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We experimentally and numerically investigate the expansion of initially localized ultracold bosons
in homogeneous one- and two-dimensional optical lattices. We find that both dimensionality and
interaction strength crucially influence these non-equilibrium dynamics. While the atoms expand
ballistically in all integrable limits, deviations from these limits dramatically suppress the expansion
and lead to the appearance of almost bimodal cloud shapes, indicating diffusive dynamics in the
center surrounded by ballistic wings. For strongly interacting bosons, we observe a dimensional
crossover of the dynamics from ballistic in the one-dimensional hard-core case to diffusive in two
dimensions, as well as a similar crossover when higher occupancies are introduced into the system.

Non-equilibrium dynamics of strongly correlated
many-body systems pose one of the most challenging
problems for theoretical physics [1]. Especially in one di-
mension, many fundamental questions concerning trans-
port properties and relaxation dynamics in isolated sys-
tems remain under active debate. These problems have
attracted a renewed interest in recent years due to the
advent of ultracold atomic gases. The ability to control
various system parameters in real time has not only al-
lowed quantum simulations of equilibrium properties of
interacting many-body systems [2], but has also enabled
experimental studies of quantum quenches [3–7] and par-
ticle transport [8–12] in clean, well-controlled, and iso-
lated systems. Here, we study the combined effects of in-
teractions and dimensionality on the expansion dynamics
of bosonic atoms in optical lattices.

While interactions generally lead to diffusive trans-
port in higher dimensions, the situation is more involved
in one dimension, where the phase space available for
scattering can be severely limited. This was demon-
strated, for example, by the experimental realization of
a quantum Newton’s cradle [5], showing that not all 1D
Bose gases thermalize (see also [13]). An intriguing phe-
nomenon in one dimension is the existence of an exact
mapping [14] from hard-core bosons on a lattice or a
Tonks-Girardeau gas [15, 16] to non-interacting spinless
fermions, demonstrating the integrability of these sys-
tems. Furthermore, this mapping establishes that the
time evolution of the density distribution is identical
for hard-core bosons and non-interacting fermions. As
a consequence, hard-core bosons in one dimension ex-
pand ballistically and, asymptotically, undergo a dynam-
ical fermionization during the expansion [17, 18]. In a
transient regime, even initial 1D Mott insulators with
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Figure 1. Experimental sequence and time evolution during
the expansion. (a) Sketch of the experimental sequence. (b)-
(d) Experimental time evolution of line density profiles during
a 1D expansion for various interaction strengths (each line
is individually normalized). (e)-(g) Corresponding t-DMRG
calculations for eight atoms, plotted using cubic interpolation.

unity filling are predicted to become coherent during
the expansion and to dynamically form long-lived quasi-
condensates at finite momenta [19–21]. In the presence
of doubly occupied lattice sites (doublons) or even higher
occupancies, the above mapping is not applicable. The
dynamics then become more involved and can include in-
triguing quantum distillation effects, namely a demixing
of doublons and single atoms [22, 23].
Several powerful theoretical methods have been used

to study the expansion dynamics in one dimension, in-
cluding the time-dependent density matrix renormaliza-
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tion group method (t-DMRG) (see, e.g., [20, 22, 24])
and approaches based on the existence of exact solutions
(see, e.g., [25–29]). For interacting 2D systems, in con-
trast, one needs to resort to approximate methods such
as the time-dependent Gutzwiller ansatz, which predicts
dynamical condensation even in two dimensions [30, 31].

In this work, we experimentally study the expansion
of initially localized bosonic atoms in the lowest band
of an optical lattice. We investigate how the expansion
speed changes as a function of interaction strength and
how it is affected by the dimensionality of the system.
Furthermore, we identify the role of multiply occupied
lattice sites in the system and compare our results to
t-DMRG [32–34] calculations in the 1D case.

Experimental sequence — The experiment starts with
a Bose-Einstein condensate of approximately 105 bosonic
39K atoms in a three-beam optical dipole trap. The con-
densate is loaded into a blue-detuned, three-dimensional
optical lattice (lattice constant d = λ/2, wavelength
λ = 736.7 nm) with a lattice depth of V0 = 33.0(5) Er.
Here, Er = h2/

(
2mλ2) denotes the recoil energy, m the

atomic mass, and h is Planck’s constant. For suitable
harmonic confinements, sufficiently strong repulsive in-
teractions, and adiabatic loading, a large Mott insulating
core with unity filling and a radius of (40− 50) d is cre-
ated in the center (see Fig. 1(a)). By employing a Fesh-
bach resonance at a magnetic field of 402.50(3) G we can
tune the interaction strength during loading and thereby
control the amount of multiply occupied lattice sites. In
the deep lattice, where tunneling is suppressed (tunnel-
ing time τd = ~/Jd ≈ 58 ms, with the tunneling ampli-
tude Jd and ~ = h/(2π)), the atoms are held for a 20 ms
dephasing period, during which any residual coherences
between lattice sites are lost [35] and all atoms become
localized to individual lattice sites. The resulting state
after this loading procedure is a product of local Fock
states, |Ψinitial〉 =

∏
i

1√
ηi!

