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Abstract: Approximation-based approaches to hybrid control systems synthesis have been 
mostly limited to problems with low-order linear continuous dynamics. In this contribution, 
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discrete approximations for a class of nonlinear models. Furthermore, a situation is inves- 
tigated where the high-dimensional plant state converges to a low-dimensional manifold; in 
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1. INTRODUCTION 

A standard approach for synthesizing discrete event 
controllers for continuous or hybrid systems is based 
on conservative approximation: by computing a suit- 
able discrete abstraction, the hybrid synthesis problem 
is transformed into a purely discrete problem, which 
can subsequently be solved using methods from DES 
theory. Various approximation based approaches have 
been suggested, for example, in (Cury et al., 1998; 
Asarin et al., 2000). The authors of the present paper 
have proposed 1-complete approximation (Moor and 
Raisch, 1999) as a particularly convenient abstraction 
scheme: by construction, it provides a conservative 
approximation, i.e. its behaviour includes the underly- 
ing system behaviour, and by increasing the parameter 
1 E NO, approximation accuracy is improved. 

In principle, the computational procedure to generate 
I-complete approximations is straightforward. There 

are, however, two major problems that have limited 
application of the procedure to a fairly small class 
of problems: (i) Quantization cells have to be tracked 
under the progress of time and intersected with other 
quantization cells. Clearly, this is a difficult problem 
if the right hand side of the differential or difference 
equation is nonlinear in the continuous state vari- 
able. (ii) Computational effort “explodes” with grow- 
ing state dimension. Hence, applications have been 
restricted to fairly low-dimensional plant models. 

In this paper, it is shown how the approximation based 
approach can be extended to a class of high-order non- 
linear systems. The paper is organized as follows: in 
Section 2, the basic procedure for I-complete approx- 
imation is summarized. For convenience, the discus- 
sion is restricted to sampled systems with equidistant 
sampling instants. Section 3 provides an introduction 
to monotone dynamical systems and shows how 1- 
complete approximations can be computed efficiently 
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for this class of nonlinear systems. In Section 4, a 
situation is explored that allows treatment of high- 
dimensional systems. Finally, in Section 5 ,  the results 
are applied to synthesize a DES controller for the 
start-up of a nonlinear distillation column model of 
order 42. 

2. APPROXIMATION BASED CONTROL 

The purpose of this section is to state a class of 
hybrid control problems and to provide references to 
a general solution procedure. The considered plant 
is characterized by discrete event inputs and outputs 
while the internal state is real-valued: 

x(k+ 1) = F ( x ( k ) ,  u ( k ) )  3 (1) 
y ( k )  eG(x (k ) )  9 (2) 

where IUI E N, IYI E W, u :  No + U ,  y :  No + Y ,  
x : W ~ + I W ~ , F : ~ ~ X U + ~ ~ , G : ~ ~ + ~ ~ \ ( ~ ~ ~ } .  
The above system class addresses sampled continuous 
dynamics with discrete-valued inputs and quantized 
outputs. By allowing the measurement map G to be 
nondeterministic, the quantization cells may cover (in- 
stead of partition) the continuous state space. This 
models the practically important case where measure- 
ment information is, to a certain extent, ambiguous. 

From the perspective of a potential controller, the 
system has a discrete event behaviour: at the k-th 
sampling instance, the supervisor applies an input 
symbol u ( k )  from the finite alphabet U and then waits 
for the next measurement symbol y ( k  + l),  from the 
finite alphabet Y .  However, the external behaviour 
depends on the continuous dynamics as represented 
by the next state map F .  Thus, the considered scenario 
constitutes a non-trivial class of hybrid systems. 

