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Abstract
Background: Combinatorial complexity is a challenging problem in detailed and mechanistic
mathematical modeling of signal transduction. This subject has been discussed intensively and a lot
of progress has been made within the last few years. A software tool (BioNetGen) was developed
which allows an automatic rule-based set-up of mechanistic model equations. In many cases these
models can be reduced by an exact domain-oriented lumping technique. However, the resulting
models can still consist of a very large number of differential equations.

Results: We introduce a new reduction technique, which allows building modularized and highly
reduced models. Compared to existing approaches further reduction of signal transduction
networks is possible. The method also provides a new modularization criterion, which allows to
dissect the model into smaller modules that are called layers and can be modeled independently.
Hallmarks of the approach are conservation relations within each layer and connection of layers by
signal flows instead of mass flows. The reduced model can be formulated directly without previous
generation of detailed model equations. It can be understood and interpreted intuitively, as model
variables are macroscopic quantities that are converted by rates following simple kinetics. The
proposed technique is applicable without using complex mathematical tools and even without
detailed knowledge of the mathematical background. However, we provide a detailed mathematical
analysis to show performance and limitations of the method. For physiologically relevant parameter
domains the transient as well as the stationary errors caused by the reduction are negligible.

Conclusion: The new layer based reduced modeling method allows building modularized and
strongly reduced models of signal transduction networks. Reduced model equations can be directly
formulated and are intuitively interpretable. Additionally, the method provides very good
approximations especially for macroscopic variables. It can be combined with existing reduction
methods without any difficulties.
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Background
Modeling of signaling pathways
Systems biology aims at a holistic understanding of cellu-
lar processes. Mathematical models that integrate the cur-
rent state of knowledge are analyzed to understand system
properties that are not apparent from the characteristics of
their components.

Different approaches exist to model and analyze signal
transduction systems. Qualitative modeling uses solely
structural information about the network and performs
no quantitative statements. Examples for qualitative mod-
eling techniques applied to signal transduction pathways
are Petri nets [1], interaction graphs and Boolean net-
works [2]. Qualitative models can be analyzed by compu-
tational studies and structural analysis. As an example,
independent signaling paths and feedback circuits can be
obtained from an interaction graph using logical elemen-
tary modes [2]. The concept of T-invariants in Petri nets
allows to identify self contained subnets that are active
under a given input situation [1]. With both techniques it
is possible to decompose a signaling network into smaller
functional units. Qualitative analysis is especially helpful
if structural information but relatively little quantitative
information about the system is known. Quantitative
modeling explicitly considers the quantitative nature of
physical systems. Processes on the molecular level exhibit
stochastic behavior. When only a low number of a specific
molecule is present, stochastic modeling techniques
should be used. The chemical master equations [3]
describe the stochastic dynamics of chemical systems in a
quantitative way. However, they are difficult to analyze
and simulate. If concentrations are high enough, the sys-
tem dynamics shows deterministic behavior. Thus, in
many cases a simplified approach neglecting the stochas-
tic nature of the dynamics can be used.

Inside the cell, signals propagate in time and space. There-
fore, partial differential equations should be used to
describe them exactly. This continuous spatial behavior
can often be modeled by assuming fast distribution of all
species inside a cellular compartment and transport reac-
tions between the compartments. This leads to model
equations in the form of ordinary differential equations
(ODEs). If processes are modeled on a molecular level
mass action kinetics are a good description of the chemi-
cal processes and are frequently used. This view is the
basis for the work presented here and also used by many
others [4-13].

The more information about the system is available, the
more powerful quantitative modeling techniques
become, as prediction accuracy of models grows.

Combinatorial variety
Modeling with ODEs is challenged by biological reality.
In signal transduction, association and modification of a
relatively small number of different molecules usually
give rise to an enormous amount of possible protein com-
plexes [14]. This problem of combinatorial complexity
has been tackled in different ways. In 1998, a stochastic
modeling tool called STOCHSIM was developed to cir-
cumvent the problem of combinatorial complexity in bac-
terial chemotaxis [15,16]. This algorithm is especially
suited for systems with a very low number of molecules
where stochastic effects may play an important role. Up to
now there is research on stochastic simulations of combi-
natorial systems.

Many deterministic models of large signaling networks
that have been published within the last years neglect the
combinatorial variety of protein complexes. Their focus is
on small subsets of the occurring reactions and complexes
[4-11]. It was shown that such reduced model structures
may provide a good approximation to a model account-
ing for all feasible protein complexes and reactions [17].
However, the main difficulty is to decide which reactions
and complexes can be neglected and which are essential.
The suited reduced model structure highly depends on the
kinetic parameters of the reaction network [17]. Even in
very simple examples an apparently reasonable assump-
tion may lead to significant approximation errors [18].

An alternative approach was suggested by Blinov et al.
[19], who introduced the software tool BioNetGen. This
program translates a rule-based model formulation into a
complete ordinary diffierential equation (ODE) model
accounting for all feasible reactions and species. Addition-
ally, a graphical rule-based representation of signaling
networks has been introduced [20,21]. BioNetGen was
used to generate complete mechanistic models of early
events in FcεRI [12] and EGF signaling [13]. In both cases
only a very limited number of components and binding
domains are included. Nevertheless, more than three hun-
dred ODEs are required in the case of FcεRI signaling and
over one thousand for EGF signaling. A detailed model of
a complete signaling cascade easily can grow to millions
or even billions of equations as shown below for the insu-
lin signaling pathway. Recently, a novel approach to
tackle this combinatorial explosion of model equations
has been presented [22], formally extended and general-
ized [18]. The approach bases on the view that the funda-
mental elements of signal transduction are domains
instead of molecular species [23]. The conventional mech-
anistic description of all feasible multi-protein complexes
is replaced by a macroscopic one, where the focus is on
the state of domains like levels of occupancy or degrees of
phosphorylation. For many realistic systems this method
allows a very strong reduction of the complete combina-
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torial models. The approach proposed by Borisov et al.
[22] identifies reduction opportunities based on site
dependencies that are determined from rules, not from
the expanded network. The main deficiency of that
method is that it considers only modularity within a sin-
gle multi-site molecule and does not consider modularity
of the reaction network as a whole.

The exact domain-oriented lumping technique proposed
by Conzelmann et al. [18] guarantees an accurate descrip-
tion of macroscopic quantities. It is also applicable to
whole reaction networks. However, a prerequisite for
using this method is availability of the detailed model
equations. The resulting models most often still consist of
a very large number of ODEs which makes them difficult
to handle and to analyze. In the following the insulin sig-
naling pathway will serve as a realistic example to exem-
plify combinatorial variety. Afterwards, we introduce a
new approximative reduced modeling method and show
its efficiency by mathematical analysis and applying it to
insulin signaling models of varying levels of detail.

Insulin signaling and combinatorial variety
The insulin signaling system is of high medical interest
and therefore well studied [24-27]. Insulin regulates cellu-
lar glucose uptake [24,28] and has a major impact on
metabolism [26,29]. It promotes synthesis and storage of
glycogen, proteins and lipids and negatively regulates
their degradation. Additionally, it negatively regulates
secretion of sugars, amino acids and fatty acids [25]. Insu-
lin is also involved in gene expression [30], cell survival
and differentiation.

Defects in the insulin signaling system give rise to insulin
resistance, obesity and type II diabetes mellitus [31-33].
There are intense efforts to improve therapies of these
maladies [34-37].

In a simplified form the insulin signaling system will serve
as demonstration object for combinatorial complexity.
The insulin receptor is a transmembrane protein that is
constitutively dimerized [38].

However, first we analyze complexity on a virtual mono-
mer. The receptor monomer (which consists of an α- and
a β- chain) can bind an insulin molecule and has binding
sites for IRS and Shc. Both sites become phosphorylated
before effector binding [25]. Shc becomes phosphorylated
and binds Grb2. Grb2 can bind SOS, which in turn can be
phosphorylated. IRS has four binding sites for PI3K (in
fact it has at least nine binding sites for PI3K; each p85
subunit of PI3K occupies two binding sites), one for Grb2
and one for SHP2 [39]. All these binding sites can be
phosphorylated. The number of feasible molecular spe-
cies in this network can be calculated as exemplified in

Figure 1. In total there are 145,156,469 possible species.
The fact that the insulin receptor and IRS (in fact there
exist several different IRS molecules) can be phosphor-
ylated on several regulatory sites and have additional
binding partners [25,40,41] is not considered. This
accounts for an dramatic further increase of complexity.
Even without these additional processes the barriers for
detailed modeling are tremendous, as one differential
equation is required for the balance of each species. Sev-
eral other signaling systems show comparable combinato-
rial complexity.

Results and discussion
Introduction of the layer based approach
The two most important mathematical tools to tackle the
enormous complexity of models describing biological
reaction networks are model reduction and modulariza-
tion techniques. Here, we introduce a new systematic
approach which allows to create considerably reduced
models of signaling networks and also provides a new
modularization criterion. This new modularization crite-
rion suggests to separate molecular processes (bindings
and post-translational modifications) depending on the
types of interactions between them.

