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Abstract
Background: Metabolic pathway analysis has been recognized as a central approach to the
structural analysis of metabolic networks. The concept of elementary (flux) modes provides a
rigorous formalism to describe and assess pathways and has proven to be valuable for many
applications. However, computing elementary modes is a hard computational task. In recent years
we assisted in a multiplication of algorithms dedicated to it. We require a summarizing point of view
and a continued improvement of the current methods.

Results: We show that computing the set of elementary modes is equivalent to computing the set
of extreme rays of a convex cone. This standard mathematical representation provides a unified
framework that encompasses the most prominent algorithmic methods that compute elementary
modes and allows a clear comparison between them. Taking lessons from this benchmark, we here
introduce a new method, the binary approach, which computes the elementary modes as binary
patterns of participating reactions from which the respective stoichiometric coefficients can be
computed in a post-processing step. We implemented the binary approach in FluxAnalyzer 5.1, a
software that is free for academics. The binary approach decreases the memory demand up to 96%
without loss of speed giving the most efficient method available for computing elementary modes
to date.

Conclusions: The equivalence between elementary modes and extreme ray computations offers
opportunities for employing tools from polyhedral computation for metabolic pathway analysis.
The new binary approach introduced herein was derived from this general theoretical framework
and facilitates the computation of elementary modes in considerably larger networks.

Background
The background section presents the importance of com-
puting elementary modes for metabolic system analysis,
its computational difficulties and the existence of various
known algorithms. A theoretical section brings these algo-
rithms into a unified framework. In a following section we
introduce a new approach, called the binary approach.

Although relying on concepts introduced in the theoreti-
cal section, this section gives enough practical details to be
stand-alone for the implementer. Results obtained from
example networks and a conclusion section close the
article.
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Definition and benefits of elementary modes
We consider a metabolic network with m metabolites and
q reactions. Reactions may involve further metabolites
that are not considered as proper members of the system
of study. The latter metabolites, considered to be buffered,
are called external metabolites in opposition to the m
metabolites within the boundary of the system, called
internal metabolites. The stoichiometry matrix N is an m ×
q matrix whose element nij is the signed stoichiometric
coefficient of metabolite i in reaction j with the following
sign convention: negative for educts, positive for prod-
ucts. Some reactions, called irreversible reactions, are ther-
modynamically feasible in only one direction under the
normal conditions of the system. Therefore, reaction indi-
ces are split into two sets: Irrev (the set of irreversible reac-
tion indices) and Rev (the set of reversible reaction
indices). A flux vector (flux distribution), denoted v, is a
q-vector of the reaction space q, in which each element
vi describes the net rate of the ith reaction. Sometimes we
are interested only in the relative proportions of fluxes in
a flux vector. In this sense, two flux vectors v and v' can be
seen to be equivalent, denoted by v � v', if and only if
there is some α > 0 such that v = α · v'.

Metabolism involves fast reactions and high turnover of
substances compared to events of gene regulation. There-
fore, it is often assumed that metabolite concentrations
and reaction rates are equilibrated, thus constant, in the
timescale of study. The metabolic system is then consid-
ered to be in quasi steady state. This assumption implies
Nv = 0. Thermodynamics impose the rate of each irrevers-
ible reaction to be nonnegative. Consequently the set of
feasible flux vectors is restricted to

P = {v ∈ q : Nv = 0 and vi ≥ 0, i ∈ Irrev}  (1)

P is a set of q-vectors that obey a finite set of homogeneous
linear equalities and inequalities, namely the |Irrev| ine-
qualities defined by vi ≥ 0, i ∈ Irrev and the m equalities
defined by Nv = 0. P is therefore – by definition – a convex
polyhedral cone [1].

Metabolic pathway analysis [2-5] serves to describe the
(infinite) set P of feasible states by providing a (finite) set
of vectors that allow the generation of any vectors of P and
are of fundamental importance for the overall capabilities
of the metabolic system. One of this set is the so-called set
of elementary (flux) modes (EMs). For a given flux vector
v, we note R(v) = {i : vi ≠ 0} the set of indices of the reac-
tions participating in v. Hence, R(v) can be seen as the
underlying pathway of v. By definition, a flux vector e is
an elementary mode (EM) if and only if it fulfills the follow-
ing three conditions [6,7]:

In other words, e is an EM if and only if it works at quasi
steady state, is thermodynamically feasible and there is no
other non-null flux vector (up to a scaling) that both sat-
isfies these constraints and involves a proper subset of its
participating reactions. Note that with this convention,
reversible modes are here considered as two vectors of
opposite directions.

The concept of elementary modes (and, with some restric-
tions, the very similar concept of extreme pathways [8-
10]) has proven useful in many ways and has become an
important theoretical tool for systems biology as well as
for biotechnology and metabolic engineering (see review
[5]). Because the metabolic network structure becomes
now available at a genome-scale for an increasing number
of microorganisms, this approach is well-suited to today's
metabolic studies. Here, we give a short overview on the
major applications and variants:

(1) Identification of pathways: The set of EMs comprises all
admissible routes through the network and thus of "path-
ways" in the classical sense, i.e. of routes that convert
some educts into some products [5].

(2) Network flexibility: The number of EMs is at least a
rough measure of the network's flexibility (redundancy,
structural robustness) to perform a certain function [11-
13].

(3) Identification of all pathways with optimal yield: Consider
the linear optimization problem, where all flux vectors
with optimal product yield are to be identified, i.e. where
the moles of products generated per mole of educts is
maximal. Then, one or several of the EMs reach this opti-
mum and any optimal flux vector is a convex combina-
tion of these optimal EMs [3,14].

(4) Importance of reactions: The importance or relevance of
a reaction can be assessed by its participation frequency
or/and flux values in the EMs.

(4a) Inference of viability of mutants: If a reaction is involved
in all growth-related EMs its deletion can be predicted to
be lethal, since all EMs would disappear [11].

(4b) A more quantitative measure of the importance of a
reaction has been given by "control-effective fluxes"
(CEFs, [11]). The CEFs take also the efficiency of each
mode as well as the absolute flux values of the respective
reaction in the EMs into account. CEFs have been used to
predict transcript ratios [11,15].
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(5) Reaction correlations: EMs can be used to analyze struc-
tural couplings between reactions, which might give hints
for underlying regulatory circuits [14,16,17]. An extreme
case is an enzyme (or reaction) subset (set of reactions
which can operate only together) or a pair of mutually
excluding reactions (two reactions never occurring
together in any EM [10]).

(6) Detection of thermodynamically infeasible cycles: EMs rep-
resenting internal cycles (without participation of external
material or energy sources) are infeasible by laws of ther-
modynamics and thus reflect structural inconsistencies
[18,19].

(7) The framework of pathway analysis also allows us to
combine and to study stoichiometric constraints together
with regulatory rules [20].

(8) Minimal cut sets: EMs allow for a computation of min-
imal cut sets that represent minimal cuts (deletion sets) in
the network repressing certain metabolic functions [21].

(9) The α-spectrum has been introduced to quantify the
involvement of extreme pathways in a particular flux dis-
tribution (e.g. from an experiment) [22]. Since the
decomposition of a flux vector into extreme pathways is
usually not unique, the α-spectrum specifies a range of pos-
sible weights for each extreme pathway. The same could
be defined for EMs.

Computational limitations and algorithm variants
Due to the combinatorial explosion in the number of EMs
in large networks [23], computing EMs is known to be a
hard computational task, so far restricting elementary-
mode analysis to medium-scale networks. Several algo-
rithms (and derivations thereof) have been developed for
computing EMs. The two most prominent ones are the
algorithm elaborated by Schuster et al. [4] and the recently
developed null-space approach by Wagner [24]. The latter
considerably accelerated the computation speed and thus
shifted the current limitation – at least for a typical PC –
from computation time to the memory requirement.

