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I. INTRODUCTION 

In complex discrete-event systems, such as 
automated transportation systems, challenging issues 
include coordination of sub-plants and adequate 
handling of unexpected or uncertain events such as 
blockings , mechanical failure, etc . Under such 
circumstances, it is important that the coordination 
plan and its implementation strategy should adapt to 
the dynamic environment. In most current 
transportation systems, the control plan is predefined 
and a human operator is needed to handle unexpected 
situations in order to adjust the plan when unforeseen 
events occur. Inspired by the simplicity and the 
effectiveness of max-plus algebra models for 
discrete-event systems, a new planning and control 
scheme is proposed in this paper. Fig. 1 illustrates the 
control architecture discussed in the sequel. 
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On the upper level, a max-plus algebra model is 
introduced to determine the time optimal plan. It also 
provides the event time specifications for the lower 
level. On the lower leveL min-plus algebra not only 
coordinates the behaviour of sub-plants but also 
reduces energy consumption. In brief, the control 
system is a hierarchical structure: the upper level is a 
supervisory block, which produces the optimal plan 
for the lower level. The lower level is an 
implementation block based upon the specifications 
generated by the upper level. In this paper, a simple 
rail system is used to illustrate all concepts discussed. 
For this example , the plan generated by the upper 
control level specifies the sequence of trains and 
track segments where trains pass each other. The 
lower level generates velocity reference signals for 
the trains to implement the optimal plan. 

This paper is structured as follows. Section 2 describes 
some basic ideas from max-plus algebra and min-plus 
algebra, which will be used in the sequel. Section 3 
focuses on the supervisory block including methods 
for detennining all feasible plans and, subsequently, 
for choosing the optimal plan in an online fashion. 
Section 4 explains how the specifications generated at 
the upper level can be implemented on the lower level 
with the help of min-plus algebra. In Section 5, a 
simple application example is given to illustrate the 



effectiveness of the proposed approach, followed by 
some conclusions in Section 6. 

2. MAX-PLUS ALGEBRA & MIN-PLUS 
ALGEBRA 

2.1 Max-plus algebra 

In max-plus algebra (e.g. Baccelli, et al.. 1992), addition 8 
is defined to be the maximum of two elements in 
conventional algebra, while multiplication @ is defined 
to be conventional addition on the set IR * = IR v {-:x:>}: 

a (B b:= max(a , b) , 

a@b:=a+b· 

(I) 

(2) 

£ (£=-co) is the additive identity in the max-plus algebra. 

e (e = 0) is the multiplicative identity. For a 1 x m 
matrix A over IR * and an m x n matrix B over IR * , 
A@B is defined by 

(A@B)ij = EB;=l A jk@Bkj = maXk (A jk + Bkj) (3) 

2.2 MeLt-plus models 

Max-plus algebra is a convenient modelling and 
analysis tool not only for cyclic systems but also for 
systems with non-cyclic behaviour. In this contribution, 
we will focus on the latter. 

(j) @ 
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Fig. 2. A simple train-track network example 

Consider a simple train- track network (Fig. 2) , where 
two trains are travelling along their tracks. The 
movement of the trains is pictured as a graph with 
nodes and arcs. Nodes always correspond to specific 
trains crossing specific locations within the train-track 
system. For example, node 1 and node 4 represent the 
starting events of train I and train 2 respectively. Node 3 
and node 6 represent the events of train I and train 2 
arriving at their terminal stations. The arcs betvieen 
the nodes represent the minimum time needed. For 
example, the event represented by node 2 may not 
happen earlier than 5 time units after the event time 
of node 1. The time associated with an arc is also 
called weight of the arc. The light grey part of Fig. 2 
represents the crossing area, which only one train can 
occupy at any instant of time in order to ensure safe 
crossing. Node 5 represents the event of train 2 entering 
the crossing area. Node 2 represents the event of train I 
leaving the crossing area. A "control arc" (dashed arc 
from node 2 to node 5 in Fig. 2) is introduced. This 
control arc reflects a safety requirement: the earliest 
time at which train 2 is allowed to enter the crossing 
area is I time unit after train I has left it. 
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Let Xj denote the event time for node i. Then, & is the 
earliest possible event time for node i, i.e. the lower 
bound of Xj. Train I and train 2 start their trips at time O. 
The input to the system is a vector u E IR *2 representing 
the earliest starting times: u=[O O( The output of the 
system is defined by the earliest possible arrival 
times of the trains, Y=[~ <£6( It can be conveniently 
computed by 