A thorough discussion of supervisory control of hy- 
brid systems is given in (Moor and Raisch, 1999), 
which is presented within the framework of J.C. 
WTLLEMS' behavioural systems theory; see (Willems, 
1991) for a comprehensive introduction. For the scope 
of this paper, focus attention on the external behaviour 
93 C (U x Y)NO induced by the above hybrid plant: 

% : = { ( u ,  y)l  3 x V k :  (l)and(2)hold}: ( 3 )  

i.e. % denotes the set of all trajectories that agree with 
the plant equations (1) and (2). The task of a super- 
visor is to restrict the plant behaviour according to a 
given language inclusion specification: the supervisor 
shall prevent the system to evolve on trajectories that 
are deemed to be unacceptable. Formally, the closed- 
loop behaviour is defined as the intersection of % 
with the supervisory controller behaviour %sup. The 
language inclusion specification BSpec then demands 

%CI := % n %sup C %spec. (4) 

If % and are both realised by finite state ma- 
chines, the controller synthesis problem can be treated 
by a slightly modified version of known methods 

from DES theory; e.g. (Ramadge and Wonham, 1989). 
However, for the hybrid plant (l),  (2), one cannot 
expect a finite realisation of % to exist. Therefore, 
it is proposed to base the synthesis of a supervisor 
BsUp on a discrete abstraction of the plant, i.e. a finite 
automaton realizing a behaviour BCa 2 %. The main 
result of (Moor and Raisch, 1999) then guarantees 
that this supervisor not only enforces the specification 
when connected to the abstraction BC, but also when 
connected to the actual hybrid plant ( I ) ,  (2). 

In the case of time invariant systems, a particularly 
suitable abstraction is the I-complete approximation 
%i 2 %, where 1 E W is a parameter. The most rele- 
vant features of 2331 are that (i) accuracy is monotone in 
1, i.e. %i+1 g % l ,  and that (ii) a finite realization can 
be easily derived from the restricted plant behaviour 
93 I ~0.~1. The following iterative procedure is recalled 
from (Moor and Raisch, 1999): 

Theorem I .  Let % C (U x Y)NO denote the exter- 
nal behaviour of (1),(2). For (u ,  y )  E (U x Y)NO 
and 1 E NO define the sets of compatible states 
X ( ( u ,  y ) l [ o . ~ ] )  C Rn iteratively by 

X((u,Y)l[o,ol) := G-'Oi(O)) 9 ( 5 )  

F ( ~ ( ( u , Y ) l [ o , r l ) '  u ( 0 )  n G-'Oi(l + 1 ) ) .  

X((u>Y) l [o . J+l l )  := 

(6 )  

Then 

By the above theorem, % I [ [ O , J ]  can be established via 
a finite iteration of images under F and intersections 
with the quantization cells G-'. Then, the methods 
presented in (Moor and Raisch, 1999) allow the con- 
struction of a finite abstraction of the hybrid plant and 
finally the synthesis of a supervisory controller. 

From a practical perspective, however, there are two 
major limitations. First, for nonlinear continuous dy- 
namics, images of sets of states under F can, in gen- 
eral, not be computed efficiently. Roughly speaking, 
one is left with the simulation from an exhaustive 
number of initial conditions x(O), and then naively 
assumes that X ( ( u ,  y)I[o.~l)  = lil whenever no witness 
6 E X ( ( u ,  y ) l [ o . ~ ] )  could be found, at the risk of 
violating the requirement BCa 2 %. Second, for high 
dimensional continuous dynamics, a reasonably accu- 
rate quantization leads to computationally intractable 
output alphabets Y .  In the following two sections, a 
broad class of hybrid systems is identified where the 
above iterative procedure can be refined in order to 
gain substantial computational efficiency. 

3. MONOTONE DYNAMICAL SYSTEMS 

For monotone dynamical systems (see (Smith, 1995) 
for a comprehensive treatment of the subject), it is 
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possible to efficiently estimate the sets of compati- 
ble states X ( ( U ,  y)I[o.~]). In general, monotonicity is 
defined with respect to an arbitrary partial order. The 
scope of this paper, however, is restricted to the spe- 
cific partial order 4, where, for a ,  b E Rn, 

a d b : + a a ,  i b l ,  i = l ,  . . .  n.  (8) 

Dejnition 2. The map g : Rq + Rn is called order 
preserving if a 4 b implies g ( a )  4 g(b ) .  

