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Abstract: In this paper, a new approach for estimating a nonlinear model of the electrically
stimulated quadriceps muscle group under non-isometric conditions is investigated. In order
to identify the muscle dynamics (stimulation pulse width-active knee moment relation) from
discrete-time angle measurements only, a hybrid model structure is postulated for the shank-
quadriceps dynamics. The model consists of a relatively well known time-invariant passive
component and an uncertain time-variant active component. Rigid body dynamics, described
by the Equation of Motion (EoM), and passive joint properties form the time-invariant
part. The actuator, i.e. the electrically stimulated muscle group, represents the uncertain
time-varying section. A recursive algorithm is outlined for identifying online the stimulated
quadriceps muscle group. The algorithm requires EoM and passive joint characteristics to be
known a priori. The muscle dynamics represent the product of a continuous-time nonlinear
activation dynamics and a nonlinear static contraction function described by a Normalised
Radial Basis Function (NRBF) network which has knee-joint angle and angular velocity as
input arguments. An Extended Kalman Filter (EKF) approach is chosen to estimate muscle
dynamics parameters and to obtain full state estimates of the shank-quadriceps dynamics
simultaneously. Copyright © 2003 IFAC
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1. INTRODUCTION systems, it can be useful to have an accurate model
which describes the relation between the stimulation
parameters and the resulting force, moment or move-

ment.

The development of controlled neuroprostheses for
the restoration of basic motor functions to paraplegics
represents a major research area in rehabilitation en-
gineering. These lower limb prostheses are based
on a technique called Functional Electrical Stimula-
tion (FES), in which stimulation of paralysed mus-
cles can generate muscle contraction (Popovi¢ and

In this paper we are particularly interested in a nonlin-
ear modelling approach for the electrically stimulated
quadriceps muscle group under non-isometric condi-
tions.

Sinkjar, 2000). FES, together with appropriate sensor
and control technology, can provide useful, controlled
functional movement. To design controllers for FES
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When modelling these dynamics, the combination of a
modified Hill-type muscle model and a passive model
part is often assumed. The latter consists of the Equa-



tion of Motion (EoM), passive elastic and passive vis-
cous properties; first principles, simple pendulum tests
and static force measurements without stimulation are
used to obtain this model part.

Detailed muscle models describe submuscle groups
of the quadriceps muscle group separately. Assum-
ing a standard Hill-type muscle model, the generated
muscle force of the individual muscle groups is the
product of muscle activation (described by a nonlinear
recruitment curve and a linear dynamics with time
delay), a nonlinear force - muscle length relation and
a nonlinear force - muscle contraction velocity rela-
tion. To calculate the resulting knee moment, nonlin-
ear moment arms (parameterised by the joint angle)
for the muscles With respect to the knee-joint have
to be known. Passive muscle properties are usually
assigned to the joint. The identification of such muscle
models is not possible or too complicated in vivo, so
that parameters are often taken from the literature that
leads to a bad fit of the models to individual subjects.

Alternatively, the quadriceps can be treated as a single
muscle, and joint moment generation can be directly
described in the joint angle - angular velocity space
instead of the muscle length - muscle contraction ve-
locity space. To keep the identification task simple, of-
ten linear moment - joint angle and moment - angular
velocity relations are postulated, which are only valid
in a limited subrange of the entire joint angle - velocity
range.

Identification of the quadriceps dynamics (stimulation
- active knee moment relation) from shank movements
was investigated in (Chizeck ez al., 1999) (online esti-
mation) and in (Franken ez al., 1995; Ferrarin and Pe-
dotti, 2000) (off-line estimation). All these approaches
require, in addition to angle information, either direct
measurements of velocity and acceleration or their nu-
merical computation from frequently sampled knee-

joint angle measurements.

In this paper, we present a simple approach to es-
timate the nonlinear muscle model from knee-joint
angle measurements only, sampled with stimulation
frequency. Further, we look for a general nonlinear
function that describes the active knee moment as a
function of joint angle and angular velocity.

2. EXPERIMENTAL SETUP

A 57 year-old T10 complete paraplegic male subject,
2 years post-injury. training his quadriceps muscles for
an FES-cycling project, participated in this study.

The experimental set-up is depicted in Fig. 1. The
subject is seated on a bed with the unloaded shank
free to swing. Pulsewidth modulated electrical current
pulses are sent to the knee extensor muscles via sur-
face electrodes and cause contractions and knee-joint
motion. The knee angle x; (system output) is mea-
sured and sampled every 50 ms by a 3D-motion anal-
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Fig. 1. Experimentel set-up.

ysis system working with ultrasound. It delivers the
angle measurements in realtime via the parallel port to
a laptop. A multi-channel stimulator is connected to
the laptop via the serial port and delivers the current
pulses with pulsewidth pw up to 800 us. During the
experiments the pulsewidth serves as a variable input
signal whereas the current amplitude / = 80 mA and
the stimulation frequency f = 20 Hz are fixed.