CCCCCC ICCE:ccc! rlO 
ccccc !cccccc ' c 

c4cccc Icccccc l 'I: r:c ' 
e x 6 ' . 0~ e . :0 u 

c c c c c c - le c c C C C l :c 0 ' , 

c c c 

c c c c 
c " 

I 
CJ 

! e Ice c C ' CC c" I' 
_c c c C C cJ 

(4) 

c 0 c c c] ex, 
££:££0 -

(5) 

where J: = Lz: , 2', 2' J 2', 2', 2' 6 r is the earliest possible 

event time vector. 

The general max-plus model in this contribution has 
the following form: 

,K = A
Ol 

@ X (B A02 @ X (B B @ u , (6) 

Y = C@,K, (7) 

where the elements of AOI correspond to "normal 
travelling arcs" representing train travelling times 
while the elements of Am correspond to the control 
arcs. Of course, we can combine these two matrices 
into one matrix: 

(8) 

Furthermore, an explicit max-plus model can be 
derived from (6), (7) and (8): 

,K=Ao*@B@u, (9) 

Y=C@Ao* @B@u, (10) 

Ao * = J (B Ao (B Ag (B. (B A; (B A(~- l (B .. (11) 

where J is identity matrix in max-plus algebra: 

(12) 

A path is a sequence of arcs connecting a sequence 
of nodes. When the initial and the final node 
coincide, it is called a circuit (Baccelli, et aI., 1992). 
The length of a path or a circuit is equal to the 
number of arcs of which it is composed. For 
physically meaningful systems, the graph represented 
by Ao does not contain circuits. For such noncyclic n 
by n matrices Ao, A ~ , k~n, does not contribute to the 
sum (11), see e.g. (Baccelli, et aI., 1992). 

With the system model (9) and (10), we can easily 
"simulate" the system for a given input to compute 
all event times <£ j. Subsequently, it will be assumed 
that the system input u contains lower bounds for the 
state vector X, i.e. B=/. The simulation results of the 
max-plus algebra model will be used both for 
determining the optimal plan and for generating the 
reference signals for train velocities. 



2.3 Min-plus algebra 

Min-plus algebra (Baccelli, et al., 1992; Cuninghame­
Green, 1979; Cuninghame-Green, 1991) is the system 
IR.m = (IR U {+oo}, 9', 0' , c', e) . Here 9' refers to 
minimisation, i. e. 

a9' b : = min(a , b) , (13) 

For scalars, 0 ' coincides with 0, i.e. 

a0 ' b = a ® b : = a + b . (14) 

For matrices A, B, multiplication is defined by 

(A0 'B)ij = EB';;I Aik®'Bkj = mink (A ik + Bkj ). (15) 

The operation e' has the neutral element E'= +00. The r­
fold 'product ' of a matrix X with itself\. ... ill be written as : 

X i' ] = X®'X@' .. ·®'X· (16) 
~ 

Similar to the * operation in max-plus algebra, in 
min-plus algebra, the * ' operation can be defined: 

A*' = l' tri A 9' ··9' Aln' 9' A!n- l; 9' .. , (17) 

where l' is the identity matrix in min-plus algebra: 

[

e C'] 
1'= c' " . e 

(18) 

Note that the following relation holds for the * and *' 
operations of max-plus algebra and min-plus algebra: 

(_A T)*'= _(A*)T . (19) 

where "-" is the conventional minus. 

