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Abstract: In this contribution, the relation between the intended purpose of a model 
and its required degree of accuracy is investigated. It is based on an intuitive definition 
of accuracy from J. C . WILLEMS' "behavioural systems theory" . We outline a 
procedure that generates a strictly ordered set of abstractions, or approximations, 
for a given detailed model , where ordering is in the sense of approximation accuracy. 
It is particularly useful for the purpose of control synthesis: within the set of 
abstractions, there exists a unique coarsest , i.e. least accurate, model that allows 
a given specification to be met. The resulting control scheme is guaranteed to "work 
properly" for the underlying detailed model. The approach is illustrated by a number 
of examples from process control. Copyright © 2000 IFAC 
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1. INTRODUCTION 

In most areas of science and engineering, it is an 
accepted fact that modelling is a purpose-driven 
act. Namely, the required accuracy of any mathe­
matical process model depends on the application 
problem which is to be solved on the basis of the 
model. In particular, models that are to be used 
for open-loop applications (e.g. , simulation) need 
to be much more accurate than models that are 
built for solving closed-loop problems (e.g., the 
design of feedback control): a closed-loop infor­
mation structure allows one to actively combat 
model uncertainty. 

It is obvious that, in general, there exists a trade­
off between model accuracy and model simplicity: 
to achieve a more accurate process description, 
one may switch from a static to a dynamic model 
(by taking into account time), one may increase 
the order of the model (by modelling additional 
features) , one may replace a linear model (which, 
in general , is only adequate in the vicinity of a sin-

1 Support by Deutsche Forschungsgemeinschaft (DFG) 
through "Sonderforschungsbereich 412" is gratefully ac­
knowledged 
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gle operating point) by a nonlinear model (which 
covers a wide operating region) . In short: im­
proving model accuracy implies increasing model 
complexity. 

As a natural consequence, we want a process 
model to be as precise (and therefore as complex) 
as necessary to solve a given application prob­
lem, but also as simple (and therefore as inac­
curate) as possible without sacrificing solvability. 
This does not only please our sense of beauty -
after all, Ockham's razor ("Entities should not 
be multiplied beyond necessity" 2) constitutes a 
cornerstone of engineering aesthetics - but it 
also minimizes the workload in any subsequent 
(model-based) step. 

To address this tradeoff properly, we need to for­
malize the notion of "model accuracy". This is 
easily accomplished within the framework of J. C . 
WILLEMS' "behavioural systems theory" (see 
(Willems, 1989; Willems, 1991)). It is worth re-

2 This "principle of parsimony" became associated with 
the "More than Subtle Doctor" W . O CKHAM (1285-1347) ; 
it characterizes his philosophical conclusions although it 
was apparently never actually phrased by him. 



marking that the basic principles of "behavioural 
systems theory" are in perfect accordance with 
K. POPPER's central ideas on the logic of science 
(Popper, 1934): a dynamic model, in WILLEMS' 
sense, is characterized by the set of all external 
signals it allows to occur; this set is called the 
model behaviour. Clearly, a model defined in this 
way is falsifiable and hence, in POPPER's terminol­
ogy, a scientific statement: the model is falsified by 
any observed signal which is not an element in the 
model behaviour. Now consider two models which 
have not yet been falsified; model A is said to 
be more accurate than model B, if its behaviour 
is a proper subset of the behaviour of model B. 
This is a natural and very intuitive definition of 
accuracy, as model A predicts the future evolution 
in a more precise manner (i. e. predicts it to be in 
a smaller set) than model B. It is also consistent 
with POPPER'S terminology. 

We can now turn to the more specific problem of 
synthesizing feedback control for a given chemical 
process. Any model which the chemical engineer­
ing community accepts as a "decent representa­
tion" of the real process can serve as a starting 
point. However , in all likelihood, this model will 
be too complex for the purposes of feedback syn­
thesis - control systems design using the known 
"tools of the trade" might either be too time­
consuming or even plain impossible. Hence, we 
replace the given model by a less accurate and 
therefore less complex model. This reduction in 
accuracy / complexity can be taken up to a point 
where we can still find a controller that enforces 
the (given) specifications, but where any further 
reduction would imply loss of solvability of the 
control problem. We then synthesize a suitable 
controller for the simplified model. Of course, we 
need to guarantee that this controller also works 
properly when connected to the original (detailed) 
model. It is the beauty of the described approach 
that this property comes for free: if the simplified 
model is less accurate than the original one (in the 
precise sense defined above), our controller will 
also solve the problem for the latter model. 

As long as the above requirements are met, one 
can go to any extreme. In particular, it is pos­
sible to replace an n-th order ODE-model (in­
volving n state variables that can each take an 
infinite number of values) by a finite state ma­
chine, or automaton (involving one state variable 
which can only take a finite number of values) . 
This is particularly helpful when dealing with 
hybrid systems, which are characterized by the 
interaction of continuous and discrete-event com­
ponents. Hybrid control problems, both verifica­
tion and synthesis , have proven to be intrinsi­
cally difficult, if not impossible, to solve. This 
explains why abstraction based techniques have 
enjoyed considerable popularity (e.g.,(Antsaklis et 
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al. , 1993; Cury et al. , 1998; Lunze, 1995; Raisch 
and O'Young, 1997; Moor and Raisch, 1999)). 
By approximating the continuous component by 
a discrete system, the overall problem is trans­
lated into a purely discrete problem; this , in turn, 
can subsequently be approached using established 
methods from computer science or discrete-event 
systems theory. Any "positive outcome" of the 
problem investigation on the discrete level trans­
lates back into a positive result on the hybrid level: 
if we can verify that a given discrete controller 
"works properly" for a discrete abstraction, we 
know it will also "do the job" if connected to the 
underlying continuous or hybrid plant model; if 
we succeed in synthesizing such a controller for 
the discrete abstraction, we have also solved the 
control synthesis problem for the original prob­
lem. Simplification demands a price, however. It 
is inconclusiveness in cases of negative outcome: 
for example, if there is no solution to the control 
synthesis problem on the abstraction level, we 
cannot infer that the underlying problem cannot 
be solved. 