The input signal during identification is a Multi-level
Pseudo-Random Sequence (M-level PRS) (Godfrey,
1993) in order to excite the nonlinear system be-
haviour. An M-level PRS is a periodic, deterministic
signal which has an autocorrelation function similar
to white noise.

3. METHODS
3.1 Model Structure

The shank-quadriceps dynamics are modelled as the
interconnection of a passive part, including equation
of motion and passive elastic/viscous joint properties,
and an active part, consisting of muscle activation and
contraction dynamics. Passive muscle properties have
been assigned to the joint in order to keep the number
of muscle parameters small. The passive system part is
nearly time-invariant, whereas the active part (muscle
actuator) possesses a large day-to-day variation and is
affected by muscle fatigue due to prolonged stimula-
tion.

Passive Viscous-Elastic Characteristics and Equation
of Motion.  The total knee-joint moment is given by

MK=Me+Mg+Mv+Mn

with M,: passive elastic moment, M,: gravitational
moment, M,: passive viscous moment and M,: ac-
tive moment generated by quadriceps stimulation. The
gravitational component is determined by

Mg (xy) = —mgl sin(xy — x7)

where m is the mass of the shank-footcomplex and ! is
the distance between the knee and centre of mass. The
knee-joint angle x) as well as the angle x{ are defined
in Fig. 1. The elastic moment M, (x;) is expressed as
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Fig. 2. Model of the quadriceps muscle group.

an exponential function as proposed and experimen-
tally verified in (Ferrarin and Pedotti, 2000). Passive
viscous joint properties have been modelled as non-
linear damping function

M, (x2) = Bj tanh(—B2x2) — B3xz,

where B}, B> and Bj are positive constants and x» the
angular velocity. Note that Coulombic friction effects
are captured by this damping function. The Equation
of Motion (EoM) is given by

X2= -I-MK(XI,XZ, M,)
Jk

where Jg represents the moment of inertia of the
shank-foot complex about the knee-joint. The anthro-
pometric parameters m, Jx and [ have been estimated
by measuring the height and weight of the subject
and using regression equations. A passive pendulum
trial was performed to obtain stiffness and damping
parameters.

Nonlinear Muscle Model  The active muscle mo-
ment M, is determined by the product of an activation
dynamics and a nonlinear static contraction function
(cf. Fig. 2).

The activation dynamics consist of a static recruitment

curve and a transfer function connected in series. The

recruitment curve gives a measurement for the nor-

malised amount of activated motor units depending

on the pulsewidth pw. This measurement is labelled

as stimulation level. A piecewise linear function de-

scribes the recruitment curve:

0 . pw < pWip,
PW — pWihr

PWsar — PWrhr

» pwW > pWsar

St = » PWihr = PW < pWsqr

where pw;p, is the pulsewidth for which first motor
units are recruited and pws,, stands for the pulsewidth
where all motor units are recruited. These threshold
and saturation levels can be determined as follows
under non-isometric conditions: the pulsewidth for
which the shank starts to move is taken as pw,, and
the pulsewidth for which the leg reaches full extension
is approximately chosen as pw,;.

The temporal behaviour of the muscle activation is
mainly influenced by calcium Ca>* release dynamics,
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finite conduction velocities in the membrane system
and delays from the chemical reactions involved. To
describe these effects a second order transfer function
with an input time delay Ty is used:

X3=2x4

X4 =

(h

where the output x3 is the normalised activation of
the muscle, wo and D = 1 are the undamped natu-
ral frequency and the damping factor of the calcium
dynamics respectively.

—2woDx4 — w§.1'3 + w(z)sl(l - Ty)

Nonlinear Contraction Function. The active knee
moment produced by the quadriceps is given by

My = Fm(xp)XB

where F,, [Nm] is the nonlinear contraction function
which defines the maximal possible active torque in
the case of full muscle activation dependent on knee-
joint angle and velocity which have been arranged in
avectorx, = [x; x2]’.

With the aim to have little constraints on the form
of the nonlinear contraction function, a Normalised
Radial Basis Function (NRBF) network (Nelles, 2001)
is used to parameterise Fy,:

M
Fr(xp) =Y ¥iillxp, — cillz,)
i=1
Here, the contraction function is described as the
sum of M normalised radial basis functions ¢;,i =
1, ..., M which are weighted by the constants ;, | =
1,..., M. The function ¢, is given by

[ (pr "‘-'1”):,)
Y2 o (llxp —alls)

where ¢; i1s a non-normalised Radial Basis Function
(RBF) chosen to be a Gaussian function:

ei(llxp — cillg,) =

eilllxp — cillz,) = exp (=1/2llx, — eil13, ).

