
 Procedia Computer Science 18 (2013) 2337 – 2346

1877-0509 © 2013 The Authors. Published by Elsevier B.V.
Selection and peer review under responsibility of the organizers of the 2013 International Conference on Computational Science
doi: 10.1016/j.procs.2013.05.405

International Conference on Computational Science, ICCS 2013

A guided hybrid genetic algorithm for feature selection
with expensive cost functions

Martin Junga,∗, Jakob Zscheischlera,b,c

aMax Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745 Jena, Germany
bMax Planck Institute for Intelligent Systems, Speemanstr. 38, 72076 Tübingen, Germany

cInstitute for Atmospheric and Climate Science, Eidgenössiche Technische Hochschule (ETH) Zurich, 8092 Zurich, Switzerland

Abstract

We present a guided hybrid genetic algorithm for feature selection which is tailored to minimize the number of cost function

evaluations. Guided variable elimination is used to make the stochastic backward search of the genetic algorithm much more

efficient. Guiding means that a promising feature set is selected from a population and suggestions (for example by a trained

Random Forest) are made which variable could be removed. It uses implicit diversity management and is able to return

multiple optimal solutions if present, which might be important for interpreting the results. It uses a dynamic cost function

that avoids prescribing an expected upper limit of performance or the number of features of the optimal solution. We illustrate

the performance of the algorithm on artificial data, and show that the algorithm provides accurate results and is very efficient

in minimizing the number of cost function evaluations.

Keywords: feature selection, genetic algorithm, Random Forests, diversity, niching, cost function

1. Introduction

One of the largest limitations of data-driven modeling is the choice of the right predictor variables. In some

cases vast amounts of predictor variables are available but computational limits prohibit the use of all variables

and the identification of informative predictors is desired. Feature selection aims to find a suitable (preferably the

best) subset of features according to a specified cost function. The cost function can be formulated to choose the

set of features with smallest error of the base learner [1], the smallest error of the base learner for a predefined

number of included features [2], or the smallest number of included features for a targeted error margin [3].

Variants of sequential search algorithms [4] and genetic algorithms (GA) [3] are among the most frequently

used feature selection approaches. While sequential methods tend to provide good results for small to medium

sized problems (several tens of features), global search algorithms like GAs tend to be more suitable for large

scale problems (> 100 features) since sequential methods get easily stuck in local minima [2]. GAs can also

be prone to premature convergence if a ’too good solution’ is found too early. Though this can be avoided

by mechanisms that maintain genetic diversity in the population [5]. GAs essentially behave like a stochastic

backward search: When the GA has found acceptable feature subsets it moves towards fewer features over the

∗Corresponding author.

E-mail address: mjung@bgc-jena.mpg.de.

Available online at www.sciencedirect.com

2338 Martin Jung and Jakob Zscheischler / Procedia Computer Science 18 (2013) 2337 – 2346

course of the search. However, this stochastic backward search is highly inefficient because of the randomized

nature of the genetic operators (selection, mutation, crossover). Hybrid genetic algorithms [2] combine a GA with

local search operations (sequential forward or backward selection) to move solutions proposed by the GA to local

optima, i.e. the solutions are ‘repaired’. But again, such a repairing mechanism is computationally very expensive

and not feasible for large scale problems and expensive cost function evaluations. In this paper we propose a

Guided Hybrid Genetic Algorithm (GHGA) for the following feature selection problem set:

• The evaluation of the cost function is extremely expensive (for example because it involves training a ma-

chine learning algorithm). This justifies operations of GHGA that are more computationally expensive than

simple search strategies, while minimizing the number of necessary cost function evaluations.

• The number of candidate variables is large, e.g. in the order of several hundreds.

• The number of variables that are necessary to achieve an acceptable result is not known and should be found

by the algorithm.

• The algorithm should be able to return several solutions (if they exist) to aid interpretability of the results

(multiple optima).

• The assumption that unnecessary or not informative variables do not decrease the error should be avoided

because this is frequently violated, e.g. if the ratio of variables to examples is large.

