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Abstract

We present an experimental and theoretical study of the structure of small, neutral gold clusters

– Au3, Au4, and Au7 – “tagged” by krypton atoms. Infrared (IR) spectra of AuN ·KrM complexes

formed at 100 K are obtained via far-IR multiple photon dissociation in a molecular beam. The

theoretical study is based on a statistical (canonical) sampling of the AuN ·KrM complexes through

ab initio molecular dynamics using density-functional theory in the generalized gradient approxi-

mation, explicitly corrected for long-range van-der-Waals interactions. The choice of the functional

is validated against higher-level first-principle methods. Thereby finite-temperature theoretical vi-

brational spectra are obtained that are compared with the experimental spectra. This enables us

to identify which structures are present in the experimental molecular beam for a given cluster

size. For Au2, Au3, and Au4, the predicted vibrational spectra of the Kr-complexed and pristine

species differ. For Au7, the presence of Kr influences the vibrational spectra only marginally. This

behavior is explained in terms of the formation of a weak chemical bond between Kr and small

gold clusters that localizes the Kr atom at a defined adsorption site, whereas for bigger clusters the

vdW interactions prevail and the Kr adatom is delocalized and orbits the gold cluster. In all cases,

at temperatures as low as T = 100 K, vibrational spectra already display a notable anharmonicity

and show, in comparison with harmonic spectra, different position of the peaks, different intensities

and broadenings, and even the appearance of new peaks.
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INTRODUCTION

As a bulk elemental metal, gold is a classic example of inertness [1]. However, at the

nanoscale gold exhibits surprising chemical activity [2, 3]. In fact, this property of nano-

gold has already been used for commercial applications in offensive odor removal and gas

sensors [4]. While most of the previous research efforts have been spent on deposited clusters,

the experimental study of gas-phase clusters has the advantage of the reliable knowledge of

the clusters’ size (number of atoms) and charge. Such well-defined species represent an ideal

situation for modeling and analyzing their properties by means of experiments and ab initio

calculations. In the past years, the structure of small gold clusters has been studied in a series

of works at various levels of theory [5–10]. Combined theoretical and experimental works

on anions [11–15] and cations [14, 16] yielded a consistent picture of the charged-cluster

structures at all small sizes and, in particular, were able to identify the size at which three-

dimensional (3D) structures become more stable than two-dimensional (2D) isomers. While

theory has been equally applied to neutral gold clusters, their experimental characterization

is more scarce and limited to the determination of ionization potentials via electron impact

(N = 1 − 22) [17] and optical absorption spectra [18].

Only the structures of neutral Au7, Au19, and Au20 have been recently derived from far-

IR multiple photon dissociation (FIR-MPD) spectra of their complexes with krypton atoms

and comparison to theoretical predictions [19]. However, this study posed the question of

the influence of the Kr messenger on the spectra and the type of the interaction between

Kr and the neutral Au clusters. It has been recognized before that even ‘inert’ rare gas

(RG) atoms may influence the IR spectra of metal clusters and their explicit consideration

can improve the agreement between experimental and predicted spectra [20, 21]. Whereas

this was somehow unexpected for neutral clusters, where rare gas atoms are considered to

only physisorb, binding of rare gas atoms to cationic clusters, especially of late transition

metals, is considerably stronger. For instance, it has been previously shown for cationic

cobalt clusters [22] how the presence of Ar ligands significantly modifies the vibrational

spectrum of the cluster. Similar effects of rare gas binding, leading even to changes in the

energetic ordering of isomers, have been seen, e.g., for cationic vanadium or cerium oxide

clusters [23, 24].

So far, in most cases the experimental far-IR spectra of metal clusters are interpreted
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only by comparison to calculated harmonic spectra (at T = 0 K). However, experiments are

performed at finite temperature and even at lowest temperatures anharmonic effects can have

a noticeable influence on the vibrational spectra. Nevertheless, a theoretical investigation of

Au7 and Au7·Kr motivated by our previous study [19] applying a vibrational configuration-

interaction approach did not identify significant anharmonicities for this particular cluster

[25] and instead supported the initial conclusion that the Kr binding does not significantly

change the vibrational frequencies, ‘but has an effect on the IR intensities, which become

very similar to those in the experimental spectrum’ [19].

In this paper, we thoroughly investigate if this indeed holds, by studying how RG atoms

bind to small, neutral gold clusters, and how this binding influences the vibrational spectra

at T = 0 K as well as at finite temperatures. We report FIR-MPD spectra of very small

neutral gold clusters (Au3, Au4, Au7) complexed with Kr atoms and we analyze the data by

density functional theory (DFT) calculations of structures, dynamics, and finite-temperature

vibrational spectra. The comparison between experimental far-IR spectra and theoretical

spectra calculated at ‘realistic conditions’ (i.e., accurate and validated level of our ab ini-

tio electronic structure theory, including van-der-Waals interactions, and finite-temperature

statistical sampling in the canonical ensemble), let us not only identify the (meta)stable

structures at all considered sizes, but also reveal details on the dynamics of the gold clusters

and the cluster-plus-rare-gas complexes. These finite-temperature ab initio molecular dy-

namics studies also provide vibrational spectra that fully include anharmonic effects related

to the canonical sampling of the potential energy surface [57].

This paper is organized as follows. After an outline of the experimental approach, we

describe the theoretical methods. In the theoretical method session, we stress the need for

a canonical (rather than microcanonical) sampling for systems with few degrees of freedom.

Furthermore, we validate the adopted level of theory for the description of the interactions,

by comparison with higher level methods such as the recently introduced MP2 + ∆vdW

scheme [26], which has been shown to reach a CCSD(T)-like level of accuracy. In Sec. 3,

we describe Au2·Kr, as the simplest example for the unexpected reactivity of Au clusters

towards Kr. In Sec. 4, we analyze Au3·Kr, Au3·Kr2, and Au4·Kr2, where the unusually strong

interaction between the clusters and Kr atom(s) is further detailed. In Sec. 5, we finally re-

examine the spectrum of Au7·Kr and show how the theoretical finite-temperature vibrational

spectrum can explain finer details than the harmonic analysis previously performed in Ref.
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19.