3. SUPERVISORY STRATEGY 

As indicated in Fig. I, to generate the optimal plan 
for the sequence and timing of the trains, the 
supervisory block for rail traffic systems does not 
only need information on the track topology , but also 
real time information on the current status of the 
trains . The optimal plan then specifies the future 
sequence of all train movements and their passing 
places . While determining the optimal plan is an 
online task, generation of all feasible plans can be 
done offline. In this contribution, we assume that the 
network is not too large, so that the complete set of 
feasible plans can be established. Once all feasible 
plans are known , it is possible to select the optimal 
plan online and send it to the implement block. 

3.1 Feasible plans 

A complex train-track network usually contains track 
segments which are used by several trains. For safety 
reasons only one train is allowed to occupy such a 
resource at any instant of time . For each resource, 
there are several possible train sequences, usually 
caUSIng different combinatoric possibilities. 
Correspondingly, for the whole system consisting of 
a number of trains, there are several feasible plans. 
For example, while the control arc in Fig. 2 realises a 
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special feasible plan, another feasible plan is to make 
train 2 pass the crossing area before train I enters it. 
Of course, to model this plan there is the need of 
adding nodes to the graph in Fig. 2. It is 
straightforward to find the time optimal plan within 
the set of feasible plans by simulating the max-plus 
model for each feasible plan. In the following, it is 
shown by use of an example, how the set of feasible 
plans and their max-plus models can be determined. 

For a max-plus algebra model for train movements, 
all trains are assumed to move at full speed if 
possible. Such maximum speed assumption is only 
applied to find the time optimal plan. It is not 
necessary for the implementation block. Generally 
we know the distances between every two sequential 
nodes for each train on the corresponding tracks, 
under the maximum velocity assumption, we can 
determine the transition times for arcs connecting 
sequential nodes. In other words, for a given train 
track network, the travelling arcs and therefore the 
entries of matrix AO I are already determined. 

On double-line track segments, forthcoming trains 
will not interfere. This is different for single-line 
track segments, which can only be occupied by one 
train at a time, so control arcs are necessary to ensure 
safe travelling for trains on these track segments. The 
structure of the control arcs carries the information 
about the sequence of trains. The weight of a control 
arc determines a possible safety time that should pass 
between the trains ' movements. If two trains compete 
for the travel on one single-line track, there are two 
possibilities: either train I or train 2 can go first. If a 
train-track network includes several single-line track 
segments, the different combinations of those 
possibilities generate different plans. Of course, some 
of them could be infeasible, namely cause blocking. 

train 1 

o 

tram 2 

Fig. 3. A network with all possible control arcs 

Fig . 3 shows the directed graph of a simple network 
with m 'o single-line track segments and two trains, 
where train I moves from right to left and train 2 
moves in opposite direction. For single-line segment I, 
the control arc labelled a J, with al~O represents the 
fact that train 2 starts to occupy this segment a l time 
units after train 1 has emptied it. The control arc 
labelled b l states the reverse sequence. Accordingly, 
only one of those two arcs can exist in anyone plan . 
Instead of erasing a non-existent arc from a graph, 
we can also label it by E. Hence, by definition , non­
existing arcs have weight -x. Similarly, in segment n, 
the arcs labelled a: and b: represent the two possibilities. 
Table I shows all four combinations of the selection of 
arcs. Among these combinations, the case a l~' b;20 
causes a conflict (blocking), thus this is an infeasible plan. 