(
b̂†i

)ηi

|0〉 , ηi ∈ {0, 1, 2, . . . },

where b̂†i is the creation operator for a boson on site i.
This state is characterized by a flat quasimomentum dis-
tribution nk = const, where k ∈ [−π/d, π/d] denotes
the quasimomentum. During the dephasing period, we
change the magnetic field to set the desired interaction
strength U/J for the expansion. Due to the suppressed
hopping during this part of the sequence, this field ramp
does not alter the density distribution, i.e., the initial
state prior to the expansion is identical for all interac-
tions. The expansion is initiated by lowering the lattice
depth along one or both horizontal directions (x, y) in
150µs to a depth of 8.0 (1) Er to induce tunneling with
amplitudes Jx (τ = ~/Jx = 0.55 ms) and Jy between
neighboring lattice sites along these directions. This is
equivalent to a quantum quench from U/J ≈ ∞ to a
finite U/J . Simultaneously, the strength of the dipole
trap is reduced to a small but finite value that compen-
sates the anti-confinement along the expansion direction
created by the lattice beams (see [36] for supplementary
information).
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Figure 2. Core expansion velocity and dynamical generation
of higher occupancies. (a) Core expansion velocity vc for ex-
perimental data in one dimension (black circles, lattice depth
(8, 33, 33)Er along (x, y, z), Jy ≈ 0) and two dimensions (blue
circles, (8, 8, 33)Er, Jx = Jy) and t-DMRG calculations for
N = 10 particles in one dimension (red triangles). Experi-
mental error bars denote the standard deviation of the linear
fits. Inset: vr calculated by t-DMRG and extrapolated to
infinite particle number. Error bars are given by the uncer-
tainty of the extrapolation [36]. (b) Higher occupancy, as
measured by fh, versus expansion time in the experiment.
For the points labeled "initial state", the measurement was
performed directly after the dephasing period in the deep lat-
tice [36]. (c) fh after an expansion time of t = 18 τ . Error
bars in (b) and (c) show standard deviations of averaging four
data points. All lines are guides to the eye.

The dynamics in the resulting lattice can be described
within the homogeneous Bose-Hubbard model:

H = −Jx
∑
〈i,j〉x

b̂†i b̂j − Jy
∑
〈i,j〉y

b̂†i b̂j + U

2
∑
i

n̂i (n̂i − 1) .

Here, U denotes the on-site interaction strength, n̂i =
b̂†i b̂i, and 〈i, j〉x(y) indicates a summation over nearest
neighbors along the x- (y-)direction.

We monitor the in situ density distribution of the ex-
panding cloud using standard absorption imaging along
the vertical axis. The recorded column densities are inte-
grated over one direction and the resulting line densities
are presented in Figs. 1(b-d) as a function of the expan-
sion time for the 1D case. In both the non-interacting
and the hard-core limits we expect a ballistic expansion
which splits the cloud into a left- and right-moving por-
tion [20, 37, 38], as can be seen in our numerical results
shown in Figs. 1(e,g). While the splitting can be clearly
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observed in the experimental data for the non-interacting
case (Fig. 1(b)), the presence of a few multiply occupied
lattice sites decreases its visibility in the strongly inter-
acting case (Fig. 1(d)).

Expansion velocities — To quantify the expansion
dynamics we extract the half-width-at-half-maximum
(HWHM) from the line density profiles [39] and deter-
mine the core expansion velocities vc (Fig. 2(a)) via
linear fits to the evolution of the HWHM at interme-
diate times [36]. In both one and two dimensions, the
maximum core expansion velocity occurs in the non-
interacting limit, where the system expands ballistically.
Due to an exact dynamical symmetry of Hubbard models
on bi-partite lattices, the expansion dynamics are inde-
pendent of the sign of the interaction [40] and we there-
fore focus the discussion on the U > 0 case. In two
dimensions, increasing the interaction strength monoton-
ically reduces the core expansion velocity until it essen-
tially drops to zero. In one dimension, in contrast, a
similar but much weaker suppression of the expansion
velocity extends only up to interaction strengths on the
order of the bandwidth U ∼ 4Jx, while vc increases again
for stronger interactions and eventually reaches values
comparable to the non-interacting case.