The main purpose of this paper is to demonstrate 
feasibility of approximation based approaches to 
hybrid control systems synthesis. This, by impli­
cation, will show that simple models may indeed 
suffice to treat control problems for not so simple 
processes and will hence affirmatively answer the 
question posed in the title of this contribution. 
We will only touch upon theoretical issues where 
absolutely necessary. Instead, we will resort to a 
series of examples to illustrate the basic ideas. 

This paper is organized as follows: Section 2 
recalls a few basic ideas from WILLEMS' "be­
havioural systems theory". In particular, it ex­
plains why these ideas provide an ideal framework 
to discuss approximations with regard to control 
systems synthesis. Section 3 suggests a straight­
forward approximation scheme which generates 
a hierarchy of discrete abstractions for a given 
continuous plant model. This hierarchy is ordered 
with respect to approximation accuracy, and any 
element within the hierarchy is a candidate to 
serve as a basis for control synthesis. Section 3 is 
based on (Raisch, 1998), and the reader is referred 
to this reference for details. Section 4 introduces 
an extremely simple example, its only purpose 
being to illustrate the approximation scheme from 
the previous section. Then, in Section 5, a more 
demanding example is introduced - synthesis of a 
safe shut-down procedure for a batch evaporator 
problem. It represents joint work with E. KLEIN 
and is taken from (Klein and Raisch, 1998). Fi­
nally, in Section 6, we consider the problem of 
synthesizing a closed-loop start-up strategy for a 
distillation column. This is based on joint work 
with E . KLEIN, A. KIENLE and A . ITIGIN (Klein 
et al., 2000). 



2. BEHAVIOURS AND ABSTRACTIONS 

Let T ~ jR denote time. This covers both contin­
uous time (T = jR or T = jR+) and discrete time 
(T = { ... Ll , to, t l , . .. } or T = {to, tl, .. . }). 
Suppose we want to model the temporal evolution 
of a (vector) variable "living" in some set W, 
where W can be Euclidean space or just a set 
of symbols without any mathematical structure 
(e.g., the colours of a traffic light). Let W T rep­
resent the set of all functions mapping T into W 
or, in other words, the set of all signals defined 
on time T taking values in W. Obviously, what 
a model needs to do is to discriminate between 
signals w E W T which it deems possible and 
signals that, according to the model, cannot occur. 
Hence, in WILLEMS' "behavioural systems the­
ory" (Willems, 1989; Willems, 1991), a model is 
defined to be a triple (T, W, B ~ W T ) , where the 
behaviour B is exactly the set of signals that the 
model allows to occur. Clearly, for any non-trivial 
model, B will be a proper subset of WT . 

As an example, let's say that we want to model 
the future evolution of temperature in the city of 
Magdeburg. Then T = jR+, with 0 representing 
the time of writing, and W = [-273°C, 00). The 
following is a very crude, though nontrivial model: 
~ = (T, W,B) where B := {w E W T 1 -50°C ~ 
w(t) ~ 50°C, t ET} . Clearly, a dynamical model 
with unrestricted time can never be verified, but 
any nontrivial model could be falsified (for exam­
ple by a temperature measurement of more than 
+50°c in Magdeburg at some time in the future) . 

Suppose that there are two models ~l = (T, W, Bl ) 

and ~2 = (T, w, B2 ) explaining the same phe­
nomenon and neither of these models has been 
falsified. ~l is called at least as accurate as ~2 
if ~l ~ ~2. Accuracy (in the sense of "~") 
imposes a partial order on the set of all models 
{(T, W, B)IB ~ WT} . This definition of model 
accuracy is both intuitive and consistent with 
POPPER'S philosophy of science: " ... the more 
they prohibit, the more they say" (Popper, 1934). 

As behaviours are a usually infinite collection of 
signals, they are not directly suitable for compu­
tational purposes. To perform actual calculations, 
a finite representation of (T, W, B) is needed. Be­
haviours are, however, an excellent way to visu­
alize various aspects of systems and control. As 
an example, let us consider a standard feedback 
configuration: denote the control inputs of the 
plant by u(t) E U, t E T, its measurable outputs 
by y(t) E Y,t ET. Then W := U x Y, and 
~p := (T, U x Y, Bp ~ (U x Y)T) is a plant model. 
It is to be controlled by feeding back y to u via a 
second system ("the controller") with behaviour 
Bc. Then, the closed loop behaviour is given by 
Bpc = Bp n Bc - only signal pairs (u, y) that 
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are compatible with the dynamics of both plant 
model and controller "survive" closing the loop. In 
the simplest case, closed loop specifications can be 
formulated as a "legal" set B8pec C (U X y)T of 
signal pairs. The control task is then to "enforce" 
o f: Bpc ~ B.pec by finding (and realizing) a 
suitable Bc (Fig. 1). Now, suppose that controller 

Fig. 1. Control and abstraction. 

synthesis for a system ~p = (T, U x Y, Bp) is 
inconvenient (because, for example, realizations 
of ~p are tricky to handle) . Hence, we want to 
perform the synthesis step on the basis of an ap­
proximation, or abstraction, ~a = (T,U x Y,Ba) . 
Clearly, a conditio sine qua non for ~a is that 

(1) 

If this condition were violated, ~p could respond 
to a given input signal with an unacceptable mea­
surement signal which would not be predictable 
by the abstraction. Hence, this unacceptable phe­
nomenon could not be suppressed by a control 
strategy based on ~a - the abstraction would be 
useless as far as control synthesis is concerned. As 
illustrated in Fig. 1, the "abstraction condition" 
(1) implies 

Ba n Bc ~ Bspec ==> Bp n Bc ~ B8pec . (2) 

One also needs to ensure that Bp n Bc f: 0 or, in 
other words, that ~p and ~c are "nonblocking" 
( they can agree on at least one common pair 
of signals on T) 3 . If this can be achieved, any 
controller which enforces the specifications for the 
abstraction ~a will also make the "base" model ~p 
obey the specifications. 