Table I Combinations of control arcs 

co mbi nati on 

OJ,o.,>-o 
b, = b, = I: 

b,. a, >= 0 
a, = 0, = I: 

0,.02 >= 0 
b, = 0,=1: 

b,. b,>= 0 
0J = 02::;;:; E 

passi ng pi ace of train 1 and train 2 

double-line track segment on the left of area I 

double- line track segment between area I and area n 

not feasible. sce Fig. 4 

double-hnc track segment on the right of area n 

For large train-track network systems, we need a 
simple criterion to determine whether a plan is 
infeasible. Fig. 4 shows that the conflict of combing 
al2:0 and b,2:0 comes with a circuit in the directed 
graph. A circuit with a positive weight causes a 
contradiction, because the events on the circuit 
wou ld have to "happen some time before they 
actually happen". So the problem of determining 
infeasible plans can be solved by checking for the 
existence of circui ts . 

train I 

Fig. 4. Combination al2:0, b2?0 and the circuit 

Within the Ao matrix, the diagonal entry Ao (i, i) 
represents an arc from node i to node i itself. If Ao (i, I) 
is not E, there is a circuit of length I containing node i. 
Suppose set a(i) is the set of circuits of length 2 
containing node i. Considering the matrix product 
definition under the max-plus scheme, Ao'= A @ A , 

, 0 0 

Ao - (i, i) represents the largest sum of weights for any 
circuit of length 2 containing node i. Hence, if A 02 (i, I) 
is not E, there is at least one circuit of length 2 
containing node i. Similarly, if Ao k (i, i) is not E, there 
is at least one circuit of length k from node i to node i. 

In order to determine whether a plan is infeasible, we 
just need to calculate Aok, kSn, in the max-plus sense. 

3.2 Online simulation 

Based on the set of max-plus models for all feasible 
plans, the optimal plan with respect to a specific 
objective function can be easily determined by 
simulation. Max-plus simulation is based on the 
assumption that there is no unexpected event and that 
each train either -waits for a synchronization 
condition to be met or otherwise moves at its 
maximum ve locity. If any unexpected incident 
happens, it may affect some trains ' trave lling times 
either directly by blocking them or indirectly via 
synchronization with other trains. If this happens, the 
runtime event times do not match the event times 
calculated by a-priori model simulation any more. In 
order to do online plan optimisation, i.e. rescheduling 
at runtime, the state vector needs to be reinitiali sed 
based on the current status (time Ik) of the trains for 
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on line model simulation. The reinitialised state 
vector is denoted by X _in. In general, it contains 
three different kinds of elements: 

I. For an event) which already happened the reinitialised 
state value is the actual event time, i.e. 

~ _in/tk) = Xj ' (20) 

2. For the next event of any train, the reinitialised 
state has to be calculated based on the current 
position of the respective train . Suppose at a time 
instant tk, the distance a train has to move before it 
reaches the location associated with the next event (J) , 
is 0(tk). Under the assumption of maximum ve locity 
Vma.,., the next reinitialised state ~ _in j(lk) will be: 

. I t k + d:.:~:) unblocked trains 

x In ,Ctk ) = 
-- , d (tk) 

tUE ,d,o.'·' + - ) - blocked trains. 
- V 

mJX 

(21) 

where It;E release is the estimated release time for the 
blocked train. If this time cannot be estimated 
beforehand, recalculation of the plan is based on the 
assumption of immediate release, i.e. 

3. For other events) in the future, the reinitialised 
states still remain undefined, i.e. 

,! _in/tk) = E. (23) 

Therefore, the reinitialised state at time Ik is: 

if j is a past event (24) 
if j is a next event f ar any train 

otherwise 

Then, the updated vector of event times can be obtained 
for all feasible plans by simulation, i.e. by evaluating (9) 
with u= X _inCh). (9) and (10) are rewritten as 

2!..(tk) = ..10 * @B@2!.._in(tk), (25) 

Y~)=C@~*@B@2!.._~~). ~~ 

3. 3. On line plan optimisation 

During runtime, the progress of the trains is observed 
by the supervisory block. At regular time instants 
(e.g. in an equidistant discrete time scheme), simulation 
is done for all feasible plans, comparing the values of 
the objective function . The objective function is 
evaluated from the output vector Y. An example for 
the objective function would be the last trains ' arrival 
time , i.e. we want to minimise max (Yi). 

Note that the number of feasible plans reduces as the 
trains progress through the network. As described in 
section 3.1, building the set of feasible plans is based 
on the different possible combinations of control arcs 
at the single-line track segments . During runtime, 
once a train enters a single-line segment, there is no 
need to consider the competing control arcs on thi s 
track segment because the choice has already been 
made. 



