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Abstract: Robustly stabilizing control of an open loop oscillatory crystallization 
process is considered. The crystallizer is described by a population balance model. 
From this distributed parameter model an irrational transfer function is obtained 
which has infinitely many poles and thus represents the infinite-dimensional nature 
of the system. An infinite-dimensional Hoc controller synthesis method is applied to 
solve the weighted mixed sensitivity problem for this transfer function. This procedure 
results in an irrational controller. For practical implementation, the controller needs 
to be approximated by a rational transfer function . The effectiveness of the controller 
is demonstrated in simulations. Copyright © 2000 [FAC 
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1. INTRODUCTION 

Crystallization is a widely used purification and 
separation process. Continuous industrial crys­
tallizers have been reported to exhibit undesir­
able oscillatory behavior which may cause poor 
product quality (Randolph and Larson, 1988) 
(Rawlings et al., 1993). Feedback control appears 
to be a promising way to improve the dynamical 
properties of such crystallization processes. 

Crystal size distribution (CSD) is considered 
the most important process variable because it 
basically determines the product quality. Pop­
ulation balance models for crystallization pro­
cesses describe the dynamic behavior of the CSD. 
This approach yields models that are distributed 
with respect to an internal coordinate (e.g. crys­
tal length). Typically, population balance mod­
els consist of partial differential and integro­
differential equations. The crystallizer model con­
sidered here includes the effects of nucleation, 
crystal growth, fines dissolution and classified 
product removal. The model exhibits oscillations 
of the CSD and solute concentration. 

Control of oscillatory continuous crystallization 
processes is an area of active research. Regarding 
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the model on which controller design is based, 
there are several approaches reported in the lit­
erature: 

• No explicit plant model (for PID or self­
tuning controller design), see e.g. (Redman 
et al., 1995), (Randolph et al., 1987). 

• finite-dimensional model obtained by system 
identification, see (Eek, 1995), (Rohani et 
al., 1999) . 

• Infinite-dimensional population balance 
model with subsequent reduction to a 
finite-dimensional approximation (Chiu and 
Christofides, 1999). 

In this article, the idea of "late lumping" is pur­
sued: The controller design is based on the dis­
tributed parameter model. The resulting infinite­
dimensional controller is approximated by a finite­
dimensional transfer function. 

Solute concentration in the liquid phase of the 
crystallizer is considered the only measured vari­
able, i.e. no direct information on the crystal size 
distribution is available for the controller. The 
controller acts on the crystallizer by manipulating 
the solute feed concentration. Approximate con­
trollability of such systems was proven in (Semino 



Fig. 1. Continuous Crystallizer 

and Ray, 1995) . The population balance model 
is linearized and an irrational transfer function 
from manipulated input to measured output is 
obtained. A robust performance problem is formu­
lated based on this transfer function . This leads 
to an infinite-dimensional Hoo mixed sensitivity 
problem, which is solved using a recent Hoo con­
troller synthesis method for infinite-dimensional 
single-input-single-output (S1SO) plants (Foias et 
al., 1996). Finally, the effectiveness of the con­
troller is demonstrated in simulations. 

This contribution is based on work previously 
presented in (Vollmer and Raisch, 1999) where 
control of a more restrictive crystallizer model was 
considered. 

2. DESCRlPTION OF PROCESS AND 
MODEL 

2.1 The Model 

A crystallizer in continuous mode of operation 
with fines dissolution and classified product re­
moval is sketched in Figure 1. The crystallization 
process is modeled under the following assump­
tions: 

• ideal mixing 
• isothermal operation 
• constant overall volume (liquid + solid) 
• nucleation of crystals at negligible size 
• size-independent growth rate 
• no particle breakage, attrition or agglomera­

tion. 

Thus, the population balance equation is obtained 
as 

8n(L, t) = -G( ) 8n(L, t) 
8t C {)L 

- ~ (hJ(L) + hp(L)) n(L, t) 

B(c) 
n(L, 0) = no(L) , n(O, t) = G(c) (1) 
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with the particle size distribution n(L, t). The 
classification functions specifying the fines disso­
lution and product classification are given by 

hJ(L) = R· (1- h(L - L,)) 

hp(L) = 1 + z . h(L - Lp) , 

where h(L) is the unit step function . The depen­
dence of nucleation and growth rates on solute 
concentration c(t) are expressed by the following 
empirical power laws: 

G(c) = kg (c(t) - cs)g 

B(c) = kb (c(t) - cs)b . 

The mole balance of solute in the liquid phase is 

Mdc = q(p - Mc) + p - Mcd£ + qMcin 
dt V c dt Vc 

t: (1 + k· l(hp(L) ~ l)f(L, t)L'dL) 

c(O) = Co (2) 

with void fraction 

Vliquid Vsolid Jooo 
f(L , t)L3dL 

c =-V=l-----v-=l- V . 