The argument ||x, — ¢;||x, represents the distance of
the NRBF network input vector x, from the centre
vector ¢; and is calculated by

[
llxp —eillg, = \/(Xp —C,)'Z,(Xp —¢i)

with Z; being a norm matrix. For this application the
¥, matrix is chosen to be diagonal; thus, it contains
the inverse variances for each input dimension.

State-Space Model Representation. The shank-qua-
driceps dynamics can be compactly written as a state-
space model with the following state vector x, output
v and input u:



x=[x1 X2 X3 X4]/
¥ =xi
u=pw( —Ty).

Elements of the state vector x are joint angle and
velocity as well as the states of the calcium dynamics.
The knee-joint angle is defined as output, and the time
delayed pulsewidth is taken as system input. The form
of the state-space model is then

x = f(x,u) 2
y=cx 3)
with the vector function f given by
fx,u)=
x2
ﬁ [Me(x1) + Mg (x1) + My (x2) + Fn(xp)x3]
X4

—2woDxy4 — w(z)x3 + wé:t (u)

The vector ¢ is defined as ¢ = [l 00 0]' )

3.2 Online Estimation of System States and Muscle
Parameters

Online estimation of the state vector x and some
muscle parameters is investigated. Muscle parameters,
considered for online estimation, are the weights of
the NRBF network which are arranged in a vector
¥ =1[v¥1,---,¥m], as well as the frequency wg of
the activation dynamics.
All parameters to be tracked form a parameter vector
6:

0=[wo ¥'].
A common approach in parameter estimation is to
model the parameters that have to be estimated by a
differential equation. By setting

0=0 4)

we assume that model parameters are time-invariant or
slowly varying in comparison to the process dynamics.
Equation (4) is added to the plant state-space model
and a nonlinear observer is then applied to estimate
the meta-state z = [x' 0']' . The resulting dynamical
system for the meta-state is given by

B s
Sfiazw
y=[c" 0] [;] . 6)

¢’
The estimation of the meta-state is carried out using
an Extended Kalman Filter (EKF) under following
conditions and assumptions:
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e Only discrete-time noisy angle measurements
are available as observations
(sample time T; = 50 ms).

e The input signal is constant between two pulses:
u(t) =ur =ukT;), kT <1t <k + DT;.

e Estimates Zx

z(kT;) of the meta-state are
required at discrete-time instants only.

To perform this estimation task, we assume that a
discrete-time state-space model of the shank-quadri-
ceps dynamics is available, that describes the system
(5-6) exactly at the time instants k7;. The discrete-
time model has the following form:

)
®

2k = fi(Zk—1, uk—1) + vi—y

yk) ="z + i

where fZ is an appropriate transition function. Mea-
surement noise rx and process noise vy are uncor-
related sampled white noise signals with covariance
&(rari) = &p xRy and covariance matrix € (v,v;) =
én.k Vi respectively. Here, & is the expectation opera-
tor and § is the Kronecker symbol.

The EKF provides an efficient method for generat-
ing approximate maximum-likelihood estimates of the
meta-state of the discrete-time system (7-8). The filter
optimally combines noisy observations with predic-
tions from the known dynamical model and involves
the following recursive procedure (Friedland, 1996):

1st step: Propagate the state

Zk = fi(Zk-1, uk-1) 9)

Here, Zx is the a priori state estimate, and represents
the state estimate immediately before the kth obser-
vation of the knee-joint angle. This estimate is based
on the estimate Zx—; which is the state estimate after
the (k — 1)th observation of the previous time step.
The state estimate immediately after an observation is
called the a posteriori estimate.

As the transition matrix fZ is not known explicitly,
it will be defined implicitly as the solution of the
nonlinear differential equation (5). The estimate Zj
is the result of numerical integration of (5) over the
interval (k—1)7T; <t < kT, (during which the control
signal u(t) = ug—1 is constant) starting with the initial
condition z((k — 1)T) = Zz—.

2nd step: Propagate the error covariance matrix
The a priori (before observation) estimation error
covariance matrix Py is updated by

Py=& 1P ¥, +V,

where the matrix @;_; is the Jacobian matrix of the
transition function fZ:



3 fi(zk—1, uk-1)

b, =
k-1 P

Zk1=Zk-

As the transition function f is not explicitly given,
the matrix @4 _ is calculated by numerical integration
of the linearised matrix equation

b=A0®

over the interval (k — 1)T; <t < kT; starting with
initial conditions ®((k — 1)T;) = I and with A(z)
being the Jacobian matrix of the nonlinear function

Sz ug—y):

df*(z, uk-1)

A= az

()

The meaning of the subscript z(¢) is that the par-
tial derivatives are computed along the trajectories in
state-space defined by numerical integration of the
continuous-time process equation (5).

