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1 Introduction

Recently, Muschinski and Roth (1993) derived
relationships between various constants in homoge-
neous turbulence closure models based on Heisen-
berg’s theory of spectral eddy viscosity. Moreover,
Muschinski and Roth claim that the logarithmic law
of the wall emerges as corollary of Heisenberg’s
theory and that they have deduced an algebraic
relation between Kolmogoroff’s constant of turbu-
lence spectra and the von-Kdrmadn constant.

Schumann (1994) commented on Muschinski and
Roth’s paper and showed that Muschinski and
Roth’s basic results can be obtained by using only
the interial subrange theory of Kolmogoroff for
local equilibrium without referring to the viscous
subrange. Furthermore, Schumann pointed out that
there is no satisfactory theory of dissipation spectra.

Here, I would like to comment on two problems.
Firstly, I would like to question that the logarithmic
law of the wall emerges as corollary of Heisenberg’s
spectrum. Instead, I will argue that this relation, as
well as the relation between Kolmogoroff’s constant
and von-Kdrmén’s constant, is a consequence of
scaling arguments concerning the energy-containing
range of the spectrum. Secondly, I would like to ask
whether we can expect any relation between the
von-K4rmén constant and the viscous subrange.
Generally, I agree with Schumann that we do not
anticipate such relation in Newtonian flow at
infinitly large Reynolds number. But I would like to
stimulate the discussion by citing an earlier paper of
Malkus (1975).

2 Critique of Muschinski and Roth’s Corollary

Following an idea proposed earlier by Roth (1972),
Muschinski and Roth discuss a local interpretation
of Heisenberg’s eddy-viscosity model. They approx-
imate the spectrum of turbulent kinetic energy
(TKE), including the energy-containing range, by a
k’?.law. Since Muschinski and Roth do not
properly take into account the energy feeding of
turbulence on the mean flow beyond the inertial
subrange, their spectrum increases unrealistically
without bound as the wavenumber k’ becomes
small. To circumvent this problem, Muschinski and
Roth propose to cut off the spectrum at k” = k = g/z.
By relating the shear stress to the dissipation of
TKE and by computing the dissipation from He-
isenberg’s spectrum, Muschinski and Roth arrive at
the logarithmic law of the wall.

It do not want to critizise Muschinski and Roth’s
quite reasonable assumption of a cut-off wavenum-
ber k. The cut-off wavenumber was - to my
knowledge — first introduced by Businger (1961). It
is a valuable and, of course, “legal” trick for
constructing conceptual spectral models. In particu-
lar, it allows for exploring the idea of scaling within
the energy-containing range. The problem, I would
like to point at, is that assuming k = g/z is just a
scaling argument — which is, as stated by Schumann,
a standard assumption near walls in large-eddy
simulations. And it is because of this special
assumption on k which — together with Heisenberg’s
or Kolmogoroff’s spectrum — leads to the logarith-
mic law of the wall and, ultimately, to a relation
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between the Kolmogoroff constant and the von-
Kédrman constant. The latter relation depends on
the unknown constant q in k = q/z.

Muschinski and Roth argue that q =n/2 which,
again, seems quite plausible when following their
line of argument. On the other hand, there is no
reason why q could not be a little bit larger or
smaller. In fact, data of Kaimal et al. (1972) which
are also cited in Muschinski and Roth and shown in
their Figure 2 suggest that q should be larger. This
would, in turn, imply a von-Kdrmén constant even
smaller than Muschinski and Roth’s value of 0.34
which is already at the lower end of empirical
estimates.

In an earlier paper (Claussen, 1985 - for details see
Claussen, 1984), I formulated a closure hypothesis
of the energy-containing range to study the relations
between turbulence spectra and mean flow. Since
this closure hypothesis was based on similarity
arguments I also could not deduce the von-Kdrman
constant from turbulence spectra (which was, in
fact, not the scope of my study). But I could
demonstrate that any turbulence theory which
yields a k" .law in the inertial subrange together
with any plausible scaling argument for the energy-
containing range eventually leads to a logarithmic
law of the wall. Hence I doubt that the logarithmic
law of the wall is a corollary of Heisenberg’s theory,
but it is a consequence of proper scaling arguments.
Likewise, by using scaling arguments one cannot
deduce a quantitative relation between constants of
the turbulence spectrum and the mean flow, but just
qualitative relations. There always remains at least
one unknown factor which has to be determined by
experiments or by add-hoc arguments.