If (1) holds, the "size" of the difference Ba \ Bp 
is an indicator for the accuracy of the approxima­
tion: the "smaller" Ba \ Bp, the smaller the loss 
in "prediction power" when replacing ~p by its 
abstraction ~a . The trivial abstraction (with Ba = 
(U X y)T) has no "prediction power" whatsoever. 
It is obvious, that no controller can enforce the 
specifications on the abstraction level, if the plant 
approximation is "too coarse" (if, for example, the 
trivial abstraction is chosen). 

3 In the following important scenario, this property comes 
for free: T represents an equidistant sampling grid, i.e. 
T = {to, tl, . . . } with ti+l - ti = constant, i = 0, 1, .. . ; 
the plant model I:p can be realized by a strictly causal 
system (with u being the input and y the output), and the 
controller is realized by a causal system (with the role of 
u and y reversed). As any such feedback connection has a 
solution on T, nonblocking is guaranteed. 



3. DISCRETE ABSTRACTIONS FOR 
CONTINUOUS SYSTEMS 

We now switch to a slightly different perspective 
and concentrate on a special case. Consider the 
following (minimal) realization of a plant model: 

x(tk+d = f(X(tk), Ud(tk)) , (3) 

Yd(tk) = qy(X(tk)) , (4) 

where T = {to , tl, . . . } represents an equidistant 
sampling grid, and X(tk) E !Rn is the continuous 
state at time tk ' Both the control input, Ud(tk) E 
Ud , and the measured output , Yd(tk) E Yd, can 
only take a finite number of discrete values, i.e. 
Ud and Yd are finite sets of symbols. f : !Rn X 

Ud -* !Rn is the state transition map, qy : !Rn -* Yd 
the output map. Without loss of generality, the 
latter is required to be onto. If required, non­
determinism can be covered by introducing f as 
f : !Rn X Ud -* 2Rn . Alternatively, a realization 
of the plant model could be given by a set of 
differential equations (or inclusions) in !Rn, with 
a sampling device for the outputs and a hold 
device for the inputs . In both cases, we deal with 
a continuous realization (the state is "continuous­
valued") although the external behaviour Bp C 
(Ud X yd)T is clearly discrete. 

We now try to find abstractions ~a = (T, Ud x 
Yd , Ba) which can be realized by finite state ma­
chines and satisfy Ba 2 Bp. Slightly abusing ter­
minology, we say that we look for discrete ab­
stractions for the given continuous plant model 
(3), (4) . The motivation for doing so is clear from 
the previous section: if we succeed, control sys­
tems synthesis can be performed on the basis of 
the much simpler model ~a , and the resulting 
controller will work "properly" for ~p . 

In order to specify desired abstraction behaviours, 
we need a bit of additional notation: recall that 
T = {to, tl, . .. } is the sampling grid. Denote 
the intervals {to , ... , td and {tk+l "" } by Tk 
and Tk+, respectively. If tk refers to the present 
sampling instant, Tk+ comprises "the future" , and 
Tk "the past and present". Define B! ~ (Ud x 
yd)Tk to be the restriction of the behaviour Bp to 
the interval Tk : 

B; := {bk E (Ud X yd)Tk I 3bk+ E (Ud X Ydfk+ 

such that [bk
, bk+] E Bp} . 

Finally, introduce the predicted output set Yp(bk ) ~ 
Yd as the set of all measurement symbols that the 
continuous model (3) ,(4) can possibly generate at 
time tk+l if the string bk has occurred. Then, 
the continuous system behaviour can be written 
iteratively as : 
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B;+l = {[bk, (y~j),u~i))] I bk 
E B;, 

u~i) E Ud , y~j) E Yp(bk) } . (5) 

Now we define less accurate prediction sets YI, 
I = 0,1 , . .. , by using only "recent data". By 
"recent data" (denoted by bk,I) , we mean the 
restriction of bk to the interval 

T ._ {{t k - I , ' " ,td if k > I, 
k,l ·- {to, ... , td if k <5J 

Hence, bk,1 represents a string of input and mea­
surement symbols reaching back to time tk-l or, if 
k ::; I , to the initial sampling instant to . Obviously, 

k _ { [bk- I- 1
, bk ,l] if k > I , 

b - bk,l if k ::; I . 

Yl(bk,l) is defined as the set of all measurement 
symbols that the continuous model (3) ,(4) can 
generate at time tk+l if the string bk ,l has occurred 
during the time interval Tk,I ' Clearly, 

{ 
U Yp(bk

) if k > I , 
Yl(bk ,l) := bk - 1- J 

Yp(bk
) if k ::; I , 

i.e. YI(bk,l) is obtained as the union of the predic­
tion sets of all data strings bk which coincide on 
the interval Tk ,l (but may differ during the "dis­
tant past" Tk-I-r) (see Fig. 2 for an illustration) . 
Therefore, 

Yo(bk,O) 2 Yl(bk,l) 2 . . 'YIW,I) ... 2 YpW)· 
(6) 

From the prediction sets YI , the approximation 

l,1 L 
Y. r fY

' r 
to 

Fig. 2. Predicted output sets. 

behaviours BI can be defined iteratively by 

B? := B~, (7) 

Bt+l := { [[bk, (y~jl ,u~i))] I bk E Bt , (8) 

u~i) E Ud , y~j) E YI(bk ,I)} , k = 0, 1, ... 

From (5) - (8) , it follows immediately that 

Bo 2 Bl 2 ... BI . . . 2 Bp. (9) 

We now show how to build a finite state ma­
chine AI which realizes ~I = (T, Ud x Yd , Bd, 
I = 0,1, .... Recall that, by definition , the state 



of any dynamical system summarizes all the in­
formation which, together with the current input, 
is needed to predict the future: Clearly, to com­
pute the output prediction set YI(bk,I), we need 
to know bk,l. Hence, we define the state Xd of 
the realization Al at time tk to consist of all the 
input and measurement symbols in the string bk,l, 
with the exception of the current input Ud( tk). For 
I = 0, the result is trivial: Xd(tk) := Yd(tk)j for 
I = 1,2, ... , we get: 

{ 

[Yd(tO)] , if k = 0, 
([Yd(tO), ••• ,Yd(tk)] , [Ud(tO), • •• 

Xd(tk) := ... ,Ud(tk-d]) , if k = 1, . . . , I, 
([Yd(tk-I), ... ,Yd(tk)] , [Ud(tk_,), 
... ,Ud(tk-d]) , if k > I. 

