  2.9604 2.9999 2.9999 2.9919 2.9942 3.0000 

maxϑ  3.1604 3.2000 3.1999 3.1994 3.2017 3.2000 

diffϑ  0.2000 0.2001 0.2001 0.2075 0.2076 0.2000 

elη   0.5391 0.5240 0.5030 0.4809 0.4384 0.3838 

el�η  0.5391 0.5240 0.5030 0.4769 0.4352 0.3838 
 

Table 5 - 1: Results of the steady state optimization of input parameters; 

 el�η  refers to the closed-loop case discussed in section 5.3.4 
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5.2.2 Solid temperature response analysis 

 

The control objective is to fulfill the temperature constraints when the current load 

changes, that is, to transfer the fuel cell safely from an optimal steady state to 

another. The steady state optimization introduced in the previous section gives a 

reference of what the input parameters ( feedΓ , S/C and ) would be like to achieve 

the desired new state, but the dynamics of transition do not guarantee the 

temperature constraints. In order to control the solid phase temperature during 

dynamic transition, temperature control loops are required. The possible controlled 

variables are minimum temperature ( ), maximum temperature ( ) and 

maximum temperature difference ( ). It is found that the minimum temperature 

rarely exceeds the limits, so there are two controlled variables ( and ) and as 

stated already three manipulated variables (

airλ

minϑ maxϑ

diffϑ

maxϑ diffϑ

feedΓ , S/C and ). This is a typical 

multi-input-multi-output (MIMO) control problem. In the following, a match of 

input and output variables based on physical considerations is proposed. Dynamic 

responses of the system model to step changes of the three manipulated variables 

are considered. Figure 5 - 2 shows the step responses of all the possible input and 

output matches when each of the three input variables changes from its 

corresponding optimized state at I

airλ

cell=0.8 to the state at Icell=0.7 at time 5000 and 

then changes back to the optimized state when Icell=0.8 at time 10000. The actual 

cell current is kept constant at Icell=0.8. All results are given in dimensionless 

numbers, one dimensionless time unit corresponds to 66 seconds. For the cell 

current and the temperature, the following scaling is used: one current density unit 

equals to 840 A/m2, one temperature unit equal to 298.15 K. 

 

Figure 5 - 2(a) gives the temperature difference and maximum temperature response 

when switching feedΓ  from its optimal state 1.114 to the new optimal state 0.9841 

while keeping and S/C at their old state. A reduction of  means physically 

that less fuel is fed to the system. As the cell current is kept constant and the cell 

voltage changes only slightly, the electrical power hardly varies during the 

airλ Γ feed
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simulation experiment in Figure 5 - 2 (a). Consequently, the reduction of  

results in a higher electrical efficiency and  because less chemical energy is 

converted to heat  in a lower average temperature of the stack. However, the new 

steady state with the higher efficiency, which is reached at time ~ 6000, is not 

feasible as the temperature difference is above the tolerable limit. This behavior is 

found to be typical for changes of  at different operation points. A reduction 

of  by a small amount always leads to a spatially more inhomogeneous 

temperature profile and hence to an increase of the maximum spatial temperature 

difference. The implications of a modified  on the absolute maximum 

temperature are less clear. Depending on the actual operation point, the temperature 

maximum may increase or decrease. Therefore,  is a suitable variable for 

controlling the temperature difference but is not suitable for controlling the 

maximum temperature.  

Γ feed

Γ feed

Γ feed

Γ feed

Γ feed

 

The system response to a variation of the steam-to-carbon ratio is qualitatively 

similar to the response to a variation of Γ . An example is shown in Figure 5 - 2 

(b). An increase of S/C at a constant  also means a reduction of the amount of 

fuel fed to the system. Therefore, the argumentation used to explain Figure 5 - 2 (a) 

holds for Figure 5 - 2 (b), too. An increase of S/C generally causes an increase of 

the temperature difference, while the maximum temperature may decrease or 

increase, depending on the operation point. Therefore, the steam-to-carbon-ratio is 

another possible candidate for the control of the spatial temperature difference. 

feed

Γ feed

 

The effect of a varying air number  is shown in Figure 2 (c). A higher amount 

of air in the system mainly has a cooling effect, i.e. it reduces the maximum 

temperature. The influence on the spatial temperature difference is not that strong. 