Here we show that both the Schuster algorithm as well as
that by Wagner can be embedded in a more general algo-
rithmic framework stemming originally from computa-
tional geometry. These studies do not only give a
summarizing point of view, they also lead to a crucial
modification of the existing algorithms, decreasing the
required memory for computing and storing EMs
drastically.

Results
A unified framework
Elementary modes as extreme rays in networks of irreversible 
reactions
In the particular case of a metabolic system with only irre-
versible reactions, the set of admissible reactions reads:

P = {v ∈ q : Nv = 0 and v ≥ 0}  (3)

Compared with (1) P is in this case a particular, namely a
pointed polyhedral cone (an example is depicted in Figure
1). This geometry can be intuitively understood, noting
that there are certainly 'enough' intersecting half-spaces
(given by the inequalities v ≥ 0) to have this 'pointed'
effect in 0: P contains no real line (otherwise there coexist
x and -x not null in P, a contradiction with the constraint
v ≥ 0). The figure even suggests that a pointed polyhedral
cone can be either defined in an implicit way, by the set of
constraints as we did until now, or in an explicit or gener-
ative way, by its 'edges', the so-called extreme rays (or gen-
erating vectors) that unambiguously define its boundaries.
In the following, we show that elementary modes always
correspond to extreme rays of a particular pointed cone as
defined in (3) and that their computation therefore
matches to the so-called extreme ray enumeration prob-
lem, i.e. the problem of enumerating all extreme rays of a
pointed polyhedral cone defined by its constraints. An
overview on general and current issues on extreme ray
enumeration can be found in [25]. For the sake of consist-
ency, we use this reference as a main source and adopt the
same mathematical notations.

The pointed polyhedral cone is the central mathematical
object throughout this work; therefore we shall introduce
more precise definitions and results surrounding it.

P is a pointed polyhedral cone of d if and only if P is
defined by a full rank h × d matrix A (rank(A) = d) such
that,

P = P(A) = {x ∈ d : Ax ≥ 0}  (4)

The h rows of the matrix A represent h linear inequalities,
whereas the full rank mention imposes the "pointed"
effect in 0. Note that a pointed polyhedral cone is, in gen-
eral, not restricted to be located completely in the positive
orthant as in (3). For example, the cone considered in
extreme-pathway analysis may have negative parts
(namely for exchange reactions), however, by using a par-
ticular configuration it is ensured that the spanned cone is
pointed [8].

Now we must characterize the extreme rays. A vector r is
said to be a ray of P(A) if r ≠ 0 and for all α > 0, α · r ∈
P(A). We identify two rays r and r' if there is some α > 0
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such that r = α · r' and we denote r � r', analogous as
introduced above for flux vectors. For any vector x in P(A),
the zero set or active set Z(x) is the set of inequality indices
satisfied by x with equality. Noting Ai• the ith row of A,
Z(x) = {i : Ai•x = 0}. Zero sets can be used to characterize
extreme rays. For simplicity, we adopt in this document
the following characteristic ([25] for example) as a work-
ing definition of extreme rays.

Definition 1: Extreme ray

Let r be a ray of the pointed polyhedral cone P(A). The follow-
ing statements are equivalent:

(a) r is an extreme ray of P(A)

(b) if r' is a ray of P(A) with Z(r) ⊆ Z(r') then r' � r

Since A is full rank, 0 is the unique vector that solves all
constraints with equality. The extreme rays are those rays
of P(A) that solve a maximum but not all constraints with
equalities. This is expressed in (b) by requiring that no
other ray in P(A) solves the same constraints plus addi-
tional ones with equalities. Note that in (b) Z(r) = Z(r')
consequently holds.

An important property of the extreme rays is that they
form a finite set of generating vectors of the pointed cone

A pointed polyhedral coneFigure 1
A pointed polyhedral cone. Dashed lines represent virtual cuts of unbounded areas

extreme ray

2 adjacent extreme rays
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([25] for example): any vector of P(A) can be expressed as
a non-negative linear combination of extreme rays, and
the converse is true: all non-negative combinations of
extreme rays lie in P(A). Moreover, the set of extreme rays
is the unique minimal set of generating vectors of a
pointed cone P(A) (up to positive scalings).

Lemma 1: EMs in networks of irreversible reactions

In a metabolic system where all reactions are irreversible,
the EMs are exactly the extreme rays of P = {v ∈ q : Nv =
0 and v ≥ 0}.

Proof: P is the solution set of the linear inequalities

defined by  where I is the

q × q identity matrix. Since it contains I, A is full rank and
therefore P is a pointed polyhedral cone. All v ∈ P obey Nv
= 0, thus the 2m first inequalities defined by A hold with
equality for all vectors in P and the inclusion condition of
Definition 1 can be restricted to the last q inequalities, i.e.
the inequalities corresponding to the reactions. Inclusion
over the zero set can be equivalently seen as containment
over the set of non-zeros in v, i.e. R(v). Consequently, e ∈
P is an extreme ray of P if and only if: for all e' ∈ P : R(e')
⊆ R(e) ⇒ e' = 0 or e' � e, i.e. if and only if e is elementary.
Thus, all three conditions in (2) are fulfilled.

The general case
In the general case, some reactions of the metabolic sys-
tem can be reversible. Consequently, A does not contain
the identity matrix and P (as given in (1)) is not ensured
to be a pointed polyhedral cone anymore [7]. Because
they contain a linear subspace, non-pointed polyhedral
cones cannot be represented properly by a unique set of
generating vectors composed of extreme rays, albeit a set
of generating vectors exists, sometimes also called convex
basis [7]. One way to obtain a pointed polyhedral cone
from (1) is to split up each reversible reaction into two
opposite irreversible ones. Note that this operation is
completely analogous to a transformation step used in
linear programming to obtain a linear optimization prob-
lem in canonical form: free variables v are also split into
two variables v+ and v- with v = v+ - v- and v+, v- ≥ 0 [26]. It
has been noticed earlier that this virtual split does not
change essentially the outcome: the EMs in the reconfig-
ured network are practically equivalent to the EMs from
the original network [10]. Here we prove and precisely
characterize this result.

We first introduce some notations. We denote the original
reaction network by S and the reconfigured network (with
all reversible reactions split up) by S'. The reactions of S

are indexed from 1 to q. Remember that Irrev denotes the
set of irreversible reaction indices and Rev the reversible
ones. An irreversible reaction indexed i gives rise to a reac-
tion of S' indexed i. A reversible reaction indexed i gives
rise to two opposite reactions of S' indexed by the pairs
(i,+1) and (i,-1) for the forward and the backward respec-
tively. The reconfiguration of a flux vector v ∈ q of S is a
flux vector v' ∈ Irrev ∪ Rev × {-1;+1} of S' such that

Let N' be the stoichiometry matrix of S'. N' can be written
as N' = [N - NRev] where NRev consists of all columns of N
corresponding to reversible reactions. Note that if v is a
flux vector of S and v' is its reconfiguration then Nv = N'v'.

If possible, i.e. if v' ∈ Irrev ∪ Rev × {-1;+1} is such that for any
reversible reaction index i ∈ Rev at least one of the two
coefficients v'(i,+1) or v'(i,-1) equals zero, then we define the
reverse operation, called back-configuration that maps v'
back to a flux vector v such that:

Theorem 1: EMs in original and in reconfigured networks

Let S be a metabolic system and S' its reconfiguration by split-
ting up reversible reactions. Then the set of EMs of S' is the
union of

a) the set of reconfigured EMs of S

b) the set of two-cycles made of a forward and a backward reac-
tion of S' derived from the same reversible reaction of S

Proof: see Methods.