The basic idea is that three different types of interactions
between two processes in signal transduction networks
exist. The first interaction type is called all-or-none inter-
action. In this case, there exists a causal relationship
between the two processes, which means that one process
must occur before the second process. Most frequently,
this kind of interaction is between binding site phospho-
rylation and effector binding. These two processes can be
divided into four molecular events (phosphorylation,
dephosphorylation, binding, dissociation). The effector
can only bind if the binding site is phosphorylated and
dephosphorylation is only possible in the absence of
effector. This means that phosphorylation is required for
binding and dissociation is required for dephosphoryla-
tion.

The second interaction type is called graded interaction.
There, two processes influence each other mutually, as it
is the case for ligand binding and autophosphorylation of
a receptor. This means that kinetic parameters for one
process are influenced by the other process. Note that this
allows unidirectional interactions, where the first process
influences the second, while the second does not influ-
ence the first, and bidirectional interactions, where both
processes influence each other.

The third type are non-interacting, independent processes.
They do not influence each other directly. Therefore this
type represents in fact no interaction. The concept of all-
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Combinatorial complexityFigure 1
Combinatorial complexity. The full combinatorial complexity of the described parts of insulin signaling is demonstrated. 
The insulin receptor can bind Insulin, Shc and IRS. IRS can bind four PI3K molecules, SHP2 and Grb2. Grb2 can bind SOS and 
phosphorylated SOS. This results in 35·5 = 1215 different complexes with IRS. For Shc and insulin binding to the receptor mon-
omer there are seven and two possibilities, respectively. Altogether there are n = 2·7·(35·5 + 2) = 17038 different complexes 

of the receptor monomer. As the receptor is a dimer (k = 2) this setup allows  =  = 145, 155, 241 ≈ 

1.5·108 different combinations. Free species contribute another 1215 + 10 + 1 + 1 + 1 = 1228 possible species: 1215 for the 
free IRS complexes, 10 for all combinations of Shc, Grb2 and SOS and one for insulin, PI3K and SHP2 each.

33 3
. (2 + 3     5)52  7  ..

2 + 3     55.

7

3

3

5

5.       3     5

IR

G
rb

2

Grb2

Grb2

G
rb

2
2

IRS

IRS

PI
3K

PI
3K

PI
3K

PI
3K

PI
3K

SHP2

SHP2

Ins

Ins
SOS

Shc

SOS

ShcSOS

SOS

PI
3K

PI
3K

PI
3K

IR

n k

k

+ −⎛

⎝
⎜

⎞

⎠
⎟

1 17039

2
⎛

⎝
⎜

⎞

⎠
⎟



BMC Bioinformatics 2007, 8:336 http://www.biomedcentral.com/1471-2105/8/336
or-none interactions and graded interactions is demon-
strated in Figure 2.

According to our new modularization criterion, no graded
interactions are allowed between different modules. Proc-
esses of different modules, which we call layers, interact
only via all-or-none interactions. Interestingly, the so
defined layers only exchange information. The number of
molecules in each layer stays constant when no synthesis
or degradation is considered. This is a main difference
compared to metabolic pathways where mass flows occur
and represents the characteristic signal flow within a sig-
nal transduction network. Considering the fact that in sig-
naling an extra-cellular signaling molecule causes
transmission of a signal to the nucleus of a cell without
passing the cell membrane, this difference is most obvi-
ous. The signals that are exchanged between layers corre-
spond to a very restricted number of macroscopic
variables like levels of occupancy or phosphorylation as
they are used by Borisov et al. [22] and Conzelmann et al.
[18].

We also contribute a new aspect to the discussion about
modularization of biological networks and the optimal
criterion for modularization (see also [42-45]). Modular-
ization in our new approach is tightly linked to model
reduction. In fact, modularization sets the preconditions
to directly postulate the reduced model, without preced-
ing generation of detailed model equations.

In detailed modeling binding or modification events are
represented by a huge number of reactions, since the

involved proteins can exist in a high number of feasible
configurations. The sum of a certain subset of these reac-
tion rates defines a gross reaction rate of binding or mod-
ification. The sum of a certain subset of species
corresponds to macroscopic quantities as degrees of phos-
phorylation or occupancy. In the following we show that
in most frequent biological scenarios gross rate kinetics
can be formulated using macroscopic variables and have
a quite simple structure. Mathematical analysis of detailed
and reduced models shows that the dynamics of essential
macroscopic quantities is highly preserved in most cases.
We give qualitative and also some quantitative informa-
tion about the approximation quality for varying kinetic
parameters. A basic advantageous feature of models that
are created with the layer based approach presented here
is intuitive interpretability. Additionally, preceding gener-
ation of detailed model equations is not necessary, as
reduced models can be built directly by an intuitive pro-
cedure, for which a step by step procedure is given. There
exists also a mathematical formalism to derive the
reduced model equations. Thus, one can access model
generation intuitively or by a mathematical formalism.
Since both approaches are equivalent, understanding of
the mathematical part is not necessary to create reduced
models.

The approach combines qualitative and quantitative sys-
tem descriptions. The first, qualitative step identifies proc-
esses and their interactions to define modules. Inside
these modules, processes are described highly reduced
using quantitative techniques. All methods of quantitative
system analysis then can be applied to the model.

A general problem in modeling of signal transduction is
availability of experimental data. Especially kinetic data is
difficult to measure. Obviously, the layer based approach
has also to face this problem. However, the same kinetic
parameters can be taken for the macroscopic quantities
that are states of the model as in detailed mechanistic
modeling. Therefore, the problem does not become worse
when using the reduced modeling technique.

The layer based method can also be combined with the
exact domain-oriented lumping technique [18]. As a
motivation Table 1, which is discussed later on, shows
how many equations are needed to describe the insulin
signaling system. Detailed kinetic modeling, exact
domain-oriented lumping [18], layer based model reduc-
tion and a combination of the reduction techniques are
compared in several scenarios.

The approach does not have to be used rigorously
throughout the model. Subsystems can also be modeled
in the detailed formalism, which simplifies integration of
existing models.

Graded and all-or-none interactionsFigure 2
Graded and all-or-none interactions. A) The reaction 
cycle of ligand binding and phosphorylation consists of four 
species that are connected by four reactions. This is a gen-
eral property of graded interactions. B) The processes are 
coupled via an all-or-none interaction. Therefore the species 
DOp and all corresponding rates do not exist. C) All-or-none 
interaction between binding site phosphorylation and effec-
tor binding. The species DOOE does not exist. D) The reac-
tion cycle degenerates to a reaction chain which is a hallmark 
of all-or-none interactions. E) In this case, nomenclature can 
be simplified as the two sites on the receptor are essentially 
one.
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A simple example system
In the following the reduction method is presented by
introducing general principles, which are exemplified
considering a strongly simplified model of insulin recep-
tor signaling (see Figure 3). Afterwards, we will also dis-
cuss more complicated examples. The simple insulin
model is characterized by the assumption that the recep-
tor only binds one insulin molecule (L). Additionally, we
only consider one additional binding site, which under-
goes autophosphorylation. Afterwards an effector mole-
cule E (e.g. IRS) can bind to the receptor. Binding of E
protects the binding site from dephosphorylation. We do
not consider synthesis or degradation of any molecular
species. A detailed model of these basic processes com-
prises eight molecular species and can be described with
five ODEs due to the assumption of constant insulin con-
centration L and conservation relations for the receptor D
and the effector E. The reaction network with all occurring
reactions is visualized in Figure 3. D0 and E0 are the total concentrations of receptor D and

effector E. We denote all receptor states of the detailed
model by a leading D, while later on those of the reduced
models will be denoted by a leading R. In the following
we will always assume that detailed kinetic models, which
build the base for our consideration of gross rates, are for-
mulated using the law of mass action, which is a fre-
quently used assumption.

Definitions
a) Molecules and complexes
In order to provide a complete and general description of
our method, we introduce a formal nomenclature. Due to
its generality this nomenclature might appear cumber-
some. A simplified nomenclature can be used in most
cases because many examples only comprise a small sub-
set of all formally possible cases. In our examples we con-
sistently use a simplified denotation.