METHODS

Experimental Approach

The FIR-MPD experimental setup has been described elsewhere [19, 27]; here we sum-

marize the key aspects. Gold clusters are obtained by laser vaporization from a gold rod

and then thermalized in a flow of He and Kr kept at T = 100 K. Thereby Kr atoms (one

or two, rarely more) may adsorb on the pristine gold clusters. These AuN ·KrM complexes

are subsequently investigated in a molecular beam, that is irradiated by a pulsed FIR beam

from the Free Electron Laser for Infrared eXperiments (FELIX) [28]. The laser is tunable

throughout the mid and far-IR (40 − 2300 cm−1). Subsequently, the neutral complexes

are ionized by means of an F2-laser with an energy of 7.9 eV per photon and the ionized

species are mass-analyzed in a time-of-flight mass spectrometer. When the FIR radiation

is in resonance with an IR-active mode of a neutral complex, photons can be absorbed, the

complex is heated, and evaporation of the Kr ligand may follow. In this way, a depletion of

the mass spectrometric signal of the gold–krypton complex results. Analyzing the frequency

dependence of the depletion signal leads to the cluster-size specific IR spectra. Experimental

IR intensities reported here are normalized for photon fluence rather than the laser intensity

used in our previous studies. We have recently found that this gives better agreement with

theoretical IR intensities if a wide spectral range is covered [29]. The observed vibrational

bands of gold clusters are entirely in the far-IR, namely at frequencies below 200 cm−1. This

is due to the large mass of the nuclei as well as the softness of the bonds.

Theoretical Methods

Ab Initio Potential Energies and Forces, and their Validation

The theoretical results presented in this work were obtained using the FHI-aims [30]

program package for an accurate all-electron description based on numeric atom-centered

basis functions. Where not differently specified, for our analysis we employed (collinear)

spin polarized DFT at the PBE [31] generalized gradient approximation level, corrected
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for long range vdW interactions via the Tkatchenko-Scheffler (TS) scheme, i.e. a sum over

C6[n]/R6 tails, and C6 coefficients derived from the self consistent electron density n and

reference values for the free atoms [32]. This functional will be referred throughout the

paper as PBE+vdW. We used “tight” integration grid settings and accurate “tier 2” basis

sets [30]. The scaled ZORA (scalar) relativistic correction [33] was employed for the static

calculations. However, the computational cost of evaluating forces with the latter method is

prohibitive; for the MD runs, where forces need to be evaluate at each timestep, the “atomic

ZORA” scalar relativistic correction [30] was used. This scheme has been shown to provide

remarkably good binding energy and bond distance for Au2 in comparison to benchmarks

methods [30]. We performed a test on the larger clusters analyzed here and we find that the

“atomic ZORA” and scaled ZORA yield binding energies that differ less than 0.02 eV /atom

for all functionals. When the difference in binding energies between isomers, of the same size

N of AuN , is examined, the two methods agree within 0.01 eV/atom. Harmonic vibrational

frequencies and intensities were computed from finite differences of the analytic forces. The

binding energy of Kr to the gold dimer, equilibrium geometry, static electric dipole moment,

and harmonic spectrum of Au2·Kr, as calculated with PBE+vdW, were compared to a

hierarchy of electronic structure methods, from the LDA functional, through the hybrid

functional PBE0 and the double-hybrid XYG3 [34], to RPA+rSE and rPT2 applied on both

PBE and PBE0 orbitals [35]; furthermore, also MP2 and CCSD(T) values were calculated.

All methods beyond GGA, except CCSD(T), were calculated with FHI-aims and we used

really-tight settings and tier 4 basis set. CCSD(T) values are calculated with Gaussian03

(revision D.01) [36] and aug-cc-pVTZ-PP basis set of Peterson and Puzzarini [37–39]. For

some of the vdW complexes (see below), the interactions between the cluster and the RG

atom were calculated at the MP2 level including the recently introduced correction to the

dispersion interactions, MP2+∆vdW [26]; MP2+∆vdW energies have been shown to be in

excellent agreement with CCSD(T) calculations for systems bonded by dispersion forces. A

very good agreement between PBE+vdW and MP2+∆vdW is found, which confirms the

reliability of our calculated results reported and discussed below.

As explained in section “Experimental Approach”, we can only detect a particular species

and record its IR spectrum if its ionization potential is lower than the energy of the F2-laser

used to ionize the species in the molecular beam. For this reason, we have evaluated the

vertical ionization potential (IP) of the species here analyzed, in two different ways (see
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Table II). i) Energy difference between the (relaxed) neutral cluster and the cationic cluster

(in the neutral cluster geometry), both evaluated at the PBE+vdW level. ii) By evaluating

the one-shot perturbative single-particle excitation (G0W0 [40]), starting from PBE orbitals

of the neutral cluster. The latter evaluation was performed with FHI-aims, with “safe”

settings and “tier 4” basis set. For our systems, the difference of predicted vertical IPs

between the two methods is within 0.3 eV (see Table II).

Statistical Mechanics

The IR spectra beyond the harmonic approximation of the clusters were calculated by

performing Born-Oppenheimer MD simulations in the canonical ensemble at the experi-

mental temperature (see next session for the definition of temperature) and extracting the

Fourier transform of the dipole-dipole autocorrelation function from the trajectories. Thus,

the IR intensities are computed via:

I(ω) ∝ βω2

∫ ∞

0

dt
〈

~M(t) · ~M(0)
〉

NV T
exp(iωt) (1)

where ~M(t) is the total electric dipole of the cluster at time t, β = 1/kBT and the an-

gular brackets indicate an ensemble average in the canonical thermodynamical ensemble.

We assume the system as ergodic: This means that a time average performed on a long

thermostatted trajectory is equivalent to an ensemble average in the NV T ensemble. A

trajectory is judged “long enough” when the vibrational spectrum calculated for the whole

trajectory does not change any more. The scalar product in the integral is averaged by se-

lecting several times t = 0 along the same trajectory. The interval between two subsequent

t = 0 is chosen to be longer than the time for the decay of the dipole-dipole autocorrelation

function from 1 to the long-time average. This is because at short times the correlation

between dipole moments (as for any other property of the system) is nearly 1 (the vector

has still a similar modulus and direction). At the time at which the scalar product reaches

the long-time average, the memory of the initial time is lost and thus a new dipole can be

used as initial one for the statistical average. The factor βω2 in front of the integral is the

result of the product of the classical pre-factor βω(1 − exp(−β~ω)) and the quantum cor-

rection factor ω/(1− exp(−β~ω)) [41, 42]. The classical factor results from the assumption

of Boltzmann statistics for the ensemble of oscillators, while the quantum factor corrects for
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the so-called detailed balance, which reflects in an asymmetry of the peaks in the spectrum.

The quantum correction is not univocally defined, but the one we applied was shown to be

the most accurate [43, 44] when comparing theoretical and experimental spectra.