The same qualitative behavior is evident in the t-
DMRG simulations for ten particles, shown as red
triangles in Fig. 2(a). Since the numerically calcu-
lated HWHM suffers from rather large finite-size ef-
fects, we also present t-DMRG results for an al-
ternative measure of the expansion velocity, namely
vr = (d/dt)

√
R2(t)−R2(0), extracted from the radius

R2(t) = (1/N)
∑
i〈n̂i(t)〉(i − i0)2d2 (inset), where N

is the particle number and i0 denotes the central lat-
tice site. It is more robust against finite-size effects
and allows an extrapolation to infinite particle num-
ber [36], and, in our setup, exhibits the same qualita-
tive dependence on U . Moreover, at U = 0, vr has
an intuitive physical interpretation, as it is in this case
equal to the average expansion velocity vav. The lat-
ter is given by the initial quasimomentum distribution
through vav = 1/(N~)

√∑
k(∂εk/∂k)2nk, where εk =

−2J cos(kd) denotes the tight-binding dispersion rela-
tion. For the given initial state, where nk is flat, this
results in vav =

√
2 (d/τ), illustrated by the dashed line

in the inset of Fig. 2(a). Usually, one would associate
a constant velocity with a ballistic expansion and would
expect

√
R2(t)−R2(0) ∝

√
t for diffusive dynamics. In

the case of the sudden expansion, however, the interpre-
tation is more complicated, because the diffusion con-
stant is density dependent and the density distribution
is inhomogeneous and time-dependent (see [11] and [37]
for details).

The fast expansion for strong interactions in one di-
mension is a consequence of the system entering into the
hard-core boson regime, where, at U =∞, it can be ex-
actly mapped to non-interacting fermions, which expand
ballistically with vr =

√
2 (d/τ) [36]. Even though hard-

core bosons undergo collisions and their quasimomentum

distribution changes over time [19, 20], the above map-
ping guarantees that the evolution of their density dis-
tribution is ballistic and identical to the non-interacting
case. In other words, the conservation of the quasimo-
mentum distribution of the underlying non-interacting
fermions severely constrains the scattering processes,
thereby preventing the dynamics from becoming diffu-
sive.
Starting from the hard-core boson limit, the decrease

of the expansion velocity towards smaller interactions can
be qualitatively understood by considering the dynami-
cal formation of doublons and higher occupancies. For
U/J & 4, isolated doublons in one dimension can be
thought of as heavy compound objects, propagating with
typical effective hopping matrix elements on the order of
J2/U [41]. While their formation is energetically sup-
pressed at U/J � 4, for smaller U the system can maxi-
mize its local entropy through the formation of doublons
(and higher occupancies) during the early phase of the
expansion (see Figs. 2(b,c)). Therefore, as U decreases,
higher occupancies begin to form and the expansion ve-
locity decreases. In addition, the possibility of creating
higher occupancies increases the phase space available for
scattering and therefore favors diffusive dynamics. For
vanishing interactions, the scattering cross section ap-
proaches zero and the expansion becomes ballistic again
with a large velocity of vr =

√
2(d/τ). Therefore, there

has to be a minimum of vc at some intermediate U , which
turns out to be close to the critical U/J ≈ 3.4 for the 1D
Mott insulator to superfluid transition [42]. This is con-
sistent with other studies of quantum quenches, which
observe the fastest relaxation times close to the critical
point [7, 43].
The buildup of higher occupancies during the initial

expansion dynamics shown in Fig. 2(b) is monitored by
comparing the number of atoms left after a parity pro-
jection Npar with the total atom number Ntotal, yielding
fh = (Ntotal −Npar) /Ntotal. In the absence of triply or
higher occupied sites, fh measures the fraction of atoms
on doubly occupied sites [36]. While the expansion starts
from an initial state with essentially no higher occupancy,
fh rises significantly over roughly the first half tunneling
time. After this initial buildup, fh remains almost con-
stant and changes only on the much slower timescale of
the expansion (compare Fig. 2(c)). This initial fast relax-
ation is purely local, as can be seen in t-DMRG calcula-
tions comparing the relaxation timescale to the evolution
of the system without opening the trap [36]. The forma-
tion of higher occupancies is accompanied by changes in
nk and results in an increase of interaction energy and
therefore a decrease in kinetic energy. The effect of the
reduced kinetic energy (as measured by vav) is, however,
much smaller than the observed reduction of the expan-
sion velocity [36]. We thus conclude that scattering pro-
cesses during the expansion are mainly responsible for
the slower expansion.

