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Abstract

The relationship between individual cognition and cultural
phenomena at the society level can be transformed by cultural
transmission (Kirby, Dowman, & Griffiths, 2007). Top-down
models of this process have typically assumed that individu-
als only adopt a single linguistic trait. Recent extensions in-
clude ‘bilingual’ agents, able to adopt multiple linguistic traits
(Burkett & Griffiths, 2010). However, bilingualism is more
than variation within an individual: it involves the conditional
use of variation with different interlocutors. That is, bilingual-
ism is a property of a population that emerges from use. A
bottom-up simulation is presented where learners are sensitive
to the identity of other speakers. The simulation reveals that
dynamic social structures are a key factor for the evolution of
bilingualism in a population, a feature that was abstracted away
in the top-down models. Top-down and bottom-up approaches
may lead to different answers, but can work together to reveal
and explore important features of the cultural transmission pro-
cess.
Keywords: Language; Cultural evolution; Bilingualism;
Bottom-up.

Introduction
Bilingualism is prevalent in many communities, but this is,
intuitively, an unstable situation. What drives the emergence
of bilingualism? Previous top-down computational models
have emphasises the role of the learning biases of individuals
such as a language’s prestige (Abrams & Strogatz, 2003), or
expectations about variation in the input (Smith, 2009; Bur-
kett & Griffiths, 2010; Smith & Thompson, 2012). However,
these models assume that languages are monolithic, discrete
and static. A bilingual is defined as an individual that adopts
more than one linguistic variant from a set of discrete lan-
guages that has been defined a priori. This paper questions
this assumption and explores how differences arise between
the linguistic codes of communities in the first place and how
they are subsequently adopted and maintained. In doing so,
reveals that social factors, such as cultural identity and the
dynamics of population structure, are crucial to the process
of cultural evolution.

While low-level linguistic variants such as word order may
plausibly have a discrete psychological reality (Diamond,
1991), ‘languages’ are more complex entities. Dividing con-
tinuous linguistic variation into categorical units or distin-
guishing ‘languages’ from ‘dialects’ is not straightforward
and often involves complex notions such as politics, history,
geography and identity (Sober, 1980; Haugen, 2009; Croft, in
press; S. Roberts, 2012). The features of a language and the
way it contrasts with others also changes over time. There-
fore, this paper assumes that monolithic, static ‘languages’
(e.g. English, Welsh) have no psychological reality, but are
emergent properties of populations and use. An abstract def-
inition of bilingualism is presented which does not require

discrete categories: bilingualism is the amount of linguistic
variation that is conditioned on social variables. That is, if I
speak differently to Mary than to John, then I’m bilingual to
some extent. This definition is compatible with the notion of
audience design in sociolinguistics (Bell, 1984), and identi-
fies bilingualism as a gradient property of interaction rather
than a categorical feature that is identifiable in an isolated in-
dividual.

In order to explore the cultural evolution of bilingualism in
this way, a bottom-up simulation is presented where learners
are embedded in dynamic social structures and are sensitive to
the identity of speakers. The top-down models assumed that
social structures were static and focussed on cognitive expla-
nations. In contrast, the bottom-up simulation will demon-
strate that changes to social structures are an important fac-
tor. Rather than arguing that the bottom-up simulation is ‘bet-
ter’ than the top-down model, this paper argues that different
modelling tools tend to bias researchers towards making cer-
tain kinds of assumptions.

Simulation definition
Bilingual cultural transmission is simulated as iterated step-
wise linear regression. The representation of language is
highly abstract, but allows the simulation of the emergence
of bilingualism in a complex social structure. The linguistic
space is a continuous one-dimensional space. A linguistic ut-
terance is a point on this space (a real number). A meaning is
represented as a point in a multi-dimensional meaning space.
Each dimension of the meaning space represents a different
semantic variable, such as properties of the environment that
a linguistic utterance might be referring to (e.g. colour, num-
ber, size, tense etc.). A point in the meaning space, then, rep-
resents a particular combination of semantic elements (e.g.
one big yellow thing). Each semantic variable has a set of hid-
den parameters which describe the distribution from which
values are sampled. This systematic variation ensures that the
linguistic signal has some structure to emulate. An important
exception s a semantic variable that represents the identity of
the speaker who described the event (speaker ID).

A ‘learner’ observes ‘teachers’ describing meanings with
utterances and learns a mapping between the linguistic signal
and the meaning space. The learning mechanism is a lin-
ear regression which results in an linguistic model that maps
points in the meaning space to points in the linguistic space.
The learner can then use this model to produce linguistic ut-
terances itself.