In the literature, autocorrelation functions are normally calculated from simulations in

the microcanonical ensemble (NV E, i.e., constant number of particles N , constant vol-

ume V , constant energy E) and then referred to the average temperature of the run (such

simulations are typically pre-equilibrated with a thermostat in order to impose the target

temperature). In our case, though, the small number of degrees of freedom (DoF) required

a thermostat during the sampling of the correlation function. The reason for this is that,

when the DoF are few, the distribution of the kinetic energy in a NVE ensemble departs

from the distribution of the canonical ensemble (constant number of particles, constant vol-

ume, constant temperature, NVT ) at the same average temperature (the latter distribution

is nothing else than the Boltzmann distribution). The NVT distribution has a thick tail at

large kinetic energies [45], while the NVE distribution is a Gaussian function around the

average temperature (both distribution have 2/(3N) relative variance). When the number

of DoF is large (rigorously, at the thermodynamic limit), the two distributions converge to

the same shape and a simpler NVE simulation, after thermalizing the system at the desired

temperature, would be a good approximation of the rigorous NVT sampling.

There are two ways to overcome this problem, either averaging the correlation function

over an ensemble of NVE trajectories, where the initial states (coordinates and velocities)

are extracted from a canonically distributed set at the target temperature, or using a

thermostat that does not perturb the dynamics. The first solution is computationally very

demanding and the second requires a not trivial implementation. Since a thermostat always

acts on the velocities, it is difficult to design one that does not destroy the dynamical

correlations. Recently, Bussi, Donadio, and Parrinello introduced a stochastic thermostat

that fulfills this requirement [45]. We tested the thermostat by calculating spectra via Eq.

1 at very low temperatures. The results reproduced the harmonic spectra impressively well.

Furthermore, we observe that the finite temperature spectrum is practically independent of

the only tuning parameter that the thermostat has, which can be interpreted as a relaxation

time, over a wide range of its values.

In the figures where we compare theoretical and experimental spectra (Figs. 3-6) we
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have shifted the theoretical spectra in order to align the frequencies of the peaks to the

frequencies at which the experimental peaks occur (note that a rigid shift is sufficient to

align all the peaks). The necessity of such a shift is due to force inaccuracies caused by

the approximate exchange-correlation functional and the finiteness of the basis set, but also

they are caused by the finiteness of the MD timestep and the granularity of the mesh onto

which the basis functions are projected. The sensitivity of the theoretical spectra towards

the above mentioned settings is debated in the appendix. All the theoretical spectra shown

in this paper are obtained with the same setting and we found that a rigid frequency (blue-

)shift of 8 cm−1 optimized the matching for all cases. In Figs. 3-6, we also report the

harmonic spectra, where the frequencies of the peaks (bars) were scaled by a factor 1.05. In

this way the peaks are approximately aligned to the experimental and finite-T theoretical

spectra, in order to help the visual comparison. For converged vibrational spectra, MD runs

of at least 100 ps were needed, and we used a time step of 10 fs. A stable integration of the

equations of motion with such an unusually large time step is allowed by the low value of

the highest frequency phonon (∼ 200 cm−1) in our systems.

Definition of temperature: classical vs quantum statistics for nuclei

In Born-Oppenheimer MD the nuclei are propagated as classical (point) particles. As

a consequence, the population of their vibrational modes in the canonical ensemble obeys

classical (Boltzmann) statistics. However, nuclei are quantum particles and also the popu-

lation of the vibrational modes is quantized. There is no unique way to map the classical

population into a quantum one and thus to estimate the correction to the classical one, but

one can link the distribution of linear momenta in the classical and quantum formulation.

The width of both classical and quantum momenta distributions depend parametrically on

temperature [46]. One can thus write both widths and equate them in order to get a cor-

respondence between “quantum temperature” and “classical temperature”, the latter being

the quantity set by the thermostat adopted for our simulations. By equating the widths of

the two distributions, one obtains [47]:

NkBT =
∑

i

hνi

2
coth

hνi

2kBT̄
(2)

9



where νi are the (harmonic) vibrational frequencies of the cluster under consideration, T

is the classical temperature, T̄ is the quantum temperature, and N is the number of DoF.

We note that the two temperatures converge for large T . The discrepancy between the

two temperatures can be intuitively understood in terms of zero point energy: a classical

system has to use some temperature in order to give kinetic energy to vibrational modes,

while for a quantum system these modes are already active at T = 0 K. Thus the classical

temperature has to be higher in order to give the same kinetic energy to the vibrational

modes. Interestingly, this mapping also defines a lowest classical temperature, which is,

by taking the limit T̄ → 0: NkBT =
∑

i
hνi

2
. This is the (classical) temperature needed

to activate all the zero point vibrations. In the rest of the paper, for each cluster we will

give both the classical temperature T at which the thermostat was set and the quantum

temperature T̄ as an estimate of the “real” corresponding temperature for an equilibrated

system.

The thermalization of clusters in sources similar as used here to prepare the AuN ·KrM

complexes has been characterized before and allows the conclusion that under our conditions

equilibration to the source temperature is achieved [48, 49]. Nevertheless, it has to be

noted that the experimental FIR-MPD spectra, may not come from an exactly canonically

distributed population. This is due to the fact that in the molecular beam cluster complexes

belonging to the hotter tail of the canonical distribution may spontaneously dissociate and

thus not contribute to the depletion spectrum. The experiment would then be sampling

only the colder part of the full distribution.

LOCALIZED BONDING OF KR: AU2·KR AND AU2·KR2

In Refs. 50 and 51, the cationic gold atom is found to form a strong bond, suggested to

be covalent on the basis of orbitals-population analysis, with the heavier rare gases. The

CCSD(T) binding energies between Au+ and Ar, Kr, and Xe are 0.29, 0.51 and 0.91 eV,

respectively [50]. While the neutral gold atom would only form a weakly bonded vdW

dimer with Kr (as well as Ar and Xe), we find that Au2·Ar, Au2·Kr, and Au2·Xe are

linear molecules where the RG-Au2 interaction at equilibrium is unexpectedly strong. The

PBE+vdW bonding energies of the RG with the gold dimer are 0.11, 0.22, and 0.43 eV for

Ar, Kr, and Xe, respectively. The values for Ne and He are 0.02 and 0.01 eV, i.e., there
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FIG. 1: Equilibrium geometries (at T = 0 K) for Au2, Au3, and Au4 and their complexes with one

or two Kr atoms. Distances (in Å) and angles (in degrees) for the determination of the structure

are noted.

is practically only a vdW interaction between the two lighter RGs and the gold dimer (the

equilibrium geometry is in these cases an isosceles triangle with Au2 as the short basis).

