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Abstract

The hair cells of the inner ear are polarized epithelial cells with a specialized structure at the apical surface, the
mechanosensitive hair bundle. Mechanotransduction occurs within the hair bundle, whereas synaptic transmission takes
place at the basolateral membrane. The molecular basis of the development and maintenance of the apical and basal
compartments in sensory hair cells is poorly understood. Here we describe auditory/vestibular mutants isolated from
forward genetic screens in zebrafish with lesions in the adaptor protein 1 beta subunit 1 (ap1b1) gene. Ap1b1 is a subunit of
the adaptor complex AP-1, which has been implicated in the targeting of basolateral membrane proteins. In ap1b1 mutants
we observed that although the overall development of the inner ear and lateral-line organ appeared normal, the sensory
epithelium showed progressive signs of degeneration. Mechanically-evoked calcium transients were reduced in mutant hair
cells, indicating that mechanotransduction was also compromised. To gain insight into the cellular and molecular defects in
ap1b1 mutants, we examined the localization of basolateral membrane proteins in hair cells. We observed that the Na+/K+-
ATPase pump (NKA) was less abundant in the basolateral membrane and was mislocalized to apical bundles in ap1b1
mutant hair cells. Accordingly, intracellular Na+ levels were increased in ap1b1 mutant hair cells. Our results suggest that
Ap1b1 is essential for maintaining integrity and ion homeostasis in hair cells.
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Introduction

Auditory and vestibular hair cells (HCs) are polarized epithelial

cells with a unique morphology essential for mechanosensation

[1]. Hair bundles at the apical end of HCs are comprised of

several rows of actin-filled stereocilia and a single primary cilium

called the kinocilium. Upon deflection induced by sound or head

movements, hair bundles transduce mechanical stimuli into

graded receptor potentials. Within the basolateral compartment,

HCs transmit signals to afferent neurons, and in some cases receive

signals from efferent neurons [2,3]. In addition to the transduction

and synaptic machinery, a number of channels and transporters

are spatially restricted to the apical or basolateral ends of HCs.

These proteins are critical for maintaining the electro-chemical

gradients necessary for HC function [4,5,6,7,8,9]. How the HC

orchestrates apical and basolateral trafficking of membrane

proteins for its unique requirements has not been explored.

Clathrin-mediated transport requires Adaptor Proteins (APs)

that interact with sorting motifs on membrane proteins, providing

selectivity in the initial step of transport. Several distinct classes of

AP complexes (AP-1, AP-2, AP-3, AP-4) facilitate sorting along

various trafficking routes [10]. The Adaptor Protein 1 (AP-1)

complex has been shown to mediate trafficking of membrane

proteins to the plasma membrane from either the trans-Golgi

network (TGN) or recycling endosomes. In polarized epithelial-

cells, AP-1 is important for basolateral sorting of cargo proteins

[11]. The AP-1 complex is composed of four subunits: c, b1, s1
and either m1A or m1B [12,13,14,15,16,17]. The two different m-
subunits distinguish the AP-1A from the AP-1B complex. As the

b1 subunit is common to both AP-1A and AP-1B complexes, for

the purposes of this study we will refer to them both simply as the

AP-1 complex. The AP-1 complex has been studied primarily in

cell culture models, however the role of the AP-1 complex in an

intact organism is less well understood. Here we investigate the

effect of mutations in the zebrafish b1 subunit of the AP-1 complex

(ap1b1) on protein sorting and HC function in vivo.

We isolated two alleles of ap1b1 from two independent large-

scale ENU mutagenesis screens for auditory and vestibular

zebrafish mutants [18] (Tübingen 2000 Screen Consortium).

Cloning of the lesions in ap1b1 revealed two early stop mutations.

In the present study, we quantify the vestibular and auditory

deficits in ap1b1 mutants and show that mechanotransduction is

compromised in mutant HCs. Though AP-1 has been implicated

in the sorting of basolateral membrane proteins, HC synapses

appear to be largely intact in ap1b1 mutants. In contrast, the Na+/

K+-ATPase pump is missorted to the apical surface in HCs. Our

results suggest that loss of AP-1-sorting leads to mislocalization of

the NKA pump and is likely to account, in part, for the defects

associated with ap1b1 mutant HCs.
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Materials and Methods

Ethics Statement
This study was performed with the approval of the Oregon

Health and Science University Institutional Animal Care and Use

Committee and in accordance with NIH guidelines.

Animal Lines
Zebrafish were kept on a 12 hr light-dark cycle at 28uC. The

mutant alleles of skylab, tm246a and t20325 were isolated from two

independent ENU mutagenesis screens [18] (Tübingen 2000

Screen Consortium) and maintained in either Tübingen or Top

long fin wild-type (WT) backgrounds. The Tg(myo6b:b-actin-GFP)
and Tg(myo6b:D3cpv) cameleon lines have been previously de-

scribed elsewhere [19].

Behavioral Assays
Vestibular-induced eye movements were recorded from 5 dpf

larvae using techniques described in detail elsewhere [20,21]. Data

was analyzed in Matlab. The auditory escape response was

quantified using methods described in [22]. Statistical analysis was

performed using Prism 5 (GraphPad).

Cloning and Molecular Biology
The skylab critical interval was determined by crossing WTWIK

fish with Tübingen fish heterozygous for the mutation. Genetic

mapping with F2 mutant larvae was performed through PCR

amplification of SSLP markers.