Consider a general signaling protein R, that provides a
number of distinct sites. In the general case each of these
sites i can be modified from a state mi, a (e.g. not modified)
to other states mi, b (e.g. phosphorylated). We denote the
molecule with a certain configuration of domain modifi-
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Visualization of the detailed kinetic modelFigure 3
Visualization of the detailed kinetic model. All possible 
reactions of the detailed model for the small example system 
are shown. The model equations are shown in Equation 1.
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Table 1: Necessary equations for modeling the insulin signaling system

Scenario Detailed modeling Exact lumping Layer based reduction Combination

1 145 156 468 145 156 468 214 214
2 145 156 468 212 214 56

In two scenarios layer based reduction, domain-oriented lumping and their combination are compared with respect to the number of necessary 
differential equations. The insulin signaling system is used as example system. Insulin concentration is assumed to be constant. The two binding sites 
on the receptor for Shc and IRS in each case are assumed to be equivalent. 1): All binding site phosphorylations and corresponding bindings are all-
or-none interactions. All binding sites on the same molecule can perform graded interactions. 2): All binding site phosphorylations and 
corresponding bindings are all-or-none interactions. The phosphorylation state of binding sites does not influence phosphorylation of other binding 
sites on the same molecule. See Additional files 3, 4, 5, 6, 7, 8, for model equations and further explanations.
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cations as DR[m1...mn]. We distinguish between the mole-
cule DR[m1...mn] and its concentration DRm1...mn. In a
second step we also consider binding of other molecules
to a certain binding site of R. Such a molecule might be
DE[m1...mk], which also provides a number of sites. One of
them can bind to R. The result of this association is a com-
plex consisting of R and E. This shall be denoted as
{DR[m1...E...mn], DE[m1...R...mk]}.

The general rule for representation of complexes is as fol-
lows. All molecules within a complex are listed comma
separated within curly brackets. On each occupied bind-
ing site the name of the binding partner is indicated. A
complex of the molecule R binding E and F would be
denoted as {DR[m1...E...F...mn], DE[m1...R...mk],
DF[m1...R...mq]}. If the same molecule occurs more often
than once within the complex, indices have to be used. A
graph-oriented molecule representation is suited to solve
the problem of correct denotation in difficult cases.

Since our method often works with lumped states com-
prising a number of molecular species, we introduce the
symbol 'X', which is a replacement character for each pos-
sible state of a binding site. An 'X' within the site defini-
tions of the molecules indicates all possible modifications
on one site. A sequence of three dots following 'X' or
before 'X' indicates that there may be additional sites and
abbreviates a sequence of 'X'. A sequence of dots between
site configurations other than 'X' indicates other sites with
distinct configurations (not 'X'). DR[X...P] for example is a
lumped state describing all molecules R with a phosphor-
ylated site, no matter in which state all other sites are.
Finally, one has to distinguish between DR [X...p]with a
lowercase letter and DR[X...P] with a capital letter. While
DR[X...P] comprises completely all species with a phos-
phorylated site, DR[X...p] only includes those phosphor-
ylated species which do not have bound any other
molecule at this site. Thus, if a phosphorylated site cannot
bind any other molecule it necessarily is DR[X...p] =
DR[X...P].

b) Rules and reactions
According to Blinov et al. [19], rules are a possibility to
condense the description of a reaction system. They corre-
spond to macroscopic chemical reaction equations. Each
rule represents a set of chemical reaction equations that
have common properties. Using the nomenclature
defined above such a reaction rule describing a modifica-
tion can be written as

DR[X...0....X] G DR[X....p...X], (2)

and a binding reaction as

DR[X...p....X] + DE[X...0...X] G
{DR[X...E....X], DE[X...R...X]}. (3)

These rules shall be interpreted as a set of elementary reac-
tions, which all can be modeled using the mass action
law. If we consider the simple example defined above a
possible reaction rule is

D[0, X] + L G D[L, X], (4)

which defines all three elementary reactions describing L
binding to the receptor (d1, d3 and d7 in Equation 1 and
Figure 3). Observe that certain sets of elementary reactions
may have different representations as reaction rules. As an
example, the two rules

are equivalent, since both describe the reactions d2 and d4
in Equation 1 and Figure 3. Reaction rules are a short way
to formulate the complete and detailed stoichiometry of a
reaction network. A short list of reaction rules may corre-
spond to a very long list of possible complexes and ele-
mentary reaction steps and thus to large number of model
equations.

Our goal is to formulate reduced order models in terms of
macroscopic chemical species (denoted by a leading R)
and macroscopic gross reactions (denoted by r) convert-
ing them. The phosphorylation of a binding site may be
described in a reduced manner by the gross reaction

RRX..0...X G RRX...P...X, (6)

with the rate

r = r(RRX...0...X, RRX...P...X). (7)

The corresponding submodel consists of the two ODEs
for the macroscopic variables RRX...0...X and RRX...P...X
and thus is much smaller than the model defined by the
corresponding reaction rule. The crucial point in model
reduction is the derivation of suited gross reaction rates rj
in dependence of the concentrations of the macroscopic
species. In this work we suggest a method for deriving
approximative expressions for gross reaction rates.

c) Different types of interactions
As introduced earlier, there exist three structurally differ-
ent types of interactions. Now we discuss the three types
by means of our example (Figure 3). In this example we
consider three processes, namely ligand binding/dissocia-
tion, receptor phosphorylation/dephosphorylation and
effector binding/dissociation. First, we focus on ligand
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binding and phosphorylation, which we describe in a sep-
arate reaction network. These processes form a reaction
cycle that is shown in Figure 2A. By choosing the kinetic
parameters of the occurring four reactions one determines
if and how the two processes interact. Note that a process,
e.g. phosphorylation, includes two molecular events, e.g.
phosphorylation or dephosphorylation. The same holds
for a binding process which consists of the events binding
and dissociation.

We start considering the special case of non-interacting
processes. If the kinetic parameters describing the reac-
tions d1 and d3 are identical and the parameters of d2 and
d4 are also identical, the two processes – in this case phos-
phorylation and binding of L – are completely independ-
ent. Hence, there is no interaction between the two
processes. If this condition is not fulfilled, the two proc-
esses interact. Characteristics of this interaction can vary
in a wide range depending on the corresponding parame-
ters. Due to this great variability we call these interactions
graded interactions, which form the first important type of
interaction. A hallmark of a graded interaction between
two processes is that both processes can proceed inde-
pendently. However, they can influence their kinetic
properties mutually.

A structurally different type of interaction is given if there
is a causal relationship between the two processes, which
means that one processes must occur before the second
process. In many cases this probably will only be an
approximation to the real interaction. However, it allows
to strongly simplify the model. One can assume that
receptor phosphorylation only occurs if ligand is bound
to the receptor and the species DOp never occurs. The reac-
tion network, which is shown in Figure 2B, now is reduced
to a reaction chain. In this case all receptors follow the
remaining reaction path and none the deleted one. Hence,
we call this type of interaction all-or-none interaction. In
most examples the assumption that phosphorylation and
ligand binding interact in this way will only be a rough
approximation. However, if we consider phosphorylation
and effector binding the importance of all-or-none inter-
actions becomes apparent. This case is depicted in Figure
2C, where DOOO is the unphosphorylated receptor with-
out bound effector E. Phosphorylation is indicated by a p
on the second position, binding of E by an E on third
position. Note, that the species DOOE represents species
without phosphorylation but with bound E. However,
phosphorylation is an essential precondition for effector
binding and effector binding prevents dephosphorylation
due to steric reasons. Therefore, as indicated in Figure 2C,
the species DOOE and the rates related to it do not exist in
this case. Interactions, where both processes can only
occur under certain preconditions are denoted as all-or-
none interactions. A hallmark of all-or-none interactions

is that reaction cycles degenerate to reaction chains due to
non-existing species. Most of the occurring all-or-none
interactions are interactions between phosphorylations
and associated bindings. The reaction scheme in this case
can be simplified by omitting non-existing components
(Figure 2D) and the notation can be simplified as indi-
cated in Figure 2E and introduced before. This fully sim-
plified notation will be used from now on. Note that all-
or-none interactions can be interpreted as a limit case of
graded interactions, where certain parameters (e.g. the
rate constants for d2 and d3 in Figure 2B) are set to zero and
therefore reaction cycles degenerate to reaction chains.
Analogously non-interacting processes realize another
limit case of graded interactions, where there are equality
constraints on parameters. However, we define both limit
cases not to be graded interactions, since they allow
model reduction.

d) Modularization: layers
We define that all binding and modification events cou-
pled by graded interactions form a module which we call
a layer. Note that the definition of layers is according to
interactions of processes and not according to molecules.
Roughly speaking, a layer contains processes, not mole-
cules. However, layers are often dominated by the reac-
tions of a single molecule.

Diffierent layers are only coupled by all-or-none interac-
tions. The definition of layers and resulting modulariza-
tion is demonstrated for two example systems in Figure 4.
Both example systems are discussed in the article. In the
larger system (Figure 4B), binding of an effector molecule
influences its phosphorylation through a graded interac-
tion. Binding site phosphorylation and effector binding
interact via all-or-none interactions. Note that we also
allow all-or-none interactions occurring within layers if
the processes that undergo this interaction are linked indi-
rectly by graded interactions.

An important feature of this modularization is that it only
depends on the definition of interactions. The introduc-
tion of additional graded interactions between processes
of different layers leads to disruption of the modular
structure. In most cases these layers now form one larger
common layer.