Therefore, varying locally around a given setpoint is a good method to control 

the maximum temperature of the fuel cell. 

λair

λair
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Figure 5 - 2(a): ,  response to a change;  changes from the 

optimal value at I

maxϑ ϑdiff Γ feed Γ feed

cell =0.8 to the optimal value at Icell =0.7 and back again 
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Figure 5 - 2(b): ,  response to a S/C change; S/C changes from the optimal 

value at I

maxϑ ϑdiff

cell =0.8 to the optimal value at Icell =0.7 and back again 
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Figure 5 - 2(c): ,  response to a change;  changes from the optimal 

value at I

maxϑ ϑdiff λair λair

cell =0.8 to the optimal value at Icell =0.7 and back again 

 

To summarize the discussion of Figure 5 - 2, the air number  has the most 

direct relationship to  because of its cooling effect. With respect to , the 

effect of 

λair

maxϑ diffϑ

feedΓ  and S/C is almost the same and in this work S/C is chosen to 
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control . The resulting feedforward-feedback control scheme is depicted in 

Figure 5 - 3. A feedforward controller sets the three manipulated variables 

,  and S/C to the optimal steady state values

diffϑ

Γ feed λair feed air,Γ λ��  and . The air 

number  is tuned by the PID controller 1 around the default set by the 

feed-forward controller in order to obtain a pre-defined maximum solid 

temperature  also under transient conditions; similarly, S/C is tuned by PID 

controller 2 around the optimum steady state value in order to achieve a pre-defined 

maximum temperature difference .  

S / C�

λair

maxϑ

ϑdiff

 

feed -forward 
Controller 

PID 
controller1

MCFC 
Plant 

Desired maxϑ  
maxϑ

- 

airλ� S/C 
feedΓ�  

airλ  

Icell change 

PID 
controller2 

Desired diffϑ  

/S C�

diffϑ

- 

 
Figure 5 - 3: The feedforward-feedback control scheme 

 

5.2.3 Control results and analysis 

 

Figures 5 - 4(a) and 5 - 4(b) present the and transient behavior, under 

open-loop and closed-loop conditions, when the cell current changes from 0.55 to 

0.6 and further to 0.65, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0 at every 2000 time units (0, 

2000,…, 18000) representing positive load changes and then changes back from 1.0 

to 0.95, 0.9,…, 0.5 at times (20000,22000,…, 38000) representing negative load 

changes. Note that closed-loop implies that all control loops are active, whereas 

diffϑ maxϑ
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open-loop suggests that only the master controller is in operation. In the simulation 

shown in Figure 5 - 4, where the optimized │ maxϑ -3.2│ ≤ 0.01, the desired maxϑ  

will be set to 3.2, and the desired  was always set to 0.2, resulting in a steady 

state electric efficiency deviating slightly from the optimal value, as can be seen 

from table 5 - 1. 

diffϑ

 
Figure 5 - 4(a): control results (open-loop on top panel and  diffϑ

closed-loop on bottom panel) 
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Figure 5 - 4(b): control results (open-loop on top panel and closed-loop on 

bottom panel) 

maxϑ

 

The parameters of the PID controllers used (  controller gain=180.0, integral 

time=20.0, derivative time=500.0;  controller gain=24.0, integral time=0.29, 

derivative time=40.0) were found to provide a fast system response. As can be seen, 

for the open-loop case (no temperature control),  and  usually exceed 

diffϑ

maxϑ

diffϑ maxϑ
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their corresponding limits (0.2 and 3.2 respectively), while for the closed-loop case, 

the PID controllers successfully and quickly bring the temperatures back to their 

desired set-points.  