1D-2D crossover — In Fig. 3 we analyze how the
expansion dynamics change when we gradually tune the
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Figure 3. 1D-2D Crossover. (a)-(c) Evolution of line density
profiles for various tunneling ratios χ = Jy/Jx and U/Jx = 10.
(d) Experimental core expansion velocity vc for various χ.
Lines are guides to the eye. Error bars denote the standard
deviation of the linear fits. The insets show the column den-
sity at t ≈ 36 τ .

dimensionality from a purely 1D system towards a 2D
geometry. This is implemented by varying the depth of
the lattice along the y-direction and thereby the tun-
neling ratio χ = Jy/Jx for the expansion [44]. Upon
increasing χ, the expansion dynamics at strong interac-
tions change fundamentally. Instead of the fast expansion
observed in the 1D case (Fig. 3(a)), the major fraction of
the cloud simply remains in the center (Fig. 3(c)). More-
over, the column density profiles shown in the insets of
Fig. 3(d) exhibit a characteristic bimodal structure. In
the 2D case, this structure consists of a slowly expanding,
round, diffusive core on top of a square-shaped ballistic
background and can be seen for all moderate to strong
interactions. In one dimension, on the other hand, a sim-
ilar behavior is only visible for intermediate interaction
strengths.

In Fig. 3(d), we illustrate how the interaction depen-
dence of vc changes as we go from a 1D system with two
integrable limits to a 2D system, where only the non-
interacting case is integrable. The expansion speed in
the non-interacting case is independent of χ, since in this
case the dynamics along the two lattice axes are separa-
ble. For all values of χ, the expansion speed initially
decreases with increasing interactions. For small χ, the
core expansion velocity increases again for strong inter-
actions, whereas, for χ > 0.5, it remains minimal. The
behavior at large χ, as well as the bimodal cloud shape,
is analogous to the dynamics of strongly interacting lat-
tice fermions in two dimensions, which were shown to
be diffusive [11]. The square-shaped background con-
sists of ballistically expanding atoms originating from
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the edge of the high density core, while collisions ren-
der the expansion diffusive for atoms inside the core.
Such diffusive dynamics are consistent with the numeri-
cal observation that hard-core bosons in two dimensions
thermalize [45]. Our experimental results show a qual-
itative difference between the dynamics in one and two
dimensions in the strongly interacting regime, whereas
theoretical studies using the time-dependent Gutzwiller
ansatz predict a qualitatively similar behavior, indepen-
dent of dimension [30, 31, 46]. Overall, we observe that,
for interacting systems, the expansion along one direction
is suppressed by an increased tunneling along a trans-
verse direction. This promotes the notion that increasing
transverse tunneling enlarges the accessible phase-space
for scattering processes and therefore favors diffusive dy-
namics.

Higher occupancies in the initial state — Figure 4
illustrates the effect of a random admixture of higher
occupancies in the initial state on the expansion dynam-
ics. This admixture is created by loading the lattice at
smaller interaction strength and higher densities, such
that no clear Mott insulator will form. Nonetheless, the
dephasing in the deep lattice remains effective, such that
the initial state of the expansion can still be described
as a product of local Fock states, but with higher oc-
cupancies on some randomly chosen sites. While there
is, as expected, no significant effect of multiply occu-
pied sites in the non-interacting case, where each atom
expands individually, already at U/Jx = 1 higher oc-
cupancies in the initial state reduce the core expansion
velocity. This reduction becomes most dramatic close to
the hard-core limit (U/Jx = 10), where the originally
high expansion velocity quickly approaches zero. In this
limit, any higher occupancies are long-lived [47] and their
small effective higher-order tunneling rate slows down the
expansion [22, 24]. Furthermore, the presence of multi-
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ply occupied lattice sites in the strongly interacting limit
can give rise to quantum distillation processes [22] and
thereby the formation of a stable core of doubly occupied
lattice sites [48].

Conclusion — Experimentally, we find the fastest
expansions near the exactly solvable limits of the Bose-
Hubbard model, where additional conservation laws re-
strict scattering such that diffusion is not possible. These
are: (i) the non-interacting limit, irrespective of dimen-
sion, and (ii) the case of infinitely strong interactions in
one dimension, provided there are no higher occupancies
in the initial state. Deviations from these cases, either by
finite interactions, the crossover towards two dimensions,
or an admixture of higher occupancies in the initial state,
lead to a substantial suppression of the expansion. In the
case of the crossover to two dimensions at large U/J , the
emergence of diffusive dynamics in the core is addition-
ally signaled by the characteristic bimodal cloud shape
previously observed in the fermionic case [11]. In one

dimension at intermediate interactions or with initially
multiply occupied lattice sites, both experimental and t-
DMRG profiles suggest an almost bimodal structure here
as well. Therefore, we conjecture that the common rea-
son for the slow expansions seen in the experiments is the
emergence of diffusive dynamics in the core region of the
cloud.
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Supplemental Material