Thus, the set of EMs of the original network is equivalent
(up to the two-cycles) to the set of EMs in the reconfigured
network and therefore can be seen as a reduced set of
extreme rays of the pointed convex polyhedron as defined
by:

P = {v' ∈ q + |Rev| : N'v' = 0 and v' ≥ 0}  (5)

Hence, EMs computation can be derived from any
extreme ray enumeration algorithm applied to the
reconfigured network and followed by vector back-config-
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uration and the elimination of meaningless vectors,
namely the two-cycles.

Note that exactly the same procedure – splitting reversible
reactions into two irreversible ones – was carried out also
in the original work of Clarke [27] on stability analyses in
stoichiometric networks. Clarke called the extreme rays of
the corresponding cone (5) extreme currents. Thus, extreme
currents are identical to the EMs in the reconfigured net-
work and, hence, also (up to the 2-cycles) equivalent to
the EMs from the original network

All known algorithms for computing EMs are variants of the Double 
Description Method
In the following we present a simple yet efficient algo-
rithm for extreme ray enumeration, the so-called Double
Description Method [28]. We show that it serves as a com-
mon framework to the most prominent EM computation
methods. To reach this generality, we concentrate on
mathematical operations regardless to the actual data-
structures used in the implementation. Therefore we
manipulate objects such as matrices, vectors or inequali-
ties and leave their implementation into tableaus, arrays
and so on to the next section.

A generating matrix R of a pointed polyhedral cone P(A) is
a matrix such that P(A) = {x ∈ d : x = Rλ for some λ ≥
0}. The pair (A,R) is called a Double Description pair, or DD
pair. As mentioned above, the extreme rays form the
unique set of minimal generating vectors of P(A) and
thus, considered as set of d-vectors, the extreme rays of
P(A) form the columns of a generating matrix R that is
minimal in terms of number of columns. The pair (A,R) is
then called a minimal DD pair.

The strategy of the Double Description Method is to itera-
tively build a minimal DD pair (Ak, Rk) from a minimal
DD pair (Ak - 1, Rk - 1), where Ak is a submatrix of A made
of k rows of A. At each step the columns of Rk are the
extreme rays of P(Ak), the convex polyhedron defined by
the linear inequalities Ak. The incremental step introduces
a constraint of A that is not yet satisfied by all computed
extreme rays. Some extreme rays are kept, some are dis-
carded and new ones are generated. The generation of new
extreme rays relies on the notion of adjacent extreme rays.
Here again, for the sake of simplicity, we adopt a charac-
teristic ([25] for example) as a working definition of adja-
cent extreme rays.

Definition 2: Adjacent extreme rays

Let r and r' be distinct rays of the pointed polyhedral cone P(A).
Then the following statements are equivalent:

(a) r and r' are adjacent extreme rays

(b) if r" is a ray of P(A) with Z(r) ∩ Z(r') ⊆ Z(r") then
either r" � r or r" � r'

Initialization
The initialization of the double description method must
be done with a minimal DD pair. One possibility is the
following. Since P is pointed, A has full rank and contains
a nonsingular submatrix of order d denoted by Ad. Hence,
(Ad, Ad

-1) is a minimal DD pair which works as initializa-
tion and leads directly to step k = d. Note that there is
some freedom in choosing a submatrix Ad or some alter-
native starting minimal DD pair.

Incremental step
Assume (Ak - 1, Rk - 1) is a minimal DD pair and consider a
kth constraint defined by a not yet extracted row of A,
denoted Ai•. Let J be the set of column indices of Rk - 1 and
rj, j ∈ J, its column vectors, i.e. the extreme rays of P(Ak - 1),
the polyhedral cone of the previous iteration. Ai• splits J in
three parts (Figure 2) whether rj satisfies the constraint
with strict inequality (positive ray), with equality (zero ray)
or does not satisfy it (negative ray):

ℜ

Double description incremental stepFigure 2
Double description incremental step. The scene is best 
visualized with a polytope; consider the cube pictured here 

as a 3 projection of a 4 polyhedral cone. Extreme rays 
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J+ = {j ∈ J : Ai•rj > 0}

J0 = {j ∈ J : Ai•rj = 0}  (6)

J- = {j ∈ J : Ai•rj < 0}

Minimality of Rk is ensured in considering all positive
rays, all zero rays and new rays obtained as combination
of a positive and a negative ray that are adjacent to each
other [25]. For convenience, we denote by Adj the index
set of the newly generated rays in which every new ray is
expressed by a pair of indices corresponding to the two
adjacent rays combined. Hence, Rk is defined as the set of
column vectors rj, j ∈ J' with

The incremental step is repeated until k = h i.e. having
treated all rows of the matrix A. The columns of the final
matrix Rm are the extreme rays of P(A).

Computing EMs
The Double Description Method together with Theorem 1
offers a framework for computing EMs. The only steps to
include are a reconfiguration step that splits reversible
reactions and builds the matrix A, and a post-processing
step that gets rid of futile two-cycles and computes the
back-configuration. The dimension of the space is given
by the number of reactions in the reconfigured network: q'

= q + |Rev|. This results in the general algorithmic scheme
as given in Table 1 (from here, all variables for the recon-
figured network are written without prime):

As mentioned in the introduction section, the two most
efficient algorithms for computing EMs available are the
recently introduced null-space approach [24] and the
Schuster algorithm [6], that we call "canonical basis
approach" (implemented, for example, in METATOOL
[29] version 4.3 and FluxAnalyzer version 5.0 [30]). Both
algorithms handle reversible reactions directly. A direct
handling of reversible reactions, meaning without net-
work reconfiguration, is feasible in each setting and has
been described in the respective original articles. This
requires adapted adjacency tests. However, it does not
affect the overall strategy. For simplicity, we describe these
algorithms with networks of irreversible reactions only
(the issue of reversible reactions is discussed below). We
are now able to see that the algorithms of Schuster and
Wagner differ basically only in the chosen initialization
for R.

The canonical basis approach (Schuster approach; CBA)
The matrix I represents q independent rows extracted from
A = [NT -NT I]T and can thus be used for Aq. The matrix Aq

-

1 = I-1 = I gives the q extreme rays that obey to these q inde-
pendent constraints and works as initialization of R.

The remaining constraints are 2m linear inequalities
defined by Nr ≥ 0 and -Nr ≥ 0, i.e. m equalities: Nr = 0. The
processing of an equality constraint is done in a single
pass by only keeping rays of J0 instead of J+ ∪ J0. This is

Table 1: General double description method for EM computation.

N ← reconfigured stoichiometry matrix [N - NRev]
A ← [NT -NT I]T

Reconfiguration

Aq ← q independent rows of A
R ← Aq

-1
Initialization

for each unprocessed row Ai• of A do
J+ ← {j ∈ J : Ai•rj > 0}
J0 ← {j ∈ J : Ai•rj = 0}
J- ← {j ∈ J : Ai•rj < 0}
R' ← {rj : j ∈ J0 ∪ J+}

For (j+, j-) ∈ J+ × J- do

Processing of constraints in a given order

If  and  adjacent in R then
Adjacency test

end if
end for
R ← R'

End for

Gaussian combination step

R ← R \ { futile two-cycles }
R ← back-configuration of R

Back-configuration
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achieved by replacing the line R' ← {rj : j ∈ J+ ∪ J0} with
R' ← {rj : j ∈ J0} in the part "Processing of constraints in a
given order" in Table 1. Note that in the original Schuster
algorithm the values of Arj (required for the Gaussian
combination step) are explicitly stored throughout the
algorithm (in the left-hand side of the tableau [4]) and
adapted after each iteration.