2. Description of the Guided Hybrid Genetic Algorithm (GHGA)

2.1. Notations
Chromosomes and features. We adopt the nomenclature of genetic algorithms where a chromosome c consists of

individual genes. Thus, c is a bit-string and the genes encode which features are included (1) and excluded (0).

The length of c is the total number of candidate features (genes) n. We denote the set of included features as c1,

and the set of excluded features as c0, with nc1 and nc0 being their respective lengths.

Chromosome comparison. In the comparison of two chromosomes c1 and c2 we denote u(c1, c2) as the set of

common genes (either 0 or 1), where nu(c1,c2) is its length. We denote u1(c1, c2), and u0(c1, c2) as the set of

common genes that are included, and excluded, respectively. Their corresponding lengths are nu1(c1,c2), and nu0(c1,c2)

respectively. The set of genes that are not common among c1 and c2 is x(c1, c2) with nx(c1,c2) being its length. We

use the following measure to estimate the dissimilarity d(c1, c2):

d(c1, c2) = 1 − nu1(c1,c2)√nc1
1
· nc1

2

. (1)

Cost function. We denote the evaluation of the cost function for chromosome c as [j(c),m(c)] = EVAL(X(c), Y),

where X(c) is the matrix of explanatory variables for c, and Y is the response variable. The evaluation returns

the cost function value j(c), and its modeling efficiency m(c) [6]. The cost function is designed to extract sets

with minimum number of included features for which the performance stays within a tolerance margin of the best

known performance. The cost function value j(c) is the sum of nc1 and a penalty term p that depends on m(c),

the maximum m found over the course of the search max (MA) and a specified tolerance ε (modified from [3]).

Modeling efficiency is computed using cross-validation (e.g. using a test set), where YCV is the cross-validated

predicted response variable.

j(c) = nc1 + p(m(c),max (MA), ε) , (2)

p(m(c),max (MA), ε) = e[max (MA)−m(c)] ln(2)
ε − 1 = 2

max (MA)−m(c)

ε − 1 , (3)

m(c) = 1 − var(Y − YCV (c))

var(Y)
. (4)

For p it holds 0 ≤ p ≤ 1 if max (MA)−m(c) ≤ ε. In contrary, if max (MA)−m(c) >> ε, p rapidly increases helping

the algorithm to concentrate the search in the promising region of the feature selection lattice. Since max (MA)

varies over the course of the search, j is recomputed for all individuals if a new max (MA) is found. This dynamic

cost function avoids prescribing a maximum modeling efficiency (e.g. based on the set with all features included).

2339 Martin Jung and Jakob Zscheischler / Procedia Computer Science 18 (2013) 2337 – 2346

Symbol Description

chromosome c with length n chromosome (bit string; 0: excluded, 1: included)

properties c0 with length nc0 set of excluded features in chromosome c
c1 with length nc1 set of included features in chromosome c

comparison of u(c1, c2) with length nu(c1,c2) set of common genes (included or excluded)

chromosomes u0(c1, c2) with length nu0(c1,c2) set of common excluded genes

c1 and c2 u1(c1, c2) with length nu1(c1,c2) set of common included genes

x(c1, c2) with length nx(c1,c2) set of different genes (included or excluded)

d(c1, c2) dissimilarity

properties of j ∈ J cost function value

evaluated m ∈ M modeling efficiency value

chromosomes s ∈ S crowding index

h ∈ H flag: dominated (1) or not (0) by another individual

t ∈ T freq. of selections for guided variable elimination

z ∈ Z flag: inert (1) or not (0)

populations A with length nA archive, stores all evaluated chromosomes

R with length nR reproductive population, R ⊂ A
B with length nB candidates for guided variable elimination, B ⊆ R

Table 1. Summary of notations.

Populations and sets. GHGA uses a hierarchical population structure:

• A denotes the archive with length nA, which stores all chromosomes CA and their corresponding sets of

modeling efficiency values MA, and cost function values JA;

• R denotes the reproductive population of the GA with R ⊂ A, i.e. elements from CR can be subject to genetic

operators (selection, crossover, mutation);

• B denotes the population from which one individual is selected for local guided feature elimination, B ⊆ R.