4. IMPLEMENTATION 

The output of the supervisory block generates the 
time optimal plan, i.e. the time specifications X for 
the events. Due to the maximum speed assumption 
under max-plus, X provides the earliest possible time 
for each event, and is therefore referred to as EPET 
(earliest possible event time) specifications. According 
to EPET, trains will always move at maximum speed, 
or otherwise stop to wait until the synchronization 
conditions are met. Clearly, this is undesirable from 
an energy saving point of view. An overall 
optimisation approach, minimising energy 
consumption for all trains in common, yields a large 
non linear problem and therefore is not realizable . 
Instead, a suboptimal more conservative approach is 
used here determining a velocity signal separately for 
each train. This is done as follows: first, as an upper 
bound for the event times, LNET (Latest necessary 
event time) is derived for each train . This is done in 
such a way that the trains ' arrival time at the final 
destination according to EPET will be met. It is also 
ensured that LNET does not violate the EPET 
schedule of the other trains. In order to generate the 
LNET specifications, min-plus algebra, the dual 
system of max-plus algebra, is used. 

Suppose Q is the event index set for all events 
corresponding to the arrival of trains at their final 
destinations and Pm is the index set for all events 
related to train rn, then the LNET specifications 

X", for train rn can be calculated as 

where 

(XRm) ,(tk) = { ,! ,(tk)' 
+ 00, 

(27) 

i E Q or i re Pm . (28) 
olher, .. ise 

The min-plus algebra equation (27) represents 
"backward simulation". Using ( 19), it can be 
rewritten as 

Now, for each train rn , its EPET X and LNET X"' 
are available. Within this corridor, the velocity signal 
can be optimised locally for each train . If we neglect 
acceleration and braking effects, an energy optimal 
trajectory results from minimising 

5. RAIL TRAFFIC CASE STUDY 

Various studies concerning the modelling and control 
of rail traffic system have been done during the past 
decades. For example, recently Schutter et at. extended 
the model predictive control framework to transfer 
coordination in railway systems (2002). 

The effectiveness of the hierarchical control architecture 
proposed in the previous Sections is illustrated by a small 
rail traffic example (Fig. 6) involving 3 trains and 3 tracks. 
Initially, train I , 2 and 3 are located at the end points of 3 
tracks, i.e. A, B and C, respectively. The trains move along 
the tracks in the directions shown in Fig. 6. In the middle of 
both, track AO and track CO, double-line track segments 
are available, which make it possible that two ~ pass 
each other between points NI and MI or N, and \-L 
respectively. As in any real world application, ~expected 
events (e.g. blocking of the track, mechanic failure, etc.) 
may occur and have to be handled by the controller. 

-., rr3cn l A.---.... " ~ C 
~N.~ 

:-.11 tra~ 3 

, 
• 
• B 

tr:1.I1I 2 

Fig. 6. A simple rail traffic network 

5.1. Feasible plans 

First, the set of feasible plans is computed oflline. Single­
line track segment AN I can either be occupied by train I or 
train 2. Nevertheless, the order is predetermined, as the 
track is already occupied by train I in the beginning. The 
same situation occurs for segments BO and CN~. 
Therefore, although there are five single-line track 
segments, the order can only be chosen for segments OM I 

and O:\.'h, The proposed approach yields a total set of 3 
feasible plans pictured in Fig. 7-Fig. 9. In plan I, train I 
occupies track segment OM, just after train 2 empties it. 
Similarly, train I enters track segment OM2 after train 3 
leaves it. In plan 2 the sequence of trains is reversed in both 
segments. Plan 3 is similar to plan I except of the trains ' 
order on OM2. Fig. 10 shows the directed graph for plan I 
including the control arcs needed to enforce this plan. 