Genes within the critical interval were analyzed by PCR using

the Advantage2 kit (Clonetech) to amplify 400–600 bp fragments

of the open reading frame from cDNAs generated by the

SuperScriptIII kit (Invitrogen). These fragments were scanned

for variations by comparing obtained sequence from mutants and

siblings to sequences deposited in Ensembl (http://uswest.

ensembl.org/Danio_rerio/Info/Index). To pinpoint the tm246a

lesion, primers were designed to amplify the genomic DNA

around the splice acceptor site of exon 9 (forward primer,

TCGTAAAAGCTGCAGACCCTA; reverse primer, TGATCA-

GACAGCTGGTGGAA). Before sequencing, all PCR products

were purified using the QIAquick Gel Extraction kit (Qiagen).

Microscopy
DIC and in situ images were captured with a Leica DMLB

widefield microscope equipped with an AxioCam MRm (for DIC)

or an AxioCam MRc 5 (for in situ) camera (Zeiss) using AxioVision

acquisition software (Release 4.5, Zeiss). All other images were

captured on a Zeiss LSM 700 upright confocal microscope using

the Zen acquisition software (2009 release, Zeiss). To view live

larvae or the lateral cristae of fixed larvae, animals were mounted

in 1% low melt agarose (Life Technologies) dissolved in E3

embryo medium and imaged with a 63x/0,95 water immersion

lens. To view superficial neuromasts after immuno-labeling, larvae

were mounted in Elvanol (0.1 M Tris pH 9.0, 10% polyvinyl

alcohol, 88–89% hydrolyzed, 30% glycerol and 1% DABCO) and

imaged with a 63x/1,4 oil lens.

Vital Dyes
For the FM 1-43 experiments, zebrafish larvae were incubated

for 20 sec in E3 containing 3 uM N-(3-Triethylammoniumpropyl)-

4-(4-(Dibutylamino)styryl)Pyridinium Dibromide (FM 1-43, Life

Technologies). For the Sodium Green experiments, zebrafish

larvae were incubated for 20 min in E3 containing 10 uM

tetra(tetramethylammonium) salt (Sodium Green, Molecular

Probes) and 1% DMSO at room temperature in the dark. After

either treatment, larvae were washed with E3 plus 0.02% 3-amino

benoic acid ethylester (MESAB, Western Chemical Inc.) for 1–

2 min at room temperature.

Immunofluorescence
Zebrafish larvae were fixed in 4% paraformaldehyde in PBS for

4.5 hrs or overnight depending on the age of the larvae and the

primary antibody used. Primary and secondary antibodies were

incubated overnight at 4uC. The mouse IgG1 NKA antibody was

obtained from the Developmental Studies Hybridoma Bank.

Primary antibody was diluted (1:500) in 1% BSA, 0.5% fish skin

gelatin, 0.02% sodium azide in 16PBS plus 2% goat serum. After

primary antibody incubation, larvae were washed in PBS with

0.01% Tween 6 times over 3 hrs and then incubated in anti-

mouse-Alexa 488, or anti-mouse-Alexa 647 (Life Technologies)

(1:1000) overnight. To label actin, phalloidin conjugated to Alexa

488 (Life Technologies) was added at 1:500 alone or during

incubation with secondary antibodies.

Image Analysis
Images were processed using ImageJ software. Maximal z-

projections of confocal images were generated to quantify the

amount of NKA in the lateral crista. Integrated intensity of the z-

projections was measured in MetaMorph software (Molecular

Devices). To quantify colocalization of NKA and phalloidin

labeled actin in the stereocilia, sections every 3 mm were analyzed

from confocal stacks of lateral cristae. Regions encompassing

stereocilia were defined using the phalloidin stain as a guide and

included the base of the bundle just above the cuticular plate.

Colocalization was performed using MetaMorph; percent of

overlap is defined as the percent of phalloidin positive pixels that

overlap with NKA positive pixels.

Profiles of NKA fluorescence were plotted using ImageJ. At least

three HCs from lateral cristae from two experiments were used for

analysis. The regions to measure profiles were drawn across cells

from single sections of a z series. The regions were 1.0 mm thick

and wide enough to cross both membranes of the cell. The regions

were placed equidistant from the cuticular plate and the nucleus.

Membrane NKA was calculated as the average of grey values

1.0 mm wide about the peak of NKA labeling at the edge of the

cell. Cytoplasmic NKA was quantified using a 1.0 mm wide

centrally located area between these regions.

To quantify length and width of stereociliary bundles, maximal

z-projections of individual bundles from confocal images were

made and measurements were made in ImageJ using the line tool.

To quantify Sodium Green fluorescence, a circular region 6 mm in

diameter was drawn around the base of the cell with the circle tool

at a plane in the center of the nucleus of each cell. The DIC

channel was used to determine the center of the nucleus for each

cell analyzed.

In Situ Hybridization
Phenylthiourea (PTU) treated larvae were fixed overnight in 4%

paraformaldehyde, washed in PBS +0.1% Tween and stored in

methanol at 220uC. The probe template used to detect ap1b1

transcript corresponds to 1772–2114 bp of the coding region. The

in situs were performed according to an established protocol [23].

The GenBank accession number for ap1b1 mRNA is

NM_001128530.1.

NKA Sorting by Ap1b1 in Sensory Hair Cells
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Electron Microscopy
Whole larvae (5 dpf; n $5) were anesthetized with 0.02%

MESAB and then fixed by immersion in 2.0% glutaraldehyde and

1.0% paraformaldehyde in normal solution (145 mM NaCl, 3 mM

KCl, 1.8 mM CaCl2, 10 mM HEPES, pH 7.2) overnight to several

days at 4uC. Specimens were fixed with 1.0% OsO4 in H2O for 10

min on ice, followed by fixation and contrast with 1.0% uranyl

acetate for 1 h on ice, and then dehydrated with several steps in

ethanol and embedded in Epon. Ultrathin sections were stained

with lead citrate and uranyl acetate.