Note that a map is order preserving if all its partial 
derivatives are nonnegative. The image of a "box" 

Q(u, b) := { c I  a 4 c 4 b }  (9) 
under an order preserving map g can be efficiently 
over-approximated via the images of a and b, i.e. 

For the following consider dynamical systems 

g ( Q ( a ,  b))  C Q(g(a ) ,  g (b ) ) .  

Z(t) = , f ( z ( t ) )  (10) 
and assume that for any initial condition z (0 )  = zo 
there exists a unique solution Ql(zo) for all t > 0. 
The system ( 1  0) is called monotone, if ordered states 
remain ordered under the progress of time, i.e. if 
the flow Qt : Rn + Rn induced by the vector field 
f : Rn + Rn is order preserving for all t > 0. 

A criterion for monotonicity can be stated in terms of 
the off-diagonal entries of the Jacobian o f f :  

Theorem 3. (see e.g. (Smith, 1995)) The dynamical 
system i = f ( z )  is monotone if 

aA/az,  > 0,  Vi f j .  ( 1  1 )  

For monotone systems, the temporal evolution of a 
box Q(ra, { b )  can be over-approximatedby evaluating 
the flow for the points and {b  only: Qt ( Q(Ca, { b ) )  C 
Q(Ql({a) ,  Q t ( { b ) ) .  In the case of the hybrid system 
( l ) ,  (2), the continuous dynamics depends on a fixed 
control symbol I-L E U ,  i.e. z = J1(z). As before, it is 
assumed that the flow Qf : Rn + Rn induced by J1 
exists for all t > 0 and is order preserving. Hence, 
the transition function defined for a fixed sampling 
interval A > 0, 

F(6,  PI := QE(0 , (12) 
is also order preserving. 

It is further assumed that measurement symbols u,, 
j = 1 , .  . . , p ,  correspond to bounded boxes in Rn, 
i.e. 

where a,, b, E Rn, a, 4 b,. 

Obviously, a finite number of boxes (1 3) cannot cover 
the entire Rn . Hence, one needs an additional "out of 
range symbol" 8 with 

G - ' ( f )  = Rn \ U1sJspG-'(uJ)  

G-'(v,) = Q<al ,  b,), (13 )  

(14) 
to give Y = {UI, . . . , u p }  U {J}. 

4. HANDLING HIGH-ORDER DYNAMICS 

Many complex technical processes, although intrin- 
sically high-dimensional, converge to a low-dimen- 
sional manifold within a short time; see the distilla- 
tion column scenario in Sec. 5 .  Or, one may design 
a number of low-level continuous controllers such 
that each individual continuous closed-loop exhibits 
an attractive low-dimensional manifold, even if the 
plant itself does not do so. In the hierarchical control 
architecture discussed in (Moor et al., 2001), a high- 
level supervisor then switches between the low-level 
controllers, in order to enforce an overall specification. 

This particular structure can be exploited in the fol- 
lowing way: instead of quantizing the high-dimen- 
sional plant state space, only a well defined neighbour- 
hood of the relevant part of the respective manifold 
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is covered by quantization cells and hence provides 
measurement information; the “rest” of the state space 
returns an “out of range” symbol. For a formal treat- 
ment of this idea, let 

h,, : R4 + Rn, q < n ,  (22) 

represent a parametrization of a q-dimensional mani- 
fold M,,  in Rn. Naturally, both the manifold and its 
parametrization may depend on the control symbol 
p. Assume h,, to be order preserving and M,, to be 
attractive, i.e. 

lim dist (h,,(Rq), z ( t ) )  = 0 (23) 
t i m  

where ’ dist ( X ,  <) := inf{ l l <  - 6 IIL I 6 E X } .  