J = fv ldr· m m 
(30) 

An example for an energy optimal trajectory is given in Fig. 5. 

position 

nod" i -2~~ 

"~' :.~ ""C;'+~._" " > _'~~' :- _~ __ ~' c 
- 0-" '-0 - / 0 

M~ 1oI',#' , '>i , "':/ .\1:-- .,1: 

. I ", ",' 
~ . ~ , . 

I M • I \ 

EPET " . L:-;ET Fig. 7. Plan I (0\11: train2 trainl, 0:\12: train3 trainl) 

node i ~l~ 

--~ 
CU rTent L..::::-=-_________ _ 

positlOrlltlInC: time 

Fig. 5. Energy optimal trajectory (bold line) Fig. 8. Plan 2 (OM I : train I train2 , OM~ : train I train3 ) 
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Fig. 9. Plan 3 (OM I : train2 train I , OM2: trainl train3) 

o 0 
X:o XJ 

Fig. 10. Directed graph for plan I 

5.2. Closed loop simulation results 

Plan I is the time optimal plan if there is no 
unexpected event. Fig. 11 shows the movements of 
the trains under the proposed hierarchical control 
scheme. In case of a disturbance (here train 2 is 
blocked on track BO), the supervisory level checks if 
it is necessary to change the plan. Such a situation is 
illustrated in Fig. 12. After train 2 has been blocked 
for some time, it is optimal to change from plan I to 
plan 2. This is determined in the supervisory block 
on the upper level and implemented by the 
implementation block on the lower level. This 
changes the operation sequence of trains : train 3 
occupies track segment OM2 after train I leaves it, 
train 2 enters track segment OM I after train I 
empties it. If the blocking is removed at time 12, this 
control policy will ensure that all trains arrive at final 
destinations at time 42.4 . For comparison, Fig . 13 
gi ves the result when there is no supervisory control. 
This implies that the original plan is maintained 
during the blocking and after it has been removed. 
Clearly it takes longer for the trains to finish their 
travel , as the last train arrives at 50.2. Note that in the 
case of blocking, the continuous adjustment of 
velocity signals leads to non straight trajectories in 
Fig. 12 and Fig. 13 . 

/l 
"r - - - - - - -;r--/ --~ ---
10 _ _ . - - - - - J. - - ..: - - - - .: - - -

" / , 
,,- _. - - -,. - - ; - - - - - - - - - -

,o~1 - - - - _, c - - Train 1 -
, I. .' . 
'. ' , ._ ....... _ .. Train 2 

,~ - ~ ./- - - - - - Train 3 -

" . . 
e ~ '0 . ~ r. 1:. lC )~ _c " . :< ~ 

Fig. 11 . Simulation result under normal situation 
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- Train 1 
~:-: -- Train 2 : - -.:.... - 1- - -

~~ - Train 3 . _ _ !. __ _ 
, / 1 

Fig. 12 . Plan changing due Fig. 13 . Comparison study: 
to unexpected events No supervisory control 

6. CONCLUSIONS 

A novel hierarchical control architecture for a class 
of discrete-event systems has been proposed in this 
contribution. It has been applied to a rail traffic 
network. Based on a max-plus algebra model, the 
sequence of resource allocations is chosen such that 
minimum overall processing time is reached. An 
upper level supervisory block ensures the optimal 
sequence of train movements even under disruptive 
conditions. A lower level implementation block 
provides reference velocity signals for each train. By 
exploiting the remaining degrees of freedom, it 
reduces overall energy consumption. The implement 
policy is generated by use of the dual min-plus 
algebra modeL 

The method has been illustrated by means of a small 
rail traffic example. Simulation results show the 
effectiveness of the approach. 

With respect to the extension of the method to large 
systems as well as for similar discrete-event systems 
in other fields , such as, flexible manufacturing or 
chemical process control, two aspects have not been 
treated in this contribution. The first is to find 
methods to cope with combinatoric explosion during 
the computation of the set of feasible plans for large 
systems; the second is the extension of the method to 
cyclically repeated processes where the advantages 
of the max-plus scheme can be further exploited. 
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