I. EXPERIMENTAL DETAILS

A. Preparation of the initial state

We prepare a condensate of approximately 105 39K
atoms in the |F = 1,mF = 1〉 hyperfine state in a three-
beam optical dipole trap with trap frequencies of ωx =
ωy = 2π× 52(2) Hz along the horizontal (x, y) directions
and ωz = 2π×119(8) Hz along the vertical (z) direction.
For the experiments using an initial state of almost ex-
clusively singly occupied sites, presented in Figs. 2 and
3 of the main text, the initial scattering length is set
to as = 350(7) a0, where a0 is the Bohr radius, by em-
ploying a Feshbach resonance at 402.50(3) G [49]. We
linearly ramp up the lattice potential (lattice constant
d = λ/2 = 368.3 nm) in 8 ms to a depth of 20.0(3) Er.
We freeze out the resulting density distribution by a sec-
ond lattice ramp to 33.0(5) Er in 1 ms. At the same time
we turn off the vertical confinement by switching off the
dipole trap beams along the horizontal axes. The atoms
are now suspended against gravity solely by the deep
vertical lattice, which remains at this depth during the
rest of the experiment. The small tunneling amplitude
of Jd = h× 2.7(2) Hz in the deep lattice, in combination
with the effects of gravity, induces Bloch oscillations with
an oscillation length of 11(1) nm that is small compared
to the lattice constant. The system is thereby effectively
decoupled into independent 2D systems. The intensity
of the vertical dipole trap beam is increased simultane-
ously with the loading of the lattice to compensate the
increasing anti-confinement caused by the lattice beams.
In the deep lattice, the combined trap frequencies along
the horizontal directions are ωx = 2π × 56(6) Hz and
ωy = 2π × 50(5) Hz. The atoms are held in the deep
3D lattice for 20 ms while the magnetic field is ramped
to set the scattering length for the expansion. During
this period, all coherences between lattice sites are lost
and all atoms become localized to individual lattice sites
[35]. The small tunneling rate ensures that atoms cannot
redistribute during this hold time such that the resulting
state is identical for all final interaction strengths. The
expansion is initiated by ramping down the lattice depth
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Figure S5. Experimental sequence, optimization of homo-
geneity and extraction of vc. (a) Sketch of the experimental
sequence (not to scale). (b) Width of Gaussian fit to line den-
sity profiles after an expansion time of t = 54 τ at U/Jx ≈ 56
as a function of the trap frequency due to the vertical dipole
trap beam, neglecting the anti-confinement due to the lattice
beams. Insets show the column density distribution at the
indicated points. (c) Extracted HWHM of expanding clouds
in one dimension for various interaction strengths. The lines
show the fit result for vc and their extension indicates the fit
range.

along one or two horizontal directions and simultaneously
adjusting the intensity of the remaining vertical dipole
trap beam within 150µs, a timescale that is slow enough
to avoid excitations into higher bands but fast compared
to the tunneling rate. Figure S5(a) presents a sketch of
the intensity and field ramps employed in the experimen-
tal sequence. For the data with an increased density of
higher occupancies (Fig. 4), we reduce the initial inter-
action strength and increase the initial trap frequencies,
such that no clear Mott insulator can form.

B. Optimization of homogeneity

The optical potentials during the expansion are pro-
vided by the three blue-detuned optical lattices, with
Gaussian waists of approximately 150µm, and the red-
detuned dipole trap beam along the vertical axis with
approximately the same Gaussian waist. In the overlap
region of these beams, the anti-confining potential due to
the lattice beams can thus be compensated along the hor-
izontal directions by the confining potential of the dipole
trap beam. An exact compensation along both horizon-
tal directions is possible for equal lattice depths along
these directions. In all other cases, we optimize the com-

http://dx.doi.org/10.1103/PhysRevA.81.053604
http://dx.doi.org/10.1103/PhysRevA.81.053604
http://dx.doi.org/10.1103/PhysRevLett.105.250401
http://dx.doi.org/10.1103/PhysRevA.82.063603
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pensation for the x-direction, along which we record the
dynamics. To perform the optimization, we let the atoms
expand in the lattice for a fixed expansion time and vari-
ous intensities of the dipole trap beam and maximize the
final size of the cloud (see Fig. S5(b)). Note that both
confining as well as anti-confining potentials hinder the
expansion [11].