Let the bounded subset P c Rq represent the relevant 
operating range on M,,  and 

vdh,,(P)) := {< I dist(h,,(P), <) < 81 (24) 

the neighbourhood of h,, ( P )  that is to be covered by 
quantization cells. This can be achieved by covering P 
with a number of (q-dimensional) boxes and suitably 
“inflating” their images under h,,: 

p c Ul,~,p,~Q(a,> b,),  a j ,  E Ry 9 (25) 

G-’(u?) := Q(h / l (a l )  -8B-f hp(bj )  +Sp-’), (26) 

where B-’ := ( P I ’ ,  . . . B T ’ ) ~ .  Then, as required, 

U15,5p/r G-’(v?) 2 vJ(h,,(P)). (27) 

To prove (27), take any < E v ~ ( h , , ( P ) ) .  Then there 
exists a j? E P, f := h,,(j?), such that I1 f - < IIL i 6, 
andtherefore f -8p-I 4 { 4 t +SB- ’ .  By (25), one 
can find a j such that F E Q(a , ,  b J ) ,  i.e. aJ 4 F 4 
bJ.Ash, isorderpreserving,hll(aJ) 4 h,(F) = t 4 
h,(b,). Therefore h,,(a,) - 8p-l 4 ( 4 h,,(bJ) + 
8p-l and { E G-’(LJ:). 

The part of Rn not covered by any of the cells 
G-’ (v?), returns an “out of range symbol” $IL, i.e. 

1 i, G-’($IL) := Rn \ U 15J5pLrG- <VJ 1 > (28) 

such that the set of measurement symbols is given by 

Y,, := {u:, . . . , v~’ } U { $ I L } .  (29) 

Assuming monotonicity of the high dimensional con- 
tinuous dynamics, sets of compatible states can again 
be safely estimated by the iteration (15)-(21). Note 
that the discrete abstraction based on !%I [OJI is conser- 
vative even if the convergence (23) fails to hold true. 

Y := U,,Er/Y,,, P/ l  

5. START-UP OF A DISTILLATION COLUMN 

Consider a distillation column in pilot plant scale, 
which is operated at the Institut fur Systemdynamik 

The weighted ieznit?, norm is defined by ~~~~~& := maxi IpitI. 
The weighing vector p = (/’I. . . . P a ) ,  pi > 0, x / $ / n  = 1 ,  is 
assumed to be fixed for the scope of this paper. 

und Regelungstechnik in Stuttgart. It is about 10m 
high, and consists of 40 bubble cap trays (consecu- 
tively numbered by i = 2, . . . ,41  from bottom to top), 
a reboiler (i = 1) and a condenser (i = 42), see Fig. 1.  
Feed is supplied on tray 2 1. Our application example 
is the separation of methanol and propanol. 

Fig. 1. Distillation column. 

The following steps can be distinguished during con- 
ventional column start-up: initially, the column trays 
are partially filled with liquid mixture from the previ- 
ous experimental run. Further feed is added, and the 
column is heated up until boiling point conditions are 
established in the whole column. During this start-up 
step, the column is operated at total reflux and reboil. 
At the end of this step, a single concentration front is 
established. In a second step, the feed, distillate and 
vapour flow rates are adjusted to their desired steady 
state values, and the initial front splits into two fronts. 
Then, in a third step, the two fronts move very slowly 
towards their steady state. 

In the following, the objective is to speed up the third 
step of the start-up procedure by introducing a suitable 
supervisory control strategy. The starting point for an 
approximation based controller synthesis is the below 
continuous distillation column plant model which in- 
corporates the following assumptions, which are well 
justified during the third step of start-up: (1) constant 
molar overflows, (2) constant molar liquid holdups, 
(3) negligible vapour holdups, (4) total condenser, (5) 
constant relative volatilities, (6) a tray efficiency of 
one. Therefore, the model is based on material bal- 
ances only and consists of one nonlinear first-order 
ODE for each tray, the reboiler, and the condenser: 

y ;  = x;a(l  + x;(a - 1 ) ) p  , (3 1) 
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where x, and y ,  are the methanol mole fractions in 
the liquid and in the vapour on the i-th tray, in the 
condenser (i = 42) and the reboiler (i = 1); a = 
2.867 is the relative volatility; xF = 0.32 is the 
methanol mole fraction in the feed; FL denotes the 
liquid molar flow rate, F t  the vapour flow rate and 
n i  the molar liquid holdup; F ,  D and V denote the 
feed, distillate and vapour flow rate, respectively; See 
Table 1 for dependencies between the above variables. 