We find a similar trend for the other coinage metals, Cu and Ag. Consistently with the

behavior of the surfaces of these coinage metals, Ag proves to be overall less binding, with a

maximum of 0.13 eV for Ag2·Xe, while Cu2 has the interaction energies roughly halved when

compared to the corresponding Au2·RG molecule. The detailed analysis of this unusual

bonding between the dimer and rare gases will be presented elsewhere [52]. We note in

passing that when Au is treated non relativistically [58], Kr would exhibit a negligible

bonding, namely purely vdW. Here we focus on the vibrational properties of the AuN ·Kr

and AuN ·Kr2 complexes. Recently, in Ref. 53 a study was presented of the equilibrium

distance and binding energy of Xe, Kr, and Rn to Au, Ag, and Cu small clusters, calculated

at the CAM-B3LYP level [59]. Our equilibrium geometries and energies for Kr adsorbed on
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Au2, Au3, and Au4 qualitatively agree with the results there presented. In particular, Kr

was found to adsorb at distances between 2.7 and 2.9 Å to one Au atom in Au2, Au3, and

Au4 with binding energies of 0.1-0.2 eV and a Au–Kr stretching frequency around 70 cm−1.

However, on one issue our results disagree: While in Ref. 53 a very small increase of the

Au-Au distance upon adsorption of RG was found, we find a small decrease (see Table I).

This is of no relevance for the present paper. However, we note in passing that we carefully

tested our results and the physical mechanism of the decrease of the Au-Au distance is in

fact interesting. It will be discussed in a separate paper [52].

The occurrence of an interaction between RG atoms and metal clusters, so strong that

the vibrational spectrum of the pristine cluster is perturbed, was also observed by Gehrke et

al. [22] for charged Co clusters and Ar. In that case, the interaction was explained in terms

of electrostatic interactions between the static charge at the metal cluster and the induced

dipole at the RG. In our case, for neutral systems, this electrostatic explanation cannot be

invoked.

The static dipole of the AuN ·Kr molecule is non-zero (see Table I) and vibrations become

IR active, with two marked lines in the harmonic spectra: the Au–Au stretch at 185 cm−1

and a Kr–Au2 stretch at 82 cm−1. Note that, while the higher frequency eigenmode is still

recognizable as an Au–Au stretch with just a small blue-shift (cf. Fig. 2), and Kr just makes

it IR active by breaking the symmetry of the molecule, the lower frequency line is entirely

due to the presence of Kr.

The bonding predicted at the PBE+vdW level is confirmed at higher level of calculation,

as shown in Table I. As expected, LDA overestimates the bond strength while PBE+vdW

underestimates it, when compared to MP2 and CCSD(T). The fact that PBE+vdW and

higher level calculations exhibit similar Au–Kr bond distances, static dipole moments, har-

monic vibrational frequencies, and harmonic IR intensities suggests that the nature of the

bond is also the same in the different approaches.

In the case of Au2·Kr2, the vibrational properties of the dimer are also strongly modified

by the adsorption of Kr. Like Au2, the Au2·Kr2 molecule is linear and inversion symmetric.

Thus, fewer modes than for Au2·Kr are IR active. Au2·Kr2 clearly shows anharmonic features

already at relatively low temperature (see Fig. 2). At T = 23.5 K (T̄ = 0 K) the IR

spectrum simulated by MD mimics closely the harmonic spectrum (this is an indication of the

reliability of the MD settings, and in particular of the thermostat). At T = 103 K (T̄ = 100
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Au2 Au2·Kr

Eb d(Au-Au) d(Au-Au) d(Au-Kr) ∆Eb Dipole

[eV] [Å] [Å] [Å] [eV] [D]

LDA 2.986 2.447 2.444 2.538 0.602 2.7

PBE+vdW 2.354 2.509 2.503 2.728 0.222 2.2

PBE0+vdW 2.050 2.520 2.514 2.773 0.161 1.9

XYG3 [34] 2.296 2.486 2.480 2.740 0.215 -

RPA+rSE@PBE [35] 2.147 2.514 2.506 2.810 0.208 -

rPT2@PBE [35] 2.412 2.502 2.496 2.780 0.227 -

RPA+rSE@PBE0 [35] 2.057 2.504 2.496 2.795 0.211 -

rPT2@PBE0 [35] 2.202 2.500 2.496 2.785 0.208 -

MP2 2.445 2.429 2.421 2.620 0.379 2.3

CCSD(T) 2.292 2.484 2.477 2.685 0.320 -

Exp. 2.30 ± 0.1 2.470 - - - -

Au2·Kr

ν1 IR int. ν2 IR int. ν3 IR int.

[cm−1] [km mol−1] [cm−1] [km mol−1] [cm−1] [km mol−1]

PBE+vdW 35 0.3 82 3.3 185 2.4

CCSD(T) 39 - 90 - 200 -

TABLE I: Calculated properties of Au2 and Au2·Kr at various level of theory. All values except

for CCSD(T) are calculated with FHI-aims, really-tight grid, tier 4 basis set. CCSD(T) values are

calculated with Gaussian03 (revision D.01) [36] and aug-cc-pVTZ-PP basis set of Peterson and

Puzzarini [37–39]. The binding energy of the gold dimer is: Eb(Au2) = E(Au2) − 2 · E(Au). The

adsorption energy of the Kr atom(s) onto the Au2 is: ∆Eb(Au2·Kr) = E(Au2)−E(Au2·Kr)−E(Kr),

E(...) is the total energy of the relaxed system.

K), however, clear differences become apparent: the band related to the antisymmetric Kr

vs Au2 stretching is red-shifted to 57 cm−1 as compared to the harmonic frequency of 69

cm−1 and a new satellite peak appears at 48 cm−1. This is due to the interaction between
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FIG. 2: Theoretical harmonic (bars) vs. theoretical finite-temperature IR spectra of Au2·Kr2. The

circles on the top x-axis mark the position of the IR-inactive vibrational modes, hollow for bare

Au2 and filled for Au2·Kr2. The harmonic frequencies are labeled corresponding to the eigenmodes

of Au2·Kr2 as illustrated on the right. ν4,5 and ν6,7 are doubly degenerate modes, respectively.

Thin lines show the main character of the bands observed in the finite-temperature spectra, for

which the thermostat was set to T = 23 K (T̄ = 0 K) and T = 103 K (T̄ = 100 K). These spectra

were neither shifted nor scaled.
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the mentioned antisymmetric stretching mode with the symmetric one (harmonic frequency

62 cm−1), which is IR inactive in the harmonic approximation. During the MD simulation

of both Au2·Kr and Au2·Kr2, the Kr atoms were found to stay localized at their bonding

site. In the following, we will label this adsorption sites as “chemisorption sites”, in order

to distinguish them from the pure vdW adsorption sites (vide infra). The actual nature of

these adsorptions, which is largely covalent but also involves a complex charge polarization

and redistribution, is discussed in Ref. 52.