Note that this choice makes the state instantly 
observable. It also implies that the state set Xd of 
A, consists of strings of measurement and control 
symbols up to length I. More precisely, Xd ~ Yd 
for I = 0, and Xd ~ Yd U~~~ (Yd)P X (Ud)P-i for 
I = 1,2, .. . . As both Ud and Yd are finite, Xd is 
also finite for every I E N. 

It is obvious that, for a fixed I 2 1, not all 
elements ofYdU~~~ (Yd)P x (Ud)p-i are reachable. 
In other words, if we feed a specific string of 
p - 1 control symbols into the continuous system, 
it can in general not respond with an arbitrary 
string of p measurement symbols, 2 ~ p ~ 

I + 1. We say that certain strings of control and 
measurement symbols are not compatible with the 
continuous system dynamics. To make the state 
set Xd minimal, we remove all such strings. If 
the continuous system is given by (3),(4), this 
amounts to checking whether a set of (nonlinear) 
algebraic equations in !Rn has a solution. For 
details, we refer to (Raisch, 1998). 

We have now defined the state set of the real­
ization AI, but still need to describe its transi­
tion structure: denote the strings of input and 
measurement symbols associated with a partic­
ular x~i) E Xd by u*(X~i)) and y*(x~i)), respec­
tively, and introduce a "forgetting operator" :F 
which deletes the "oldest" symbol from strings 
y,j(Xd(tk)) and Ud(Xd(tk)), if k 21: 

Now, writing down the transition structure of 
the discrete abstraction is straightforward: given 
two states x~i), x~k) E Xd and a control symbol 
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U~) E Ud, the triple (X~i) , u~), x~k)) represents a 
transition in A, if and only if 

(1) there exists a y~m) E Yd such that 

y,j(x~k)) = [:F(y,j(x~i))), y~m)] , 

Ud(X~k)) = [:F(Ud(X~i))), u~)] , 
(2) ([y,j(x~i)), y~m)] , [Ud(X~i)), U~)]) is com-

patible with the continuous system (3),(4). 

The first condition can be verified by simple visual 
. . f h b t . t t (i) d (k) IDspectIOn 0 tea s ractIOn s a es Xd an Xd . 
The second condition can be checked by resorting 
to the same methods that were used to eliminate 

(i) (j) (k) non-reachable states from Xd. If (xd ,ud ,xd ) 

b .. , A (i) d (k) turns out to e a tranSitIOn ID I, Xd an Xd 
are called its exit and its entrance statej the 
input symbol u~) is its transition label. Each 

state x~i) has an associated unique (measured) 
output, which is simply the rightmost symbol in 
Y*(X~i)) . Hence, for each nonnegative integer I, 
we get a finite Moore automaton as a realization 
for the abstraction ~" If a-priori information on 
the continuous system state is not available, any 
measurement symbol from Yd can occur at time 
to. Hence, in that case, the initial state set of the 
automaton A, is X dO = Yd. 

Remark: Even if the underlying continuous system 
(3) ,(4) is deterministic, A, will in general be 
nondeterministic: for a given state X~i) and a given 

input symbol u~) , more than one y~m) E Yd may 

satisfy conditions 1 and 2: then, applying u~) 
at state X~i) may drive the realization A, into 
more than one successor state. This will be further 
illustrated in Section 4. 

Remark: In (Moor and Raisch, 1999), the system 
~, = (T, Ud x Yd , B,) realized by A, was shown to 
be the strongest I + I-complete approximation of 
the underlying plant model ~p = (T, Ud x Yd , Bp) 
(for a definition of I-completeness see (Willems, 
1989) ; strongest I-complete approximations were 
introduced in (Moor and Raisch, 1999)). 

4. AN EXTREMELY SIMPLE EXAMPLE 

The sole purpose of this extremely simple example 
is to illustrate the abstraction procedure described 
in the previous section. A water tank with cross 
section S = 100cm2 and height i: = 30cm can 
be fed or drained by a pump. The pump can be 
switched between two modes: it either feeds water 
into the tank at a constant rate of lljmin, or it 
removes water at the same rate. The pump is in 
feed mode if the control input is Ud(t) = "+", and 
in removal mode if Ud(t) = "-". The measure­
ment signal can take two values: Yd(t) = E(mpty) 



if the water level x(t) is less or equal to 15cm, 
and Yd(t) = F(ull) if the water level is above 
15cm (Fig. 3) . After choosing a sampling grid 

pwnp 

x I W lid = F(ulI) 

Yd = E(mpty) 

Fig. 3. Simple tank example. 

T = {t; It; = imin, i = 0, 1, ... . }, a continuous­
valued model can be easily written down: 

x(tk+d = 
X(tk) + Wcm if Ud(tk) = "+" and 

o ~ X(tk) ~ 20cm, 

30cm if Ud(tk) = "+" and 

20cm < X(tk) ~ 30cm, 

X(tk) - Wcm if Ud(tk) = "-" and 

Wcm < X(tk) ~ 30cm, 

Ocm if Ud(tk) = "-" and 

Ocm ~ X(tk) ~ Wcm , 

(10) 

It is now straightforward to derive the coarsest 
abstraction Eo = (T, Ud x Yd , Bo) by applying the 
procedure described in Section 3. The state set of 
the realization Ao consists of two elements: X~l) = 
([F)) and X~2) = ([E)). The transition structure of 
Ao is depicted in Fig. 4, where the output symbols 
associated with the states are indicated by dashed 
arrows. Clearly, Bp C Bo. Indeed, as expected, 

F E 
A ~ A 

C : /(1) (2)"'... : n 
+ • x. x. .~J-

()~U 
+ 

Fig. 4. Realization Ao of coarsest abstraction Eo . 

Bo contains pairs of control/measurement signals 
which do not make any physical sense and are 
therefore not contained in Bp. For example, the 
abstraction Eo deems it possible that the system 
responds with a string FFFFF . . . (i.e. the water 
level remains above the 15cm-threshold), if an 
input string - - - - . .. is applied (i.e. if water is 
perpetually removed from the tank). 