Calcium Imaging and Hair Bundle Stimulation
Calcium imaging and analysis was performed as described

elsewhere [19].

To deflect hair bundles, we used a fluid-jet composed of

a pressure clamp HSPC-1 (ALA Scientific, New York) attached to

a glass micropipette (tip diameter 25–35 mm for 2 dpf, and 40–

50 mm for 3 and 5 dpf), positioned 100 mm from a given

neuromasts. Deflections were sustained for the duration of the

stimulus, and confirmed visually. A 25 mmHg fluid-jet stimulus

was used to deflect hair bundles approximately 5–10u.

Results

Positional Cloning of skylab and Expression of ap1b1
In two independent forward genetic screens for mutants that fail

to respond normally to an acoustic tap, two recessive alleles of

skylab were isolated, tm246a and t20325 [18] (Tübingen 2000

Screen Consortium). Both mutants develop normally, but do not

inflate their swimbladders and die around 8–9 days post-

fertilization (dpf). To identify the mutations in skylab, we undertook

a positional cloning approach. The tm246a lesion was finely

mapped to a 330 kb critical interval on chromosome 5 using

approximately 1900 homozygous larvae. This critical region

contained no gaps and included all or part of 7 genes

(Figure 1A). Amplification and sequencing of cDNAs from these

7 genes subsequently revealed that both alleles have early stop

mutations in the ap1b1 gene, which encodes the b-subunit of the
AP-1 complex.

The tm246a mutation arises from a 23-base pair deletion near

the splice acceptor site in intron 8 (Figure 1B and C). Although the

core AG sequence of the acceptor site is intact, the deletion causes

mis-splicing and results in an in-frame inclusion of four codons

into the coding region between exons 8 and 9. The added fourth

codon is a stop codon (Figure 1C and D). This mutation truncates

the predicted Ap1b1 protein in the middle of the head domain,

which is required for cargo binding and complex assembly, and

completely removes the ear domain, which binds to clathrin [24].

The t20325 allele contains a single c2340.t mutation changing

a Glu residue in the ear domain to a stop in the open reading

frame (Figure 1B and D). This mutation may disrupt clathrin

binding and therefore formation of the clathrin lattice. The two

early stop mutations uncovered in the tm246a and t20325 alleles

provide strong evidence that the phenotype observed in skylab

mutant larvae is due to mutations in ap1b1.

To determine where ap1b1 is expressed in developing zebrafish,

we used in situ hybridization. In other species, the AP-1 complex is

expressed in all cell types. We observed that ap1b1 is expressed

throughout the embryo at 24 and 48 hours post-fertilization (hpf;

Figure 1E–I), including in the developing ear at both stages. The

ubiquitous expression of ap1b1 is consistent with published

expression data of the AP-1 m-subunits [25]. These results also

support a role for ap1b1 in the sensory epithelium of the auditory

and vestibular system.

ap1b1 Mutants Exhibit Auditory and Vestibular Defects
HCs populate two sensory organs, the inner ear and lateral-line

organ, in aquatic vertebrates such as fish and frogs. In the inner

ear, HCs are organized into several epithelial patches called cristae

or maculae and mediate auditory and vestibular responses. In the

larval lateral-line organ, HCs form superficial clusters called

neuromasts. Neuromasts are responsible for sensing water move-

ments and are important for schooling and predator/prey

behaviors. At the free-swimming stage of development, 4–5 dpf,

the zebrafish inner ear is fully functional and larvae maintain an

upright position while resting and exhibit a robust startle reflex to

acoustic/vibrational stimuli. Qualitative characterization of the

tm246a allele revealed that mutant larvae are only partially

sensitive to an acoustic tap stimulus [26]. We quantified the

acoustic startle reflex at 5 dpf and observed that both mutant

alleles have a significantly reduced startle reflex compared to their

WT siblings in response to either a loud pure-tone stimulus (146

dB, 1000 Hz), or a multispectral tap stimulus (Figure 2A).

In accordance with having an auditory deficit, ap1b1 mutants

also swim in a circular pattern and fail to maintain an upright

resting position, indicating that they also have balance defects. To

quantify the deficit in vestibular function, we tested vestibular-

induced eye movements in tm246a mutant and sibling larvae at 5

dpf [21]. Upon head rotation, mutant larvae moved their eyes in

response to visual cues (data not shown), suggesting that their

vision is not disrupted. In contrast to WT siblings, when rotated in

the dark, vestibular-induced eye movements were nearly undetect-

able in tm246a mutant larvae (Figure 2B). A similar response was

also observed in t20325 mutants (data not shown). The average

amplitude of the vestibular-induced eye movement in tm246a

mutants was severely reduced compared to WT siblings

(Figure 2C). Combined, these results demonstrate that ap1b1

mutants have pronounced deficits in both auditory and vestibular

function.