3 The von-Kiarman Constant and the Viscous
Subrange

As shown by Schumann, it is not necessary to refer
to the full turbulence spectrum to arrive at relations
between constants in homogeneous turbulence mod-
els. This is also confirmed by my earlier study
(Claussen, 1985). Obviously, the viscous subrange
and the von-Kdrman constant have nothing in
common which can be anticipated for Newtonian
flow at infinitly large Reynolds number. The ques-
tion remains whether this is true in general. To
stimulate the discussion I would like to cite an
earlier paper by Malkus (1975).

Malkus presumes that the observed positive curva-
ture of the mean velocity profile in turbulent

channel flow has its mechanistic origin in the brief
and violent instabilities which are the principal
agents of the momentum transfer process and which
act to remove transient inflexion point instabilities,
Malkus shows that a velocity-defect law results from
the single requirement of Reynolds-stress spectral
smoolhness Malkus defines a spectrum I(f) by
(z}/u. U”) =T*1 where U” = d°U/dz? ,Zy 1s the
half-width of the channel, u. is the friction velocity,
and I(f) = I e™ k = 1, 0, with f = 7t(z + z,)/z;,. If
one assumes the spectrum I to be smooth in the
sense that the difference between successive Fourier
components I, is small, then a velocity-defect law
emerges which is parabolic in the mid-region and
logarithmic near the boundary. Data suggest that
ITol is approximately constant, and is inversely
related to the square of the von-Kdrman constant.
In his 1975 paper, Malkus just isolates certain a
mechanistic consequences of the finite amplitude
stabilzating process and does not deduce a value of
I,. This was done earlier (Malkus, 1956).

Malkus assumes that spectral smoothness may be
less plausible at those wavenumbers where viscous
effects first become as important as nonlinear
effects because, at this scale of motion, the smallest
finite amplitude instabilities are observed to occur.
Moreover, Malkus argues that at these wavenum-
bers, drag-reducing additives are presumably to be
most effective in producing non-Newtonian effects.
In order to construct a spectral tail Malkus requires
that the spectral tail shop drop off faster than any
finite negative power of k’ — which is in keeping with
the discussion of the viscous subrange by Schumann.
Secondly, Malkus requires that any presumed spec-
tral tail should be continuous with and matches the
smoothness condition at the wavenumber where the
tail joints the inertially controlled lower part of the
spectrum. As a result (for details, the reader is
referred to the original paper of Malkus, 1975) a
spectrum emerges from which a mean velocity
profiles can be deduced which exhibits a double
logarithmic structure. The inner logarithmic law
appears to have a larger slope than the outer one.
The precise form of the change from one logarith-
mic law to the other depends on the constants
implicit in the spectral tail. *

Obviously, in non-Newtonian flow, the von-Kdrmén
constant has to change with height, if it is accepted
to describe the logarithmic profile of mean velocity
in the same manner as in Newtonian flow. Of
course, it is rather tempting to speculate whether
the atmosphere does not behave quite Newtonian to
explain differences in the data of the von-K4armén
constant. However, I assume that problems in
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experimental set up and deviation from ideal
conditions of homogeneity, stationarity, and neutral
stratification are better candidates which these
differences can be blamed on (e.g. Wieringa, 1980).
Here, I just would like to point out that there is
some relation between mean flow and the tail of
turbulence spectra quite generally.

4 Concluding Remarks

Muschinski and Roth present a paper which is quite
valuable concerning practical applications and theo-
retical considerations of turbulence modelling. It is
also valuable because Muschinski and Roth careful-
ly discuss the limitations and assumptions implicit in
their model. Therefore, it seems justified to add to
their discussion, Here, I have critically reassessed
the consequences of introducing a cut-off wavenum-
ber as k = q/z. This assumption seems quite plausi-
ble. Nevertheless it is this particular assumption
which eventually leads to a logarithmic law of the
wall; any other would not. Likewise, also the specific
value of the von-Kdarman constant depends on the
specific value of q which Muschinski and Roth
presribe as /2, but there is no reason that q could
not be a little bit larger. Secondly, Muschinski and
Roth use the full turbulence spectrum to deduce
their results. Schumann argues that one can arrive at
the same relations with referring the inertial sub-
range of the spectrum only — which is in line with
earlier arguments of mine (Claussen, 1985).

Although it seems plausible that the von-Karman
constant has nothing to do with the spectral sub-
range of turbulence it is rather tempting for me to
speculate that it does — quite generally. I have cited
a paper of Malkus (1975) who discusses the peculiar

double logarithmic structure of mean velocity pro-
files in non-Newtonian flow and I have interpreted
Malkus’ result as indication that there is a relation
between mean flow and the spectral tail of turbu-
lence. At the moment, I cannot find any better
argument to justify my speculation except that it
should add to Schumann’s call upon a discussion of
spectral models for the turbulence at dissipating
scales.
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