A much more accurate discrete model is obtained 
by computing AI, hence realizing the abstraction 
El = (T, Ud x Yd , Bl) ' Applying the procedure 
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from Section 3 gives the following result. The state 
set Xd of Al contains eight elements: 

X~l) = ([F)) 
x~3) = ([FF], [+)) 
x~5) = ([EF], [+]) 
X~7) = ([EE] , [+]) 

X~2) = ([E]) 
X~4) = ([FF], [-]) 
X~6) = ([FE] , [-]) 
x~8) = ([EE], [-)) ; 

the initial state set X dO consists of the two ele­
ments X~l) and x~2) . The strings ([FE], [+]) and 
([EF], [-]) are not compatible with the continu­
ous system dynamics; they correspond to unreach­
able states and are therefore removed from the 
state set of Al . The resulting transition struc­
ture is shown in Fig. 5. To avoid cluttering the 

Fig. 5. Realization Al of abstraction El . 

diagram, the sets of states associated with the 
measurement symbols F(ull) and E(mpty) have 
been collected in two shaded "areas". States in 
the left area generate F( ull) as measurement sym­
bol, states in the right area E(mpty) . Clearly, 
Bp C Bl C Bo. For example, unlike Eo , the ab-
straction El does not allow the string F F F F F .. . 
as a response to the input string - - - - . . . . 
In this particular case, the abstraction El is ac­
tually extremely accurate: the restrictions of the 
behaviours Bp and Bl to the interval To+ = 
{tl ' t2""} are identical. Hence, with the excep­
tion of the initial sampling instant to , the abstrac­
tion El is as good for output prediction and con­
trol purposes as the underlying continuous model 
Ep realized by (10) , (ll). 

5. SAFETY ENFORCEMENT FOR A BATCH 
EVAPORATOR 

Next , we treat a batch evaporator benchmark 
problem suggested in (Kowalewski and Sturs­
berg, 1998). A process flowchart is shown in Fig. 6. 
In (Kowalewski and Stursberg, 1998), the batch 
cycle is described as follows : a solution "is filled 
into tank T1 and the solvent is evaporated until 
a desired concentration of the dissolved substance 



is reached. During the evaporation stage, the con­
denser Cl is in operation and collects the steam 
coming from T1. When the desired concentration 
is reached, the material is drained from T1 into 
T2 as soon as T2 is available (i.e. emptied from 
the previous batch) ." We address the problem of 

VI7 

p, 
VII 

Fig. 6. Simplified flowchart of the process. 

coming up with a control program that guarantees 
safe shutdown of the process in case of a cooling 
breakdown in the condenser. Such a failure leads 
to dangerously high pressure in T1 if the evapo­
ration process is continued for too long. To avoid 
this, the temperature in tank T1 is not allowed to 
exceed 385 K. On the other hand, switching the 
heating off immediately could cause another unde­
sired scenario: if the temperature in T1 becomes 
too low, crystallization spoils the batch. Hence, 
temperature in tank T1 is only allowed to drop 
below 338 K when T1 is virtually empty. Further­
more, draining the batch from T1 into tank T2 
can only begin, when T2 is empty because the 
two batches are not supposed to be mixed. Once 
draining has started, it should not be interrupted 
before T1 is empty. Finally, whenever tank T1 is 
empty, the heating must be switched off. 

5.1 Detailed Model 

We now describe a detailed process model. It 
exhibits a few minor differences when compared to 
the one suggested in (Kowalewski and Stursberg, 
1998). Comments on the differences can be found 
in (Klein and Raisch, 1998). The model is realized 
by a set of ordinary differential equations, 

dx Tt = f(X(t),Ud(t», (12) 

where x := (T, ml, m2)' is the state vector, with 
T IKJ the temperature in tank T1, ml 1100g] the 
total mass in tank T1, and m21100g] the mass in 
tank T2. Ud := (Qh, YVlS, YV18)' is the control 
signal, with Qh Iw] the heat input, YVlsl-] the 
position of valve VIS, and YV18 [-] the position 
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of valve V18. During shut-down, the control signal 
can only be switched between four different values: 

(13) 

where 

U(l) _ (50000) u(2) - (~) d - , d - , 

1 1 

u;" = (T) , u~" = m 
The realization (12) consists of energy and mass 
balances: 

dml __ y; A J2 PLm 19 
dt - VIS R Al ' 

dm2 _ y; A J2 PLm 19 
dt - VIS R Al 

y; A J2 PLm 29 
- V18 R A2 ' 

where Gp = Cp,L - cp , V and 

dmv = dT 

PM (mdto) + Vi (t ) _!!!l.) 
W PL V 0 PL 

mV 

T- pM", 
R~PL 

Tmv +---­
T-~ 

R~PL 

(15) 

(16) 

(18) 

(19) 

The following physical property relations have 
been used: P, the saturation pressure of water, is 
modelled by the Antoine equation 

A ~ 
P - e p-n:-cp - , (20) 

tl.hev , the specific enthalpy of vapourization, by 

tl.hev = b1 - bzT. (21) 

Parameters for the realization (14) - (21) are 
collected in Table 1. Fig. 7 shows an (open loop) 
simulation of the emergency situation described 
above: crystallization can only be avoided by 
heating tank T1 for some small period of time 
(dash-dotted trajectory); otherwise, T will drop 
below 338.0IK] before ml reaches the threshold 
where T1 can be regarded as empty (trajectory 
shown as solid line). 