Mechanotransduction is Disrupted in ap1b1 Mutant HCs
Behavioral deficits in hearing and balance may be due to defects

in either the peripheral or central components of the auditory/

vestibular system. A previous study of tm246a larvae noted

a reduction in FM 1-43 label of HCs and reduced HC sensitivity

to ototoxic drugs [26,27]. As both FM1-43 and ototoxic drugs are

thought to permeate HCs with functional transduction channels,

FM 1-43 labeling and drug sensitivity are commonly used as

indicators of HC function [28,29,30,31,32]. The behavioral

deficits reported here and the previous studies with tm246a larvae

suggest that mechanotransduction is only partially functional in

ap1b1 mutants. To determine the onset of hair-cell dysfunction, we

measured the intensity of FM 1-43 label in mutant lateral-line HCs

at 3 dpf, when many HCs are still maturing, and at 5 dpf, when

the majority of the HCs are mature. We observed a striking

reduction in the amount of FM 1-43 label in ap1b1 mutant HCs

compared to WT at 5 dpf (Figure 3A–C). The reduction was

comparable in both mutant alleles and was seen as early as 3 dpf

(Figure 3D). At 5 dpf, when the proportion of mature HCs is

greater than at 3 dpf, the difference between mutants and WT

siblings in FM 1-43 label was more prominent. The pronounced

reduction in FM 1-43 label over time suggests that both mutant

alleles have the same effect on mechanotransduction.

As FM 1-43 labeling of lateral-line HCs is robust only at later

stages of development [19], we sought to determine if mutations in

ap1b1 also had an effect on mechanotransduction at early stages,

when hair cells first become mechanically sensitive. To assay early

hair-cell activity, we used the transgenic line Tg(myo6b:D3cpv) that

stably expresses D3-cameleon in HCs and examined evoked

NKA Sorting by Ap1b1 in Sensory Hair Cells
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calcium transients, which is a more sensitive method for measuring

HC function [19]. D3-cameleon is a genetically encoded calcium

indicator that uses fluorescence resonance energy transfer (FRET)-

based technology to measure changes in intracellular calcium

[19,33]. For our experiments, we mechanically stimulated lateral-

line HCs with a fluid jet and recorded evoked calcium transients in

individual HCs at early stages of development (2 dpf), earlier than

when FM 1-43 labeling is detectable [19]. We crossed the

Tg(myo6b:D3cpv) line into the t20325 background, and compared

the responses in WT and mutant HCs. In t20325 fish, far fewer

HCs responded to the stimulus than in WT siblings at all stages

examined (Figure 3E). Of the t20325 mutant HCs that responded

Figure 1. Positional cloning of skylab mutations and expression of ap1b1. A, A diagram of the 330 kb skylab critical interval (striped region)
obtained through mapping of the tm246a allele. The critical interval encompasses the coding regions of five annotated genes as well as part of two
other genes. B, An exon diagram of the ap1b1 gene. The coding region is depicted in grey and the 59 and 39 UTRs are depicted in white. The locations
of the t20325 C-T transition the tm246a 23 bp deletion between exons 8 and 9 are indicated. C, The nucleotides deleted from the splice acceptor site
between exons 8 and 9 in the tm246a mutant are highlighted in red in the WT transcript. The resulting translations are shown above the WT and
tm246a transcripts. D, Diagram showing the location of tm246a and t20325 mutations in the Ap1b1 protein. E, ap1b1 is expressed ubiquitously at 24
hpf. F, Sense control for ap1b1 in situ experiments. G, Expression of ap1b1 persists in the head at 48 hpf. Scale bars in E-G, 5 mm. H, I, Magnified
images of the developing ear at 24 and 48 hpf, respectively. Scale bars in H and I, 10 mm. HB, hindbrain; OV, otic vesicle; AM, anterior macula; AC,
anterior crista; LC lateral crista; PC, posterior crista.
doi:10.1371/journal.pone.0060866.g001
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to stimuli, the responses were comparable to those in WT at 2 dpf,

but thereafter were significantly reduced compared to the WT

siblings (Figure 3F and G). The decrease in HC activity that we

observe in ap1b1 mutants is consistent with the reduction of

acoustically-evoked hindbrain calcium transients reported in an

earlier study of this mutant [26]. The calcium imaging experi-

ments demonstrate that at all stages of development, the majority

of HCs fail to respond to mechanical stimuli. Over time, the

calcium responses in mutant HCs remain low and fail to increase

in size as seen in WT cells (Figure 3G). Together, the FM 1-43 and

calcium imaging data indicate that mechanotransduction in ap1b1

mutants is compromised at an early stage in HC development.

Aside from the lack of FM 1-43 labeling and reduced calcium

transients, a common feature among zebrafish transduction

mutants is splayed hair bundles [26]. Splaying can occur when

components of the transduction complex are missing or mutated,

notably the tip-link proteins Pcdh15 and Cdh23 [34,35]. Because

ap1b1 mutants have reduced FM 1-43 labeling and calcium

transients, we examined hair-bundle morphology by labeling actin

filaments with fluorescently-tagged phalloidin. At 5dpf, the

intensity of the label was reduced in t20325 bundles (Figure 4A

and C). Quantification of the amount of phalloidin labeling

revealed a significant decrease in the amount of actin in mutant

bundles when compared to WT bundles (WT: 61.5 A.U. 65.1;

t20325: 48.0 A.U. 61.2, Mann-Whitney U-test: p = 0.0006). The

tm246a mutants, however, showed no significant change in the

amount of actin (Figure 4B, 60.5 A.U. 65.1) compared to WT

larvae. As suboptimal fixation can lead to mild splaying or

morphological artifacts, we examined bundle morphology in live

HCs using a transgenic fish that expresses GFP tagged b-actin in

HCs, Tg(m6b: b-actin-gfp) [19]. In the t20325 mutant background,

we observed thinner hair bundles in the lateral cristae of mutants

(Figure 4D and E). The width of the hair bundle at its base was

significantly decreased (WT: 1.4 mm 60.1; t20325: 1.2 mm 60.1;

Mann-Whitney U-test: p = 0.0002). The height of mutant bundles

appeared to be unaffected compared to WT bundles (WT: 4.7 mm
60.2, n= 80 bundles from 3 larvae; t20325 mutant 4.6 mm 60.2,

n = 49 bundles from 3 larvae; Mann-Whitney U-test: p = 0.5885).