C. Determination of the core expansion velocity vc

To determine the core expansion velocity vc along the
x-direction, we first integrate the recorded in situ column
densities of the clouds along the transverse (y) direction
to obtain line density profiles. For each of these profiles,
we determine the maximum density nmax. Starting from
the outer edges of the profiles, we move inwards in both
directions and determine the positions where the den-
sity first reaches nmax/2, using linear interpolation be-
tween the points. Half of the distance between these two
positions is recorded as the half-width-at-half-maximum
(HWHM) of the cloud. In the case of a double peak struc-
ture (see, e.g., Fig. 1(e) in the main text) the HWHM
measures half of the distance between the outer edges of
the two peaks. Typical time evolutions of the HWHM
are shown in Fig. S5(c). Even in the non-interacting
cases, the HWHM does not significantly increase dur-
ing the first few tunneling times of the evolution. The
HWHM only grows significantly once the extension of the
expanding single particle wavefunctions becomes compa-
rable to the initial cloud size [28]. For very large clouds,
the assumption of a homogeneous lattice with constant
lattice depth is not valid anymore, because lattice and
dipole trap beams have only a finite width, giving rise
to residual potentials. Thus, we apply a linear fit with
offset to the HWHM evolution only in the time range
from t ≈ 14 τ to t ≈ 42 τ . The slope of this fit is the core
expansion velocity vc.

D. Error estimates for U and Jx

Error bars for U/Jx and τ are not given in Figs. 2 (a-
c) and 3 (d) of the main text, as their statistical errors,
caused by uncorrelated fluctuations, are much smaller
than the width of the points. There are, however, sources
of systematic errors for U and Jx. From measurements
of the expansion speed of non-interacting bosons over
several days, we estimate the long term fluctuations of
our calibration of Jx to be on the order of 3%. The
main contribution to the uncertainty in U originates from
the uncertainty of the width of the Feshbach resonance
that is used to calculate the scattering length as at a
given magnetic field. The resulting uncertainty of the
scattering length ranges from 0.5 a0 at a set value of 0 a0
to 3.8 a0 at 188 a0.
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Figure S6. Detection of multiply occupied sites. Loss of atoms
for off-resonant light pulses of varying duration. The fast loss
(τh) originates from higher occupancies, the slow loss (τs) is
caused by off-resonant excitations.

E. Detection of multiply occupied sites

In order to determine the fraction of atoms on multi-
ply occupied sites, we first freeze out the on-site num-
ber distribution by ramping up the lattice in 50µs to a
depth of 33.0(5) Er along all three axes. In the deep
lattice, where tunneling is strongly suppressed (tunnel-
ing time τd = ~/Jd ≈ 58 ms), we set the magnetic
field within 10 ms to a fixed value of B ≈ 400 G, where
the scattering length is large. We then apply a near-
resonant light pulse which is approximately 110 MHz
red detuned relative to the high-field imaging transition
from the

∣∣42S1/2,mI = +3/2,mJ = −1/2
〉
state to the∣∣42P3/2,mI = +3/2,mJ = −3/2

〉
state. On multiply oc-

cupied sites, this near-resonant light pulse gives rise to
a fast two-body loss process caused by light-assisted in-
elastic scattering of atoms [50]. This loss acts as a par-
ity projection of the on-site atom number and results
in the loss of all atoms for even atom numbers and the
loss of all but one atom for odd atom numbers. In
Fig. S6, we present a typical decay curve of the total
atom number in the presence of the near-resonant light
for varying pulse durations. The initial fast loss (lifetime
τh = 9.9(1.3) µs) stems from losses on multiply occupied
sites. After the initial decay, we observe a much slower
decay (τs = 399(13) µs) that is caused by off-resonant
excitations of the remaining single atoms. We extract a
measure of the higher occupancy by comparing the num-
ber of atoms with (Npulse) and without (Ntotal) a near-
resonant light pulse with a duration of tpulse = 50µs. In
the presence of the near-resonant pulses, the parity pro-
jection on multiply occupied sites has taken place and
only atoms on singly occupied sites as well as the remain-
ing atoms from sites with ηi = 3, 5, . . . are left in the sys-
tem. The measured atom number Npulse is then extrapo-
lated to a pulse duration of 0µs using the measured slow
decay time Npar = Npulse exp (tpulse/τs). We then cal-
culate an approximate measure of the fraction of atoms
on multiply occupied sites: fh = (Ntotal −Npar) /Ntotal.
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Note that, strictly speaking, fh is only a lower bound
on the fraction of atoms on multiply occupied lattice
sites, because Npar also contains one atom per site with
ηi = 3, 5, . . . . While being exact for singly and doubly
occupied sites, the measured fractions will be systemati-
cally too low whenever a significant amount of sites with
ηi ≥ 3 is present in the system. However, significant
amounts of sites with an occupation of ηi ≥ 3 contribute
only in the weakly interacting regime (see the discussion
of numerical results in Sec. II B 3).