A simulation result of this nonlinear distributed 
model with parameters referring to a laboratory 
scale KCI crystallizer is shown in Figures 2 and 3. 
Parameter values are given in Table 1. The feed 
concentration is kept constant at cJ = 4.4Tl . 
The simulation starts close to the theoretically 
computed steady state. It can be seen that the 
steady state is unstable. The system exhibits 
sustained oscillations. 

Table 1. Parameter Values 

feed rate q 0.05 I 
mm 

total volume V 10.5 

fines removal cut size Lp 0.2 mm 

product class. cut size Lp mm 

fines removal constant RI 5 

product removal constant R2 2 

growth rate constant kg 0.0305 mml 
minmol 

growth rate exponent 9 

nucleation rate constant kb 8.36 . 109 13 

min mol' 
nucleation rate exponent b 4 

KCI crystal density p 1989 f 
mole mass KCI M 74.551 rfor 
volumetric shape factor kv 0.1112 

saturation concentration c. 4.038 mol 
I 
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Fig. 2. Solute Concentration (Open Loop) 

2 

! [h] L [mm] 

Fig. 3. Mass Density (Open Loop) 

2.2 Derivation of Transfer Function 

The model is linearized with respect to the steady 
state Cs., n •• (L) . Via Laplace-transformation, a 
transfer function from ACf = £{cf - cf •• } to 
AC = £{ C - c.B } is obtained: 

P~)= ~) 

s(R + 1 + 1:::S)4(Z + 1 + 1:::s)4(1 + 1:::s)4 
q q q 

D(s) 

The denominator D(s) is of the form: 

where the PieS) are polynomials. D(s) is a quasi­
polynomial having infinitely many zeros. There­
fore, the transfer function P( s) has infinitely 
many poles which reflects the fact that the system 
is infinite-dimensional. 
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3. CONTROLLER DESIGN 

3.1 Theory 

The objective of the controller design is to sta­
bilize the system and to attenuate the effect of 
disturbances v on the output y . In order to make 
the controller robust with respect to errors in the 
model it is designed to guarantee stability and 
disturbance attenuation not only for the nominal 
plant model P( s) but for a set of transfer functions 
containing pes): 

Pm = {P(s)(l + Am(s)) : IAm(jw)1 < IWm(jw)l, 

the number of right half plane poles of P( s) 

and P(s)(l + Am(s)) is the same} , 

where W m (s) is a frequency dependent error 
bound. That means a multiplicative model error 
may be present as shown in Figure 4. The effect 
of the disturbance v on the output y is given by 
the transfer function 

1 
SACS) = 1 + PA(S)C(S) 

and it is required that 

It can be shown that a controller solves the robust 
performance problem if 

_11 [ Wd(S)S(S) ] 11 1 
'Y(C) - Wm(s)T(s) 00 ~ v'2. 

This is a Hoo mixed sensitivity minimization prob­
lem. 

The mixed sensitivity problem for infinite­
dimensional SISO plants has been solved in (Foias 
et al. , 1996) using operator theoretic methods in 
the frequency domain. It has been shown that 
under certain assumptions this problem can be 
reduced to an eigen-value-eigen-vector problem 
for a Hankel+Toeplitz type operator for which the 
solution can be derived from a finite number of 
linear equations. 

r- Ll 

+ +J~ 'r c ~ p 
y 

~ 

Fig. 4. System with Multiplicative Uncertainty 



The theory is applicable if the following assump­
tions are met: 

• The plant transfer function can be decom­
posed as 

where 
• Md E Hoo is rational inner 
• Mn E Hoo is arbitrary inner 
• NI E Hoo is outer and NIl E Hoo 
• N2 E Hoo is rational outer. 

This means in particular that the plant has 
finitely many unstable poles and for w ~ 00 

the Bode plot of P( s) has a constant roll off 
rate like a rational transfer function: 

dig IP(jw) I 
dlgw = const. 

• The weighting functions Wm(s) , Wd(S) , 
Wd-

1(S) E Hoo are rational. Furthermore, 
(Wm(S)N2(S))-1 E Hoo . I.e if P(s) is strictly 
proper Wm(s) has to be improper. 

To obtain this factorization of the plant model, 
the unstable poles of P(s) have to be computed, 
i.e. the right half plane zeros of a quasi-polynomial 
have to be determined. This was done by re­
stricting the region within the right half plane 
where zeros can occur using an algorithm based 
on (Arunsawatwong, 1996). Then the poles were 
found by a direct search method. 