Overall these data suggest that maintenance of the bundle

structure is affected by the t20325 mutation. The bundle defects

are subtle, however, and are not likely to fully account for the

strong reduction of FM1-43 labeling and calcium transients in

t20325 HCs.

Ap1b1 Mutants Show Degeneration of Inner Ear and
Lateral-line Neuroepithelia
In previous work, larvae carrying the tm246a allele were

classified as a HC degeneration mutant due to the cellular defects,

such as blebbing, in the inner ear sensory epithelia detectable with

light microscopy [26]. Given the signs of degeneration and the role

of the AP1 complex in protein sorting, we examined the cellular

morphology and membrane compartments within hair cells in

more detail using TEM (Figure 5).

In sections of the anterior macula of the ear (5 dpf), interstitial

edema was evident in mutant sensory epithelia, with many

extracellular spaces present between cells (Figure 5A and B). We

also observed that the overall health of HCs was compromised in

tm246a mutants (Figure 5B). Occasionally, we observed HCs

largely devoid of cytoplasm in tm246a mutants, indicative of an

abnormal physiological state (Figure 5B, asterisk). Another in-

dication of an abnormal physiological state was the increase in

multivesicular bodies in mutant HCs compared to WT (Figure 5D

and E, arrowheads, quantified in Figure 5F). In addition to an

increased number of multivesicular bodies, the number and size of

membranous compartments localized below the cuticular plate

were greater in mutants compared to WT HCs (Figure 5G and H,

arrows, quantified in Figure 5I). Both enlarged vesicles and

multivesicular bodies were not restricted to the cell body but could

also be seen populating the blebs being extruded apically, adjacent

to the bundle of stereocilia (Figure 5C). These observations of

interstitial edema and blebbing suggest that mutations in ap1b1

negatively affect ionic homeostasis in HCs, and the integrity and

maintenance of HC membrane compartments.

Figure 2. ap1b1 mutants have deficits in auditory and
vestibular behavioral responses. A, Graph showing the average
startle response to either a 1000Hz stimulus at 146 dB or a tap stimulus
of both mutants (tm246a: n = 9, t20325: n = 23) and their WT siblings
(tm246a: n = 15, t20325: n = 19). B, Averaged traces of vestibular-
induced eye movements from WT siblings (n = 11) and tm246a mutants
(n = 12) over 60 sec. C, Average of peak amplitude of vestibular-induced
eye movements at 0.25 Hz. Each dot represents one eye from an
individual larva at 5 dpf (WT: n = 11, tm246a: n=12). A Mann-Whitney U-
test was used to compare differences between mutants and WT
siblings.
doi:10.1371/journal.pone.0060866.g002
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Localization of the Basolateral Membrane Protein NKA in
ap1b1 Mutants
Because the AP-1 complex has been implicated in transport of

membrane proteins to the basolateral membrane, we hypothesized

that the deficit in mechanotransduction and the cellular

phenotypes in ap1b1 mutants are due in part to defective

localization of proteins within the HC plasma membrane. AP-1

cargo membrane proteins are sorted from the TGN or endosome

to the plasma membrane through binding of the AP-1 m or b-
subunits to either tyrosine-based (YxxW) or di-leucine-based ([D/

E]xxxL[L/I]) sorting signals, respectively [36,37,38,39]. Sorting

motifs are usually present within the cytoplasmic C-terminal tails

of cargo membrane proteins. Despite the absence of a canonical

sorting signal, previous evidence from cell culture experiments

suggests that the a-subunit of the basolateral pump NKA is sorted

by AP-1 [40]. We hypothesized that if NKA is an AP-1 dependent

cargo, then the pump would be mislocalized in ap1b1 mutant HCs.

To examine AP-1 dependent sorting of NKA, we used an antibody

that recognizes a highly conserved epitope found on all NKA a-
subunits [41]. In WT animals at 3 and 5 dpf, this antibody labels

the basolateral membranes of HCs of the lateral crista (Figure 6A)

and lateral-line neuromasts (data not shown). NKA label is also

observed on fibers that innervate the HCs and supporting cell

membranes (Figure 6A–C), as well as other cell types such as

ionocytes, neurons, and the pronephritic duct (data not shown). In

the tm246a mutants, NKA was present in the basolateral

membrane of HCs (Figure 6B), but the overall intensity appeared

greatly reduced compared to WT (Figure 6A). In the t20325

mutant, the overall intensity of NKA label appeared somewhat

reduced compared to WT (Figure 6C), but not nearly to the same

degree as the tm246a mutant. Strikingly, in larvae carrying either

ap1b1 mutant alleles, we observed that NKA was mislocalized to

apical hair bundles (Figure 6E–F). In contrast, we never observed

immunoabeling of NKA in WT hair bundles (Figure 6D).

Quantification of NKA colocalization with phalloidin-labeled

bundles at 3 and 5 dpf showed that a significant amount of NKA

was missorted to the hair bundle at both developmental stages

(Figure 6M). These data indicate that without a functional AP-1

complex, NKA is sorted indiscriminately to both basal and apical

compartments in HCs.