Both Au2·Kr and Au2·Kr2, however, are not detected in the FIR-MPD experiment be-

cause their ionization potentials are significantly higher than the energy of the ionizing UV

laser. The theoretical values of their vertical IP are 9.0 eV for Au2·Kr and 8.7 eV for

Au2·Kr2 (see Table II), i.e. well above the photon energy of the UV laser (7.9 eV) used in

the experiment.

A detailed listing of energy related quantities is given in Table II. The total binding

energy of the AuN ·KrM cluster (M = 1, 2) is:

Eb(AuN · KrM) = E(AuN · KrM) − N · E(Au) − M · E(Kr), (3)

The “adsorption” energy of the Kr atom(s) onto the cluster is defined as:

∆Eb(AuN · KrM) = E(AuN · KrM) − E(AuN) − M · E(Kr), (4)

where E(AuN) is the total energy of the relaxed AuN cluster, AuN ·KrM is the relaxed

adsorbate system and E(Kr) the total energy of a single Kr atom. Furthermore, we report

the vdW interaction energy between the Kr atom(s) and the gold clusters, calculated as the

overall vdW correction minus the vdW correction within the bare cluster.

∆EvdW (AuN · KrM) = EvdW (AuN · KrM) − EvdW (AuN). (5)

Due to the fact that some vdW interaction is present among the atoms of the gold cluster

(and the larger the cluster, the larger is the intra-cluster vdW interaction), with the latter

definition we single out the part of vdW interaction between the gold cluster and the ad-

sorbed Kr atom(s). When this value is small in comparison to ∆Eb, the interaction between

the Kr atom(s) and the gold cluster has some covalent character [52].
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Molecule Eb [eV] ∆Eb [eV] ∆EvdW [eV] vIP (SCF) [eV] vIP (G0W0) [eV]

Au2 -2.35 – (0.00) 9.2 9.5

Au2·Kr -2.57 -0.22 -0.02 9.0 8.8

Au2·Kr2 -2.70 -0.35 -0.04 8.7 8.7

Au3 (a) -3.53 – (0.00) 7.2 7.0

Au3 (o) -3.65 – (-0.02) 8.4 8.1

Au3·Kr (a) -3.73 -0.20 -0.02 6.8 6.7

Au3·Kr (o) -3.75 -0.12 -0.01 7.9 7.7

Au3·Kr2 (a) -3.84 -0.31 -0.04 6.6 6.4

Au3·Kr2 (o) -3.86 -0.21 -0.02 7.5 7.3

Au4 (rh) -6.14 – (-0.02) 7.9 7.8

Au4 (Y) -6.12 – (-0.03) 8.2 8.0

Au4·Kr (rh) -6.31 -0.17 -0.03 7.7 7.5

Au4·Kr (Y) -6.31 -0.19 -0.01 7.9 7.8

Au4·Kr2 (rh) -6.47 -0.33 -0.05 7.5 7.3

Au4·Kr2 (Y) -6.46 -0.34 -0.02 7.7 7.5

Au7 -13.22 – (-0.13) 7.1 7.0

Au7·Kr “top” (1) -13.32 -0.10 -0.03 7.0 6.9

Au7·Kr “top” (2) -13.32 -0.10 -0.04 7.0 6.9

Au7·Kr “fcc” -13.30 -0.09 -0.09 7.1 7.0

TABLE II: Energy related quantities for all the clusters and complexes considered, calculated with

the PBE+vdW functional. Eb (Eq. 3) is the total binding energy, ∆Eb (Eq. 4) is the interaction

energy between the Kr atom(s) and the relaxed gold cluster, ∆EvdW (Eq. 5) is the vdW part of the

interaction between the Kr atom(s) and the gold cluster. For bare clusters, this number (reported

between brackets) is the total intra-cluster vdW interaction.

For Au3, (a) labels the acute-angled and (o) the obtuse-angled isomer. For Au4, (rh) means

rhombus and (Y) Y-shaped isomer. For Au7, (1) is the second isomer from the top in Fig. 6

while (2) is the upper one in the same Figure. Vertical ionization potentials (vIP) are evaluated

as energy difference of two single-point calculations with PBE+vdW for the neutral and cationic

cluster (column marked with SCF) and via G0W0 [40], on PBE orbitals. Experimental values of

the ionization potentials for Au2, Au3, Au4, and Au7 are 9.5, 7.5, 8.6, 7.8 eV, respectively [17]

.
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AU3·KR AND AU3·KR2

Au3 has two (meta)stable isomers, a) an obtuse-angled isosceles triangle [60], with an ob-

tuse angle of about 140◦ and b) an almost equilateral triangle [61]. According to PBE+vdW,

the latter is 0.12 eV less stable than the former. The linear isomer is only a saddle point

for the neutral Au3. PBE0+vdW also finds the obtuse-angled isomer more stable, but only

by 0.04 eV (after relaxing both structures with PBE0+vdW). For higher level methods,

however, the most stable isomer is the acute-angled. Namely, for XYG3 by 0.11 eV and for

RPA+rSE@PBE by 0.05 eV. Also in Ref. 10, GGA functionals predict the obtuse-angled iso-

mer to be more stable and higher level functionals the acute-angled. However, all functionals

underestimate the formation energy of the gold trimer when compared to the experimental

value (3.80±0.13 eV) [54] and the best agreements comes from GGA functionals. Thus,

the accurate relative energetics between pristine isomers has to be regarded as still an open

issue.

According to PBE+vdW, the binding of one or two Kr atoms to these two isomers of

Au3 brings the two Au3·Kr structures to approximately the same energy (see table II).

For PBE0+vdW, the Au3·Kr structure with acute-angled Au3 is 0.06 eV more stable than

the other and the Au3·Kr2 structure with acute-angled Au3 0.10 eV more stable. With

XYG3, these values become 0.20 and 0.24 eV, while for RPA+rSE@PBE 0.13 and 0.23 eV.

For heavier RG atoms, in particular for Xe, we find that the acute-angled isomer becomes

even (slightly) more stable than the obtuse-angled one. The final structure of Au3·Kr is an

isosceles Au3 triangle with the two equal-length bonds of 2.6 Å (i.e. 0.02 Å contracted

with respect to the bare isomer) and the angle between them 64◦ wide (i.e. 2 degree smaller

than in the bare cluster); Kr is bonded to the gold atom at the 64◦ vertex, with a Au–Kr

distance of 2.74 Å. When Kr is adsorbed to the obtuse-angled isomer, it is chemisorbed to

one of the two 1-fold coordinated Au atoms. The Kr–Au bond length, 2.94 Å, is much longer

than in the acute-angled case; it follows that the Au3–Kr interaction energy is about half

than for the acute-angled isomer. As a consequence, by adding one Kr atom, e.g. by letting

Kr approach towards the central (two-fold coordinated) Au atom, the obtuse-angled Au3

isomerizes into the acute-angled isomer. This would be an unusual example of a RG-induced

isomerization of a metal cluster, but similar to the observations for Cu3·RG [55].