We denote sets with capital letters, and elements of a set with its corresponding small letter. The length of the set

is denoted as n with its corresponding set as subscript, e.g. nA for the number of elements in A. We use the index k
for elements of a population such that e.g. c = CA(k) and j = JA(k) is a chromosome from A and its corresponding

cost function value at index k. Table 1 summarizes the notation.

2.2. Algorithm overview

Symbol Description Default value

ε modeling efficiency tolerance parameter in the cost function 0.005

λ number of iterations of phase 1 2 · n
ψ frequency (in number of cost function evaluations) of retraining G 50

δ dissimilarity threshold used in the construction of R 0.5

ρ maximum number of similar chromosomes in R 5

θ shape parameter of mutation rate decline used in phase 1 0.5

φ mutation rate used in phase 2 0.05

κ parameter controlling size of tournament in selection of a chromosome from B 5

Table 2. List of GHGA parameters with default values.

GHGA operates in two main phases. In the first phase only the GA operates with a declining mutation rate.

After λ iterations (default = 2 · n) the second phase starts where the guided feature elimination is employed

2340 Martin Jung and Jakob Zscheischler / Procedia Computer Science 18 (2013) 2337 – 2346

in addition. We use a steady-state GA where the reproductive population R is newly extracted from A in each

iteration. The reproduction involves the common procedure: parents are selected from R, their chromosomes are

recombined using a crossover operation, and the resulting children are subject to mutation. In each iteration two

children are generated and their cost function will only be evaluated if they do not have a duplicate in A to avoid

redundant evaluations (omitted in Algorithm 1 for clarity). In the second phase of the algorithm, B is created from

R and one individual selected from B is subject to local feature elimination using G. G is a model trained on A
and predicts m(c) to guide the feature elimination. G is retrained after a certain number ψ (default=50) of cost

function evaluations have passed since the last training of G. The algorithm terminates if one of the following

condition is met:

• no new best cost function value or modeling efficiency estimate or optimal result was found for a certain

number cost function evaluations (recommended). Optimal result is defined as a chromosome with a mod-

eling efficiency that is within the tolerance max (MA) − m(c) < ε and a number of included features that is

equal to the minimum of included features in A where max (MA) − m(c) < ε,
• the maximum allowed run time has passed,

• the maximum allowed number of function evaluations has passed.

Algorithm 1 gives an overview of GHGA. Below we provide more details on the individual steps of GHGA. All

parameters of GHGA (given as greek letters) are listed in Table 2.

Algorithm 1 Guided Hybrid Genetic Algorithm

1: Initialize a fix number of random chromosomes; add a chromosome where all features are included

2: Evaluate chromosomes to generate the initial archive A (EVAL)

3: nit = 1 (iteration counter), retrain = nA (retrain counter for G)

4: while convergence criterion not met do
5: Extract the reproductive population R from A (Section 2.3, Algorithm 2)

6: Select two chromosomes from CR for reproduction (Section 2.4)

7: Cross them and get children c1 and c2 (Section 2.4)

8: Calculate mutation rate from nit; Apply mutation to c1 and c2 (Section 2.4)

9: Evaluate c1 and c2 (EVAL)

10: Add c1, c2, j(c1), j(c2), m(c1), m(c2) to A; update nA

11: if nit > λ (algorithm is in the second phase) then
12: if nA > ψ + retrain (G should be retrained) then
13: Train G based on A; set retrain = nA

14: end if
15: Extract a subset B of the population R (Section 2.5, Algorithm 3)

16: Select one chromosome c from B
17: Do guided feature elimination for c using G (involves EVAL; Section 2.5, Algorithm 4)

18: Add evaluated chromosomes to A; update nA

19: end if
20: nit = nit + 1

21: end while

2.3. Extraction of the reproductive population R from A
The way the population of chromosomes is managed is crucial for the performance of GAs in terms of the

speed of convergence and diversity management to avoid premature convergence, and to favor the search for

multiple distinct optima. The approach adopted here was inspired by work on multi-objective optimization using

non-dominated sorting and crowding schemes [7, 8]. We first introduce some further properties of chromosomes:

whether it is inert (z), whether it is dominated by other genes (h), and its crowding index (s). The crowding index

s measures the crowdedness of chromosomes around chromosome c as:

s(c) =
1

nc1

nA∑

k=1

nu1(c,CA(k)). (5)

2341 Martin Jung and Jakob Zscheischler / Procedia Computer Science 18 (2013) 2337 – 2346

If there are many chromosomes in the archive that share many included features nc1 then s(c) is large.