The null space approach (Wagner approach; NSA)
The idea there is to initialize R by a well-defined kernel (or
null-space) matrix K of N with a particular structure (the
transposed KT is in (reduced) row-echelon form):

which can be computed, for example, by the MATLAB
command null(N,'r'). One can assume N to be of rank m,
the opposite case being discussed below ("On redundan-

cies and network compression"). This implies  to be of
size m × (q - m) and the identity of size q - m. This structure
is obtained by allowing a reordering of the rows of K, i.e.
of the reaction indices. Without losing generality, one can
assume that the reactions corresponding to the block I are
indexed from 1 to q - m. Consider the (q + m) × q matrix

. For all x in P(Aq + m), there is

some vector λ ≥ 0  such that x = Kλ. Recip-

rocally, for all λ ≥ 0, the vector x = Kλ lies in P(Aq + m). Thus
(Aq + m, K) is a DD pair. Since K is a kernel matrix, its col-
umns are independent vectors therefore (Aq + m, K) is a
minimal DD pair. K as defined in (8) works as initial
value for R. Hence, the initialization in this setup delivers
directly k = q + m solved constraints.

The remaining constraints are m linear inequalities
defined by ri ≥ 0, i = q - m + 1...q. The Gaussian elimination
step simplifies too

The right hand-side is practically a positive combination

of the two vectors  and , because  is positive

and  negative due to the definitions of J+ and J-.

Adjacency tests
Here we give explicitly the adjacency test in the case of
reconfigured networks for each setup. Variants handling
reversible reactions directly were introduced for CBA and
NSA. They lead in general to more complex algorithmic
steps for a little (at most 2-fold) memory gain.

The test is used when processing the constraint k + 1 to
check whether two extreme rays r and r' of the cone P(Ak)
are adjacent. The adjacency test is based on Definition
2(b). Note that for a given extreme ray r of the cone P(Ak),
the considered zero set Z(r) is defined over the k con-
straints Ak.

CBA: As mentioned above, in a CBA setup, equality con-
straints are solved within a single iteration. After the l-th
iteration step, k = q + 2l constraints are processed, there-

fore . The last 2l constraints are satisfied with

equality for all computed rays. We denote by Zu(v) the
Zero set of a vector v over the u first constraints. Here, with
u = q it matches to the set of non-participating reactions in
v. The adjacency test is then equivalent to the search of a
third extreme ray r" such that Zq(r) ∩ Zq(r') ⊆ Zq(r"). If
such an r" exists, then r and r' are not adjacent.

NSA: After the l-th iteration step in an NSA setup, k = q +
m + l constraints including p = q - m + l sign constraints are

processed. Thus . The last 2m constraints are

satisfied with equality for all computed rays. Therefore,
the adjacency test is then equivalent to the search of a
third extreme ray r" such that

Zp(r) ∩ Zp(r') ⊆ Zp(r")  (10).

Thus, for NSA we only have to check the first p(q - m ≤ p ≤
q) elements of the rays, in contrast to all q elements for
CBA. This is one reason behind the relative velocity of
NSA compared to CBA.

On redundancies and network compression
It is common practice to reduce the problem of extreme
ray enumeration by restricting the input set to the set of
irredundant constraints [25]. Although the general prob-
lem of extreme ray enumeration is non-polynomial, the
reduction into irredundant constraints is equivalent to
linear programming and therefore of polynomial com-
plexity. To our best knowledge, this important pre-
processing has never been spelled out explicitly in the
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context of EM computation. However some network sim-
plification steps have been proposed earlier [4,30] that
deeply relate to the notion of redundancy removal. These
simplifications include three heuristics that reduce the
size of the original stoichiometric matrix N and thus the
input size of the problem: the detection of conservation
relations, of strictly detailed balanced reactions and of
enzyme subsets.

Conservation relations of metabolites are captured as lin-
ear dependencies between rows of the stoichiometry
matrix N (thus, in the left null-space of N; [31]). This
implies that some of the equality constraints in Nr = 0 are
linearly dependent. Satisfying a maximal linearly inde-
pendent subset of these equations suffices to satisfy all
equations. Therefore the problem can be reduced to

, where  is the reduced stoichiometry matrix.
For example, in Figure 3a, metabolites B and C build up
one conservation relation and thus one of these metabo-
lites can be removed. Note that conservation relations
need not to be considered explicitly in the null-space
approach since their removal does not affect the com-
puted null-space matrix.

Conservation relations only consider redundancies
among the equalities. The general approach handles also
inequality constraints. Strictly detailed balanced reactions
[32] and enzyme subsets [29] are particular cases of such
redundancies. Strictly detailed balanced reactions are
reactions with null flux at any steady-state. Many of them
can be identified as null row vectors of K, the kernel
matrix of N, and can be eliminated from the system. A
non-trivial example is shown in Figure 3b, where R1 is
strictly detailed balanced and would be detected by using

the kernel matrix. However, there may be further reactions
with a fixed zero-flux in steady state that cannot be
identified by K. Some of those can be found by a simple
analysis of N. For example, all the uni-directional reac-
tions pointing into an internal sink (or emanating from a
source) are certainly not participating in any steady-state
flux (Figure 3c).

An enzyme subsets is defined as a group of reactions with
relative constant flux ratio at steady state. Many of them
can be identified as row vectors of K differing only in a
scalar factor α. Reactions R1, R2 and R5 in Figure 3d
would represent one enzyme subset. Assume one works
on the reconfigured network and reactions R1 and R2 are
members of the same enzyme subset. Thus, at steady state,
we have for the respective rates r1 = α · r2. If α > 0, the con-
straints r1 ≥ 0 and r2 ≥ 0 are redundant, r1 ≥ 0 being suffi-
cient. In that case the practice is to lump both reactions
into one lowering the number of reactions (and often also
of the metabolites). If α < 0, the constraints r1 ≥ 0 and r2 ≥
0 imply r1 = r2 = 0, hence, a special case of strictly detailed
balanced reactions. In this case we say that the reactions
contradict each other. Both reactions are not used and can
be eliminated from the system as reactions R1 and R4 in
Figure 3e.

We identified another kind of redundancies. We call a
metabolite M uniquely produced (respectively consumed) if
only one single reaction, say i, can produce (respectively
consume) M for several consuming (respectively produc-
ing) it (see Figure 3f). In that case, balancing metabolite
M at steady-state implies that ri is always non-zero
whenever the other reactions connected to M are active.
We can therefore lump each reaction consuming (respec-

Small example networks illustrating redundanciesFigure 3
Small example networks illustrating redundancies. For explanations see text.
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tively producing) M with reaction i and remove metabo-
lite M, decreasing the dimension of the problem further
(see also the example in Figure 5 which is discussed
below). Note that some enzyme subsets and strictly
detailed balanced reactions can be seen as special cases of
this type of redundancy.

Elimination of redundancies and network compression
should be done in a pre-processing step leading to a com-
pressed network structure. Thereby, it is important to
detect and remove such redundancies iteratively until no
further redundancy can be found. A MATLAB function
compressSMat which removes all redundancies discussed
above in an iterative fashion can be obtained from the
corresponding author. After the computation of EMs,
lumped reactions can be expanded to their single
components.

There is a general approach for identifying redundancies
in a set of linear constraints that uses linear programming,
for example with the software redund distributed together
with the software lrs [33]. This approach does not require
any iterative process, but only identify redundant inequal-
ities. Rows of A can be eliminated but no consequent col-
umn-wise reduction is done. Therefore, a simple
redundancy removal is not as powerful as the accompany-
ing network compressions presented above. The method
however has the advantage to be systematic and might
lead in the future to further network simplifications not
yet identified.