Both Au3 isomers can also bind two Kr atoms, with binding energy slightly smaller than
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double the binding energy of one Kr (see table II). A third Kr atom on the acute-angled

isomer of Au3 is only vdW bound. This Au3·Kr3 has the geometry of the acute-angled

Au3·Kr2, with the third Kr in plane, but only vdW-bonded at 4.0 Å from the third Au

atom.

For both Au3 isomers, there are also other equilibrium positions for Kr. For the lowest

energy structure besides the chemisorbed sites, i.e. the complex with the acute-angled

triangle, Kr is out-of-plane and its trace is on the center of mass of the gold cluster, the

interaction energy is -0.05 eV, which is about 25% of the bonding energy upon chemisorption.

As it is easy to predict, finite temperature MD simulations find Kr localized at the bonding

site(s).

While the IR spectrum of bare Au3 is dominated by one intense mode at 95 cm−1, related

to the antisymmetric stretching of the acute-angled triangle, many peaks appear in the IR

spectrum when one or two Kr atoms are adsorbed. Some of these peaks are associated with

eigenmodes that correspond to IR-inactive modes of the pristine cluster, whereas the change

of symmetry provoked by Kr adsorption makes them visible; some are new modes involving

Kr as well.

The finite-temperature theoretical spectrum of Au3·Kr (Fig. 3) agrees well with the

experimental spectrum when only the acute-angled isomer is considered [62]. In fact, the

obtuse-angled isomer would have a peak at ∼ 130 cm−1, which is not present in the exper-

imental spectrum. It turns out that, even if the energetics of the obtuse-angled isomer is

close to that of the acute-angled, the vertical IP of the obtuse-angled isomer is calculated to

be close to the energy of the UV laser (7.9 eV), and thus it may not be (or not efficiently)

ionized, while the vertical IP of the acute-angled isomer is far below the photon energy. At

low wavenumbers (50 − 70 cm−1), though, the experimental spectrum does not show the

band predicted by theory. The reason for this behavior is that also Au3·Kr2 absorbs at

those frequencies (see below). However, at such low photon energies many Au3·Kr2 appear

to loose only one Kr in the photodissociation and the formation of Au3·Kr compensates for

the dissociated fraction.

Provided that the relative energy of the obtuse-angled di-krypton complex is close to the

energy of the acute-angled, the calculated vertical IPs suggest that the di-krypton complexes

of both isomers can be ionized at 7.9 eV and could contribute to the experimental spectrum

of Au3·Kr2, although the obtuse-angled may be slightly less efficiently ionized as it has the
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FIG. 3: FIR-MPD spectrum (lower panel) of Au3·Kr at 100 K and theoretical IR spectra (upper

panel) at T = 100 K (T̄ = 96 K) of the two isomers of Au3·Kr. The harmonic spectra are plotted

as bars upside-down. The horizontal line in the bottom panel marks the zero cross section. The

dashed lines and bars refer to the obtuse-angled isomer, while the solid lines and bars refer to the

acute-angled one.

higher vertical IP. Indeed, a superposition of the two theoretical spectra shows a remarkable

agreement with the experimental one (Fig. 4). For instance, the broad band around 50-

60 cm−1 is reproduced quite well and shows a similar substructure. The subpeaks are an

anharmonic feature, since only one peak per isomer is found in the harmonic spectrum in

that region. Inclusion of the obtuse-angled isomer is required to account for the extension of

this band towards lower frequencies. We can conclude that both acute-angled and obtuse-

angled Au3 isomers, when complexed with one or two Kr, are present in the molecular

beam.
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FIG. 4: FIR-MPD spectrum (lower panel) of Au3·Kr2 at 100 K and theoretical IR spectra (upper

panel) at T = 100 K (T̄ = 97 K) of the two isomers of Au3·Kr2. The horizontal line in the bottom

panel marks the zero cross section. The dashed lines and bars refer to the obtuse-angled isomer,

while the solid lines and bars refer to the acute-angled one.

AU4·KR2

Similarly to Au3, Au4 has two low energy isomers, a rhombus and a Y-shaped cluster,

with a difference in energy of 0.02 eV, which is further reduced by the adsorption of one or

two Kr atoms. Au4·Kr is not ionized in the experiment, and indeed the calculated vertical

IPs (Table II) are consistent with this observation.

The calculated vertical IPs of the two Au4·Kr2 isomers suggest that the rhombus isomer

is more efficiently ionized (vIP = 7.5 eV), as the vIP of the Y-shaped isomer is with 7.7

eV already rather close to the photon energy. The FIR-MPD spectrum for Au4·Kr2 (Fig.

5) is well reproduced by the theoretical finite-temperature spectrum of the rhombic isomer.

Inclusion of a fraction of the Y-shaped isomer could explain a further broadening of the

low frequency peak, however, there are no signs of the other, though less intense, bands
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FIG. 5: FIR-MPD spectrum (lower panel) of Au4·Kr2 at 100 K and theoretical IR spectra (upper

panel) at T = 100 K (T̄ = 97 K) of the two isomers of Au4·Kr2. The horizontal line in the bottom

panel marks the zero cross section. The dashed lines and bars refer to the Y-shaped isomer, while

the solid lines and bars refer to the rhombic one.

predicted for this isomer.

If the Kr atom is placed above the plane of the rhombic Au4, a vdW complex is formed

with ∆EvdW (Au4-Kr) = -0.08 eV, which is less than half the energy of the localized bonding.

For comparison, we calculated the MP2+∆vdW interaction energy for this complex [63],

which is with -0.07 eV in very good agreement with the PBE+vdW value. The vdW

complex Au4·Kr2 has the two Kr atoms symmetrically above and below the plane of Au4.

The interaction energy is still -0.08 eV per Kr, again less than half than the bonding energy

of the bonded Au4·Kr2. Even in this case at finite temperature the Kr atoms are practically

always found at the bonding site(s). In conclusion, theory predicts that Au4·Kr2 is present

as a mixture of two low lying isomers, which are nearly equally present. The experiment

clearly identifies the rhombic isomer, but there is no compelling verification of the Y-shaped

structure, which may be explained by its low ionization probability.
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ORBITING KR: THE CASE OF AU7·KR

For clusters bigger than Au4, the chemisorption sites for Kr are still present (always single

coordinated adsorptions to perimetral 2- or 3-fold coordinated Au atoms), but, starting from

Au5, the bonding energy is weakened to ∼ −0.1 eV in the most favorable geometry. Since

with increasing size the number of Au–Kr pairs that show a significant vdW attraction

increases, the total vdW interaction between the gold cluster and the Kr atom(s) increases

and grows comparable to the bonding energy to a specific site.