A chromosome c is inert (z = 1) if the full set of ’leave one variable out’ Clo with nClo = nc1 exists in the the

archive. Inert chromosomes are basically flagged as (local) optima, since all combinations were tested with each

included feature of c1 being removed at a time. Inert chromosomes and are not considered when R is created, i.e.

they are not allowed to reproduce. A chromosome c1 is dominated (h(c1) = 1) if there exists at least one other

chromosome (c2) in A where c1
2 ⊂ c1

1, where j(c2) ≤ j(c1). In other words, for dominated chromosomes there is

another chromosome in the archive which has a subset of included features and at least equal performance.

A subset of A will be selected in R according to Algorithm 2 that aims at balancing the search in different

promising regions of the feature selection lattice. A is sorted from best to worst according to JA and the best

individual A(1) is added to R such that nR = 1. Then we loop over the chromosomes of the sorted archive A using

the index k. We assess whether the chromosome is dominated or inert. If not, we compute the dissimilarities

Dk between the chromosome CA(k) and all in CR, as well as its crowding index S A(k). We select A(k) in R if

its crowding index S A(k) < min(S R), and if there are less than ρ (default=5) chromosomes already in R with a

smaller dissimilarity to CA(k) than δ (sometimes referred as niche radius, default=0.5). The crowding scheme

and truncating the number of similar chromosomes in R helps in maintaining genetic diversity to avoid premature

convergence, and to allow for multiple distinct optima. The algorithm stops accumulating individuals in R if

MA(k) < median(MA). This is an elitist scheme where poor individuals are not allowed to reproduce.

Computing the crowding index, as well as the domination and inert conditions for each chromosome in A in

each iteration would be very expensive. Computational costs can be kept at a minimum if a matrix Nu1 with size

(nA, nA) is used that stores the pairwise number of common included features nu1 . Nu1 is completed (updated) only

for the relevant chromosomes (see index k in Algorithm 2) and does not need to contain all pairwise nu1 .

Algorithm 2 Extraction of the active population R
1: Sort A ascending (best to worst) according to JA, add A(1) to R, initialize counter k = 2

2: while MA(k) > median(MA) do
3: Update Nu1 (k); assess if chromosome is dominated or inert and get h and z
4: Calculate dissimilarities of chromosome CA(k) and all chromosomes in CR

5: Count number of dissimilarities nδ that are smaller than δ
6: if (h = 0 AND z = 0 & S A(k) < min(S R) & nδ < ρ) then
7: Add A(k) to R
8: end if
9: k=k+1

10: end while

2.4. Genetic operators

Here, we briefly describe how two chromosomes are selected from the reproductive population R, crossed, and

mutated in the GA.

Selection. The first parent c1 is selected randomly from R. Binary tournament selection [9] is used to select the

second parent. The dissimilarities of two randomly taken individuals from R are compared and the one with a

smaller dissimilarity to c1 is selected as the second parent (c2). Note that c1 and c2 can be identical which causes

only mutation and no crossover. Dissimilarities between c1 and CR in the tournament selection was chosen to

reduce the probability of lethal children which originate from too distant parents due to the search in different

regions of the feature selection lattice. In addition this selection scheme has low selection pressure and therefore

is beneficial for the diversity of the population.

Crossover. The genes of both selected parents (c1 and c2) are recombined based on the subset size oriented

commonality crossover (SSOCF [10]), which had been designed for the purpose of feature selection. SSOCF

ensures that each child has on average the same number of included features as either of the parents. SSOCF

creates two children with u1(c1, c2). The first child inherits features of x(c1, c2) with probability
nc1−nu1(c1 ,c2)

nx(c1 ,c2)
. The

2342 Martin Jung and Jakob Zscheischler / Procedia Computer Science 18 (2013) 2337 – 2346

second child is complementary to the first and inherits those features of x(c1, c2) which were not passed to the

first.