II. TIME DEPENDENT DMRG SIMULATIONS
FOR 1D SYSTEMS

We employ the adaptive time dependent density ma-
trix renormalization group (t-DMRG) to carry out the
time evolution [32–34, 51], using a Krylov-space based
method to propagate the wavefunction in time [52, 53].
To ensure convergence of the time dependent wavefunc-
tions we enforce a threshold on the discarded weight [54]
per time-step δt = 1/(16J) of 10−4. Typically, this cor-
responds to using about 2000 states at the longest expan-
sion times. Furthermore, we introduce a cutoff Nb = 3 in
the number of bosons per site, unless stated otherwise.
For the initial state considered in our numerical simu-
lations, where the initial density is limited to 〈n̂i〉 = 2
(n̂i = b̂†i b̂i), increasing the cutoff to Nb > 3 results in
changes of only about 1% for most of the quantities con-
sidered here. For U/J ≤ 2, however, the quasimomentum
distributions are calculated with Nb = N , since fluc-
tuations in the local particle number are larger in this
regime. In the two integrable limits, U = 0 and U =∞,
we also use exact diagonalization to compute time de-
pendent quantities.

The timescales that can be accessed with t-DMRG are
limited due to the growth of entanglement that is encoded
in the time-evolved wavefunction [51]. This growth de-
pends on the type of non-equilibrium problem as well as
on other factors such as particle number and system size.
We want to reach timescales at which all particles partic-
ipate in the expansion, which requires the total system
size to be substantially larger (roughly by a factor of four
in our simulations) than the extension of the region with
a finite density in the initial state. Therefore, the particle
number is restricted to N ≤ 14.

A. Initial state and measures for the expansion
velocity

The initial state for our simulations is a state with
exactly ηi = 0, 1 or 2 bosons per site:

|ψinitial〉 =
∏
i

1√
ηi!

(b̂†i )
ηi |0〉 . (S1)

For the t-DMRG data shown in Figs. 1 and 2 of the main
text and Fig. S7, we consider a state with ηi = 1 on L

adjacent sites and ηi = 0 otherwise such that, in this
case, the total particle number N =

∑
i〈n̂i〉 equals L.

For this particular initial state, the kinetic energy

Ekin = −J
∑
〈i,j〉

〈b̂†i b̂j〉 (S2)

and the interaction energy

Eint = U

2
∑
i

〈n̂i(n̂i − 1)〉 (S3)

both vanish and the initial quasimomentum distribution

nk = 1
N

∑
l,m

e−ik(l−m)〈b̂†l b̂m〉 (S4)

is flat, nk = const. The total energy E = Ekin + Eint,
often referred to as the release energy, is an integral of
motion and its value is independent of U in our problem.
In the experiment, a harmonic trapping potential ex-

ists during the lattice loading, and hence also regions of
lower average density, yet the particle numbers that we
can run reliable simulations for are too small to account
for this.
We study several measures of the expansion velocity:

First, the core expansion velocity vc extracted from the
time dependence of the HWHM, second, the expansion
velocity vr = dR̃(t)/dt, where R̃(t) =

√
R2(t)−R2(0),

related to the time dependence of the radius of the cloud,

R2(t) = 1
N

∑
i

〈n̂i(t)〉(i− i0)2d2 , (S5)

and third, we analyze the average velocity

vav(t) =

√√√√ 1
N~2

∑
k

(
∂εk
∂k

)2
nk(t) , (S6)

where εk = −2J cos(kd) is the one-particle dispersion.
We further compute the time dependent probability for

multiply-occupied sites (i.e., sites with ηi > 1). Numer-
ically, we compute the fraction νh of atoms on multiply
occupied sites from

νh = 1
N

∑
i

Nb∑
m=2

m 〈n̂m,i〉 . (S7)

where n̂m,i measures the probability of finding m bosons
on site i, 〈ηi|n̂m,i|ηi〉 = δηi,m, where |ηi〉 are the local
Fock states on site i. This should be compared to fh, the
quantity that can be accessed in our experiment. Nu-
merically, we compute it as

fh = 1
N

∑
i

(2〈n̂2,i〉+ 2〈n̂3,i〉+ 4〈n̂4,i〉+ . . . ) . (S8)