Real languages exhibit flexibility with regards to which as-
pects of meaning condition linguistic variation. For example,
in French, the form of a demonstrative (ce,cette,ces) depends
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Figure 1: A diagram of how the bottom-up simulation works.
Teachers produce linguistic and semantic data for a learner
to observe. The learner uses stepwise regression to build a
linguistic model, which is then used to describe some new
semantic variables for the next generation.

on the grammatical gender of the referent and whether it is
singular or plural, while the distance of the referent from the
speaker is not important. In contrast, in Panjabi, the form of
a demonstrative (ih,uh) is conditioned on distance from the
speaker, but not gender or number. In order to capture this
flexibility, the linguistic model is selected by stepwise linear
regression. A stepwise regression selects the minimum num-
ber of salient (semantic) variables that maximises the statis-
tical fit, according to an information criterion. This allows
the learner’s linguistic model to prioritise or ignore different
semantic variables in its linguistic utterances, including the
identity of the speaker.

This learning process is iterated (Smith, Kirby, & Brighton,
2003) in the following way. Learners observe a number of
‘teachers’ describing points in the meaning space with lin-
guistic utterances, as above. The observations are affected
by a small amount of noise. The probability of observing an
utterance from a particular speaker depends on the structure
of the community (see below). After the learners induce a
linguistic model, the teachers are removed from the popula-
tion. The learners become teachers for a new generation that
is added to the population. This process repeats for many
generations.

Learners have no explicit biases for particular ‘languages’,
and the speaker ID variable is not privileged over other as-
pects of meaning. However, the learner is biased in a gen-
eral way by the information criterion for the stepwise regres-
sion IC, which affects the number of variables an individual
is willing to include in their linguistic model. The results pre-
sented below use the Akaike information criterion (IC = 2).
In general, iterated stepwise linear regression has a bias to-
wards shallow slopes and small intercepts. These do not af-
fect the general results regarding bilingualism.

Population parameters Generations of individuals are
separated by discrete timesteps t1, t2...tn. A population of Pt
learners in the current generation observe data produced by
Pt−1 teachers in the previous generation. There are a num-
ber of communities in each generation and a set C(t) of Pt
discrete labels represents which community each individual
belongs to. A community interaction matrix I(t) defines how
much contact there is between each community. The prob-
ability W (t)i, j of learner i receiving data from teacher j is
calculated as:

W (t)i, j =
I(t)C(t)i,C(t−1) j

SumW
(1)

Where SumW is the sum of all weights between individu-
als. The community structure can therefore reflect situations
from simple ones such as ‘there are two communities’ to a
weighted, directed graph between individuals.

The community interaction matrix I(t) can be simplified to
a vector of single numbers by assuming that the probability
of receiving data from any community that a learner does not
belong to is equal.

W (t)i, j =

{
I(t)i

SumW
if C(t)i = C(t−1) j

1−I(t)i
SumW

otherwise
(2)

This assumption will be adequate for the examples in this pa-
per, and allows manipulation of the social structure through a
single parameter for each community.

This framework allows different types of social struc-
tures. Given a situation where there are two teachers and
two learners Pt−1 = Pt = 2 and two communities at each
generation C(t) = C(t − 1) = {A,B}, different settings of I
can then result in many social dynamics. Below I give some
examples of matrices, with the learners (rows) labelled as L1
and L2 and the teachers (columns) labelled as T1 and T2. For
example, a society with two communities that are completely
integrated and balanced (effectively a single community):

I(t) = {0.5,0.5} −→
T1 T2

L1 0.5 0.5
L2 0.5 0.5

(3)

In the matrix above, for example, learner 1 (L1) has an
equal probability of receiving data from either teacher.
Alternatively, L1 only receives data from T1 and L2 only
receives data from T2. This simulates two communities that
are completely isolated:

I(t) = {1,1} −→
T1 T2

L1 1 0
L2 0 1

(4)

The prestige of a community can also be manipulated. Be-
low is a matrix for a situation where one community only
receives input from its own members (superstrate), while the
other community receives input from both communities (sub-
strate). It is predicted that this will lead to an analogue of a



minority language situation where everyone speaks one lan-
guage (the majority language), and some speak a second lan-
guage (the minority language).:

I(t) = {0.5,1} −→
T1 T2

L1 0.5 0.5
L2 0 1

(5)