The binary approach
General idea
Using the reconfigured network with only irreversible
reactions we have shown that the most important algo-
rithms for EM computation belong to the same general
framework. However, the original algorithms from Schus-
ter and Wagner operate directly on the original network
without splitting reversible reactions. At a first look, this
seems to be more efficient since the dimension (number
of reactions) is lower, decreasing seemingly also the mem-
ory requirement and the costs for adjacency tests. How-
ever, using the reconfigured network S' offers great
simplifications. First, as already mentioned in an earlier
section, the adjacency tests are easier to handle. The most
important advantage, however, is the following. For the
CBA in S' it follows that all non-zero elements of a ray rk

will be retained if a new ray is obtained by combining rk

with another (adjacent) ray because only positive combi-
nations of rays are performed. The same holds for the NSA
with respect to the p already processed inequality (irre-
versibility) constraints. This is of great importance since
the adjacency test requires the information on zero/non-
zero places in the rays only.

We illustrate this idea for NSA because this approach
turned out to be more efficient than CBA. We assume that
N has full rank m, i.e. there is no conservation relation. In
this section, all variables correspond again to the network
with split reversible reactions.

As described above, for an initialization of R we use a ker-
nel matrix K of N having form (8):

Note that we use here the transposed representation of the
tableau compared to Wagner's original article [24]. Since
by eq. (9) only positive column combinations are per-
formed during the algorithm, no negative number can
show up in the upper part (consisting of q - m rows (reac-
tions)) during the next iterations. The first row to be proc-
essed now is p = q - m + 1. Using the general algorithmic
scheme provided above all rays with non-negative entries
at row p are retained and all negative entries can be com-
bined with positive ones that are adjacent to them to
obtain a zero at position p.

Assuming that the procession of the p-th row leads to a
collection of t rays, we have:

The upper part, R1, contains the p processed rows which
only contain non-negative values. Again, positive combi-
nations of rays performed during the next iterations lead
in the upper part to sums of non-negative numbers.
Hence, it is easy to keep track of the zeroes in the upper
part R1 by the use of bit masks. After the procession of the
p-th inequality constraint the p-th row (i.e. the first row of
R2) can be transformed to its binary representation and
moved from R2 to R1. Using a binary representation for R1
has many advantages:

(i) For the next row p + 1 to be processed we have to per-
form the adjacency test for pairs of vectors , . This
test only requires the first p elements of these rays (see
(10)), hence, exactly the columns of R1. Test (10) can then
be written as a simple (and fast) bit operation. Two dis-
tinct vectors ,  are adjacent if and only if for all vec-
tors rk distinct from  and , it holds:
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Pseudo-code: Core algorithm for computing elementary modes with the binary approachFigure 4
Pseudo-code: Core algorithm for computing elementary modes with the binary approach.
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(  taken from R1; r1...p denotes the first p ele-

ments of r). Of course, the identical terms in the parenthe-
ses are computed only once.

(ii) Combination step of two adjacent rays (eq. (9))
reduces for the part in R1 to a simple OR operation, which
is already computed for (13). The other (real number)
components of the two rays (contained in R2) are com-
bined as usual by eq. (9).

(iii) Bit operations as applied in R1 are not only fast, they
are numerically exact in contrast to operations on real
numbers.

(iv) The binary representation requires much less mem-
ory. Taking a typical 64-bit floating-point variable, storing
R1 binary takes only 1.6 % of the memory needed for real
numbers. Taking into account that in the worst case (all
reactions reversible) the number of reactions in the recon-
figured network is twice of that from the original one we
still have a reduction in memory requirements of more
than 96%. Note that R2 is empty at the end of the algo-
rithm, hence, all EMs are then stored binary.

Bitmap representations of EMs have already been used in
earlier implementations for accelerating the adjacency
(elementarity) tests. However, binary tableaus had then
been stored and updated in parallel to the full (real
number) tableau of EMs which is not necessary here.

After the whole processing, EMs (extreme rays) are
obtained for the reconfigured network S' as binary vectors.
Binary patterns of EMs are completely sufficient for many
applications of EMs (see discussion). However, a well-
known lemma ([25] for example) ensures that this
information is also sufficient to retrieve the real values up
to a positive scalar:

Lemma 2

In a d-dimensional Euclidean space, let r be a ray of the pointed
polyhedral cone P(A). The following statements are equivalent:

(a) r is an extreme ray of P(A)

(b) rank(AZ(r)) = d - 1

Each obtained binary vector provides the zero set Zq(e)
and its complement the reaction set R(e) of an EM e in the

reconfigured network S'. Lemma 2 says that the equation

 and therefore

NR(e)eR(e) = 0  (14)

admit a one-dimensional solution space, i.e. the dimen-
sion of the null space of NR(e) is 1. NR(e) denotes the m ×
|R(e)| sub-matrix of N containing all those reactions (col-
umns) of N which are involved in e. Solving the homoge-
neous linear system (14) gives a vector that can be
normalized and properly oriented for example by divid-
ing it by the value on its first participating reaction (see the
example below). The reconstruction process reflects the
fact that an EM is – up to a scalar – determined by its par-
ticipating reactions.

In a second post-processing step, we transform the (real
number) EMs of S' back into their representation in the
original network S by using the rules given before Theo-
rem 1. Note that it is also possible to transform first the
binary EMs from S' into the binary EMs of S and then to
reconstruct the real numbers (by using eq. (14) for the sto-
ichiometric matrix of the non-reconfigured network S; see
pseudo-code). In both cases, if the original network had
been compressed during pre-processing, the EMs can
finally be expanded to their corresponding modes in the
uncompressed network.

Pseudo-code of the binary (null-space) approach
Using the results of the previous sections we are now able
to give a pseudo-code of the binary (null-space) approach
(Figure 4). The code follows MATLAB style, which pro-
vides a convenient and comprehensible notation for oper-
ations on vectors and matrices. We use several native
MATLAB routines (written in bold). For concision, we
also make the use of some other routines (indicated in
italic). The code of the latter routines is not given here
explicitly but their names and accompanying comments
should allow the reader to implement them. For readers
not familiar with MATLAB notation we give in the Meth-
ods section some basic explanations which should suffice
for understanding the pseudo-code.

Note that the pseudo-code in Figure 4 is not given in its
computationally most efficient form. It should just
present the basic structure of the algorithm. There are two
important issues in the algorithm we still have to discuss.

Minimal number of zeros in extreme rays (maximal pathway length)
In the null-space approach, the m equality constraints are
always solved for each ray during the procession of sign
constraints. Since any ray satisfies by Lemma 2 at least a
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total of q - 1 constraints, this implies that at least q-1-m
sign restrictions are solved by equality. Hence each ray
contains at least q-1-m zero-places. This fact can be used as
a shortcut when checking the adjacency of two rays (see
pseudo-code). At the end of the algorithm, it follows that
the maximal pathway length |R(e)|max, that is the maxi-
mal number of involved reactions in an EM, reads (cf.
[7]):

|R(e)|max = q - (q - m - 1) = m + 1  (15)

Initialization of R
As for the non-reconfigured network, the initialization of
R for the reconfigured network can be done with a null
space matrix K' of N' having the special structure (8).
Several of such kernel matrices may exist. We are inter-
ested in such a one that contains as many zeros as possible
because the number of zeros in the starting tableau R has
great impact on the number of ray combinations to be
performed. For this purpose, it can be exploited that very
sparse vectors of the null space of N' (not contained in the
null space of N) are known, namely the two-cycles emerg-
ing by splitting up reversible reactions. We detail in
Method section a technique that incorporates as many
two-cycles as possible into K to construct K'.