If the above assumptions are met the minimizing 
controller is 

with 

n, 

IT s + 1]k 
F-y(s) = H-y(s) --, 

k=l S -1]k 

where 1]1 " ' 1]n, are the poles of Wd(S) and H-y(s) 
is the stable, minimum-phase transfer function 
determined by the spectral decomposition 

H-y (s)H-y (-s) = (1- (Wd(S);d(-S) -1) 
(Wm(S);m( -s) -1)) -1 

L(s) = ~~i:l is rational and satisfies the following 
interpolation conditions: 
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0= L1 (ak) + Mn(ak)F-y(ak)L2(ak) 

0= L2( -(3k) + Mn({3k)F-y({3k)L1 (-(3k) 

0= L2( -ak) + Mn(ak)F-y (ak)L1 (-ak) (5) 

where {3I , " ' , (32n, are the poles of E-y (s) and 
G:i, .•. ,a/ are the unstable poles of the plant P( s). 
This means that the right half plane zeros of the 
Md(S) term in the numerator of Copt are cancelled 
within the controller and therefore do not cancel 
the unstable poles of the plant. The largest value 
for l' such that (5) has a non-trivial solution is the 
optimal performance cost I'opt . Lower and upper 
bounds for I'opt can be computed. 

The expression for Copt involves the irrational 
transfer functions Mn and NI . Therefore, the 
optimal controller itself is irrational. For practical 
implementation, it needs to be approximated by a 
rational transfer function . This was done using a 
Fourier transform based approximation technique 
and balanced model reduction (Gu et al., 1989). 

The procedure described in this section is easily 
implementable on a computer. In fact, a Matlab 
implementation is available (Ozbay, 1998) for the 
computation of Copt , I'opt if P(s) is already de­
composed according to (4) . 

3.2 Controller Design for the Crystallizer 

For the model described in Section 2, a pair of 
unstable poles was found at Sl/2 = 0.99· 10-4 ± 
0.89.10-2 . From equation (3) it can be seen that 
there are no right half plane zeros. Hence, the 
factorization of P(s) in (4) is as follows: 

where N2 (s) is any rational stable mmlmum­
phase transfer function of relative degree one. The 
following weighting functions are chosen: 

W (s) = lOs + 10 
d lOOs + 1 

Wm(s) = 5s + 0.5. 

Note that Wm(s) needs to be improper such that 
(Wm(s)N2(s))-1 E Hoo . These weights represent 
the demand of good disturbance attenuation at 
low frequencies and the possibility of large mul­
tiplicative model errors at high frequencies . The 
optimal performance level is I'opt = 0.786. Bode 
plots of the corresponding optimal controller and 
an 8th order approximation are shown in Figure 5. 
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Fig. 5. Bode Magnitude Plot of Irrational Con­
troller Transfer Function (solid line) and 8th 
Order Approximation (dashed line) 
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Fig. 6. Solute Concentration (Closed Loop) 
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Fig. 7. Mass Density (Closed Loop) 

Results from two different closed loop simulations 
with the full nonlinear population balance model 
and the reduced order controller are shown in 
Figures 6 to 9. In the first case (Figures 6 and 
7) the initial conditions are the same as in the 
open loop simulation (see Figures 2, 3). Now, 
the controller stabilizes the system at the steady 
state. It can be seen that in the closed loop case 
the oscillations are eliminated almost completely 
and the system approaches its steady state very 
quickly. The second simulation demonstrates the 
ability of the controller to attenuate the effect of 
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Fig. 9. Mass Density (Closed Loop), Effect of Feed 
Rate Disturbance 

disturbances on the output. The simulation starts 
at steady state. Then the feed rate q is decreased 
by 10%, after one hour it is reset to its initial 
value. The effect of the feed rate disturbance on 
the solute concentration is presented in Figure 8. 
The change in feed rate also causes a disturbance 
in the particle size distribution. This disturbance 
grows through the particle size range and finally 
is washed out (see Figure 9) . 

4. CONCLUSION 

In this paper, controller design for a continuous 
crystallization process was considered. A popu­
lation balance model of the system showing os­
cillatory behavior was given. A robust perfor­
mance problem was formulated reflecting the de­
sire of disturbance rejection at low frequencies 
and robustness with respect to large multiplica­
tive model uncertainty at high frequencies . The 
resulting mixed sensitivity problem was solved 
using recent results from Hoc theory for infinite­
dimensional systems. An infinite-dimensional con­
troller was obtained. For practical implementa­
tion, this controller was approximated by a ra­
tional, i.e. finite-dimensional transfer function. 



Closed loop simulations of the nonlinear popula­
tion balance model with the approximated 8th 
order controller were presented to demonstrate 
the effectiveness of the controller. It does not only 
stabilize the linearized model for which it was 
designed but also the original nonlinear model. 
Disturbance attenuation was shown to be good. 
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