 

5.2.4 State estimator 

 

Usually, the required measurement information on  and is not available 

from an industrial fuel cell system. In most cases, temperature measurements can be 

taken only at a few points in the cell stack. To make the proposed control scheme 

applicable in practice, a state estimator or observer is required. One possible 

approach for state estimation is the extended Kalman filter that is based on a 

stochastic approach. An extended Kalman filter for the MCFC was developed and 

tested successfully by Grötsch et al. (2006). An alternative approach that is based 

on a deterministic approach, is the extended Luenburger observer. This approach 

will be studied in the following. The advantage of the Luenburger observer is that 

the implementation is easier and that the computational burden is smaller than in the 

case of the Kalman filter.  

diffϑ maxϑ

 

5.3 Development of a Luenberger Observer for Model Based 

Measurement 
 

Usually, the measuring information available from an industrial fuel cell system is 

rather limited. In most cases, temperature measurements can be taken only at a few 

points in the cell stack, and measuring information on the composition of the gases 

in the cell is available only in special cases. A tool that provides information on 

states not accessible to direct measurements is desirable. A model-based measuring 

system or observer can serve as such a tool. This subsection starts with 

observability studies for different measurement configurations. The design of a 
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Luenberger observer is then described on the basis of the reduced model. The 

simulation results combining the developed Luenberger observer with the control 

strategy in the previous section are presented in the end. 

 

5.3.1 Structure of the Observer 

 

As a state estimator for the HotModule, a Luenburger observer is designed. The 

general structure of an observer is shown in Figure 5 - 5. The central part of the 

observer is a simulation model of the process that gives an estimate of 

the complete spatially distributed state vector of the cell

( )t,z,zˆ
21Χ

( t,z,z 21 )Χ , i.e. of the 

temperatures, gas concentrations, and electrical potentials. Due to inaccuracies of 

the model and due to unknown disturbances of the real process, the estimate 

 will deviate from ( t,z,zˆ
21Χ ) )( t,z,z 21Χ  if the observer model is not extended 

by a correction term. The observer correction compares the vector of measured 

values y(t), e.g. temperature measurements at some points, with the simulated 

measured values  computed by the observer. If the vectors differ, the 

correction has to change the observer states in such a way that the difference 

between real and simulated measurements is minimized. Consequently, the design 

of an observer comprises three tasks: 

( )tŷ

• the choice of an observer model that is sufficiently accurate, but can be solved in 

real time; 

• the choice of sensor combinations that make the process observable, i.e. that 

permit the reconstruction of the full state vector from the available measurements; 

• the design of an observer correction that reduces the observation error to a 

minimum. 

The three tasks will be discussed in the next few sections for the MCFC system.  
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Figure 5 - 5: Block diagram of the state and parameter observer for the MCFC 

 

5.3.2 Observer model 

 

The reduced MCFC model of the HotModule serves as a basis of the observer 

model. The resulting reduced model is a differential algebraic system of differential 

index one that has the following structure: 

( )S
a s c i a c a c

d
f u

d
, , , , , , , ,

ϑ ϑ ϑ ϑ χ γ γ ΔΦ ΔΦ
τ

=     

( )c
a s c i a c a c

d
f u

d
, , , , , , , ,

ϑ ϑ ϑ ϑ χ γ γ ΔΦ ΔΦ
τ

=  

( )a s c i a c a c0 g u, , , , , , , ,ϑ ϑ ϑ χ γ γ ΔΦ ΔΦ=              (5.7) 

In Equation (5.7),  is the vector of the temperature amplitude 

functions for anode, solid and cathode. χ

( T
i 1 2 N, , ,ϑ ϑ ϑ ϑ= " )

i, aγ , cγ  are the corresponding vectors 

for the time-dependent amplitude functions of the gas compositions and the anode 

and cathode flow rates, respectively, and  and are the electrical potential 

differences at the anode and at the cathode; u is a vector of input variables like flow 

rates, inlet compositions, and inlet temperatures. 

aΔΦ cΔΦ

 

Equation (5.7) is used as a starting point for the development of a Luenberger state 
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observer.  

 

5.3.3 Observability and placement of sensors 

 

For different kinds of measuring information, local observability of the model 5.7 is 

checked in the following way: the system is linearized around an operation point. 