5.2 Measurement Quantization 

The domain of the state variable x is given by 

X :={ (T, ml, m2) 1283.0 K ~ T ~ 450.0 K, 
o ~ ml ~ 60.12 · 100g, 0 ~ m2 ~ 60.12 · 100g}, 



Cross-section of Tl AI = 0.03 m~ 
Cross-section of T2 A2 = 0.06 m 2 

Pipe cross-section AR = 2.2 · lO-s m 2 

Diameter of Tl D = 0.2 m 
Heat transfer coefficient k = 150.0 W /K/m2 

Gravitational constant 9 = 9.81 m/s2 

Gas constant Rm = 8.314J/K/mol 
Molec. weight of water Mw = 0.18100g/mol 
Liquid heat capacity Cp,L = 422 J /100g/K 
Vapour heat capacity cp , v = 189 J /100g/K 
Liquid density PL = 9700 100g/m3 

Initial vapour volume Vv (to) = 0.02 m3 

Initial liquid mass mdto) = 6.0m3 

Pressure coefficient Ap = 23.478 
Pressure coefficient Bp = 3984.9 
Pressure coefficient Gp = -39.724 
Enthalpy coefficient bl = 3.294 . 106 J /kg 
Enthalpy coefficient b2 = 2.78 . 103 J /kg/K 
Ambient temperature T. = 283 K 

Table 1. Parameters of detailed model. 
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Fig. 7. Projection of sample trajectories. 

where the lower boundary of T is ambient tem­
perature, and the upper boundaries of ml and 
m2 correspond to T1 and T2 being "full". We 
use quantized measurement information for all 
three state variables; hence the quantization map 
qy partitions X into rectangular parallelepipeds. 
Quantization thresholds for ml and m2 are 
2.91 . lOOg and 5.82 . lOOg, respectively. Below 
these thresholds, T1 and T2 can be regarded as 
"empty" . There are four thresholds for tempera­
ture quantization, partitioning the domain of T 
into five intervals: 385 K and 338 K may be inter­
preted as "explosion" and "crystallization thresh­
olds"; we introduce two additional threshold val­
ues at T = 375 K and T = 341 K, which provide 
alarm messages before temperature (and hence 
pressure) becomes unacceptably high or crystal­
lization sets in. Proper choice of the latter value 
is a bit tricky; it depends on the sampling interval 
~ = ti+l - ti , and its rationale is summarized in 
Fig. 8, where scenarios for three different sampling 
intervals are visualized: the case ~ = 14sec is 
represented by solid lines, the cases ~ = 18sec and 
~ = 25sec by dash-dotted and dashed lines, re­
spectively. In each case, heating must be switched 
off if (ml' T) is above the top line; otherwise the 
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385K threshold could be reached within one sam­
pling interval. Underneath the lower line, heating 

-- - -- - - ' -.,::.-

.... . '" 
'hclting 00' 

10 ro 30 40 50 60 
mass in tank T1 [100g} 

Fig. 8. Choice of temperature thresholds. 

has to be switched on; otherwise T could drop 
below the crystallization threshold within one 
sampling instant. Clearly, to operate the process, 
it is necessary that the upper and the lower line 
intersect for ml < 2.91· lOOg (where tank T1 can 
be regarded as empty) . This is true for ~ = 14 sec, 
and it still holds if the solid lower line is replaced 
by a straight line at T = 341 K. Hence, ~ = 14 sec 
is chosen as the sampling interval and T = 341 K 
as an additional threshold for temperature quan­
tization. This leaves us with 2 . 2 . 5 measurement 
symbols. They are summarized in Table 2. 

T (l/u) ml (l/u) m2 (l/u) symbol 

283.0/338.0 0.0/2.91 0.0/5.82 yt 
283.0/338.0 0.0/2.91 5.82/60.12 2) 

283.0/338.0 2.91/60.12 0.0/5.82 ~t3) 
283.0/338.0 2.91/60.12 5.82/60.12 t4) 

YtS) 
338.0/341.0 0.0/2.91 0.0/5.82 

Yt6) 
338.0/341.0 0.0/2.91 5.82/60.12 

~t7) 338.0/341.0 2.91/60.12 0.0/5.82 

338.0/341.0 2.91/60.12 5.82/60.12 t8) 
Yt9) 

341.0/375.0 0.0/2.91 0.0/5.82 
Y(l.O) 

341.0/375.0 0.0/2.91 5.82/60.12 
Ytll) 

341.0/375.0 2.91/60.12 0.0/5.82 
Yt12) 

341.0/375.0 2.91/60.12 5.82/60.12 
Yt13) 

375.0/385.0 0.0/2.91 0.0/5.82 
Ytl4) 

375.0/385.0 0.0/2.91 5.82/60.12 
YtIS) 

375.0/385.0 2.91/60.12 0.0/5.82 
Yt16) 

375.0/385.0 2.91/60.12 5.82/60.12 
Y67) 

385.0/450.0 0.0/2.91 0.0/5.82 
Yt18) 

385.0/450.0 0.0/2.91 5.82/60.12 
Yt19) 

385.0/450.0 2 .91/60.12 0.0/5.82 
Yt20 ) 

385.0/450.0 2.91/60.12 5.82/60.12 y" 
Table 2. Measurement symbols. 

5.3 Discrete Abstraction and Control Synthesis 

Continuous model equations, measurement quan­
tization and sampling interval completely determ­
ine the abstraction set {~I' I = 0, 1, .. . } and 



its realizations Al. We first compute Ao, a fi­
nite Moore automaton with 20 states (i.e. one 
state variable that can take 20 values); we then 
formalize the specifications by writing down a 
finite state machine realizing the specification be­
haviour. Using a slightly modified version 4 of 
RAMADGE's and WONHAM'S supervisory control 
theory (Ramadge and Wonham, 1987; Ramadge 
and Wonham, 1989), we check whether there ex­
ists a discrete control scheme enforcing the spec­
ifications for ~o. It turns out that this is not the 
case: Eo is "too coarse", and we have to resort to 
a more accurate abstraction. 

We therefore compute the automaton AI, which 
realizes ~1. Al has 307 states (Le. one state vari­
able that can take 307 values) and 3463 transi­
tions. All safety requirements that were previously 
described can now be formulated in terms of "for­
bidden states" and "forbidden transitions" of AI: 

(1) The requirement "Temperature must not 
exceed 385 K" translates into "all abstrac­
tion states X~i) with measurement symbol 

(17) (20) ~ b'dd " Yd , ... , Yd are lor I en. 
(2) The requirement "Temperature must not fall 

below 338 K while tank Tl is non-empty 
(Le. while ml > 2.91 . 100g)" translates into 
"all abstraction states x~i) with measurement 

symbol y~3) or y~4) are forbidden". 
(3) "Heating not allowed while Tl empty" be-

comes "abstraction states ([y~i), y~j)] , 'U~k») 
areforbiddenif(k E {I,3})I\(i E {1,2,5,6,9, 
10,13,14,17,18})". 