To determine how efficiently NKA is targeted to the plasma

membrane, we plotted the fluorescence profile of NKA across

individual HCs and quantified the amount of NKA at the plasma

membrane (Figure 6G–L). Both mutant alleles showed reduced

NKA expression at the HC plasma membrane (Figure 6N). Given

that NKA is reduced at the plasma membrane, we attempted to

address whether NKA had accumulated within the cell body of

Figure 3. ap1b1 mutants have deficits in HC mechanotransduction. A–C, FM 1-43 label of neuromast HCs in WT, tm246a and t20325 mutants
at 5 dpf. Scale bars, 5 mm. D, Average intensity (A.U.) of FM 1-43 label in tm246a and t20325 mutants quantified at 3 dpf (tm246a: WT n= 18, mutant
n = 5; t20325: WT n= 16, mutant n = 8 neuromasts) and 5 dpf (tm246a: WT n= 9, mutant n = 10; t20325: WT n= 12, mutant n = 11 neuromasts) from at
least 3 larvae along with WT, age-matched siblings. E, The proportion of HCs displaying calcium transients in response to a water-jet stimulus (solid)
compared to those that do not respond (nr = non-responders, hatched lines). The percent of non-responding HCs in the t20325 mutants is greater
than the percent non-responders in WT at all stages of development assayed; Chi Squared test, p,0.0001. F, Trace representing the average calcium
responses to a 2 sec water-jet stimulus from 5 dpf WT and t20325 mutant larvae (n = 20 HCs). The grey box indicates the timing of the water-jet
stimulus. G, Dot plot showing calcium transients in WT and t20325 larvae at 2, 3 and 5 dpf (non-responders were excluded). Each point represents an
individual HC. Error bars represent SEM and statistical analysis was performed using a Mann-Whitney U-test.
doi:10.1371/journal.pone.0060866.g003
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HCs by quantifying intracellularly localized NKA using the central

region of the fluorescence profiles (Figure 6O). In addition to

inefficient sorting of NKA to the plasma membrane, the amount of

NKA localized to the intracellular compartment was also

significantly reduced in the tm246a mutant allele compared to

WT siblings. And though not significant, there was a trend

towards reduction in t20325 mutants. The reduction of both

plasma membrane and intracellular levels of NKA suggests that in

both mutants, NKA is degraded. The fluorescent profiles

(Figure 6J–K) indicated that, despite an overall decrease in NKA

levels, mutant HCs showed greater relative staining of NKA in the

cytoplasm than WT HCs. We therefore calculated the ratio of

intracellular to plasma membrane NKA signal and found that

indeed the ratio (CYTO/PM) was significantly increased in HCs

harboring either allele (Figure 6P). This result suggests that

targeting of NKA to the plasma membrane is reduced in ap1b1

mutant HCs.

The Amount of Intracellular Na+ is Increased in ap1b1
Mutant HCs
In nearly all cell-types, NKA is the primary pump for

maintaining the relatively low level of Na+ and high level of K+

inside the cell. With the observation that NKA is less abundant in

the HC plasma membrane of both ap1b1 mutants, we hypothe-

sized that this reduction would lead to increased Na+ in HCs. This

idea is consistent with previous reports that inhibition of NKA in

goldfish HCs increases the concentration of intracellular sodium

[42]. In addition, it has been demonstrated that blebbing in HCs

can be triggered through an influx of Na+ [43], and blebbing

occurs in both ap1b1 mutants (Figure 5 and data not shown). To

assay relative amounts of intracellular Na+, we incubated intact 5

dpf larvae in the fluorescent Na+ indicator Sodium Green.

Compared to WT siblings, larvae carrying either mutant allele

of ap1b1 had significantly increased levels of Na+ in individual HCs

(Figure 7A–C). Although the level of fluorescence varied among

mutant HCs within a neuromast, overall it was increased in ap1b1

mutant HCs compared to WT HCs (Figure 7D). This increase in

Sodium Green label suggests that ap1b1 mutants are unable to

maintain appropriate intracellular Na+ levels. To determine

whether an increase in Na+ levels was specifically due the

trafficking defects in ap1b1 mutants, and not secondary to its

transduction defects, we tested another transduction mutant

carrying the pcdh15th263b allele. At 5 dpf, pcdh15 mutant HCs did

not show an increase in intracellular Na+ (Figure 7D). This result

suggests that Na+ build up is a unique consequence of mutations to

ap1b1, and not due to the loss of mechanotransduction.

Discussion

The polarized distribution of membrane proteins in epithelial

cells is essential for cellular function and is accomplished in part

through the AP-1 complex [44,45]. It was previously thought that

disrupting the entire AP-1 complex was lethal and hence, many of

the seminal studies on this complex have been done in cell culture.

Here we present to date the first reported mutations to the b-
subunit of the AP-1 complex, which should disrupt all AP-1