Mutation. Both children are subject to subset size oriented mutation [2] such that we keep on average nc1 after

mutation. A mutation rate r1 is used to decide which of c1 are to be excluded. A mutation rate r0 is used to decide

which of c0 are to be included with r0 = r1 · nc1

nc0
[2]. We use a declining mutation rate r1 = max

(
λθ−nθit
λθ−1
+ φ, φ

)
as

a function of the iteration number nit during the first phase of the search, and keep it at a constant rate φ (default

= 0.05) during the second phase of the search. λ is a parameter that controls at which iteration number r1 = φ
(default=2 · n) and θ is a shape parameter (default=0.5).

2.5. Guided feature elimination
Extraction of the population B from R. The population B stores potential individuals that can be selected for

guided feature elimination. B is identical to R if no inert individuals (local minima) exist yet. Otherwise, B is

extracted from R according to Algorithm 3 such that it favors individuals that are more dissimilar from the inert

individuals, which represent local minima.

Algorithm 3 Extraction of population B
1: Sort R ascending (best to worst) according to cost function values

2: For each chromosome in R calculate the smallest distance to all inert chromosomes and get DR

3: Add R(1) to B (and DR(1) to DB)

4: for k = 2 : nR do
5: if DR(k) > max(DB) then
6: Add R(k) to B
7: end if
8: end for

Selection from B. One individual from B is selected for guided feature elimination using tournament selection.

The size of the tournament scales with nB and is � nB
κ
�, where κ is a parameter (default=5). We keep track of how

often this chromosome has been selected for guided backward elimination t(c) and increment this by one.

Guide G. The role of G is to guide variable elimination for a selected chromosome. G can be in principle anything

that provides an anticipated ranking of modeling efficiencies M∗lo for all ’leave one variable out’ combinations

Clo. Our default mode of G is Random Forests [11]. Random Forests is trained using A to get G, where CA

is the matrix of explanatory (categorical) variables, and MA is the response variable. We further implemented

two simpler modes of G: a random estimate, and the sum of selection frequencies. The latter simply sums the

frequency of a feature being present in A for all features of the current feature subset.

Guided feature elimination algorithm. The chromosome c is declared as master and subject to guided feature

elimination using G where b(c) defines the maximum number of cost function evaluations f cntmax that are spent

(Algorithm 4). G predicts the modeling efficiencies M∗lo for all possible ’leave one feature out’ combinations

Clo. Then the chromosomes of Clo are evaluated in descending order of M∗lo using the index k. If Jlo(k) < j(c)

then the search continues with Clo(k) being the new master chromosome. The guided feature elimination stops

when the maximum number of function evaluations were reached, or when all possible Clo were evaluated and no

chromosome with a smaller cost function value than the master was found.

2.6. Discussion of GHGA parameters
The modeling efficiency tolerance parameter of the cost function ε measures the acceptable deviation from

the highest (found) accuracy. Thus it controls the parsimony (simplicity-accuracy trade-off) of the result, and

should be set according to user requirements. Most other parameters control the exploration-exploitation trade-

off. For hard problems (e.g. many candidate features, strong correlation among features, several optima likely),

the simplest way to enhance the exploration is to increase number of iterations where only the GA operates λ, and

2343 Martin Jung and Jakob Zscheischler / Procedia Computer Science 18 (2013) 2337 – 2346

Algorithm 4 Guided feature elimination algorithm

1: Define chromosome c as master, Set f cntmax = b(c), Set f lagmaster = 1

2: f cnt = 0 (Initialize counter of cost function evaluations)

3: while f cnt ≤ f cntmax & nc1 ≥ 1 & f lagmaster = 1 do
4: Generate all possible leave one variable out combinations for c and get Clo with length cn1

5: M∗lo = G(Clo) (Predict modeling efficiencies for Clo using G)

6: Sort Clo according to descending M∗lo
7: k = 1 (Initialize counter), Set f lagmaster = 0