Algebraic variables are eliminated by solving the linearized algebraic equations. 

The rank of the observability matrix of the resulting linear ODE system is computed. 

It is found that the observability matrix possesses already full rank if a single 

temperature measurement or the measurement of the total cell voltage is available. 

Therefore, at least in theory one temperature sensor or one voltage sensor is enough 

to ensure observability, but, of course, additional measurements will accelerate the 

convergence of the observer. The investigate on of observability has been done by 

(Mangold et. al 2005). Three scenarios of different sensor configurations are 

considered: 

Scenario 1: The average outlet temperature of the anode gases, the outlet 

temperature of three cathode gas channels, and the cell voltage are measured. 

Scenario 2: In addition to the measurement information given in Scenario 1, the 

temperature at one point in the middle of the solid is measured. 

Scenario 3: In addition to the measurement information given in Scenario 1, the 

average gas composition at the outlet of the anode gas channels and at the outlet of 

the cathode gas channels is measured. 

(Mangold et. al 2005) found that the best trade-off between observability and 

measurement costs is achieved by scenario 1. Therefore, the further development of 

the state estimator is carried out on the basis of the case scenario 1. 

 

5.3.4 Observer correction term 

 

As a state estimator for the HotModule, in order to achieve convergence between 

the observer's states and the states of the real process, a correction has to be added 

to the model equations. The observer equations read as 
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( )
( )

( )
s

a s c i a c a c

T

c a s c i a c a c

d
f ud K y y

d f u
d

ˆ
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ, , , , , , , ,

ˆ
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ, , , , , , , ,

ϑ
ϑ ϑ ϑ χ γ γ ΔΦ ΔΦτ

ϑ ϑ ϑ ϑ χ γ γ ΔΦ ΔΦ
τ

⎛ ⎞
⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟ = +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎜ ⎟

⎝ ⎠

−  

( )D A i a c a c0 g uˆ ˆ ˆ ˆˆ ˆ ˆ, , , , , , ,ϑ ϑ χ γ γ ΔΦ ΔΦ=                (5.8) 

In Equation (5.8), the matrices KT are constant gain matrices. They are determined 

in the following way. 

Firstly, the reduced model equations 5.7 are linearized by the dynamic simulation 

tool DIVA. The linearized model can be written as 

uBxAxAxE DADADDDDD ++=⋅ �   (5.9a) 

uBxAxA0 AAAADAD ++=   (5.9b) 

ACxy =  

DE  is an invertible left-hand-side matrix. Because (5.9) is a differential algebraic 

system with differential index 1, it is possible to solve the algebraic equations (5.9b) 

for the algebraic states Ax . 

After some rearrangement, the above Equation can be written as 

( ) (1 1 1 1
D D DD DA AA AD D D D AA A

A

x E A A A A x E B A B− − − −= − + +
�

�
����	���
 ) u  (5.10) 

D

C

AD
1

AA xACAy ⋅−= −

�
�	�
~

  (5.11) 

i.e. system (5.9) can be transformed to an ODE system, and observer design 

methods for ODE system can be applied. 

 

Now, KT can be chosen as a Kalman filter gain matrix as suggested by Friedland 

(1996). The fundamental problem in the design of an observer is the determination 

of the observer gain matrix K such that the closed-loop observer matrix [ ]CKA ~~ −  

is a stable matrix. 

Since the observer given by Equation 5.8 has the structure of a Kalman filter, its 

gain matrix can be chosen as a Kalman filter gain matrix, i.e., 
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TK PC R−= � 1   (5.12) 

where P is the covariance matrix of the estimation error and satisfies the matrix 

Riccati equation 

T T 1P AP PA PC R CP Q−= + − +� � � ��   (5.13) 

Where R is a positive definite matrix and Q is a positive semidefinite matrix. The 

matrix P is obtained by setting P�  in the upper equation to zero. 

But we also found our observer system is rather robust, any random matrix can be 

used as the gain matrix if only its elements are small enough, for instant, 0.001. 