(4) The requirement "Do not start draining tank 
Tl unless T2 is empty" translates into: tran-

( ) ,P) ) 
sition Xdi ~ x~k is not allowed if 

j E {3,4} 1\ (( X~i) = ([y~i,), y~i2)], 'U~i3») 

withi2 E {2,4,6, ... ,20}l\i3 E {1,2}) 

V (X~i) = y~i) with i E {2,4, 6, ... , 20})) 

(5) The requirement "Once draining of Tl has 
begun, do not stop until Tl is empty" trans­

() ,P) ( 
lates into: transition Xdi ~ xd

k) is not al-
lowed if 

j E {1,2} 1\ ( X~i) = ([y~i,), y~i2)] , 'U~i3») 

with i2 E {3, 4, 7, 8,11,12,15,16,19, 20} 1\ 

i 3 E{3,4}). 

Again, using the slightly modified version of RA­
MADGE's and WON HAM'S supervisory control the­
ory mentioned above, we synthesize the least 

4 This version, which has been described in (Raisch and 
O'Young, 1998), accounts for nondeterminism in the ab­
straction automaton. 
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restrictive controller that guarantees safe shut­
down of the abstraction ~1' A solution exists 
and control action can be summarized as follows: 
the supervisor infers the present state Xd(tk) of 
the automaton Al from the past measurement 
and control symbols, Yd(tk-d and 'Ud(tk-d, and 
the present measurement symbol Yd(tk). For each 
value X~i) of the discrete state variable, a subset 
of symbols from Ud (but never the entire set Ud ) 

is disabled. This restricts the number of possi­
ble transitions and eliminates certain elements 
from the discrete state set Xd by making them 
unreachable. In particular, all forbidden states 
and transitions are removed. Al under supervision 
consists of 100 states and 539 transitions. As the 
abstraction behaviour BI - by construction - is a 
superset of the continuous plant model behaviour 
Bp, safety is also guaranteed for the continuous 
plant model under supervision. 

5.4 Simulation Results 

In this section, we give an example for the shut­
down procedure of the supervised continuous 
plant model. Recall that a supervisory control 
scheme may enable several control symbols at each 
sampling instant. As all of them are "safe", any 
one of them can be picked by some lower level 
mechanism. The initial state for the simulation 
of the detailed model is x(to) = (376.5 K, 60 . 
100g, 60· 100g) , , denoted by "I" in Figs. 9 - 11. 
According to Table 2, this generates the mea­
surement symbol Yd(tO) = y~16). This symbol 
characterizes an emergency situation. To pre-

- .:, ..... 

- - -- = _- -I 

310 

., 
total mass 
iD tank Tt [I00gJ 

Fig. 9. Shut-down trajectory. 

vent the temperature from rising above 385 K, 
the controller disables 'U~I) and 'U~3). As initially 
both tanks are full, Tl cannot be drained yet, 
and 'U~4) is also disabled by the controller. Hence 

'Ud(tO) = 'U~2). The control signal is kept constant 
until T2 is empty (in Figs. 9 - 11, the continuous 
model trajectory has now reached state "2"). At 
this point, the controller enables 'U~4), and drain­
ing from tank Tl into T2 can begin. Eventually, 
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Fig. 10. Projection of Fig. 9 onto (ml' T) . 
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Fig. 11. Projection of Fig. 9 onto (m2 ,T) . 

this drives the continuous plant model into state 
"2a", where measurement symbol y~8) occurs. The 

automatonA l is now in state ([y~l2),y~8)] , U~4») , 
where the only control symbol enabled by the 
controller is u~3) - tank Tl is heated while drain­
ing continues. The continuous state "moves" to 
"2b" , where the controller disables u~3) , and only 

U~4) is enabled. Once the controller "sees" the 

measurement symbol y~lO) (at state "3"), it addi­

tionally allows U~2) . The latter possibility is cho­
sen, the heating is switched off, and tank T2 is 
being drained. This drives the continuous plant 
model into state "4" and successfully terminates 
the shut-down procedure. 

6. START-UP OF A DISTILLATION 
COLUMN 

It is now demonstrated that the ideas described in 
this paper can be used to synthesize a supervisory 
control scheme for the start-up procedure of a 
distillation column. These results represent joint 
work with E . KLEIN, A. KIENLE and A. ITIGIN. 
Because of lack of space, it is only possible to give 
a short overview; details can be found in (Klein et 
al., 2000). 

We consider a distillation column in pilot plant 
scale which is operated at the Institut fur System­
dynamik und Regelungstechnik in Stuttgart. It is 
about lOm high, and consists of 40 bubble cap 
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trays, a reboiler and a condenser (Fig. 12). Our 
application example is the separation of methanol 
and propanol. 

Fig. 12. Distillation column. 

The following steps can be distinguished during 
"conventional" column start-up; initially, the col­
umn trays are partially filled with liquid mixture 
from the previous experimental run. Further feed 
is added, and the column is heated until boil­
ing point conditions are established in the whole 
column. During this start-up step, the column is 
operated at total reflux and reboil. At the end 
of this step, a single concentration front is es­
tablished. The position of this front depends on 
the initial concentration distribution and varies 
from experiment to experiment. In a second step, 
the feed F , reboil V and distillate flow rate D 
are adjusted to their desired steady state val­
ues, and the initial front splits into two fronts . 
Now, in a third step, the two fronts move very 
slowly towards their steady state position. This 
is illustrated by the simulation results shown in 
Fig. 13 (a) ; the simulation is based on a detailed 
plant model consisting of material balances for 
each tray, the reboiler and the condenser. Start­
up is considered to be finished once the plant is 
"close" to the desired steady state. 