8: while k ≤ cn1 & f cnt ≤ f cntmax & f lagmaster = 0 do
9: if Clo(k) � A (current chromosome was not evaluated before) then

10: Evaluate Clo(k) (EVAL), add Clo(k) to A; f cnt = f cnt + 1

11: if Jlo(k) < j(c) (current chromosome is better than the master) then
12: c = Clo(k); j(c) = Jlo(k), Set f lagmaster = 1 (define Clo(k) as new master)

13: end if
14: end if
15: k = k + 1

16: end while
17: end while

to relax the termination criteria. If the search is targeted to find multiple very different optima (few features are

shared among them) δ could be set to a large value (e.g. 0.8). If the aim is to find a good solution quickly then

more power can be given to the exploitation by decreasing λ ; δ can be set to 1 (all chromosomes are considered

similar, no ’niching’), and ρ to a desired maximum population size of R (e.g. 10); setting κ = 1 ensures that always

the currently best chromosome will be selected for guided feature elimination. The suggested default parameters

in Table 2 represent a compromise that work well for various problems.

3. Artificial Experiment

3.1. Generation of test data

We generate an artificial data set that has some particular properties that are common to many real world

applications in earth sciences:

• several feature combinations have almost the same performance (multiple global optima; equifinality)

• the set of candidate features is large (250) and contains many non-informative variables

• some features are highly correlated with the set of informative variables (part of the global optima)

• the model based on a feature subset can be better than the model that included all features

We construct an artificial multivariate regression problem as follows. We denote a data set containing 250 variables

and 1000 samples by X. Xi is the ith variable and Xi(k) is sample k of variable i. Our aim is to construct a target

variable Y such that there are four likewise optimal regressions from X to Y with each containing 10 variables out

of all 250. X is step by step constructed as follows:

Xi ∼ N(0, 1) for i = 1, . . . , 250,

Xi = Xi

∑5
j=1 X j∑15

k=11 Xk
for i = 11, . . . , 15,

Xi = Xi

∑10
j=1 Xj∑25

k=11 Xk
for i = 16, . . . , 25,

Xi = Xi

∑17
j=16 Xj∑27
k=26 Xk

for i = 26, 27,

Xi = Xi−27 + ξ, ξ ∼ N(0, 0.2), for i = 28, . . . , 56.

2344 Martin Jung and Jakob Zscheischler / Procedia Computer Science 18 (2013) 2337 – 2346

The target variable Y is then defined the sum of the first 10 variables and it can easily be verified that it holds:

Y :=

10∑

i=1

Xi =

15∑

i=6

Xi =

25∑

i=16

Xi =

27∑

i=18

Xi ,

i.e., there are four different combinations of respectively 10 regressors which can explain the target variable Y very

well. To challenge the algorithm, the four optima were arranged such that two of them share 5 features (1...10;

5...15), and two of them share 8 features (16...25; 18...27). Finally, the data is split equally into a training data set

plus some noise Xtr and a validation data set Xval,

Xtr(k) = X(k) + ξ for k = 1, . . . , 500 and ξ ∼ N(0, 0.1),
Xval(k) = X(k) for k = 501, . . . , 1000.

3.2. Experimental set-up

We ran GHGA with default settings on the data set, using a multiple linear regression as base function, and

ε = 0.005. The regression coefficients are estimated from the training data set, and the modeling efficiency is

estimated using the test data set. We ran GHGA in four different modes: no guiding, i.e. just the GA; random

guiding; guiding by variable selection frequency; guiding by the Random Forest algorithm. We performed 12 runs

for each mode of GHGA to evaluate to what extent the feature selection results were by chance, and to estimate the

statistical measures on the required number of cost function evaluations to find one, two, three, or all four global

optima. The algorithm was run until all four global optima were found, or when 25,000 cost function evaluations

were reached.