Measuring bilingualism Since ‘languages’ are not en-
coded in the simulation, the amount of bilingualism must be
calculated from the bottom-up. This is defined as the amount
of linguistic variation that is conditioned on social variables.
In the simulation this is based on two measures of intelli-
gibility, assuming that utterances are intelligible to speak-
ers if their linguistic model would produce the same utter-
ance given the same meaning (obverter assumption, similar
to Oliphant & Batali, 1997). The first is a measure of com-
prehensive intelligibility: the proportion of utterances that
one speaker typically produces that another understands. For
example, a monolingual speaker of English understands half
of the utterances spoken by a balanced bilingual speaker of
English and Welsh. In the simulation, this is a measure of the
proportion of the variance in one learner’s productions that
is explained by another learner’s linguistic model. If we’re
comparing individual A and B, this is implemented in the fol-
lowing way (see figure 2):

1) Take identical samples of meanings MA and MB
2) Sample speaker ID evenly in MA and MB
3) Given MA, produce utterances UA with A’s linguistic
model and given MB, produce utterances UB with B’s
linguistic model
4) Calculate the correlation between UA and UB

If two learners have the same linguistic model, then this cor-
relation should be high. Individual A with a very different
model from individual B will produce linguistic signals with
a variation that is poorly explained by learner B’s model, and
so the correlation will be low.

We can also define a functional intelligibility score which
is the proportion of utterances that interlocutors understand
when they design their utterances for each other (figure 3).
That is, a bilingual speaker of English and Welsh and a mono-
lingual speaker of English could always make themselves
understood by using English. In the simulation, this is cal-
culated in a similar way to the comprehensive intelligibility
score, except step (2) above is changed to

2) Set the speaker ID in MA to B and in MB to A

In this case, an individual with a linguistic model that used
speaker identity as a conditioning factor would adjust its vari-
ation to better suit its receiver (i.e. in the Welsh-English ex-
ample, by speaking only English).

The two intelligibility measures can be combined to get
a measure of bilingualism by subtracting the comprehensive
intelligibility from the functional intelligibility. This can be

calculated for a population by taking the mean bilingualism
score for all pairs of speakers.

B(t) =
2

n2−n

Pt−1

∑
i=0

Pt

∑
j=i+1

Func(i, j)−Comp(i, j) (6)

Where Func(i, j) and Comp(i, j) calculate the functional and
comprehensive intelligibility between two speakers.

If B(t)≈ 0, the comprehensive and functional intelligibility
are, on average, similar. This means that everyone shares the
same mapping between linguistic utterances and meanings -
what might be called the same linguistic code or ‘medium’
(Gafaranga, 2008). While this code might exhibit variation,
this could be interpreted as a single ‘language’ (monolingual-
ism).

If B(t) < 0, the functional intelligibility between speak-
ers is, on average, lower than the comprehensive intelligibil-
ity. For example, in the functional measure, speaker A would
adapt their linguistic signal for speaker B and B would adapt
their linguistic signal for speaker A. This yields a low func-
tional similarity. However, their comprehensive similarity is
high (their overall linguistic system is similar), so B(t) is neg-
ative. This would be interpreted as bilingualism in the sense
that each community is associated with a different mapping or
‘code’, and individuals can use each others’ codes to some ex-
tent. A lower B(t) means ‘more’ bilingualism in the lay sense.
This is meant to represent the amount of linguistic variation
that is conditioned on social variables, and so is analogous
to an entropy-like measure where lower values indicate more
order (the linguistic system is more conditioned on social fac-
tors = bilingualism) and higher values indicate more disorder
(the linguistic system is less conditioned by social factors =
monolingualism).

If B(t) > 0, the comprehensive intelligibility score is lower
than the functional intelligibility score. For example, A
adapts their linguistic signal for B, but B does not adapt their
linguistic signal for A. This leads to a high functional intelli-
gibility, but a low comprehensive intelligibility. This means
that both communities share one code, but one community
has at least one other code. This might be interpreted as a
minority situation in which one community speaks a minor-
ity language as well as the majority language. As we well see
below, it’s useful to be able to distinguish between ‘balanced’
communities (B(t) < 0) and ‘minority’ situations (B(t) > 0).

Results
Since simulation is complex, basic findings are presented for
simulations with 2 communities with 2 individuals each and
2 semantic variables, but the results scale up many semantic
variables and hundreds of individuals. To summarise: uncon-
ditioned variation is unstable and bilingualism tracks social
change. Figure 4 shows how B changes in different social
structures. When the two communities are completely inte-
grated (integration parameter I = 0.5), then they quickly con-
verge to using the same linguistic code (B = 0). When the
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Figure 2: The comprehensive intelligibility measure. Two in-
dividuals are given the same meanings and produce linguistic
utterances with their linguistic models. The correlation be-
tween these utterances in the linguistic space is measured.
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Figure 3: The functional intelligibility measure. Two indi-
viduals are given the same meanings, but the speaker ID is
set to the other individual in the pair. They produce linguis-
tic utterances with their linguistic models, and the correlation
between the utterances in the linguistic space is measured.

two communities are partially isolated (I = 0.8), their vari-
eties will take longer to converge and ‘bilingualism’ (B < 0)
persists for some generations. The results are slightly dif-
ferent in a substrate/superstrate situation where learners from
one community receive input equally from both communities
(the minority, I = 0.5), but the other community mainly re-
ceives input from speakers from its own community (the ma-
jority, I = 0.9999). In this case, B remains positive for many
generations (a ‘minority’ language situation).