Table 1.  Flow rates and liquid holdups. 

feedtray 

reboiler 

22-41 V -  D V -  D V V 1.922 
21 V - D F +  V - D V V 1.922 

2-20 F +  V -  D F +  V - D  V V 1.922 
1 F +  V -  D F -  D 0 V 135 

The feed flow rate is considered to be constant at 
F = 220.0[mol/h], while D and V are control inputs. 
For any constant D and V ,  the system (30), (31) 
has an attractive equilibrium x*(D, V ) ,  which, for 
the nominal inputs DO = 70.4[mol/h] and VO = 
188.2[mol/h], corresponds to the desired operating 
point x; := x*(Do, VO) ofthe distillation column. The 
controller under construction shall switch between 
a finite number of constant input values V and D. 
Considering only values V > 0, D > 0 such that 
F + V - D > 0, monotonicity of (30), (31) follows 
from the criterion given in Theorem 3. 

The construction of lower dimensional manifolds M,, 
is based on wave propagation theory; it considers par- 
ticular concentration profiles as waves and discusses 
their propagation in time and space (Kienle, 2000). 
Each wave is of the form 

xz = p1 + (32) 
P 2  - P1 

1 + ep(z-r) ’ 
where p1 and p2 are the asymptotic values of the 
methanol mole fraction at the bottom and at the top 
of the wave, s is the so called wave position (point 
of inflexion) and p is the slope at s. The outcome of 
wave propagation theory most relevant to this paper 
is that during the third startup step, the concentration 
profile can be represented by two waves of the type 
(32), one in each the stripping (1 5 i 5 21) and 
rectifying section (21 < i 5 42). Their slopes can 
be approximated reasonably well by the slopes that 
correspond to the equilibrium x;, numerical values 
being ps = 0.465 (stripping section) and pr = 0.572 
(rectifying section). Neglecting the effect of different 
inputs to the slopes, M,, becomes independent of p. 
Under the additional assumption of constant methanol 
mole fractions in the reboiler and condenser, x1 = 0 
and x42 = 1, the asymptotic values in Eq. (32) are 
uniquely determined by the feed concentration x21 
and the wave positions is and iT for the stripping 
and rectifying section, respectively . Consequently, 

Here, Eq. (32) is re-parametrised for the stripping and rectifying 
section by s = 22 - tS and s = 63 - tr ,  respectively. 

the wave fronts of interest are parametrized by a map 
h : R’ + R42 mapping parameter triples ( ~ 2 1 ,  is, i r )  

to concentration profiles. The i-th component h ,  of h 
evaluates to 

h,(x21, is, i,”) := x21 [ (1 -e(‘-l)pA) (1 +e(’A-l)pA 
] x [ (1 - e20/)A) (1 + ,0-22+h)]-1 

h z ( x 2 1 ,  is, i r)  := [ x 2 1  (e2’p! -e(L-63+’~)pt 1 

[ (e21m - 1) (e(z-63+.%)m + 1) I-’ 

(33 )  

for 1 5 i 5 21, and 

+ (1 - x21) (,(&21)0> - e(z-21)pr ) + ,(~-42+ir)pr 

- 1 1 (34) 

for 22 5 i 5 42. Note that all partial derivatives of 
h are non-negative. Hence, h is order preserving. This 
completes the construction of M = M,, := h(R’). 