Figure 4. Stereociliary bundles of ap1b1 mutant. A–C, Representative confocal images of neuromast hair bundles in WT, tm246a and t20325
mutants at 5 dpf. Bundles were viewed from a top-down angle and actin was labeled with phalloidin-Alexa 488. This view shows the planar cell
polarity of hair-bundles. Scale bar, 1 mm. D, E, Side view of stereocilia from the lateral cristae of 5 dpf WT and t20325 mutants in the Tg(myo6b:bactin-
GFP) background (z-projections, 2 mm thick). Scale bar, 5 mm.
doi:10.1371/journal.pone.0060866.g004
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Figure 5. Decreased cell integrity and an increased number of intracellular membrane compartments in ap1b1 mutant HCs. A, B,
Comparable sections of the anterior macula of WT and tm246a mutant at 5 dpf. An asterisk indicates a breakdown of cytoplasm in a tm246a mutant
HC. Scale bars, 3 mm. C, Example of an apical bleb extruding from a mutant HC containing several vesicular compartments and a multivesicular body.
Scale bar, 1 mm. D–E, Comparable close-ups of WT and tm246a mutant HCs just below the cuticular plate. Scale bar, 1 mm. In tm246a mutant HCs,
more multivesicular bodies (arrowheads) were present compared to WT HCs. F, Quantification of the observed number of multivesicular bodies in WT
sibling and tm246a mutant HCs. G–H, Sections of HCs near the tight junctions showing an increased number of large vesicles in the mutants
compared to WT. Vesicles in WT are indicated with arrows. I, Observed sizes of vesicles in WT sibling and tm246a mutant HCs. For quantification in F
and I, WT: n = 15, tm246a: n = 20 HCs.
doi:10.1371/journal.pone.0060866.g005
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dependent functions, and analyze the genetic and cellular

consequences of this mutation in zebrafish. Our findings indicate

that lesions in ap1b1 disrupt the function and integrity of HCs in

inner ear and lateral-line organs. Mutant HCs show progressive

signs of degeneration, including blebbing and interstitial edema,

and an accumulation of vesicles and multivesicular bodies. In

addition, mechanotransduction is compromised, evidenced by the

significant reduction in both FM 1-43 label and mechanically-

evoked calcium transients. We propose that these defects are

caused primarily by the missorting of basolaterally targeted

proteins including NKA. Incorrect targeting of NKA leads to

the presence of this pump in the apical hair bundle of mutant

HCs. Loss of Ap1b1 function also results in a reduction of NKA at

the basolateral membrane, leading to an increase in intracellular

Na+. Collectively, these findings suggest that ion homeostasis and

mechanotransduction are disrupted in HCs when basolateral

proteins such as NKA are missorted to the apical surface.

Auditory and Vestibular Functions are Especially
Susceptible to ap1b1 Mutations
Despite the ubiquitous expression of ap1b1, ap1b1 mutants

display no other obvious behavioral phenotypes aside from

auditory and vestibular deficits. The development and function

of cell types other than HCs appears to be unaffected in ap1b1

mutants. This specific phenotype is unexpected considering the

expression of ap1b1 during development and the deleterious effects

of lesions in the AP-1 complex in other species. For example,

deletion of either the AP-1 c or m1A subunit in mice is embryonic

lethal, as is removal of both AP-1 m subunits in C. elegans [46,47]. It

is possible that the normal development of ap1b1 mutants could be

Figure 6. NKA is missorted to hair bundles in ap1b1 mutant HCs. A–C, NKA antibody label of the lateral crista of WT and tm246a and t20325
mutants at 5 dpf, respectively. Scale bar, 5 mm. D–F, Magnified examples of a single representative hair bundle in the cristae in WT, tm246a and
t20325 mutants at 3 dpf. Scale bar, 1 mm. G–I, Representative HCs from which fluorescence profile plots were obtained. Yellow boxes indicate the
region used for generating profile plots. Scale bar, 1 mm. J–L, Profile plots showing fluorescence intensity of the distribution of NKA immunolabel in
WT and tm246a and t20325 mutant HCs shown in G, H and I, respectively. The green trace indicates NKA immunolabel and the magenta trace
indicates phalloidin labeling. M, Quantification showing the average percent of NKA positive phalloidin pixels in WT and mutant stereocilia at both 3
(tm246a: WT n= 45, mutant n = 37; t20325: WT n= 39, mutant n = 53 bundles) and 5 dpf (tm246a: WT n= 46, mutant n= 72; t20325: WT n= 44, mutant
n = 62 bundles) from $4 larvae. N, Quantification of NKA fluorescence (A.U.) at the membrane at 5 dpf. N, Quantification of intracellular NKA
fluorescence (A.U.). O, Quantification of intracellular NKA fluorescence (A.U.) at 5 dpf. P, The ratio of intracellular NKA (CYTO) to plasma membrane
localized NKA (PM). For N–P, tm246a: WT n= 19, mutant n = 16; t20325: WT n= 18, mutant n = 21 HCs. Error bars in M–P represent SEM and statistical
difference determined with a Mann-Whitney U-test.
doi:10.1371/journal.pone.0060866.g006
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due to genetic redundancy, as paralogs are common in zebrafish.

To date, however, we are unable to find a second copy of ap1b1 in

the latest assembly of the zebrafish genome (Zv9, July 2010

release). Alternatively, if Ap1b1 is required in other cell types,

maternal mRNA may sustain embryos through earlier stages of

development. Supporting the idea that the maternal contribution

Figure 7. Increase of intracellular Na+ levels in mutant HCs. A–C, Sodium Green label in WT, tm246a and t20325 mutant neuromasts. Dotted
magenta circles outline HCs that were used for quantification in that plane of view. Scale bar, 5 mm. D, Quantification of Sodium Green label in ap1b1
mutant, pcdh15th263b, and corresponding WT HCs. (tm246a: WT n= 124, mutant n = 90; t20325: WT n= 125, mutant n = 74; th263b: WT n= 100, mutant
n = 84 HCs). Error bars represent SEM. Statistical analysis performed with a Mann-Whitney U-test.
doi:10.1371/journal.pone.0060866.g007
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of mRNA ameliorates the loss of the AP-1 complex during early

development, transcripts for both AP-1 m subunits have been

detected at the 2-cell stage [25].