3.3. Results and Discussion

Value of a dynamic cost function. Our dynamic cost function approach updates all cost function values when a

new maximum modeling efficiency was found, and thereby avoids specifying a maximum modeling efficiency a

priori. Specifying, a maximum performance a priori would be done by using all features in the model, which is

often inappropriate when many non-informative variables are present or the ratio of features to examples is large

[1]. In our data set, modeling efficiency of the chromosome with all features included is 0.967, while the actual

largest existing modeling efficiency is 0.999; this difference can be much more drastic in real world applications

[12].

0

2000

4000

6000

8000

10000

12000

14000

16000

None
Rand

SelFreq

RF None (10/12)

Rand
SelFreq

RF None (4/12)

Rand
SelFreq

RF None (2/12)

Rand
SelFreq

RF
Optimum 1 Optimum 2 Optimum 3 Optimum 4

N
um

be
r

of
 c

os
t f

un
ct

io
n

ev
al

ua
tio

ns

Fig. 1. Number of cost function required to find one, two, three, and all four optima for all modes of GHGA. Boxplots show the distribution

of the 12 individual runs. Note that not all of the 12 runs without guidance found all optima (see numbers in parenthesis).

2345 Martin Jung and Jakob Zscheischler / Procedia Computer Science 18 (2013) 2337 – 2346

Multiple optima. All runs of all four modes of GHGA found one global optimum, while only the various guided

versions found all four global optima for all runs (Figure 1). In 10/12 runs GHGA without guiding found 2

optima; in 4/12 runs it found 3 optima; in 2/12 runs all four optima were found. This demonstrates the capability

of GHGA in finding multiple optima, which is based on its diversity management of the reproductive population.

The diversity management and the steady state character of the GA setup where the population is created from all

tested chromosomes is quite expensive and becomes increasingly expensive as more chromosomes are added to

the archive. However, these costs are acceptable when the evaluation of the cost function is very expensive, and

we show below that quite few cost function evaluations are needed by the algorithm to find the optima, which in

the end greatly offsets the costs due to generation of the population after each iteration.

Efficiency of guiding. The number of cost functions evaluations required to find one optimum was on average

half (about 2000) for the guided versions in comparison to the non-guided version. Differences in the number of

required cost-function evaluations to find all four optima among the different guiding versions tends to increase

with the number of optima. On average guiding by Random Forests required less cost function evaluations (on

average 4185) than guiding by selection frequency (on average 5113) than random guiding (on average 5632)

to find all four optima, i.e. guiding by Random Forest saves about 22 % and 35 % cost function evaluations in

comparison to guiding by selection frequency and random guidance respectively.

50 100 150 200 250
0

0.02

0.04

0.06

0.08

None

R
el

 F
re

qu
en

cy

50 100 150 200 250
0

0.005

0.01

0.015

50 100 150 200 250
0

0.02

0.04

0.06

0.08

R
el

 F
re

qu
en

cy

Random

50 100 150 200 250
0

0.005

0.01

0.015

50 100 150 200 250
0

0.02

0.04

0.06

0.08

R
el

 F
re

qu
en

cy

Selection Frequency

50 100 150 200 250
0

0.005

0.01

0.015

50 100 150 200 250
0

0.02

0.04

0.06

0.08

Number of included variables

R
el

 F
re

qu
en

cy

Random Forests

50 100 150 200 250
0

0.005

0.01

0.015

Feature index

Fig. 2. Number of cost function evaluations as a function of number of included variables for all modes of GHGA (left) and selection

frequency of the different features for all modes of GHGA (right). There is a clear peak in the number of cost function evaluations around

the true optimum with 10 features included in the various guided versions of GHGA, which does not exist for the non-guided version. The

feature selection frequency shows how often a feature was present in the archive and reveals a clear peak of those variables which are part of

the optimal sets. The double peak marks those features that are part of two different optimal sets.