The operating range of the supervisor is first given 
in the parameter space and then lifted to the high- 
dimensional state space. In the particular setting, the 
equilibrium xi corresponds to the parameter triple 
x21 x 0.318, is x 10.7, ir x 28.7. The bounded box 
of parameters P = [0.300, 0.3401 x [4.0, 20.01 x 
[23.0, 37.01 is considered a reasonably large opera- 
tion range. The high-dimensional measurement quan- 
tization is obtained from a partition of P by p = 139 
parameter cells Q(a,, !I!), 1 5 j 5 p and Eq. (26), 
where S = 0.002. Input symbols U = ( 1 ~ 1 ,  . . . I L ~ }  

are chosen according to Table 2; see (Klein et al., 
1999) for a motivation of the particular numerical val- 
ues. For each p E U ,  the system (30), (31) induces a 
flow a:. Finally, a sampling time of A=l Omin consti- 
tutes a hybrid model according to Sec. 2. 

Table 2. Control symbols. 

D [mol/h] 
35.8070 
59.3318 
82.8566 
46.8782 
70.4030 
93.9278 
57.9494 
81.4742 

V [molih] 
188.2433 
158.6412 
129,0391 
217.8455 
188.2433 
158.6412 
247.4476 
217.8455 

control symbol 
EL 1 
/ L  2 
EL 3 
lL4 
EL 5 
/ L  6 
EL 7 
/ L  8 

I 104.999 I 188.2433 I EL 9 

As a specification, the supervisor is required to drive 
any initial state within X O  = V s ( h ( P ) )  into the 
target region X f  = b ’ ~ ( h ( P f ) )  within no more than 
20min, where P f  = [0.316, 0.3201 x [8.5, 11.51 x 
[27.5, 31.01 c P. Choosing one of the quantisation 
cells equal to X f ,  this specification can easily be 
formalized as a language inclusion (4). Synthesis is 
then successfully carried out based on the estimate 
sets of compatible states i ( ( u ,  y ) I [o ,~ l )  for 1 = 1,2.  
A closed-loop simulation is shown in Fig. 2. For each 
sampling instant, one concentration profile is plotted, 
the arrows indicating forward evolution in time. As 
the sampling intervals in the closed-loop configuration 
are chosen to be IOmin, the target region is seen to 
be reached within 20min. In contrast, Fig. 3 shows an 
open-loop simulation for the nominal input VO and Do. 

413 



6. CONCLUSIONS 

Fig. 2. Closed-loop simulation (A=lOmin) 

_ _ _ .  ” _ ” _  

Fig. 3. Open-loop simulation (A=5h) 

Here, one profile every 5h is plotted, and it takes an 
overall time of 20h to reach the target region. 

Remark: The properties employed for the construc- 
tion of M are well motivated by wave propagation 
theory and also have been validated by simulations 
and experiments. It follows from the successful com- 
pletion of the controller synthesis procedure, that our 
abstraction is accurate enough for the particular pur- 
pose. While the insight from the process engineering 
perspective has been an essential guidance, it is im- 
portant to note that the reliability of our controller 
does not depend on the various claims and assump- 
tions regarding the process model: the only relevant 
requirement is for the approximation to be conserva- 
tive, i.e. BC, 2 B, and this follows purely from the 
monotonicity of f  and h ,  as discussed in Sec. 3. 

On a decent workstation, the overall time required for 
the computation of both the discrete approximation 
and the supervisory controller is about 10min. This is 
a significant performance increment, when compared 
with earlier work (Klein et al., 1999) on the very 
same scenario, but based on exhaustive simulation: 
there, computations used to take up multiple hours, 
depending on the number of considered initial states 
x (0) E Rn. Note also the different quality of reliabil- 
ity: while our new approach guarantees the approxi- 
mation to be conservative, exhaustive simulation may 
-in principle- overlook “most critical” states. 

This paper discusses approximation based synthesis 
of discrete event controllers for high-order monotone 
systems. Here, monotonicity allows for an efficient 
over-approximation of the temporal evolution of quan- 
tization cells, from which conservative discrete ap- 
proximations of the nonlinear dynamics can be de- 
rived. It is also shown how to overcome the problem of 
high state dimensionality if the plant state approaches 
a low-dimensional manifold. These contributions are 
illustrated by an example from process control: based 
on a 42nd order nonlinear model, a discrete controller 
is synthesized for the start-up of a pilot plant scale 
distillation column. A comparison with earlier work 
underlines the achieved computational benefits. 
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