The terminus 'layer' results from the typical structure of
the modules. As described, usually binding of a signaling
molecule and its modifications (usually phosphoryla-
tion) form a layer. There is also the possibility that a layer
comprises only one process, typically a binding process, as
can be seen for E-binding in Figure 4A and F-binding in
Figure 4B. One can imagine the successive layers of sign-
aling that are traversed while the signal propagates
through the pathway.
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The layers are interconnected by signal flows. This means
that information about macroscopic quantities of a layer
is exchanged with other layers (signal flow). No mass
flows cross layer boundaries. This means, that no reaction
exists that transports substance from one layer to the
other. Therefore, in the absence of protein synthesis or
degradation, the sum of concentrations of all species for
each molecule remains constant within the layers. Within
layers there are mass flows defined by reaction equations
and corresponding rates as in detailed modeling.

Altogether, layer based reduced modeling and modulari-
zation results in a highly structured reduced model that is

characterized by mass conservation within layers and sig-
nal flow between layers.

Description of the reduction method
First, we consider the more academic case that all proc-
esses within a reaction network either do not interact with
each other or provide an all-or-none interaction. After-
wards we will consider general networks also including
graded interactions. General considerations are illustrated
using the simple example defined above.

a) Networks without graded interactions
General considerations: We assume that within a reac-
tion network all occurring processes do not interact,
except domain phosphorylation and subsequent effector
bindings that are characterized by all-or-none interac-
tions. Phosphorylation usually can be considered as an
essential precondition for binding an effector protein. The
reverse modification (dephosphorylation) is prevented by
binding of this molecule. Both conditions have to hold,
otherwise the interaction between phosphorylation and
binding will be graded.

We dissect the pathway into layers as defined above. Since
the whole network does not contain any graded interac-
tion, each process can be described in a separate layer.
Interestingly, the network has another nice property. All
rates di that describe one of the occurring processes, e.g.
ligand binding, are parametrized by the same kinetic con-
stants in the detailed model. The sum of all corresponding
rates di defines a gross rate rtot (Equation 8), which in this
case can be interpreted as macroscopic mass action kinet-
ics.

Herein, Igross is the set of all reactions describing the bind-
ing of R and E. Observe that the lumped states of the
model are capital letter species RR [X...P...X]. They occur in
gross reactions of phosphorylation events. Lowercase spe-
cies RR[X...p...X] occur in gross reactions of binding events.
No ODE is required for lowercase species, as they are
defined by conservation relations (Equation 9) between
the sum of all phosphorylated binding sites RRX...P...X
and the sum of all occupied binding sites {RRX...E...X,
REX...R...X}.

RRX...p...X = RRX...P...X - {RRX...E...X, REX...R...X}
(9)

Obviously, the same considerations can be made concern-
ing modification processes. So, it is only necessary to bal-
ance capital letter species.

r d k R X p X R X X k R X Etot i on R E
i I

off R
gross

= = ⋅ ⋅ − ⋅
∈
∑ ... ... ... ... { ...0 .... , ... ... }X R X R XE

(8)

Interactions define layersFigure 4
Interactions define layers. Processes (white boxes) are 
coupled by graded (red lines) and all-or-non interactions 
(green lines). All processes that are coupled by graded inter-
actions are merged into the same module, which is called 
layer (blue boxes). Therefore, layers are only connected by 
all-or-none interactions. A) A small example system that is 
discussed in detail. Occurring processes are ligand binding, 
binding site phosphorylation and effector binding. The reac-
tion scheme is shown in Figure 5. B) A larger example sys-
tem that is discussed in Additional file 4. There, the 
successive arrangements of layers can be seen.
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Gross rates of bindings as well as modifications can be for-
mulated using the mass action formalism, as the parame-
ters of all single elementary processes are equal. This is
also discussed by Borisov et al. [22] from another point of
view. The resulting model in this special case also corre-
sponds to what the application of the domain-oriented
approach provides [18]. Hence, all approaches are exact
and consistent in this special case.

Example: The example (Figure 3) comprises the three
processes ligand binding, binding site phosphorylation
and subsequent effector binding. We assume that all reac-
tions describing ligand binding are parametrized by the
same kinetic constants. The same holds true for all phos-
phorylation and all effector binding reactions. Structur-
ally, the system can be dissected into three different layers.

Two binding layers describing ligand and effector bind-
ing, and one modification layer describing receptor phos-
phorylation. Ligand binding can be described by the
reaction rule

D[0, X] + L G D[L, X], (10)

which can be expanded to the reaction rates d1, d3 and d7.
Since all of these reactions are parametrized by the same
kinetic parameters we combine them all to one single
gross reaction

ROX + L G RLX (11)

with the gross reaction rate

The gross reaction

RX0 G RXP (13)

describes binding site phosphorylation and corresponds
to the reaction rule

D[X, O] G D[X, p] (14)

which can be expanded to the reaction rates d2 and d4.

The corresponding gross reaction rate is given by

in which the lowercase letter concentration RXp occurs.
However, the macroscopic variable we want to describe is
RXP. Hence, one has to express RXp using macroscopic

variables, which in this case is relatively simple. One can
use the conservation relation

RXp = RXP - RXE. (16)

The gross reaction

RXp + E G RXE (17)

describes effector binding and corresponds to the rule

D[X, p] + E G D[X, E], (18)

which can be expanded to the reaction rates d5 and d6. The
gross reaction rate is

Note that kE = k5 and k-E = k-5. The sum of phosphorylated
binding sites RXP and the sum of occupied binding sites
RXE are exchanged between the layers describing phos-
phorylation and binding. So, RXp can be computed in
both layers using Equation 16. Using all possible conser-
vation relations

with R0 and E0 as total concentrations of R and E, one can
eliminate several variables and express all of them using
the macroscopic levels of occupancy RLX, RXP and RXE.
Remember that ligand concentration L is assumed to be
constant. Hence, the complete reaction network can be
described by only three ODEs.

Note that instead of RXP or RXE we could also choose RXp
as a state variable of the reduced system. However, as
degrees of phosphorylation (e.g. RXP) and levels of occu-
pancy (e.g. RXE) are usually of interest and correspond to
experimental readouts, we generally choose uppercase
species as state variables. This has the additional advan-
tage that then there is a conservation relation for each
molecule that is not degraded or synthesized within each
layer (see Equation 20).

r d d d k DOO DOp DOE L k DLO DLp D

ROX

1 1 3 7 1 1= + + = ⋅ + + ⋅ − ⋅ + +
=

−( ) ( OOE

RLX=

).

(12)

r k DOO DLO k DOp DLp
RXO RXp

2 2 2= + − +
=

−
=

( ) ( ),
(15)

r k DOp DLp k DOE DLEE

RXp

E
RXE

3 = ⋅ + − ⋅ +−( ) ( ).
(19)

ROX R RLX

RXO R RXP

E E RXE

RXp RXP RXE

= −
= −
= −
= −

0

0

0
(20)

d

dt
RLX r

d

dt
RXP r

d

dt
RXE r

=

=

=

1

2

3

(21)
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b) Networks including all kind of interactions
To introduce the general reduced modeling concept,
where all kinds of interactions are allowed, we start with
an example to illustrate the main features.

Example: Again we consider the simplified insulin model
introduced above. Now, we assume that ligand binding
unidirectionally influences receptor phosphorylation
which in turn is an essential precondition for effector
binding. Ligand binding and effector binding do not
interact directly. From this it follows that the reaction rates
d1, d3 and d7 are all parametrized by the same kinetic rate
constants. The same holds true for the reaction rates d5
and d6.

In the reduced model there are two layers. The receptor
layer describes ligand binding and receptor phosphoryla-
tion, the effector layer effector binding (Figures 4A and 5).
There is a graded interaction within the receptor layer and
an all-or-none interaction between the layers. In this sim-
ple case there are no graded interactions in the effector
layer. The states of the reduced model generally represent
lumped states, i.e. they correspond to sums of micro-
states or in special cases to single micro-states. In our
example ROO and RLO correspond to micro-states. The
lumped states ROP and RLP are pools for all species which
are phosphorylated with no regard to effector binding. RXp
and RXE are pools for species with no regard to ligand
binding.

Observe, that these six equations are linearly dependent.
RXp or RXE can be expressed by using a conservation rela-
tion

x = ROP + RLP = RXp + RXE = RXP. (23)

The connection between the two layers, i.e. the informa-
tion exchange, is given by x = RXP (Equation 23) and xb =
RXE. The sum of phosphorylated binding sites (x) is
passed to the effector layer, the sum of occupied binding
sites (xb) is passed to the receptor layer.

If we compare the reactions of the reduced model (Figure
5) and the reactions of the detailed model (Figure 3), we
find

As already mentioned, the reaction rates that are merged
together (d3 and d7 as well as d5 and d6) have the same
kinetic rate constants.

