Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Ontogenetic differences of herbivory on woody and herbaceous plants: a meta-analysis demonstrating unique effects of herbivory on the young and the old, the slow and the fast

MPG-Autoren
/persons/resource/persons62480

Massad,  Tara
Impact of Fire on Plant Diversity in the Amazon Forest, Dr. T. Massad, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Massad, T. (2012). Ontogenetic differences of herbivory on woody and herbaceous plants: a meta-analysis demonstrating unique effects of herbivory on the young and the old, the slow and the fast. Oecologia, 172, 1-10. doi:10.1007/s00442-012-2470-1.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-7A24-E
Zusammenfassung
The effect of herbivory on plant performance is the subject of a large number of ecological studies, and plant responses to herbivory range from reduced reproduction to overcompensation. Because plant defenses, stored resources, and allocation demands change throughout a plant’s lifetime, it can be hypothesized the effects of herbivory also vary with development. The present work extends previous analyses to incorporate hundreds of studies in a new meta-analysis addressing this topic. Herbivores had an overall negative effect on plant growth and reproduction, and, in contrast to a previous meta-analysis, this work shows the timing of herbivory is relevant. Differences in the effects of herbivory between life stages existed for woody plant reproduction and perennial herb growth. In addition, tree and shrub growth was reduced by herbivore damage at early ontogenetic stages, and perennial herb reproduction was limited by adult stage herbivory. These results partially support the continuum of an ontogenetic response model. Finally, consideration of this synthesis in conjunction with other work led to the conclusion that different plant groups optimize their defense investments in unique ways. Slow-growing plants may strongly chemically defend young tissues, supporting the plant–age hypothesis, because early herbivory is detrimental to growth. Faster-growing herbs may invest more in antiherbivore defense when they are older, supporting the growth–differentiation balance hypothesis, because later herbivory limits their reproduction.