Finding four global optima from a data set with 250 variables with about 5000 cost function evaluations is

2346 Martin Jung and Jakob Zscheischler / Procedia Computer Science 18 (2013) 2337 – 2346

very efficient, and only a tiny fraction (2.76 · 10−72) of exhaustive search (2250 − 1). Clearly, guiding the search

is much more efficient and always found the four optima in comparison to the GA without guiding. Interestingly,

even the random guidance works well, which might imply that guiding itself is more important than how it is

done. The guiding works essentially because the guiding mechanisms selects a promising chromosome from the

population and tests modified chromosomes which have one feature less included. This greatly helps for the

stochastic backward search nature of GAs; without guiding chromosomes with one feature less are suggested by

the GA by chance, while guiding explicitly suggests chromosomes with one feature less included. Therefore, all

the guided versions of GHGA concentrate the search on chromosomes with about 10 features included, while the

non-guided version has large difficulties to get there and searches mainly in regions with more features included

(Figure 2). The good performance of the random guiding found here might partly be due to the large number of

uninformative features; if many uninformative features are present a random suggestion to eliminate a feature has

high chances to be successful. Nevertheless, since random guiding or guiding by selection frequency have almost

no computational costs in comparison to retraining Random Forests as guiding mechanism, random guiding and

guiding by selection frequency are suitable options for less expensive cost function evaluations; i.e. when training

Random Forests for guiding takes orders of magnitude more time than the evaluation of cost functions.

4. Conclusions

We presented a hybrid genetic algorithm for feature selection that is tailored to expensive cost function evalu-

ations (GHGA). We illustrated the performance of the algorithm using artificial data, and show that the algorithm

provides accurate results and is very efficient in minimizing the number of cost function evaluations. GHGA has

many potential applications in Earth Sciences given the growing volume of multivariate data streams that warrant

mining. An example is given in a companion paper [12].

Acknowledgements

Our research has received funding from the European Union’s Seventh Framework Programme (FP7/2007-

2013) under grant agreement nr 283080 (GEOCARBON) / nr 244240 (ClimAfrica). JZ is part of the International

Max Planck Research School for global Biogeochemical Cycles (IMPRS-gBGC).

References

[1] A. Jain, D. Zongker, Feature selection: Evaluation, application, and small sample performance, IEEE Transactions Pattern Analysis and

Machine Intelligence 19 (2) (1997) 153–158.

[2] I.-S. Oh, J.-S. Lee, B.-R. Moon, Hybrid genetic algorithms for feature selection, IEEE Transactions on Pattern Analysis and Machine

Intelligence 26 (11) (2004) 1424–1437.

[3] W. Siedlecki, J. Sklansky, A note on genetic algorithms for large-scale feature selection, Pattern Recognition Letters 10 (5) (1989)

335–347.

[4] P. Pudil, J. Novovicová, J. Kittler, Floating search methods in feature selection, Pattern recognition letters 15 (11) (1994) 1119–1125.

[5] A. AlSukker, R. Khushaba, A. Al-Ani, Enhancing the diversity of genetic algorithm for improved feature selection, in: International

Conference on Systems Man and Cybernetics (SMC), 2010, pp. 1325–1331.

[6] J. Nash, J. Sutcliffe, River flow forecasting through conceptual models part I: A discussion of principles, Journal of Hydrology 10 (3)

(1970) 282–290.

[7] D. Corne, J. Knowles, M. Oates, The pareto envelope-based selection algorithm for multiobjective optimization, in: Parallel Problem

Solving from Nature PPSN VI, Lecture Notes in Computer Science Vol.1917, 2000, pp. 839–848.

[8] N. Srinivas, K. Deb, Multiobjective optimization using nondominated sorting in genetic algorithms, Evolutionary Computation 2 (3)

(1995) 221–248.

[9] B. L. Miller, B. L. Miller, D. E. Goldberg, D. E. Goldberg, Genetic algorithms, tournament selection, and the effects of noise, Complex

Systems 9 (1995) 193–212.

[10] C. Emmanouilidis, A. Hunter, J. Macintyre, A multiobjective evolutionary setting for feature selection and a commonality-based

crossover operator, in: Proc. of Congress on Evolutionary Computation, 2000, pp. 309–316.

[11] L. Breiman, Random forests, Machine Learning 45 (2001) 5–32.

[12] M. Jung, S. Tautenhahn, C. Wirth, J. Kattge, Estimating basal area of spruce and fir in post-fire residual stands in central siberia using

quickbird, feature selection, and random forests, in: Procedia Computer Science, 2013, pp. xxx–xxx.