Our model shall provide equations for all variables that
are given in Equation 22. Hence, all the D-variables occur-
ring in the gross reaction rates have to be replaced by
expressions only comprising R-variables.r1, r3 and rE can
be written using the reduced R-states defined above. How-
ever, for an exact formulation of the rates r2 and r4 one
requires the micro-states DOp and DLp. Due to the linear
dependence of Equations 22 an exact reconstruction of
these micro-states is not possible. They only can be
approximated by

with  (see below, Equation 29). The factor cI is

the fraction of unoccupied sites from all phosphorylated
sites (bound and unoccupied). Note that xb = RXE. Thus
the rates r2 and r4 read as in Equation 26a. As occupied

binding sites cannot be dephosphorylated, the sum of
occupied binding sites (xb) is to be divided on RLP and
ROP for dephosphorylation of those species. This is done
according to their relative amount to ensure that only the
fraction of RLP and ROP with unoccupied binding site can
become dephosphorylated. Model equations for the
reduced system are as follows.

ROO DOO

RLO DLO

ROP DOp DOE

RLP DLp DLE

RXp DOp DLp

RXE DOE DLE

=
=
= +
= +
= +
= +

(22)

r d r d r d d

r d r d dE

1 1 2 2 3 3 7

4 4 5 6

= = = +
= = + .

(24)

DOp ROP
ROP

x
RXE

x xb

x
ROP

DLp RLP
RLP

x
RXE

x xb

x
RLP

≈ − ⋅ = − ⋅

≈ − ⋅ = − ⋅ ,

(25)

x xb

x
cI

− =

Visualization of the reduced kinetic modelFigure 5
Visualization of the reduced kinetic model. In this small 
example system the left module is the receptor layer which 
includes ligand binding and phosphorylation of the binding 
site on the receptor. The right module is the effector layer, 
where binding of E to phosphorylated binding sites on R is 
described. The equations for this system are shown in Equa-
tion 26. Note that we could also compute RXp in the recep-
tor layer and transfer it to the effector layer instead of x. The 
choice to choose x or RXp as a transfer variable is up to the 
modeler. We, however, always transfer x, as then macro-
scopic quantities that correspond to experimental readouts 
are transfered between the layers.

R00

+

+

+ +
R0P

RL0 RLP

RXp RXE

x = R0P+RLP
RXp = x – xb

xb=RXE

x
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r2
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The approximation bases on the assumption that ligand
and effector binding are completely independent.

Accordingly, the calculus of probability suggests that the
ratio equation

is fulfilled [22]. If one uses the five linear independent
Equations 22 and this ratio equation it is possible to solve
the equations for all micro-states.

Hence, it is possible to reconstruct all micro-states of the
detailed model. The accuracy of this reconstruction highly
depends on the validity of the ratio equation (Equation
27). Observe, that an erroneous ratio equation may not
have similar strong impact on the accuracy of the reduced
model states, like e.g. RXE. This depends on the systems
ability to damp disturbances, since an erroneous Equation
25 can be interpreted as a disturbance. Simulation with
parameter values from literature (Table 2) shows that the
deviations of the lumped states from the corresponding
sums of states of the detailed model (Equation 22) are
negligible. This holds also for variation of each parameter
in a wide range (not shown). Reconstitution of states of
the detailed model (Equation 28) also provides a high
accuracy. Simulation results are shown in Figure 6.

Summary: Only one variable has actually been eliminated
by model reduction, but the example serves to illustrate
the main elements of the method. These are:

• Two kinds of real interactions between two processes
exist: all-or-none interactions and graded interactions.
The third possibility is that these two processes do not
interact.

• Modularization is achieved by analyzing interactions
between processes. No graded interactions are allowed
between modules which are called layers. Layers are only
connected by all-or-none interactions.

• Each layer is modeled independently of the others.
Gross reactions are formulated that correspond to reac-
tions of macrostates.

• Dephosphorylation reactions of binding sites need spe-
cial attention, as approximation of lowercase species is
necessary. All other reactions can be formulated as in
detailed mechanistic modeling, however, using also mac-
roscopic species.

• Concentrations of macroscopic species (or sums of
them) are transfered between the layers. Between layers
there is only signal flow, but no mass flow.

• Combinatorial complexity is decreased, as all-or-none
interactions between layers reduce the number of binding
events and bound species by introducing a macroscopic
description of the processes.

• Reduced model equations can be obtained directly with-
out previous generation of detailed mechanistic model
equations.

r k L ROO k RLO

r k ROO k
x xb

x
ROP

r k L ROP k

1 1 1

2 2 2

3 1 1

= ⋅ ⋅ − ⋅

= ⋅ − ⋅ − ⋅

= ⋅ ⋅ − ⋅

−

−

− RRLP

r k RLO k
x xb

x
RLP

r k RXp E k RXE

ROO R RLO R
E E E

4 4 4

0

= ⋅ − ⋅ − ⋅

= ⋅ ⋅ − ⋅
= − −

−

−
OOP RLP−

(26a)

E E RXE

x ROP RLP

xb RXE

RXp x xb

= −
= +
=
= −

0

(26b)

d

dt
RLO r r

d

dt
ROP r r

d

dt
RLP r r

d

dt
RXE rE

= −

= −

= +

=

1 4

2 3

3 4

(26c)

DOp

DLp

DOE

DLE
DOp DLE DLp DOE= ⇔ ⋅ − ⋅ = 0

(27)

DOO ROO

DLO RLO

DOp ROP
ROP

ROP RLP
RXE

DLp RLP
RLP

ROP RLP
RXE

=
=

= −
+

⋅

= −
+

⋅

DDOE
ROP

ROP RLP
RXE

DLE
RLP

ROP RLP
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=
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⋅

=
+

⋅

(28)
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• Model equations can be understood and interpreted
intuitively. Model variables are macroscopic quantities
that are converted by rates following simple kinetics.

General considerations: In reaction networks including
graded interactions the formulation of gross reaction rates
as defined above becomes more difficult than only with
all-or-none interactions. We again start by dissecting the
whole network into layers. Processes coupled by graded
interactions are merged into one layer. All binding and
modification processes within a layer must be directly or
indirectly linked by graded interactions, while the differ-
ent layers are only coupled by all-or-none interactions.
The coupled layers only exchange information about mac-
roscopic variables, like phosphorylation degrees and lev-
els of occupancy.

Now we assume that the processes of each layer form an
isolated network and formulate a detailed kinetic model
of solely these processes. Since processes from other layers
are neglected in these considerations combinatorial vari-
ety is highly reduced. Each state of the submodel can be
interpreted as a sum of states of the complete model, and
each single reaction in the submodel represents a number
of reactions in the complete network. Interestingly, all
reactions of the complete network corresponding to a cer-
tain reaction in the subnetwork are parameterized by the
same kinetic parameters. The reason for this can be found
in the definition of layers. Since there are no graded inter-
actions between layers, alterations in other layers do not
change the kinetic properties inside the considered layer.

Observe, that we define the reactions of the isolated par-
tial network as gross reactions. We stated earlier that if all
reactions forming a gross reaction have the same kinetic
parameters it can be formulated using the law of mass
action. However, one has to accommodate these rates by
including mass conservation relations to eliminate lower-
case species from the description (as in Equation 9). As

processes within a layer can be modeled separately each
layer has to fulfill certain conservation relations. The
receptor layer e.g. is characterized by a conservation rela-
tion for R. Due to these conservation relations within each
layer the gross reactions for phosphorylations have to be
formulated with capital letter concentrations like
RX...P...X, which also comprise all phosphorylated species
with additionally bound effectors. Gross rate kinetics are
nevertheless characterized by lowercase concentrations.
However, a mass conservation relation as Equation 9 does
usually not allow to replace the lowercase concentrations
by macroscopic variables. This results from the presence
of graded interactions within the layers. If binding site
phosphorylation is influenced by other processes of the
same layer, e.g. ligand binding, more than one gross rate
is needed to describe binding site phosphorylation. There-
fore, the mass conservation relation as Equation 9 does
only provide information about the sum of concentra-
tions of species that may be dephosphorylated. However,
we can formulate approximative equations

RRM1...p...Mn ≈ cI·RRM1....P....Mn, 0 ≤ cI ≤ 1
(29)

where cI is a correction term that is the fraction of phos-
phorylated binding sites that is unoccupied.

It is assumed that this fraction is identical for all species
RR[M1....P....Mn]. Note that the factor cI is time dependent
as the fraction of phosphorylated binding sites that is
unoccupied may change over time. A detailed discussion
of approximation quality will be given in the mathemati-
cal background section. The considered gross rates for the

c
R X P X R X E X R X R X

R X P X

R X

I
R R E

R

R

= −

=

... ... { ... ... , ... ... }

... ...

...pp X

R X P X

x x b

xR

i i

i

...