  

5.3.5 Test of the observer 

 

The observer is tested with simulated measurement values generated by the 

simplified model. The initial condition of the observer is a steady state with 

Icell=0.6, λair =2.0659, Γfeed=0.8296 and SC=2.4707. At time 0, the cell current is 

set to the correct value Icell=0.5, λair =2.0250, Γfeed=0.6783 and SC=2.4304. A 

measurement interval of 10 time units is assumed. In the test shown in Figure 5 - 6, 

the simplified model is used as a reference. The observer states converge rapidly to 

the reference states. The convergence is much faster than the transient of the 

uncorrected model to the steady state. 

 

In the next test shown in Figure 5 - 7, the dynamic behaviour is tested in a process 

of the following. The simplified model changes from the state in the table 5 - 1, 

Icell=0.5, Icell=0.6…… to Icell=1.0, then back to the original state at every 20000 

time units. Also in this case, the observer converges quickly and only causes a small 

and tolerable remaining estimate error. 
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Figure 5 - 6: Convergence of the observer, when the simplified model is used as a 

reference; deviations of the observer states from the reference states without  

correction (dashed lines) and with correction (solid lines); first column from top to 

bottom: maximum relative error of the estimated solid temperature, the estimated 

cathode gas temperature, and the estimated anode gas temperature; second column 

from top to bottom: relative error of the estimated cell voltage, maximum relative 

error of the H2 molar fraction in the anode gas, maximum relative error of the O2 

molar fraction in the cathode gas 
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Figure 5 - 7: The maximum temperature error between observer  

and simplified model 

 

5.3.6 Control results with observer 

 

A control strategy has been designed based on the original model of the MCFC 

system in Section 5.3, where the controlled variables: maximum temperature and 

maximum temperature difference were obtained directly from the calculation of the 

model. To make the control strategy more applicable in practice the original model 

should be replaced by an observer in order to estimate the fuel cell’s states that 

cannot be measured directly.  

 

The control results with the observer obtained from section 5.3.5 (electrical load 

changes from Icell=0.5 to Icell=0.55 and… to Icell=1.0, then back to the original 

state at every 20000 time units) are shown in Figure 5 - 8, which is comparable to 

Figure 5 - 4. It can be seen that the controller works very well when the observer is 

incorporated. The maximum temperature error between observer and full model 

with controller is shown in Figure 5 - 8(c), which as can be seen, is very small. 
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Figure 5 - 8(a): The maximum temperature difference estimated  

by the observer in the controlled system 
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Figure 5 - 8(b): The maximum temperature estimated  

by the observer in the controlled system 
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Figure 5 - 8(c): The maximum temperature error between observer 

 and simplified model with controller 

 

In a second test, the same scenario was applied, however, in addition five reaction 

kinetic parameters in the simplified model Arrref1, Arrref2, Arrox1, Arrox2, Arrred are 

decreased by 10% and at the same time the observer and controller remain 

unchanged. The results are shown in Figure 5 - 9. It can be seen that the controller 

still works very well when these kinetic parameters are changed in the simplified 

model. The maximum temperature error between observer and full model with 

controller is shown in Figure 5 - 9(c). 
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Figure 5 - 9(a): The maximum temperature difference estimated by the observer in 

the controlled system as Arrref1, Arrref2, Arrox1, Arrox2, Arrred in the simplified  

model are decreased by 10% 
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Figure 5 - 9(b): The maximum temperature estimated by the observer in the 

controlled system as Arrref1, Arrref2, Arrox1, Arrox2, Arrred in the simplified 

 Model are decreased by 10% 

 78



 

 

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

0.016

Time

M
ax

_e
rr

o
r

 
Figure 5 - 9(c): The maximum temperature error between the observer and  

the simplified model with the controller as Arrref1, Arrref2, Arrox1, Arrox2, Arrred  

in the simplified model are decreased by 10% 

 

 

5.4 Summary 
 

In open literature, comparatively few publications are available on model based 

process control of MCFC systems. The results of this work show that a rather 

simple control scheme can contribute substantially to a safe and efficient operation 

of a high temperature fuel cell stack. Such systems are rather sensitive to local 

over-temperatures and spatial temperature differences. Therefore, temperature 

management is a key problem of the process operation of high temperature fuel 

cells. This work proposes a feedforward-feedback control scheme that may 

overcome this problem. The control scheme consists of three control loops. The first 
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loop is composed of a master (feed-forward) controller that imposes a load change 

and sets the fuel gas, the steam to carbon ratio, and the air number to their 

corresponding conditions for optimal steady state electric efficiency. The 

master-controller reads the steady state operation conditions from a look-up table. 