These results are for communities with static social struc-
tures. We can manipulate the social structure to demonstrate
that linguistic diversity also tracks the change in social struc-
tures. Figure 5 shows the results of simulations with dynamic
social structures. The communities go through cycles of be-
ing integrated, isolated, integrated and isolated again, with a
few transition generations between each phase where the in-
tegration parameter is interpolated. As shown above, if two
communities are integrated, they will come to speak effec-
tively a single code (B ≈ 0, see figure 4). However, as the
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Figure 4: The bilingualism score (means for 100 simulations)
over generations for 2 communities of 2 individuals in three
social structures: Integrated (circles), Isolated (triangles) and
Minority (crosses).

communities become more isolated, B increases. This is also
in line with the results above. However, as the communities
increase their interactions after this, B decreases (everyone
speaks a single code). Then we can split the communities
apart and two codes will emerge again with some amount of
bilingualism. That is, the distribution of linguistic variation
tracks the changes in social structure.

More complex factors that affect B were determined by
analysing many runs of the simulation (analysis done using
linear regression and stepwise linear regression). B < 0 is in-
herently unstable in this simulation. As soon as individuals
start mutually accommodating the linguistic signal of other
communities, this neutralises the distinction over speaker ID.
This is in line with the expectation that unconditioned linguis-
tic variation is unstable (e.g. Smith & Wonnacott, 2010).

B < 0 is much more likely to emerge if speaker identity is
the most important conditioning factor, while positive bilin-
gualism scores can emerge if speaker identity is less impor-
tant. Negative bilingualism is also more likely if individu-
als rank speaker identity in their models similarly. There are
some more complex interactions. For example, B < 0 tends
to emerge when: the speaker ID is more important in the
previous generation, except when communities are diverging,
when it can be higher; when the community with the most
complex linguistic model also considers speaker ID to be
less important; when the mean and standard deviations of the
speaker id rank are correlated; and when there is a stronger
correlation between the difference in linguistic signal means
and model fit ratio between communities.

Figure 5 shows that, after the first contact situation, only
B > 0 tends to emerge. This is partly due to the linguistic sig-
nal of two communities adapting to the same semantic distri-
butions, and so becoming more alike. Situations where B < 0
requires that there are large differences in the utterances of
each community so that speaker ID conditions a large amount
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Figure 5: How the integration parameter I(t) (top, identical
for both communities) affects the levels of bilingualism (bot-
tom) in 2 communities with 2 learners each, which are alter-
natively integrated and semi-isolated (means over 100 runs
with 95% confidence intervals).

of variation. When B > 0 there is an imbalance in the extent
to which different communities adapt to each other’s linguis-
tic signal.

It is possible to identify a ‘superstrate’ community as the
one whose linguistic signal changes least between the gen-
erations of contact (as measured by the difference in a com-
munity’s comprehensive intelligibility between generations).
The difference in the linguistic utterance means between gen-
erations is the main determiner of the superstrate community.
If community X’s mean is absolutely greater than community
Y’s mean in the previous generation, then community X’s lin-
guistic models will change more than community Y. This af-
fect arises due to the bias in the learning mechanism for small
intercepts. However, this trend is only strong in the first gen-
eration of contact. During diverging generations, there is a
41% chance of a switch in superstrate community in the first
two generations of divergence (from 100 simulations, signif-
icantly different from no switch: t = 16.7, df = 399, p-value
< 0.001, but also random switching: t = -3.55, df = 399, p <
0.001). In contact situations, there is a 49% chance change of
a switch in superstrate community in the first two generations
(from 100 simulations, significantly different from no switch:
t = 13.8, df = 199, p < 0.001; but not significantly differ-
ent from random switching: t = -0.28, df = 199, p = 0.78).
In one generation a community might adapt to another, but
this can cause the models in that community to better fit the
data, leading to a pressure for the other community to adapt
in the subsequent generation. Although a preliminary result,
this may be compatible with phenomena such as ‘mixed lan-
guages’ where the emerging language in a contact situation
uses the lexicon of one source language, but the grammar and

morphology of the other (e.g. Muysken, 1997). If lexical
items and morphology take different amounts of time to learn
(as suggested by Clahsen, Felser, Neubauer, Sato, & Silva,
2010), then the ‘mixing’ might be partially due to this alter-
nation in the community that adapts: the lexicon is taken first
from one language, and later the morphology from another.