... ...
=

−
(30)

Table 2: Kinetic parameters and initial conditions for the small example system

Parameter Literature value Unit Source

k1 0.001 nM-1s-1 [52]
k-1 4·10-4 s-1 [52]
k2 0 s-1 ass.
k-2 0.00385 s-1 [51]
k4 0.0231 s-1 [50]
k-4 0.00385 s-1 [51]
k5 0.033 nM-1s-1 [53]
k-5 0.113 s-1 [53]

Initial conditions were 40 nM for DOO, 250 nM for E and 10-20 nM for all other species of the detailed model. Initial conditions for the reduced 
model were chosen consistently (Equations 22 and 28). The insulin concentration is set to 100 nM. This is a typical concentration for insulin 
stimulation. Assumptions are: k1 = k3 = k7, k-1 = k-3 = k-7, k5 = k6 = kE and k-5 = k-6 = k-E.
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phosphorylation of R can be formulated using the law of
mass action, if the resulting rate equations are accommo-
dated using correction terms cI (Equations 29 and 30).

Consistent initial values
When comparing the reduced and detailed models the
initial conditions have to be chosen that transformation
equations hold for the starting point. This is guaranteed
for the example system (Figure 5) if Equation 27 holds. If
there is no detailed model, choice of consistent initial val-
ues also is of great importance. Without caring about this
problem simulation can end up with negative concentra-

tions, e.g. if initial concentrations satisfy RXE > ROP +
RLP. Effector binding requires previous receptor phospho-
rylation and the receptor cannot be dephosphorylated
while an effector is bound. Therefore, the number of
phosphorylated receptors always has to be greater than or
equal to the number of receptor-effector complexes. In
general, for each connection between layers there is one
inequality constraint, e.g. RXE ≤ ROP + RLP. Ignoring
them results in physically infeasible systems. So there are
two general possibilities to avoid infeasible systems. The
first is to start with initial conditions for the detailed
model and transform them into initial conditions for the

Simulation results: comparison reduced and detailed modelFigure 6
Simulation results: comparison reduced and detailed model. For parameter values from literature (Table 2), the devi-
ations of the lumped states from the corresponding sums of states of the detailed model (Equation 22) are negligible. Reconsti-
tution of states of the detailed model is possible with high accuracy. The axis of abscissae is given in s, the axis of ordinates in 
nM.
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reduced model (Equation 22). The other possibility is to
ensure that the inequality constraints hold for each con-
nection between layers.

Another aspect of choosing proper initial conditions
arises from approximation of lowercase species (Equation
29). As there is division by RRX...P...X to calculate cI (Equa-
tion 30), all RRX...P...X, where P represents phosphoryla-
tion of a binding site, have to be larger than zero.
However, if RRX...P...X equals zero, RRX...p...X also equals
zero. This results in an 0/0 case, for which the limit is one.
As this may be problematic during model simulation we
recommend to choose initial conditions for all RRX...P...X
larger than zero. Values very close to zero can be taken, if
zero is the desired initial condition.

Mathematical background
In this section we analyze the presented reduced modeling
method from a mathematical point of view. First, we
introduce some general mathematical considerations
about model reduction. Afterwards we will show that the
layer based reduction method also fits into this general
procedure. This will help us to evaluate the method and
make statements about approximation errors.

General considerations
The layer based approach allows to directly generate
reduced model equations, a step by step procedure for this
is given after the mathematical background. However, in
common model reduction techniques the starting point is
a detailed mechanistic model of the form

Herein  ∈ Rn denotes the state vector,  ∈ Rm the system

inputs and  ∈ Rq the system outputs. Now, the objective

is to find another mathematical representation of the
dynamic model which allows to approximately describe
the output variables by a reduced state vector. In order to
achieve this reduction one has to transform the original

dynamic system to new coordinates . First, we

require that this generally nonlinear transformation is a

diffeomorphism, which means that the function  is

invertible and smooth. Additionally, we require that the
transformation separates the states that have a strong
impact on the output variables from the states that only
have little influence on them. The first part of the trans-

formed state  shall be the states of the reduced model

. The other set of states  shall be eliminated in the

reduced model. Hence, the transformed system can be
written as

If  and  only depend on  and not on  the equa-

tions for  can simply be omitted. Then it is guaranteed

that the reduced model has exactly the same input/output
behavior as the complete model. However, such an exact
reduction is only possible in a restricted number of cases

[18,22]. Generally, the vector field  also will depend on

. Since the dynamics of the states  is still influenced

by the states , these have to be approximated by the

states . If such an approximation  is found

the reduced model can be written as

The relevant states

Now, we show that the layer based reduction method fits
into the previously introduced general pattern of model
reduction. Hence, we first have to define the two set of

states  and  implying the transformation . Sec-

ond, we have to define algebraic equations that can be

used to approximate the states . The definition of the

states  is quite simple, since the layer based reduction

method makes clear statements about the states of the
reduced model (see step by step procedure). The state vec-

tor of the reduced model  comprises all states of the

reduced model that are defined by an ODE.

If we consider the example shown in Figure 5, the vector

 includes the states RLO, ROP, RLP and RXE (Equation

26). Importantly, this definition of  suggests a linear

transformation. The states  (in the example system: one

state zn) have to be chosen such that the resulting transfor-

mation  is invertible. Theoretically, there exist an

infinite number of possibilities to choose . The layer

based reduction method does not make any direct state-

ment about how to choose . The reason is that the

additional states  can be chosen freely, as long as the

transformation is invertible. Their choice does not affect
the shape of the reduced model equations. This can be
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proven by some simple considerations. Let us assume that

we have chosen a certain  and have a model like shown

in Equation 32. Additionally, we also have some algebraic

equations for the approximation step  and

consecutively reduced model equations

. Now the question is whether the

reduced model still has the same structure if we choose

another representation of , namely . This can be

realized by using another linear transformation

which transforms the states  of Equation 32 to new

states . Since I is the identity matrix, .

In the transformed system the structure of the ODEs for

 has changed:

However, the transformed algebraic equations now also
have a different form:

If one now replaces  in Equation 35 by what is given in

Equation 36 and observes  the resulting reduced

model again is . This means that the

reduced model structure is completely determined by

defining the states  plus the definition of dim( ) alge-

braic equations in order to approximate the neglected
states. These equations are the ratio equations like Equa-

tion 27, transformed to -coordinates. They are necessary
to reconstruct the states of the detailed model. Alterna-
tively, for building the reduced model directly it is not
necessary to postulate these equations explicitly. They are
already contained implicitly in the reduced model equa-
tions (confer Equation 25).

Approximation of neglected states

After having defined the new coordinates  and  of

the detailed system, one has to find algebraic equations

, which have to be transformed to  coordinates

in order to approximate the states . Our considerations

shall start with the work of Borisov et al. [22,46], who dis-
cuss a special form of algebraic constraint equations in
combinatorial networks. We shortly review these ideas,
extend them and show that these considerations help us
to evaluate and quantify the layer based method. Borisov
et al. discussed reduced modeling of a scaffold protein
with a large number of independent binding sites. If bind-
ing of a ligand to the scaffold changes neither binding
affinity nor velocity of all the other binding sites, they will
be independent. Binding events at each binding site then
can be described separately in a strongly reduced model
that only provides information about the levels of occu-
pancy of the different domains. They suggested that infor-
mation about detailed complex composition can be
reconstructed using the calculus of probability. This can
be exemplified considering a scaffold with two independ-
ent binding sites. Such a molecule can occur in four differ-
ent states, namely completely unoccupied D[0, 0], with
only the first or the second domain being occupied D[1,
0] and D[0, 1], or with both sites being occupied D [1, 1].
Due to independence of binding sites the calculus of
probability suggests that the concentration of scaffold
with both domains being occupied can be calculated as

Borisov et al. showed that if this equation is fulfilled at a
point of time t0 it will be fulfilled for all times t > t0. This
equation can be simplified by elementary transformations
to

DOO·D11 - D1O·DO1 = 0, (38)

which is equivalent to the ratio Equation 27.

In both the examples here and in Figure 3 the four species
occurring in the ratio equations form a reaction cycle.
These cycles consist of two processes in different layers,
which do not influence each other directly, e.g. ligand and
effector binding. It is quite obvious that each reaction net-
work that is decomposed into layers includes such inde-
pendent cycles. All pairs of processes being located in
distinct layers do not interact directly. Indirect interactions
with at least one all-or-none interaction in between are
possible. For each of these cycles one can formulate a ratio
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equation like that described above. Note that each ratio
equation lowers the number of states of the reduced
model by one.

The assumption of rapid equilibrium [47] for each pair of
reactions describing the same process also leads to the
same ratio equations if the equilibrium constant is elimi-
nated from the equations. From this it follows that these
ratio equations are at least approximately fulfilled if the
rapid equilibrium assumption is a good approximation.
Therefore, the approximation error vanishes completely if
the system reaches thermodynamic equilibrium [47], as
illustrated below. The ratio equations are used to approx-

imate the states  as discussed above.