Simple example
This section is devoted to illustrate our binary approach
for computing elementary modes. Figure 5(a) shows a
simple example network consisting of four metabolites
(A,B,C,D) and 7 reactions (R1...R7), whereof R5 is revers-
ible. The stoichiometric matrix N of this network reads
accordingly:

Using our rules for removing redundancies, this network
can be compressed as depicted in Figure 5(b). Metabolite
A is uniquely produced, hence, R1 and R2 can be com-
bined to R1c and reactions R1 and R3 are lumped into
R2c. R3c and R4c correspond to the original reactions R4
and R5, respectively. Finally, R6 and R7 are enzyme sub-
sets and are combined to R5c. Metabolites A and D can be
removed, since they do not occur in any reaction any-
more. Thus, the network dimension could be reduced by
two metabolites and two reactions. The stoichiometric
matrix NC of the compressed system reads:

From this compressed network, we can compute a null
space matrix having structure (8), here even without per-
muting rows (reactions):

Example networkFigure 5
Example network. Full structure (a), compressed structure (b) and compressed structure with split reversible reaction R4c 
(c).
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KC would be the starting tableau in the original null-space
approach. Applying our binary approach we have now to
split the (only) reversible reaction R4c in the compressed
network (Figure 5(c)). This results in the stoichiometric
matrix NC', where R4cb denotes the additionally intro-
duced column of the backward direction of R4c:

Now we need to determine a null space matrix KC' of NC',
if possible in the sparse form as in eq. (M1) (Methods sec-
tion). KC – as given in (18) – contains only irreversible
reactions in the identity sub-matrix. Therefore, without
further rearrangements, we can already use it to construct
KC' as described in the Methods section. We introduce an
additional row in the identity sub-matrix of KC (corre-
sponding to R4cb) and an additional column representing
the two-cycle from the split reversible reaction R4c:

KC' is now a proper initialization for the R tableau accord-
ing to (11). The first four rows (in the identity sub-matrix)
can be seen as already completed, we therefore denote the
starting tableau as R4. According to (12) we can divide R4

into a binary (a non-zero entry is demarked by "×") and
unprocessed real number part:

We proceed now with the 5-th row (R4c). All columns
with non-negative entries in R4c are retained (columns 1
and 4). Columns 2 and 3 have a negative entry at position
R4c and are therefore combined with 1 and 4 to obtain a
zero at position R4c. In the binary sub-tableau, the com-
bination step is a simple OR operation. Thereby, using the
obtained binary patterns, the adjacency test (13) must be
performed for each pair of combined columns. Here, all 4
possible pairs are adjacent. Accordingly, after completing
row 5, tableau R5 has 6 columns and reads:

Now we have already reached the last iteration step where
R5c – the last row in real number format – is processed.
Columns 1–5 are retained and column 6 is combined
with columns 1,3 and 5. However, the column pairs (1,6)
and (3,6) are not pairs of adjacent rays. This can be
detected in two alternative ways. The usual way is that
both column pairs violate condition (13) because of col-
umn 4. The second and quicker way is to observe that the
minimal number of zeros in this network is 3 (q'-m-1 = 6-
2-1) and that their respective combinations would give
columns with only 2 zeros. These combinations are there-
fore not included in the tableau. We obtain:

Tableau R6 is the binary representation of the EMs
(extreme rays) from the split compressed network. Now,
the post-processing begins. First, we remove the spurious
2-cycle (second column in R6) raised by splitting R4c.
Then, rows R4c and R4cb are combined by an OR opera-
tion and row R4cb is dropped. Note, if a completely revers-
ible elementary mode exists in the non-split network, it
would lead to two EMs – one for each direction – in the
split network. In such a case, either both are kept or only
one, then marked as reversible EM. We have now
obtained the 5 EMs of the compressed network as binary
vectors:

Here, it is easy to reconstruct the real numbers of the EMs
from their binary patterns. For illustrating the general
case, we reconstruct the first mode e1 using eq. (14):
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The dimension of the null space of , hence of the

solution space of eq. (25) is 1 (as it is for all EMs). A scal-
able solution vector is (2,1,1)T, normalizing to the first
component yields the unique solution (1,0.5,0.5)T. Thus,
the first EM in the compressed network is e1 =
(1,0,0,0.5,0.5)T. Reminding that we lumped the original
reactions R1 and R2 into R1c and R6 and R7 into R5c, we
can finally reconstruct the original elementary mode from
the uncompressed network, that is R1 + R2 + 0.5 × R5 +
0.5 × R6 + 0.5 × R7.

Results from real networks
We implemented the binary null-space approach (binary
NSA) in MATLAB (Mathworks Inc.) and incorporated it
into the FluxAnalyzer [30,34]. The function includes a pre-
processing step where the network is compressed as
described. Some sub-routines of the algorithm are per-
formed by compiled C-code (via MATLAB MEX interface),
since this proved to accelerate the implementation drasti-
cally. In order to check the capabilities of our algorithm
we computed the elementary modes in realistic and large
metabolic networks. The three networks (S1-S3) consid-
ered here are variants from a model of the central metab-
olism of Escherichia coli investigated originally in [11,23].
For considering networks with different complexities we
inserted an increasing number of substrate uptake or/and

product excretion (pseudo) reactions, which increase the
number of EMs much faster than the insertion of internal
reactions. For a (rough) comparison with the original NSA
we used the program coverN (developed by Clemens Wag-
ner and co-workers; available upon request from clem-
ens.wagner@pki.unibe.ch, which is also implemented in
MATLAB and uses external C-files for some sub-routines.
The original as well as the binary CBA algorithm proved
to be slower than both methods of NSA (not shown).

Table 2 summarizes the computations. As a first result, it
can be noted that redundancy removal and network com-
pression during pre-processing results in much smaller
networks. Note that the dimensions of the compressed
networks of S1 and S2 are even lower than given in [23]
due to the additional removal of uniquely produced/con-
sumed metabolites. A lower number of reactions reduces
the dimension of the null-space (hence, the number of
iterations) and, in particular, the effort for adjacency tests.
Generally, the proportion of the pre-processing on the
overall computation time is negligible.

Comparing the required computation times, the binary
NSA seems to be slightly faster than the original NSA. This
observation should not be considered as a general result,
since we cannot exclude that there are different potentials
in optimizing the source code of coverN and in FluxAna-
lyzer, respectively. Besides, different row orders in the
starting tableau can generally result in different computa-
tion times. However, it seems that the original and the
binary NSA are comparable with respect to computation
time. The adjacency tests in the binary null-space
approach need to consider more elements (due to the split
of reversible reactions) but are simpler to perform because

Table 2: Computations of elementary modes in a realistic metabolic network (central metabolism of Escherichia coli). Computations 
were performed on a typical PC with AMD Athlon XP 3000 + CPU and 1 GB RAM. Abbreviations: Form = formiate, Ac = acetate, Glc 
= glucose, Succ = succinate, Asp = aspartate, Glyc = glycerol, Eth = ethanol, Lac = lactate, CO2 = carbon dioxide.

S1 S2 S3

substrates Glc Glc, Succ, Glyc, Ac Glc, Succ, Glyc, Ac, Asp
products Ac, Form, Eth, Lac, CO2 Ac, Form, Eth, Lac, CO2 Ac, Form, Eth, Lac, CO2, Succ
#reactions (q)
# metabolites (m)

106 (28 reversible) 
89

110 (28 reversible) 89 112 (28 reversible) 
89

compressed network:
# reactions 
# metabolites

42 (17 reversible)
25

47 (17 reversible)
26

51 (17 reversible)
28

final number of 
elementary modes

27,100 507,632 2,450,787

binary NSA NSA binary NSA NSA binary NSA NSA
computation time 0.16 min (9.63 sec) 0.54 min (32.20 

sec)
51.20 min 116.77 min 1546 min (25.78 h) not finished

back transformation 0.13 min (7.97 sec) 2.57 min 13 min
total computation time 0.29 min (17.60 sec) 0.54 min (32.20 

sec)
53.77 min 116.77 min 1559 min (25.98 h)
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preliminary modes from a previous iteration cannot lose
their elementary property. Note also that implementing
the full algorithm in C (and not only parts of it as in cov-
erN and FluxAnalyzer) might further accelerate the compu-
tation considerably.