For planar clusters, this interaction is maximized when Kr is out of plane, and the trace

of the Kr position onto the cluster plane lies near the center of mass of the cluster. We

find that at size 5 the interaction of Kr sitting at the best bonding site starts to compete

energetically with the (vdW) interaction energy of the purely vdW bound complex. In facts,

for Au5 the purely vdW bound Kr yields a ∆EvdW equal to -0.09 eV. Interestingly, a ∆EvdW

of about -0.1 eV is also the strongest interaction we found for a AuN ·Kr complex. We tested

up to Au20 (which is a perfect tetrahedron, with four triangular {111} surfaces each made

of 10 atoms [19]) for which we find a ∆EvdW (Kr above the center of one of the faces) of

-0.11 eV. The fact that the vdW interaction between Kr and the cluster saturates with the

cluster size is due to geometrical reasons, but also to the polarizability of the Au atoms

in the cluster, which, at least in the size interval that we have probed, decreases with the

cluster size. The comparably strong vdW binding of Kr to the planar fcc sites is well in line

with the experimental findings for anionic Au clusters, where Ar binding has been used to

discriminate between 2D and 3D structural isomers [13].

Au7 is the first cluster size larger than Au4 for which we have a clearly structured exper-

imental spectrum to compare to (Au5·Kr shows only relative week features in the spectrum,

and no Au6·KrM is ionized in the experiment). The IR spectrum of Au7 had been the subject

of analysis before and its structure has been identified as planar edge-capped triangle [19],

which is here confirmed as the clear global minimum.

We find that Kr can bind, within the plane of the Au7 cluster, to single Au atoms,

similarly to what was described before [19]. The strongest binding (∆Eb = −0.10 eV) is in

the two geometries shown in the top part of Fig. 6. However, the vdW complex, with Kr

above the Au7 plane, depicted as third from the top in Fig. 6 has an interaction energy of

−0.09 eV, i.e. comparable to the bound case. For this vdW complex, too, we have checked
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the accuracy of the PBE+vdW interaction energy with the MP2+∆vdW approach. The

latter predicts an interaction of −0.09 eV as well.

The experimental FIR-MPD spectrum of Au7·Kr is already well reproduced by the har-

monic spectrum of the bare cluster and in particular the peak positions are in excellent

agreement (see Fig. 6). Nonetheless, the relative intensities of the peaks, in particular the

more pronounced ones at 165, 186, and 201 cm−1, do not match. When the harmonic spectra

of the complexes with chemisorbed Kr are considered, it is found that the peak positions do

not shift significantly. But the relative intensities do change, in such a way that for one of

the in-plane binding sites an optimal matching with the experiment is found (see Fig. 6),

as already noted in Ref. 19. Due to the competing energetics between the bonded and the

vdW complex, though, the picture suggested by MD is slightly different.

In a MD run at the experimental temperature of 100 K, the Kr atom, even when prepared

in an initial position at one of the bonding sites, soon starts to orbit around the planar

cluster, with a preference for the “polar” regions (if the planar Au7 is regarded as the

equatorial plane of the approximate sphere onto which Kr slides). The lower right structure

in Fig. 6 shows the isosurface that encloses the region in which Kr spends 80% of its time

during a 0.5 ns long MD run. In practice, the simulation box is divided in small cubes and

for each cube the average Kr-density is evaluated as the (normalized) number of times the

Kr nucleus is found in the cube during the MD sampling. The enhanced density at the polar

regions can be interpreted as a clear preference for forming the vdW complex, despite its

energetic quasi-degeneracy with the localized bonding situations. This is easily understood

on entropic grounds. The vdW complex offers a large number of energetically degenerate

levels, as shown by the extension of the isosurface shown in Fig. 6. In contrast, when Kr

is localized at an adsorption site, the system visits only a small number of configurational

states, just because of the localization! Since entropy is a measure of the number of the

states accessible to the system at a given temperature, the vdW complex has a larger

(configurational) entropy and thus a lower free energy compared to the localized bonding

case.

The finite temperature spectrum obtained from a MD simulation of Au7·Kr is shown in

Fig. 6 (second lowest panel, continuous trace). The relative peak heights are well reproduced.

Furthermore, we find that the finite temperature spectrum of the bare cluster (same panel,

dashed line) is very similar to the spectrum of Au7·Kr. In particular the correct peak height
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FIG. 6: Theoretical harmonic IR spectra of Au7, Au7·Kr and their calculated finite temperature

IR spectra at T = 100 K (T̄ = 96 K) compared to the experimental far-IR spectrum of Au7·Kr

(lower panel). The lower right structure depicts the isosurface enclosing the region were Kr is found

80% of the time during a 0.5 ns MD run at T = 100 K, when forming a vdW complex with Au7.

Between the atoms surrounded by a square the weakest bond in Au7 is formed (inset lower panel,

see text for details). The Au–Kr distances are in Å.
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ratio for the three peaks at higher frequency is found. This suggests that the Kr atom is

not significantly affecting the spectrum, but that the differences to the harmonic spectrum

of Au7 are related to an intrinsic behavior of Au7. The marked broadening of the highest

frequency peak in the spectra of Au7 and Au7·Kr is indeed an anharmonic feature. Analysis

of the MD trajectory reveals that the internal bond of the inner rhombus (i.e. the bond

between the highlighted atoms in Fig. 6) is the weakest, in the sense that the variance of

its length is about twice than the average variance of the other bond lengths. Elongation of

this bond implies shortening of the distance between the other two atoms belonging to the

inner rhombus of Au7. Furthermore, a trajectory at higher temperature reveals that this

isomer undergoes a fluxional transformation by swapping the role of the atoms arranged in

the inner rhombus, i.e. the long and short diagonal interchange and an isomer with identical

topology, but with scrambled atoms is formed. This feature will be analyzed in detail in

a subsequent publication, by comparing the fluxional behavior of this cluster with other

similar behaviors of larger gold clusters. At this point, we just note that the anharmonic

broadening of the highest frequency peak in Au7 ·Kr (as well as in pristine Au7) is related to

this fluxional behavior. The theoretical understanding of Au7(·Kr) vibrational spectrum is

not in contradiction with the analysis reported in Ref. 25. In fact, in the work of Mancera

and Benoit the analysis was carried out for small distortions of the global minimum structure

(the same as ours) at T = 0 K. Only including larger distortion as sampled in a canonical

MD trajectory, the anharmonic features of Au7 become visible.