Approximation quality
In order to mathematically analyze approximation of
these ratio equations, we consider a reaction cycle with
four different influxes Ji (see Figure 7). Each reaction cycle
of processes of different layers can be formulated in such
a way. According to Borisov et al. [22] the proposed equa-
tions provide an exact approximation if the processes
forming the cycle interact neither directly nor indirectly
and if the initial conditions already fulfill the equation.
We already discussed that each pair of processes located in
different layers and forming a reaction cycle does not
interact directly. However, the occurring all-or-none inter-
actions between the layers may realize indirect interac-
tions between the considered processes. Indirect
interactions always result in certain external influxes Ji as
shown in Figure 7 and the relations like Equation 27
become erroneous. In this case we can define an error
function g as

g = DOO·DLp - DOp·DLO. (39)

Interestingly, this error function fulfills the linear differen-
tial equation

with

a = k1 + k-1 + k2 + k-2

and

u(t) = J1·DLp - J2·DOp - J3·DLO + J4·DOO

where the rates d1 and d3 are parametrized by k1 and k-1
and the rates d2 and d4 are parametrized by k2 and k-2.

It is apparent that the error will completely vanish if u(t)
= 0, e.g. if the in-fluxes vanish. From a thermodynamic

point of view all reaction rates have to vanish if the system
reaches thermodynamic equilibrium. Thus, one can guar-
antee that the stationary error always is zero if the consid-
ered system ends up in thermodynamic equilibrium. This
is the case if two major conditions are fulfilled. These are
that the Wegscheider condition (detailed balance) [47] is
satisfied in the whole network and none of the modeled
concentrations is assumed to be clamped. However, most
biological reaction networks operate far from thermody-
namic equilibrium. Hence, it is important to discuss the
error for these cases. From Equation 40 one can easily
derive the stationary error as

and the dynamic error as

In order to provide at least a rough estimation of the max-
imal error we assume that u(t) = umax = max (u(t)). With
this we can give the following error bound
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Typical reaction cycle with input fluxesFigure 7
Typical reaction cycle with input fluxes. The in-fluxes Ji 
result from indirect interactions between processes of differ-
ent layers. As the processes are assumed to be independent, 
the rates d1 and d3 are parametrized by k1 and k-1. Addition-
ally, the rates d2 and d4 are parametrized by k2 and k-2.
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These equations show that both the steady state error as
well as the maximal dynamic error decrease for increasing
values of a, which corresponds to increasing values of the
kinetic parameters k1, k-1, k2 and k2, and is zero for one of

these values going to infinity. Note, that even for a large
error g the reduced dynamic model equations may pro-

vide very good approximations for the states . This is

the case if the erroneous states  that are approximated

only have very little influence on , which is closely

related to the system theoretical concept of observability
[48]. However, since in most relevant cases even the states

 are approximated quite well, this shall not be dis-

cussed in detail. Additional explanations and detailed cal-
culations can be found in Additional files 1 and 2.

The modeling procedure – step by step
The following procedure provides a guide to build
reduced models step by step. This procedure is used to
generate a large model of insulin signaling that covers all
processes discussed in the introduction (Additional file
3).

1. Identify all processes (Figure 4, white boxes) and their
interactions (Figure 4, green and red lines).

2. Define layers: all processes that are coupled by graded
interactions are within the same layer. Layers are coupled
by all-or-none interactions or do not interact (Figure 4,
blue boxes).

3. Model each layer individually.

(a) Define all sums of phosphorylated binding sites xi (e.g.
x = ROP + RLP, see Equation 26b) and all sums of occu-
pied binding sites xib (e.g. xb = RXE). The terminal 'b' indi-
cates that there is something bound to the binding site.

(b) Define the concentrations of all unoccupied phospho-
rylated binding sites that are needed as binding partners
within the considered layer (e.g. RXp = x - xb). These spe-
cies act as binding partners for binding reactions (see Fig-
ure 5).

(c) Define rules and reactions (including dephosphoryla-
tion of binding sites) as if there were no other layers and
in particular as if there was no binding of effectors (see
Figure 5). Use (uppercase) 'P' to indicate phosphorylation
of binding sites and use another denotation (e.g.lower-
case 'p') to indicate phosphorylation of regulatory sites.

(d) Translate each reaction into the corresponding rate by
using the desired kinetic law. This step is analogous to

detailed mechanistic modeling. For dephosphorylation
reactions of binding sites multiply the expression describ-
ing dephosphorylation with (xi - xib)/xi using the appropri-
ate xi. This ensures that only unoccupied binding sites are
dephosphorylated (see Equation 26a).

(e) Optional: for each molecule that is not degraded or
synthesized a conservation relation can be formulated
(e.g. ROO = R0 - RLO - ROP - RLP, see Equation 26b).

(f) Construct ODEs as a sum of rates for each species that
is used in this layer and not defined by an algebraic equa-
tion (see Equation 26c).

4. Additional information transfer between layers is
allowed, as long as no additional graded interactions are
introduced (e.g. Ractiv in Additional file 4).

This procedure also outlines how automation of the mod-
eling procedure can be achieved. Steps 1) to 3c) most
probably will be performed by the user, whereas expan-
sion of rules and generation of rates and ODEs could be
automated. The modeling procedure then remains in
close similarity to automated rule based building of
detailed mechanistic models by BioNetGen [19].

A larger example system
To demonstrate the method on a more realistic example
we study an extended subsystem of insulin signaling. This
subsystem was also employed to demonstrate the modu-
larization criterion (Figure 4B). Assume that the receptor
can bind L (insulin) and perform autophosphorylation
on two sites, one being a binding site for an effector E
(IRS) and one being a regulatory phosphorylation site
which negatively affects autophosphorylation of the bind-
ing site. Effector bound to the receptor can be phosphor-
ylated by the receptor (yielding RXEP). Another effector F
(PI3K) can bind phosphorylated effector E. The detailed
system is described by 24 equations. If there is no protein
synthesis or degradation three of these 24 differential
equations (Additional file 4 and 5) can be replaced by
conservation relations for the receptor, E and F, yielding
21 equations for the detailed model. All reactions are vis-
ualized in Additional file 4. Reduction and modulariza-
tion of the model is performed layer based (Figures 4B
and 8). The receptor layer contains L- binding and recep-
tor autophosphorylation, the E- layer contains E- binding
and phosphorylation. Binding of F occurs in the F- layer.
The receptor layer is described by 23 = 8 differential equa-
tions (2 possibilities each for insulin binding, binding site
and regulatory phosphorylation), the E layer needs four
equations (E can be bound and unbound, the binding site
can be phosphorylated or unphosphorylated). The F layer
is described by two equations (bound and unbound F).
Three of these equations could be replaced by conserva-
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tion relations, yielding 11 equations for the reduced
model. In the layers for E and F there are lumped states
that are defined by algebraic relations and need no differ-
ential equation. By convention, in each case we replace
the balance of the binding partner of the effector mole-
cule. These are RXp in the E-layer and XEp in the F - layer.
RXp defines all receptor species with phosphorylated and
unoccupied binding site for E, XEp defines all E-species
with phosphorylated and unoccupied binding site for F, E
being bound to the receptor or not. Simulation with
parameters and concentrations from literature was per-
formed and showed a very high quality of the reduction
(Figure 9). For model descriptions, parameters, initial
conditions and transformation equations see Additional
file 4. Note that there is an additional information transfer
between the layers of receptor and E. The sum of all acti-
vated receptor species Ractiv is transfered to the E layer. This
macroscopic variable represents the concentration of acti-
vated receptor and acts as a catalyst to phosphorylate
membrane-located (that is receptor-bound) E. This does
not disrupt the modularity of the receptor and E layers
because the concentration of activated receptors can be
expressed as a sum of the reduced variables in the receptor
layer. No additional graded interaction is introduced by
this information transfer. If E could be phosphorylated

only when bound to an activated receptor, however, this
would introduce a graded interaction between the two
layers requiring the merging of the receptor and E layers.
Note that this hypothetical additional interaction in this
case is no all-or-none interaction. Receptor activation is a
necessary precondition for effector phosphorylation,
which resembles to an all-or-none interaction. However,
for an all-or-none interaction always two constraints are
necessary. The second would be that receptor deactivation
can only occur if the effector is unphosphorylated. This
will most often not be assumed. Therefore, this hypothet-
ical additional interaction in most cases will be a graded
interaction that disrupts the modularity between the lay-
ers of receptor and E.