Using a special null space matrix K' as initialization of R
(as explained in the Methods section) contributes consid-
erably to a reduced computational effort. We can estimate

this by the total sum  over the number of candidates

Pi occurring in the tableau before iteration i. In S1, for

example, . Computing instead an arbitrary

null-space matrix K' for N' (e.g. via MATLAB null com-
mand) results in a more dense initialization for R and the

naive initialization would lead to . The

larger numbers of candidates increase the costs for
adjacency tests and accordingly the running time drasti-
cally. This underlines that the success of the null-space
approach (in its original or binary form) depends strongly
on the initially chosen null space matrix.

Generally, computing the stoichiometric coefficients of
the EMs from their binary patterns is in larger networks in
low proportion to the overall computation time (S3: ca.
0.8%).

Whereas the computational demands seem to be compa-
rable for both null-space approaches, the memory
requirements for the binary NSA are much lower, in par-
ticular during the last iterations. For this reason, the 2.45
millions of EMs from network S3 could be computed on
a typical PC, whereas the original NSA ends in the 26-th
iteration step (from a total of 28) due to memory
overflow.

Discussion
Elementary modes are smallest functional sub-networks,
which can be interpreted geometrically as extreme rays
from a pointed convex cone (corresponding to the net-
work with split reversible reactions). The computation of
extreme rays has been intensively studied by the polyhe-
dral computation community and we think that the met-
abolic community can benefit from it. We shall also
mention another abstraction of elementary modes within
the framework of matroid theory [35]. In an oriented vector
matroid, the elementary modes correspond to the positive
circuits (or positive cycles), which are minimal dependent
sets. In fact, an elementary mode is a minimal linearly
dependent set of the column vectors of the stoichiometric
matrix (in the reconfigured network with only non-nega-
tive coefficients). This has been mentioned only rarely so

far [36]. Matroid theory could be a source for new theoret-
ical investigations on elementary modes and could lead to
further improvements in the computation procedure as
well as to new applications in the sense of metabolic path-
way analysis.

Adjacent extreme rays can also be detected by an algebraic
characterization that completes Definition 2 [25]:

(c) r and r' are extreme rays and the rank of the matrix AZ(r) ∩

Z(r') is d-2

In practical cases the characterization of adjacency is
mostly computed in its combinatorial form than its alge-
braic one [25]. However, improvements could be done by
using both characterizations. In fact, the test on EM length
done before the actual adjacency test in our MATLAB
pseudo-code is a consequence of the algebraic test. A strik-
ing feature of the algebraic test is that it only requires
access to the two rays tested for adjacency (r and r') and to
the fixed size matrix A, in practice to the stoichiometry
matrix. In comparison, the combinatorial test implies a
loop over all other rays (r"). Therefore, the algebraic test
could be suited for distributed computing.

Some theoretical issues of the combinatorial complexity
of EMs were discussed in [23]. An upper bound B for the
number of EMs is (reversible modes are counted only
once):

Assuming that no conservation relations occur in the sto-
ichiometric matrix, we obtain:

Note that q and m should be taken from the non-split,
compressed network to obtain the lowest upper bound. In
larger, realistic networks, even if compressed, the values
for B explode quickly. Fortunately, the actual number of
modes in real networks proved to be much smaller than
the boundary (cf. B ≈ 2.54 · 1011 for S1 in Table 2),
although it grows also exponentially. One reason is that
many routes are not admissible due to violation of the
sign restrictions. Another reason is the low connectivity of
many metabolites leading to sparse stoichiometric
matrices.

A third reason is related to short pathway length. The
upper bound reflects the case where all EMs have maximal
pathway length |R(e)|max which is, by eq. (15), m + 1.
However, many EMs, if not all, have a lower length imme-
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diately reducing the possible number of modes [23]. The
pathway length distribution of the E. coli modes on glu-
cose (network S1) is shown in Figure 6. The maximal
length of an EM in the uncompressed network is m + 1 =
89 + 1 = 90. Modes that are not involved in biomass syn-
thesis, in particular, are much smaller. In terms of linear
algebra this means that there exist vector sets W contain-
ing fewer than m + 1 column vectors of N that are linearly
dependent. In polyhedral computation this phenomenon
is known as degeneracy. Generally, degenerate systems
may cause annoying difficulties and must be handled
often differently to non-degenerate systems, albeit they
reduce here the number of modes. The algorithms related
to EM computation may be, in general, especially suited
for computing extreme rays in such strongly degenerate
systems, whereas other programs may be better suited for

only weakly degenerate problems. For example, the soft-
ware lrs [33] implements the so-called reverse search enu-
meration algorithm [37] that is polynomial for non-
degenerate cases. Note that the new binary approach as
introduced herein can easily be adapted for computing
extreme rays of any pointed cone as given in eq. (4) and
may therefore improve the performance of extreme ray
computation in many other applications.

Albeit the general framework was formulated long time
ago, the explicit introduction of the null-space approach
was an important mile-stone in accelerating the computa-
tion of EMs. The binary null-space approach as intro-
duced herein increases the efficiency of this approach also
with respect to the memory requirements and enables
now to compute EMs in networks significant larger as

Pathway length distribution in elementary modes of E. coliFigure 6
Pathway length distribution in elementary modes of E. coli. (Substrate: glucose; network S1 in Table 2).
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those investigated before. A simple computation gives the
number of about 85 millions of EMs in a network of 100
(compressed) reactions that can be stored in 1 GB RAM
(cf. compressed and reconfigured S3: q' = 51 + 17 = 68).
Of course, only a fraction of this amount can be stored
during the algorithm due to other (partially large) tempo-
rary variables. Besides, reactions that are not yet processed
are still stored as real numbers. The amount M of memory
required for storing E modes after the procession of p reac-
tions (stored binary) is (assuming 64-bit real numbers)

M = E · (p + 64 · (q - p)).  (28)

It depends on the evolution of the number of EMs during
the algorithm where the maximal memory demand
occurs. Generally, much larger networks can now be
treated.

Conclusions
The four main results of this work are: (i) showing the
equivalence between extreme rays and elementary modes,
(ii) showing that algorithms for computing elementary
modes can be seen as variants of the double description
method for computing extreme rays in pointed polyhe-
dral cones, (iii) introduction of a general framework and
of new methods for redundancy removal and network
compression, (iv) introduction of the new binary
approach for computing extreme rays and elementary
modes.

The binary approach computes elementary modes as
binary patterns of participating reactions that are suffi-
cient to compute the respective stoichiometric coefficients
in a post-processing step. For many applications – follow-
ing the computation – it is even sufficient to operate on
the binary patterns of EMs. Among all applications of EMs
presented in the introduction section, only the identifica-
tion of all pathways with optimal yield, the "control-effec-
tive fluxes", and the α-spectrum need the explicit (real
number) coefficients, i.e. the reaction rates, in the EMs.
Whenever needed, the explicit representation of an EM
can be determined (possibly temporarily) from its binary
pattern.

The binary approach decreases the memory demand up to
96% without loss of speed and without loss of informa-
tion giving the most efficient method available for com-
puting elementary modes to date. The limiting step in
computing elementary modes has thus been shifted back
to the computation time. Parallelization – as investigated
within the traditional, not-binary, schema in [38] – might
lead to a further acceleration bringing us again a step
closer to the complete set of EMs in genome-scale meta-
bolic networks.