Further corroboration that AP-1 complexes are critical for the

function of the auditory and vestibular system comes from studies

of AP-1 mutations in humans. Mutations in AP1S1, one of the

three s1 subunit genes in humans, results in MEDNIK (mental

retardation, enteropathy, deafness, neuropathy, ichthyosis and

keratodermia) syndrome [48]. This rare, recessive disorder causes

congenital hearing loss, although the pathological consequences of

loss of AP1S1 function in the inner ear are not known. Knockdown

of ap1s1 in zebrafish results in the disruption of the integrity of

embryonic keratinocytes and spinal cord development, however,

knockdown was lethal at larval stages, precluding the assessment of

auditory/vestibular function [48]. Nevertheless, the MEDNIK

syndrome highlights the importance of AP-1 function in several

epithelial and neuronal cell types.

ap1b1 is Required for Proper Localization of NKA in HCs
AP complexes selectively recognize cargo via intrinsic sorting

signals, such as the di-leucine and tyrosine motifs [36,37,38,39].

However, in the case of NKA, a canonical AP-1 sorting motif has

not been identified in NKA. Instead, novel motifs within the a-
subunit of NKA appear to be necessary for basolateral targeting in

cell lines [40,49,50]. Additionally, unlike other well-known AP-1

dependent cargoes, the post-Golgi transport pathway taken by

NKA to the plasma membrane does not involve recycling

endosomes, but rather goes directly from the TGN to the plasma

membrane [12]. In our study, we observe that a fraction of NKA is

sent to the apical surface in ap1b1mutant HCs (Figure 6). As apical

missorting of AP-1 dependent cargoes is a common outcome when

AP-1 is disrupted [51,52], our observations support the hypothesis

that the AP-1 complex is required for sorting of NKA to the

basolateral membrane.

In accordance with our observations that AP-1 is required for

basolateral sorting of NKA, there is also a striking reduction in the

level of NKA within the basolateral membrane in both ap1b1

mutant alleles. Intracellular NKA was significantly reduced in the

tm246a allele, and there was a trend towards reduction in the

t20325 allele. In contrast to NKA, we did not observe reductions

in immunolabel of several components of the hair-cell synapse

including the membrane a subunit of Cav1.3 (data not shown). A

reduction in NKA protein level implies that the pump may be

trafficked through a competing AP pathway, such as AP-3, which

targets proteins to the lysosome, where NKA is likely degraded.

Recent evidence in kidney cells demonstrates that AP-1 complexes

are required for both stability and trafficking of the anion

exchanger 1 (AE1) to the plasma membrane, suggesting that as

observed with NKA in ap1b1 mutants, mistargeted proteins are

degraded as a consequence of missorting [53].

In addition to protein trafficking, the AP-1 complex is also

important for maintaining the size and number of intracellular

membrane compartments [54,55]. Consistent with this role for

AP-1, we noted changes within HCs, including the accumulation

of multivesicular bodies and enlarged vesicles. It is not clear,

however, if the differences in membrane compartments in ap1b1

mutants are due to a block in AP-1-mediated protein trafficking, or

to secondary, degenerative changes within the HCs. Indeed,

dystrophic conditions in axons can lead to an increase in the

number of multivesicular bodies, suggesting that formation of new

multivesicular bodies is driven by pathological conditions [56].

Future work may address this distinction between direct and

indirect consequences of AP-1 dysfunction.

Missorting of NKA Causes a Na+ Imbalance in Mutant
ap1b1 HCs
In HCs, the activity of NKA is necessary to clear the build up of

intracellular Na+ generated by other Na+-coupled transport

activities [42]. Exchangers such as the Na+/H+ and Na+/Ca2+

pumps are thought to account for most of the Na+ flowing into

HCs. Consistent with a role for regulating intracellular Na+, our

data suggest that decreases in the cell-surface expression of NKA

lead to an increase in intracellular Na+ concentrations in mutant

HCs. Though overall Na+ levels are increased in mutant HCs,

these levels were also highly variable among individual cells. The

variability suggests that Na+ build-up may be progressive. We

propose that the failure of NKA to balance Na+ loading within

HCs leads to increased intracellular Na+. A rise in internal Na+

may disrupt several cellular processes, including Na+-coupled

transport activity, and potentially the resting membrane potential.

An increase in Na+ can also lead to overt signs of necrosis. A

previous report demonstrated that excessive Na+ influx causes

apical blebbing in cultured HCs [43]. Thus, elevated Na+ is likely

to disrupt HC function and eventually lead to blebbing and cell

death, which we observe in mutant HCs of both ap1b1 alleles.

Polarized epithelial cells have the unique challenge of main-

taining two functionally distinct domains of the plasma membrane.

In polarized, electrically active cells, the expression and sorting of

ion channels and transporters to distinct compartments is critical

for cell activity. Based on our data, we propose that the AP-1

complex is vital for the correct sorting of NKA and the

maintenance of ion homeostasis in HCs. As the lesions described

here are the first reported mutations to the AP-1 b-subunit in

a vertebrate animal model, the ap1b1 mutant presents an

opportunity for future studies to investigate how the b-subunit of
AP-1 is involved in setting up and maintaining polarized

distribution of proteins, a pathway important for many processes

including development, cellular function and homeostasis.
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2. Dambly-Chaudière C, Sapède D, Soubiran F, Decorde K, Gompel N, et al.

(2003) The lateral line of zebrafish: a model system for the analysis of

morphogenesis and neural development in vertebrates. Biol Cell 95: 579–87.

3. Metcalfe WK, Kimmel CB, Schabtach E (1985) Anatomy of the posterior lateral

line system in young larvae of the zebrafish. J Comp Neurol 233: 377–89.
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