Discussion

Dynamic social structures are a key aspect for explaining the
emergence of bilingualism in this simulation. In the top-down
models, social structures were static and so they could not
form a part of the explanation. The bottom-up simulation can
be more flexible because it doesn’t require learners to be fully
rational or optimal, as opposed to some Bayesian models.

The linguistic contrast between communities will dimin-
ish if there is no contrast in the social variables. However, it
does not mean than bilingualism in the lay sense is unstable.
Firstly, B is not necessarily an index of an intuitive idea of
bilingualism. Communities like those in Catalonia might ac-
tually have B ≈ 0, because many people speak both Catalan
and Spanish. Secondly, in the real world, linguistic variation
might be dictated by social factors not simulated here, such as
location, formality or stage of the conversation (e.g. Labov,
1963; Meyerhoff, 2008). Finally, this simulation includes no
pressures to maintain a linguistic identity such as prestige,
politics or resistance to freeriders (G. Roberts, 2010). Rather,
it shows that bilingualism that can emerge just from the pro-
cess of cultural transmission - a kind of baseline behaviour on
top of which more complex factors may be applied.

The top-down models specified a prior bias over the
amount of variation to expect in an agent’s input, fitting the
learning mechanism to the problem being addressed. In con-
trast, bilingualism emerges in the bottom-up simulation with-
out individuals having a specific mechanism for dealing with
bilingualism. All that is required is a general learning mech-
anism which conditions a linguistic signal on semantic vari-
ables. There are no expectations over the amount of variation
to expect within or between speakers. Indeed, if social vari-
ables do not explain any of the variance, they do not play any
role in an agent’s linguistic internal representation.

Furthermore, the simulation maintains a division between
population level phenomena and individual learning mech-
anisms: ‘bilingualism’ can emerge at the population level
without discrete, static languages being encoded in the lin-
guistic model of individuals. This suggests that that ‘bilin-
gualism’ is a property of populations which is not necessarily
related to specific individual learning biases. That is, whether
humans have an expectation about the number of languages
that will be in their input, or whether learning two languages
is more difficult than learning one are not necessarily the most
relevant questions. Rather, one should ask how contrasts in
social variables support the maintenance of linguistic varia-
tion.



Conclusion
The simulation works as a proof-of-concept for the abstract
definition of bilingualism. Bilingualism is measurable in
this simulation without encoding a discrete, monolithic, static
concept of a ‘language’. The measure behaves as we would
expect in integrated, isolated and substrate/superstrate pop-
ulation structures. The results suggest that dynamic social
structures are an important part of explaining the cultural evo-
lution of bilingualism. This differs from the conclusions of
top-down models, demonstrating that different kinds of mod-
els may be biased towards certain conclusions.

Top-down models considered the stability of bilingualism
given assumptions about individual learning (Burkett & Grif-
fiths, 2010) and the most likely expectation for individuals
to have about the number of languages in their input (Smith
& Thompson, 2012). These might suggest research direc-
tions such as estimating the expectations human learners have
about the number of languages to expect in their input, the
amount of noise in transmission or whether the social struc-
ture was one that caused bottlenecks on learning. However,
in the bottom-up simulation, because bilingualism tracks so-
cial change, asking whether individuals should expect many
languages in their input does not make sense without also
thinking about dynamic social structures. This suggests that
the questions asked by the top-down model are misleading.
The bottom-up simulation suggests researching dynamic so-
cial structures, and how linguistic variation, social structures
and learning biases coevolve.

Both the top-down and bottom-up models are very abstract,
and it would be a difficult to determine which was more ‘re-
alistic’ or fitted real data better. Instead, both approaches can
be seen as converging on a common solution to the problem
from different angles. The top-down model is better at yield-
ing good analytic results, but the bottom-up model allows
more flexibility in terms of social dynamics. The bottom-up
simulation presented here has suggested that some of the as-
sumptions of the top-down models require more scrutiny. In
response, a top-down model could be built which addressed
the most relevant points raised by the bottom-up simulation
perhaps using techniques such as variational Bayesian analy-
sis (e.g. Kurihara & Sato, 2006). This process of exploring
results and uncovering important assumptions using mutually
supporting approaches can lead to more robust theories.
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