CONCLUSIONS

We report the FIR-MPD vibrational spectra of small AuN ·KrM complexes and provide

their assignment by simulating finite-temperature spectra via DFT (with van-der-Waals tail

correction) molecular dynamics. This approach led us to the identification of the structural

information of the considered species. For the MD simulations, we have used the PBE+vdW

functional, but some static properties of the AuN ·Kr were compared to higher level methods,

for validation of our approach. In particular we have tested the validity of the TS scheme

[32] for the vdW tail correction of the PBE functional for the system considered here against

the MP2 + ∆vdW [26] results. We always found a remarkably good agreement between the

adopted method and the higher levels one.
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Similarly to what was found for Ar adsorbed on cationic Co clusters [22] or Y doped

gold clusters complexed with Xe [20, 21], krypton is not a mere tag and does perturb the

vibrational spectra of small neutral gold clusters, sometimes even largely. While a somewhat

strong electrostatic interaction between a charged cluster or molecule and a rare gas atom

is predictable, an interaction between a rare gas and a neutral gold cluster, strong enough

to visibly perturb the vibrational spectrum of the pristine cluster, may not be expected.

When Kr binds to Au2, Au3, and Au4, it is found localized at its binding sites also

at the experimental temperature of 100 K and vibrational spectra are greatly affected by

Kr adsorption, i.e., Kr does not act as a mere messenger for the detection. Therefore

the interpretation of the vibrational spectra has to consider the whole AuN ·KrM complex.

Theory predicts that Au3·Kr, Au3·Kr2, and Au4·Kr2 appear in two different isomers each.

However, in all these cases the experimental spectra can be explained also without assuming

the presence of the higher energy isomer. The latter may be invisible due to low population

or because of poor ionization yield.

In Au7·Kr, the Kr atom is not bound to a single site but delocalized with a clear preference

for being above/below the Au7 plane. We also find that anharmonic effects leading to

unusual broadening of the peaks or new peaks due to mode interactions are present already

at comparably low temperatures (T ∼ 100 K). In the case of Au7·Kr, the inclusion of

anharmonicity results in the best agreement with the experimental spectrum. Nevertheless,

the comparison with the harmonic spectra demonstrates that these can be sufficient to

establish the metal cluster structure as long as one realizes intensities may be perturbed.

The role of the Kr atom(s), i.e., localized vs. orbiting around the cluster, and its influence

on the measured vibrational spectra, is fully revealed only by the statistical sampling of the

canonical ensemble, due to the fact that the system is investigated at finite, albeit relatively

low, temperatures.

We are currently extending the calculation of finite temperature vibrational spectra via

Molecular Dynamics to larger Au clusters, where at some sizes fluxional behaviors (i.e.

relatively frequent structural interchanges between neighboring isomers) must be taken into

account for a full understanding of the FIR-MPD spectra.
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Appendix: spectra as a function of grid, basis set, time step, temperature

The sensitivity of the spectra towards the chosen computational settings and the MD

temperature is exemplified in Fig. 7 for the case of Au3·Kr2 (acute-angled isomer). The

accuracy of the single point energy and force evaluation in FHI-aims is set by the size of the

basis set and the density of the integration grid. The quality of the forces differences along

the MD trajectory is also determined by the MD time step.

We have chosen to record the frequency of the three IR active modes of Au3·Kr2 (acute-

angled isomer) that fall into the experimentally accessible interval of frequencies. The peak

associated to the lowest-frequency of these modes appears in the experimental spectrum

(see Fig. 4) as divided into three sub-peaks (we assign the fourth sub-peak at the lowest

frequency to the obtuse-angled isomer of this cluster). For the analysis reported in Fig. 7,

we have reported the sub-peak at highest frequency, i.e. at 63 cm−1. The position of the

three experimental peaks (the other two are at 88 and 190 cm−1) are marked on the x-axes

of the plot as filled circles.

This particular isomer was chosen because it has IR visible modes near the extremes

and in the middle of the (experimentally-accessible) frequency interval spanned by the gold

clusters. There are also modes at frequencies lower than 50 cm−1, but they fall below the

experimental window. Right above the experimental points, the positions of the theoretical

peaks at various temperatures, all the other settings being fixed, appear. One can note

that the peaks are generally red-shifted at increasing temperature, but, more strikingly,

the change of frequency as a function of temperature is not the same at all frequencies:
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FIG. 7: Sensitivity of the vibrational spectrum of Au3·Kr2 towards changes in temperature, grid,

basis set, and MD time step. Plotted are the frequencies of the three IR active mode (in the

experimentally accessible region) of this complex. The circles on the x-axes mark the experimental

peaks (at T̄ = 100 K). Along the sets of diamonds, the temperature is changed from T̄ =0 K

(harmonic analysis) to T =100 K (T̄ = 96 K). Along the sets of squares the grid is changed from

“light” to “really tight 974”, i.e. including the extended angular grid [30]. Along the sets of

downward triangles the basis set is changed independently for the two elements, from “tier1-gh”

for Au and “tier1-f” for Kr to “tier2” for both elements. Along the upward triangles the time step

is changed from 10ps to 1ps. The labels for the basis set are “T1” for “tier1”, “T2” for “tier2’ ’,

while “tier1-gh” means that a g and a h atomic basis function are missing from “tier1”. On the

right the status of the settings that are not changed along the sets are specified. In that case, when

the basis set is marked with just “T2”, it means “tier2” for both Au and Kr

.

lower frequency modes shift more than higher frequency ones. This is one of the effects

of anharmonicity. One can note that in the harmonic approximation (i.e. at T = 0 K)

the lowest frequency mode is closer to the experimental value than the highest frequency

mode to its experimental counterpart. As a consequence, in literaturean empirical scaling
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factor for aligning the theoretical and experimental numbers is often employed . At T̄ = 100

K the three peaks are then red-shifted by different amounts from their positions calculated

within the harmonic approximation, in such a way that a (rigid) blue-shift would bring them

in approximate correspondence with the experimental values. The necessity of a rigid shift

rather than a scaling factor for theoretical finite-temperature spectra has been already noted

by other authors (see e.g. Ref. 42 and references therein). Here we make the systematic

observation that a) when the density of the integration grid is increased (set of squares in

Fig. 7), b) when the size of the basis set is increased (set of downwards triangles), or c)

when the MD time step is decreased (set of upwards triangles), i.e. whenever the accuracy of

the evaluation of the potential-energy surface improves, the position of the peaks are always

blue-shifted, i.e. towards the experimental values. These shifts are also approximately rigid

(except when passing from the least accurate basis set or grid to the next step) across the

frequency window. It has to be noted that the sensitivity of the peak positions towards the

settings is quite small, unless when passing from the coarsest “light” integration grid to the

next level (“tight”), or when passing from the very small basis set (“tier1” for Kr, without

the f function) to the next level.
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