Methods
Proof of Theorem 1
We prove first that each case a) and b) defines EMs of S'.
Let e' be a flux vector defined by either case a) or b).
Clearly N'e' = 0 and e' ≥ 0. In case b) e' is not elementary
only if the single forward or backward reaction balances
all internal metabolites, i.e. if the reaction includes not
any internal species. We can safely exclude this pathologic
case by considering that N does not contain a null col-
umn. Therefore, e' is elementary. In case a), assume e' is
not elementary, i.e. there exists a non-null flux vector x' of
S' not equivalent to e' such that x' ≥ 0, N'x' = 0 and R(x')
⊆ R(e'). By definition of the reconfiguration, for each i ∈
Rev, at least one among e'(i,+1) or e'(i,-1) equals zero and this
holds consequently also for x'. Thus one can define e and
x, the back-configurations of e' and x'. Now, by definition,
e is an EM of S and is not equivalent to x, Nx = 0, xi ≥ 0i for
i ∈ Irrev and R(x) ⊆ R(e), a contradiction.

Hence each case a) and b) defines EMs of S'. We prove
now that there is no other case. Assume there exists e' nei-
ther defined by a) nor b), such that e' ≥ 0, N'e' = 0 and e'
elementary. For each i ∈ Rev at least one among e'(i,+1) and
e'(i,-1) equals zero (otherwise the two-cycle defined on
reaction i would satisfy the constraints and involve only a
subset of the reactions of e'). Thus the back-configuration
e of e' can be defined. By definition, e is not an EM of S.
There exists x not equivalent to e such that Nx = 0, xi ≥ 0i
for i ∈ Irrev and R(x) ⊆ R(e). The reconfiguration x' of x is
such that x' is not equivalent to e', x' ≥ 0, N'x' = 0 and R(x')
⊆ R(e'), a contradiction.

Initialization of the R tableau in reconfigured networks
As in the case of non-reconfigured networks, we must ini-
tialize R in reconfigured networks as a null space matrix K'

of N' having the special structure (8), i.e. . Sev-

eral kernel matrices having this form can exist. Here we are
interested in such a one that contains as many zeros as
possible because the number of zeros in the starting tab-
leau R has a great impact on the number of ray combina-
tions to be performed. For this purpose, we can exploit the
fact that we already know |Rev| many very sparse vectors
of the null space of N', namely the two-cycles emerging by
splitting up reversible reactions. Our goal is therefore to
incorporate many (if possible all) of these vectors into K
to obtain K'. For this purpose, we first compute the kernel
matrix K of N. Then, by simple linear combinations of col-
umns (analogous to the well-known computation of a
row-echelon form of a matrix) and possibly by permuta-

tion of rows in K, we try to obtain , where only

irreversible reactions (rows) are contained in the identity
matrix I. If this is possible then we can easily include the
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backward directions of reversible reactions (as rows) and
the two-cycles (as columns) into K yielding K':

The first q - m columns in K' correspond to the original
columns in K, but contain additionally zeros for the
inserted backward reaction of originally reversible
reactions. These columns are obviously linearly independ-
ent and are contained in the null space of N'. Sub-matrix

 is a |Rev| × |Rev| identity matrix whose rows correspond
to the backward directions of split reactions. Finally, C is

a |Rev| × m sub-matrix which complements  in such a
way that they represent together the two-cycles of the split
reactions. (Thus, each column ci in C contains only zeros,
except a unity at that row, which corresponds to the for-
ward direction of the split reversible reaction i. See also

the example network.) I and  yield together the new I',

whereas  and C represent together  of K'. Thus, K'
contains q - m + |Rev| linearly independent (basis) vectors
of the null space of N' and is in form (8).

To our experience, in most realistic networks, a matrix K'
as in (M1) can be found. Using instead an arbitrary K' can
lead to a much larger computation effort because much
more candidates are computed at an early state (see real
network examples).

A further simple strategy avoiding that many rays are com-

puted early is to sort the rows in  ascending with
respect to the number of their non-zero entries.

In case it is not possible to arrange only irreversible reac-
tions into the sub-matrix I of K, we can nevertheless find
a matrix K' with the same basic structure as in (M1). How-
ever, for some originally reversible reactions, the forward

(in I) and backward (in ) direction will then be con-
tained in I'. For each of those, the two-cycle cannot be rep-

resented by C and  (because the row of the forward
direction is contained in I' and not in K') and another cor-
responding column in C has to be constructed. Assume a
reversible reaction is contained as j-th row in I. Assume
further that the inserted backward direction of this reac-

tion corresponds to the k-th row of . For the k-th column

ck of C we can then chose the j-th column  of  multi-

plied by -1, i.e. . Together with the k-th column

in , this gives a null space vector of N', which is linearly
independent of the others and can therefore serve as basis
vector in K'. The vector ck is now probably not that sparse.
However, it enables us to retain the 2-cycles at least for
those split reactions whose forward direction is not con-
tained in I.

A MATLAB function initializeR that provides a proper ini-
tialization of R as described above (starting with the stoi-
chiometric matrix N and the indices of the reversible
reactions) can be obtained from the corresponding
author.

Short introduction into MATLAB notation
Numeric variables in MATLAB can be scalars, vectors or
two-dimensional arrays (i.e. matrices). To be more pre-
cise, a scalar in MATLAB is actually a 1 × 1 array and a vec-
tor is a 1 × n or n × 1 array. Size and type of a variable are
automatically declared (or changed) by assignments to it.
The following examples illustrate how to assign or access
values of variables:

• scalar: a = 1;

• b(3) = 5; the value 5 is assigned to the third element of
(vector) b.

• c(1:3) = [5,8,9]; here, "1:3" expresses "from 1 to 3", thus,
5, 8 and 9 are assigned to the first three elements of vector
c. It is also possible to use an array of integers to access the
elements of a vector, e.g. a = [2,3,4]; b = [1,3]; c = a(b).
Vector c reads then [2,4].

• mat(2,5) = 3; value 3 is assigned to the element in the
second row and fifth column of matrix mat.

• mat1(3,:) = mat2(5,:); the values of the fifth row of
matrix mat1 is copied into the third row of matrix mat2.
Here, the colon operator ":" expresses "all elements of the
respective dimension" (here: columns). Of course, it must
be ensured that mat1 and mat2 have the same number of
columns.

• a = mat(7,1:3); the first three elements of the seventh
row of matrix mat are assigned to a which is now a 3-ele-
ment vector.

• a= [17,34,39]; a(2)= []; deletes the second element of a
and shifts all elements behind one position back, i.e. vec-
tor a reads now [17,39].

The pseudo-code given in Figure 4 in the main text uses
several basic routines pre-defined in MATLAB (written in
bold) :
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• c = length(a); if a is a vector (as in all cases in the
pseudo-code) then length returns the number of elements
in a.

• c = find(a); if a is a vector (as in all cases in the pseudo-
code) then find returns all positions in a which are not
zero. Example: find([23,0,5,9,0]) returns (1, 3, 4).

• c = or(a,b) returns the result of the logical OR operation
applied element-wise to a and b. a and b can be scalars,
vectors or matrices and must have the same size. Example:
if a = [1,0,29], b = [1,0,0] then or(a,b) returns [1,0,1]. In
the pseudo-code, we use this routine exclusively for OR-
operations of bit masks (arrays with only "ones" and
"zeros").

• c = zeros(m,n) returns a matrix of size m × n filled with
zeros.

• c = null(a) returns a null-space matrix of matrix a.

• c = intersect(a,b) returns the intersection of elements in
vectors a and b.

• c = all(b) returns "1" if all entries in vector b are not zero
and "0" otherwise.

List of abbreviations
EM(s): Elementary Mode(s) also known as Elementary
Flux Mode(s).
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