In this work, the look-up table was generated by optimizing the steady state 

solutions of a simplified process model; alternatively, it would also be possible to 

determine optimal steady state operation conditions experimentally and store them 

in the look-up table. 

 

The other two loops are feedback PID controllers that are responsible for the 

temperature management under transient conditions. One of the PID controllers 

adjusts the air number in order to keep the maximum temperature below a 

pre-defined limit. The other PID controller corrects the steam-to-carbon ratio in 

order to limit the maximum spatial temperature difference. This simple control 

structure with linear feed-back controllers is inspired by the physical properties of 

the system and offers several advantages. Firstly, the actions of the controller appear 

to be transparent and understandable to the operating personal, a demand often 

made by practitioners on advanced control schemes. Secondly, the scheme has been 

derived from rather general properties of high temperature fuel cells and therefore 

may be robust to model uncertainties and applicable to many fuel cell systems. 

 

The implementation of the developed feedforward-feedback control is especially 

simple, if it is possible to measure directly the maximum temperature and the 

maximum temperature difference, as was assumed first in this work. In practice, this 

measurement information is not always available. Very often, temperature 

measurements only can be taken at the outlets of the gas channels or at a few 

distinct points within the cell stack. In such cases, it possible to estimate the desired 

maximum temperatures and temperature differences with good accuracy from the 

available measurement information by using state estimation techniques. This was 

demonstrated in previous publications (Mangold et al. 2004b; Grötsch et al. 2006). 

The controller developed is then combined with a suitable state estimator in order to 
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make the scheme applicable under conditions, where measurement information is 

limited. 
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Chapter 6  

Conclusions 

 
Modeling a molten carbonate fuel cell system with internal reforming for control 

purposes and design of a control strategy are proposed in this work. Focus of this 

contribution is on a planar molten carbonate fuel cell and 280 kW MCFC stack ‘Hot 

Module’ by MTU CFC Solutions, Germany (Bischoff & Huppmann, 2002).  

 

Although there has been considerable research interest in methods for modeling and 

controlling fuel cell systems (Chapter 2), they are either developed for a specific 

type of fuel cell or too complex for control purposes; and their applications on 

controller design are still limited. Suitable and simple-to-implement strategies of 

controller design also remain an open area. This background inspires the main 

contribution of the work. A two-dimensional detailed model of a single cross flow 

MCFC is first reviewed. Then a simplified form of the MCFC and a 

three-dimensional stack model are built based on the detailed model. 

 

In chapter 3, firstly the simplified model is validated by comparing with the detailed 

model. Then the simulation of the three-dimensional stack model with indirect 

internal reforming was performed. The advantages and drawbacks of the 3-D model 

were discussed.  

 

In chapter 4, a low order model for control purposes was derived from the 

two-dimensional spatially distributed cross flow model by the Karhunen-Loève 

Galerkin method.  The basic idea of the method is to approximate the profiles of 

the spatially distributed variables by basis functions obtained from test simulations 

with a detailed reference model. The reduced model produces results that are very 

close to those of the original model, but it reduces the computation time by a factor 
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of more than 100. The reduced model itself is given in an analytical form and still 

contains the information on the physical correlations in the original model. 

 

The reduced-order model obtained from the orthogonal projection method described 

in Chapter 4 leads to an observer model to be applied in control applications 

(Chapter 5). A novel control strategy, which includes three main control loops, has 

been implemented based on the dynamic behavior of the MCFC. The master 

controller assures the optimal steady state electric efficiency and the two slave 

controllers keep the process dynamics safe by maintaining temperature within 

maximum limits.  
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