We try to speed up the third step of the start­
up procedure by introducing a suitable control 
strategy which switches between discrete values 
of the control inputs and relies on highly quan­
tized measurement information. This represents a 
special hybrid control problem - the plant state 
"lives" in lRn (with n = 42), whereas control in­
puts and measurement signals are discrete-valued, 
or symbolic. 

As can be seen from Fig. 13, the state variables 
(concentrations) x z , z = 1, . . . ,42, are not arbi-



trarily distributed during the third start-up step, 
but are "glued" to a three-dimensional manifold 
in JR42 . It is parameterized by the methanol mole 
fraction on the feed tray, X21 , and the front po­
sitions, Ss and Sr, of the wave profiles in the 
rectifying and the stripping section of the col­
umn (Kienle, 2000) . Hence, these three variables 
essentially capture all relevant information. For 
the purposes of start-up, it is sufficient to rely on 
a highly quantized version Yd := qy((X21 , Ss , Sr)') 

of these variables. The measurement map qy im­
plements a straightforward quantization of Ss , Sr, 

and X21, resulting in 245 measurement symbols 
y~l) , . . . ,y~2(5). Each symbol represents a box in 
the space spanned by Sa , Sr and X21 . For the case 
where Ss, Sr or X21 is not in any of these boxes, 
an additional symbol y~d) is introduced, hence 
y; { (I) (245) (d)} 

d = Yd , .. . , Yd ' Yd . 

Ideally, one would want to manipulate the front 
positions and their propagation velocities W 8 , wr 
directly in order to force the system as fast as 
possible towards the desired steady state. It is 
a well-known fact (Marquardt, 1988) that the 
propagation velocities are related to the ratios of 
the internal convective flow rates A a and Ar of 
the vapour and the liquid phase in the rectifying 
and the stripping section, respectively. A. and Ar 
are easily adjusted by manipulating the external 
(distillate and vapour) flow rates D and V . The 
latter, in turn , is adjusted by manipulating the 
heating duty of the reboiler. Based on the re­
lations between D , V and w s , W r , a number of 
discrete values of the external flow rates D and 
V have been determined such that the propaga­
tion velocities in the rectifying and the stripping 
section equal 0, +3 or -3 trays per sampling 
interval (the sampling interval At is chosen to be 
lO minutes, hence T = {to+i10min, i = 1,2, .. . }). 
This procedure gives a set of nine control sym-
bols Ud := {vS) , .. . , u~9) } , in which the control 

signal "lives" during the third start-up step (see 
Table 3). 

W. Wr D Lmol/hl V [mol/h] symbol 

-3 -3 35 .8070 188.2433 ut 
-3 0 59 .3318 158.6412 2) 

-3 3 82.8566 129.0391 ~t3) 
0 -3 46.8782 217.8455 t4 ) 

u 

0 0 70.4030 188.2433 u tS) 
0 3 93.9278 158.6412 

t6) ut7) 3 -3 57.9494 247.4476 
~t8) 3 0 81.4742 217.8455 

3 3 104.9990 188.2433 t9 ) ud 

Table 3. Control symbols (ws and Wr are 
given in [trays/lO min)) . 

Start-up is considered to be finished if 8 :::; Sr < 
12, 29 :::; Ss < 33 and 0.315 :::; X21 < 0.325, i.e. 
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if measurement symbol y~123 ) occurs. Within the 
selected framework, it is reasonable to expect that 
- irrespective of the initial conditions - the task 
can be completed within 20 minutes (i .e. within 
two sampling intervals) . This is formally expressed 
by the specification ~8pec = (T, Ud x Yd , Bspec) 

with 

Bapec = {b E (Ud x Ydf I Yd(tk) = y~123) , k ~ 2} , 

i.e. there is no restriction with regard to the con­
trol symbols and the first two measurement sym­
bols; all subsequent measurement symbols need to 
be y~123 ) , indicating that we require Sa, Sr and X21 

to be in the desired range from the third sampling 
instant on. It is of course straightforward to realize 
~spec by an automaton Aspec. 

We now apply the approximation scheme from 
Section 3 to generate the "coarsest" element ~o in 
our hierarchy of discrete abstractions. A minimal 
realization Ao consists of 246 states and 8249 
transitions. However, when applying the discrete 
control synthesis procedure to Ao and A spec , we 
find that no solution exists. As in the batch evapo­
rator example, the coarsest abstraction in {~i ' i = 
0, 1, ... } proves to be too coarse. We therefore 
need a more accurate abstraction and turn to 
~1 ' It is realized by a Moor automaton Al with 
8495 states and 118936 transitions. This time, the 
control synthesis procedure comes up with a so­
lution and generates a least restrictive supervisor 
for the start-up procedure. The supervisor can be 
interpreted as another simple automaton which 
tracks the strings of measurement and control 
symbols and, at each sampling instant, disables 
all control symbols that might allow Al to "es­
cape" the specifications. All other control symbols 
remain enabled, and any of them can be picked 
without violating the specifications. Recall that , 
by construction, this control scheme is guaranteed 
to work for the underlying continuous model. This 
is illustrated by Fig. 13 (b) : it shows a simulation 
of the closed loop system consisting of continuous 
plant model and discrete controller during the 
third step of start-up. As required, the closed 
loop system generates the desired measurement 
symbol after two sampling intervals. Clearly, this 
represents an enormous improvement compared to 
the open-loop behaviour shown in Fig. 13 (a) . 

7. CONCLUSIONS 

In this paper, the question "complex systems -
simple models?" has been investigated from a con­
trol engineering point of view. We have outlined 
a procedure that generates a hierarchy of discrete 
abstractions for a given continuous plant model. 
The abstractions are realized by finite automata 
and hence belong to an extremely simple class 
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of dynamical systems. The hierarchy of abstrac­
tions is ordered in the sense of approximation 
accuracy, with the "top element" being the least 
accurate but also the most simple abstraction. 
Any of these abstractions can be used as a basis 
for discrete control synthesis: if an adequate con­
troller exists, it is guaranteed to "work properly" 
for the continuous "base" model. The approach 
has been illustrated by two examples from process 
control: safety enforcement in a benchmark batch 
evaporation problem and automatic start-up of a 
distillation column. 
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