Optimization study of the larger example system
An optimization study was performed to analyze the
worst case scenario within physiologic parameter ranges.
Measures for reduction quality are the errors in XEF and
DXXF. XEF corresponds to all species of effector F, that are
bound to phosphorylated effector E, be E bound to the
receptor or not. DXXF corresponds to all species of F that
are bound to the receptor via E. In contrast to XEF, DXXF
is not a state of the reduced model. It is the sum of all
approximated states of the detailed model, where F is

Layer based modularization of the larger example systemFigure 8
Layer based modularization of the larger example system. In the larger example system the left module describes the 
receptor layer. The output of this layer is the sum of all species which are phosphorylated on the binding site for E. This sum is 
denoted as x. The upper right module, which describes the layer of effector E, returns the sum of occupied binding sites (xb) 
and sends the sum of all species which are phosphorylated on the binding site for F (x2). The lower right module, which 
describes the layer of effector F, returns the sum of occupied binding sites x2b. The sum of catalytically active receptors is 
denoted as Ractiv. All reactions are reversible, arrows definne directions of positive rates. For equations see Additional file 4.
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bound to the receptor via E. Depending on the scenario,
both XEF and DXXF can correspond to activated effector F
and therefore have physiologic relevance. Reconstruction
of states (or sums of states as it is DXXF) of the detailed
model is extensively discussed in Additional file 4. Start-
ing from literature values, parameters were varied over
four orders of magnitude to maximize the error in XEF
and DXXF. This parameter interval should cover physio-
logic parameter ranges. Reduction quality is still very high
and even the error of DXXF is within the range of measure-
ment errors in typical experiments. Worst case parameters
and simulation results are shown in Additional file 4.

Synthesis, degradation and transport of proteins
Up to now it was assumed that there is no protein synthe-
sis or degradation. However, synthesis and degradation of
free unmodified proteins is easy to handle. The rate of
synthesis or degradation just has to be included in the dif-
ferential equation for the free species. Degradation or syn-
thesis of complexes is also possible though often not
being as easy to realize. If a scaffold protein or even the
receptor is to be degraded one has to observe that there
exist lumped states in several layers that correspond to
complexes with this effector or the receptor. In this case,
the rate of degradation or synthesis has to be considered

Simulation results: comparison reduced and detailed model, larger example systemFigure 9
Simulation results: comparison reduced and detailed model, larger example system. For parameter values from 
literature (Additional file 4), the deviations of the lumped states from the corresponding sums of states of the detailed model 
are negligible. As demonstrated for DLPF reconstitution of states of the detailed model is possible with high accuracy. The axis 
of abscissae is given in s, the axis of ordinates in nM.
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in different layers to guarantee consistency. Now more
communication between the layers is necessary. The same
rates that are modified by different correction terms to
reflect complex composition occur in distinct layers.
Transport between different compartments can be han-
dled as degradation in one compartment and synthesis of
the same complex in the other. Therefore, synthesis, deg-
radation and transport of complexes is possible with the
layer based formalism. Concise modular structure of the
model with a minimum of information transfer between
the layers is yielded when these processes are limited to
free protein species.

Outline: application on insulin signaling
A model for the insulin signaling system which includes
all events that were mentioned in the introduction can be
built with 64 + 128 + 4 + 11 + 5 + 2 = 214 differential
equations instead of 1.5·108 in the detailed case. The 214
equations for the reduced model are composed as follows.
26 = 64 equations in the receptor layer describe binding of
two insulin molecules and phosphorylation of four bind-
ing sites (two for Shc and two for IRS). The 27 = 128 equa-
tions of the IRS- layer derive from six binding sites, each
of them can be phosphorylated and unphosphorylated.
IRS can be bound to the receptor and unbound. 4 equa-
tions are needed for the Shc layer (Shc binding to the
receptor and becoming phosphorylated). SOS and Grb2
are merged into one layer. This allows SOS binding to
Grb2 influencing Grb2 binding to IRS and Shc. The corre-
sponding layer is described by 11 equations (six equation
describing binding of complexes of Grb2 and SOS to IRS
and Shc, five equations for free species, remember that
SOS can be phosphorylated). The PI3K layer contains 5
differential equations (binding to four binding sites) and
the SHP2 layer 2 (binding to IRS). Free species are consid-
ered. The two binding sites on the receptor for Shc and IRS
in each case are assumed to be equivalent. Other underly-
ing assumptions are specified in Table 1. Layer based
reduced modeling of this system is demonstrated in Addi-
tional files 3 and 6.

Reduction ratios and combination with domain-oriented 
lumping
As shown above for insulin signaling combinatorial com-
plexity increases as the effector is subject of additional
modification and binding events. The reduction potential
of the layer based reduced modeling method strongly
increases with increasing combinatorial complexity. For
the small example system the number of equations is
reduced by 20%, for the larger example system by 48%.
The fraction of necessary equations for the signaling sys-
tem as described in the introduction is reduced by
99.9999 %. This illustrates that even large systems can be
described with a number of equations that can be handled
by manual modeling. However, molecules with many

binding sites or regulatory phosphorylation sites are still
difficult to handle. Here combination with the domain-
oriented lumping technique [18] is possible. An example
scenario is analyzed, underlying assumptions are speci-
fied in Table 1. There, case 1) is a very general setting,
while case 2) is one of the most simple realistic special
cases. In this case it is assumed that the phosphorylation
state of binding sites does not influence phosphorylation
of other binding sites on the same molecule. The layer
based formalism requires still 214 equation, domain-ori-
ented lumping requires 212 equations, the combination
of both methods yields a model with only 56 equations.
To combine both approaches, first the layer based model
is generated. Then the domain-oriented approach is
applied to each layer separately (see Additional files 7 and
8).

So, combination of layer based reduced modeling with
the domain-oriented approach [18] is possible. Under
specific conditions, this results in an additional decrease
of the fraction of necessary equations. The ideal scenario
for combining both methods is the occurrence of mole-
cules with many sites, where these sites do not or sparely
interact. Then domain-oriented lumping allows further
strong reduction of the layer based reduced model. Reduc-
tion quality stays the same as the domain-oriented
approach provides exact lumping.

Conclusion
We present a reduced modeling approach which allows to
tackle the problem of combinatorial complexity in signal
transduction and regulation networks. For physiologic
systems combinatorial complexity is dramatically
decreased, as demonstrated on insulin signaling. Similarly
to Pawson and Nash [23], Borisov et al. [22] and Conzel-
mann et al. [18] our method aims at a more macroscopic
description of a system using levels of occupancy and
phosphorylation.

A modularization principle is introduced. There, one has
to distinguish between graded interactions and all-or-
none interactions. Modules, which correspond to layers of
signal transduction, are chosen such that they only inter-
act via all-or-none interactions. All processes inside layers
are connected directly or indirectly via graded interac-
tions. For each layer we formulate a detailed reaction
scheme comprising all processes of the current layer but
neglecting all other processes. In the subsequent mode-
ling step one has to formulate gross reaction rates for all
of these reactions. A step by step procedure for building
reduced modular models is given.

A potential drawback of the method is that even small
changes to the assumptions of the model may lead to
merging of layers which results in lower decrease of com-
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binatorial complexity. This is the case if additional graded
interactions between processes of different layers are
introduced.

Mathematical analysis as well as simulation and optimi-
zation studies using insulin signaling models show that
the approximation quality is excellent for relevant param-
eter settings. In the considered examples it is even possible
to reconstruct the eliminated micro-states with high accu-
racy. As we also showed the method allows an enormous
reduction of the number of necessary ODEs compared
with detailed combinatorial models.

The method can be combined with the domain-oriented
lumping technique [18], which can result in further reduc-
tion of the model.

Methods
Initial conditions
The total concentration of insulin receptor in hepatocytes
was reported to be 105 receptors per cell [49]. A hepato-
cyte is assumed to be a ball with diameter 20 μm. This ball
has a volume of 4.2·10-12 l. With one mol standing for
6.0221415·1023 molecules there are 1.66·10-19 mol recep-
tor per cell. This is a concentration of 40 nM. The total
concentration for IRS (E) was assumed to be the same as
for Shc, which is 250 nM [9]. The total concentration for
PI3K (F) was taken from literature [9]. It is assumed that
the signalling system is totally inactive at the beginning.
Initial conditions other than zero but close to zero (10-20

nM) for the states which should start with an initial con-
dition of zero were chosen. This prevents division by zero
in correction terms of the rates of the reduced models and
in the computations for consistent initial values. The
states of the reduced model were chosen consistently such
that transformation equations hold.

Parameter values
Insulin receptor autophosphorylation in vitro has a half-
life of about 0.5 min (Figure 1 in [50]). Assuming first
order kinetics, this corresponds to a rate constant of
0.0231 s-1. Insulin receptor dephosphorylation on the
plasma membrane in vitro has a half-life of about 3 min
(Figure 2 in [51]). Assuming first order kinetics, this cor-
responds to a rate constant of 0.00385 s-1. Parameters
describing binding of IRS to the insulin receptor were
originally reported to describe the binding of the p85 sub-
unit to IRS [50].

Abbreviations
nM, nano molar (10-9 mol·l-1); ass., assumption; ODE,
ordinary differential equation
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