3rd step: Update the Kalman gain
The current Kalman gain is computed from the a
priori error covariance matrix Py as follows:

- - -1
Ky = Pyc? (,_.z'pkcz + Rk) .

4th step: State estimation update
The a priori state estimate is corrected by

k=2 + Ki (yk — ¢¥'%)

using the computed Kalman gain and the current ob-
servation y in order to obtain the a posteriori state
estimate Z (k).

5th step: Update the error covariance
Finally, the a posteriori error covariance is given by

Pi= I — Kie?') Py

Note that the terms a priori and a posteriori for the
estimation error covariance matrix depend only on the
observation times and not on the observation data.

The initial approximate error covariance matrix f’(O)
for the EKF is chosen to be a diagonal matrix; the
scalar diagonal elements of P(0) have the following
values: 10 if related to plant state estimates, 1000 if
related to parameter estimates of recruitment curve
and calcium dynamics and 10000 if related to NRBF
network weights. Larger values indicate that there is
a larger discrepancy between initialisation and real
values.

Low level state noise is assumed for the states which
represent parameters. This prevents the gain matrix of
the EKF from becoming too small. As a consequence,
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changes in the muscle parameters can be quickly de-
tected also when the Kalman filter is running for a long
time. The noise related to the states x> and x4 1s mod-
elled with higher variance since large unpredictable
variations (disturbances) in the neural activation and
the knee moment are likely. The noise covariance Ry is
set according to the specifications of the measurement
system.

4. RESULTS AND DISCUSSION

The EKF approach was evaluated in experiments with
one paraplegic male subject. Fig. 3 shows an applied
stimulation sequence and the corresponding measured
output signal (angle) as well as the a priori angle
estimate of the EKF. The corresponding parameter
estimates of the muscle dynamics are depicted in Fig.
4 the upper graph shows the parameter wg of the
activation dynamics while elements of the estimated
vector & are shown in the lower graph. The estimated
nonlinear contraction function F, after 80 s identifi-
cation is shown in Fig. §.

To describe the function F,,, nine RBFs (M 9)
were used whereas centres of the Gaussian functions
are chosen as the points of a regular grid; these points
cover the interesting angle-velocity region during the
non-isometric muscles contractions. Variances of all
non-normalised RBFs are the same. Significant over-
lapping of the non-normalised RBFs was selected to
guarantee a high smoothness of the resulting nonlinear
contraction function F,,. The elements of the meta-
state vector were initialised as follows:

1(0) = y(0), X2(0) = 0, £3(0) = 0, and x4(0) = 0.

The nonlinear recruitment curve was experimentally
determined as described in Sec. 3.1. The initial es-
timate for the frequency wo was taken from the lit-
erature. The time delay 7; was estimated by corre-
lation analysis of recorded input-output data of the
system. Initial estimates J/,‘ 0),i=1,...,M, forthe
NRBF network weights were randomly chosen from
the range [-0.1,0.1].

The estimated model after 80 s identification was fur-
ther used to simulate the plant behaviour for the time
range 80-105 s. For this test, the model is only driven
by the input signal while online muscle identification
and state estimation are switched off. The result of this
simulation test is given in Fig. 6.

The EKF converges steadily. The one step ahead angle
prediction of the EKF (a priori estimate) of the EKF
fits the measured angle very well. However, the sim-
ulation test shows some discrepancies between model
output and measured angle. This may be the effect of
choosing a model structure which is too simple. Note
that no enhanced optimisation of the NRBF network
structure (no. of NRBF etc.) was carried out.
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In the experiments carried out for this work, mainly
the vasti muscles were stimulated. In this way, the
contraction function can be explained using a single
classical Hill type model. The additional stimulation
of the rectus femoris muscle would have probably
lead to a contraction function not describable using
a single classical Hill type model. However, notice
that the proposed method to estimate the contraction
function is able to cope with more complex situations,
including the simultaneous stimulation of different
muscles.
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Real angle (bold line) and simulated angle (thin line)
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5. CONCLUSIONS

The quadriceps dynamics can be described by the pro-
posed model structure (modified Hill-type model). An
Extended Kalman Filter represents a good tool to es-
timate the model parameters and gives state estimates
of the quadriceps-shank dynamic at the same time. A
good convergence of the estimation could be shown in
real experiments.

As only discrete-time joint angle measurements are
required for the parameter and state estimation this
method is appealing for use in a clinical set-up;
it is simple and no expensive sensors for velocity
and acceleration measurements are required. How-
ever, the algorithm is computational expensive, but
computational power of standard processors is grow-
ing steadily, and the real-time implementation of the
algorithm is feasible. The integration of the EKF in
nonlinear adaptive strategies for control of the paral-
ysed lower limbs by means of FES is-planned.
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