We have also studied initial states with a finite density
of holes (i.e., some ηi = 0 in Eq. (S1)), surrounded by
sites with ηi = 1. We find that such single hole defects
(in the absence of doubly occupied sites) do not influence
the expansion velocity in the hard-core limit U =∞ and
therefore we do not discuss these results here any further.
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Figure S7. Time dependence of the density profile and of the probabilities for double and triple occupancy. (a)-(f) Density
profile 〈n̂i(t)〉, (g)-(l) double occupancy 〈n̂2,i(t)〉, (m)-(r) triple occupancy 〈n̂3,i(t)〉, for the sudden expansion starting from a
product of local Fock states with exactly one boson per site (N = 8, U/J = 0, 1, 2, 4, 20,∞). Panels (a), (g) and (m) show the
results for free bosons, where the particles can form higher occupancies without energy cost. While the outer wavefronts in the
time dependent particle density 〈n̂i(t)〉 are given by the maximum single-particle velocity of 2(d/τ) for all U , in panels (c) and
(d) we observe a long-lived high density core significantly slowing down the expansion. The dynamics at U/J = 20 (shown in
(e), (k) and (q)) are very similar to the limit of hard-core bosons at U/J =∞ ((f), (l) and (r)).

B. Sudden expansion starting from initial states
with exactly one boson per site

1. Time dependence of density profiles

Figure S7 shows t-DMRG results for the time depen-
dence of the density 〈n̂i(t)〉 (top row, (a-f)), the doublon
density 〈n̂2,i(t)〉 (middle row, (g-l)), and the density of
triple occupancy 〈n̂3,i(t)〉 (bottom row, (m-r)). The den-
sity profiles at U/J = 2 and 4 exhibit a bimodal struc-
ture: fast, ballistic tails and a slowly expanding high-
density core.

The density of multiply occupied lattice sites is zero
both in the initial state and at all times for U =∞. Af-
ter opening the trap and for U/J <∞, multiply occupied
sites are dynamically generated. A net production (re-
sulting in an increase of νh, Eq. (S7)) occurs due to initial
relaxation dynamics following the quench to finite U/J .
This has to be contrasted to expansions that start from
a system that is in thermal equilibrium (compare, e.g.,
Refs. 11, 17, 19, and 37) for which a non-trivial time evo-
lution is solely due to the quench of the trapping poten-
tial to zero. Numerically, we observe that mostly double
occupancies appear. At U = 0, multiply occupied sites
do not have an effect on the expansion speed, whereas
for U/J & 4 isolated doublons tunnel slower than sin-
gle bosons since their effective hopping matrix element
is ∼ J2/U at large U . In addition, we observe the ef-
fect of quantum distillation [22] at U/J = 20, where the
doublons move towards the center of the cloud and stay
there up to the maximum simulation time. In the case of
bosons (as compared to fermions), there is an attractive
interaction between doublons, enhancing the stability of

strings of doubly occupied sites over time [23, 48].

2. Cloud radius and expansion velocity

We analyze the radius R̃(t) and the expansion velocity
vr from data such as those shown in Fig. S7. Figure S8(a)
shows the time dependence of the radius R̃(t) for N = 10
bosons and U/J = 0, 4, 20,∞. In the two exactly solvable
limits U = 0 and∞, the radius increases linearly in time,
i.e., R̃(t) = vrt with vr = vav(0), as expected for these
ballistic dynamics. In the U = ∞ case, this can be seen
using the mapping to spinless fermions, whose quasimo-
mentum distribution is time-independent nf

k(t) = const.
At intermediate values of U , we observe fast transient

dynamics for t . τ : up to roughly this point in time, the
radius increases linearly with a slope that is independent
of U . For t & τ , it crosses over to a linear increase with a
smaller slope, with the slope now depending on U (inset
in Fig. S8(a)). The expansion velocity vr shown in Fig. 2
of the main text and in Fig. S8(b) corresponds to this
smaller slope. The deviation from a linear increase of
the radius with a constant velocity is an indication of
non-ballistic dynamics for small and intermediate values
of U .
In Fig. S8(b), we plot vr for finite particle numbers

N = 4 and N = 10. We also extrapolated vr to N →∞
by using data for N = 2, 4, 6, 8, 10 and a fitting function
vr(N) = vr+a/N (inset). We only took into account data
for the radius R̃(t) up to the same maximum time for all
values of N . We therefore cannot exclude a systematic
error due to the limited timescales that can be reached
in t-DMRG simulations (the larger N , the shorter the
accessible times). Qualitatively, we tend to overestimate
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Figure S8. Time dependence of the radius R̃ of the expanding
cloud. (a) R̃(t) for U/J = 0, 4, 20,∞. Inset: Zoom-in on
the transient dynamics for U/J = 0, 4 and 8. (b) Expansion
velocity vr for N = 4, 10 and extrapolated in 1/N to N →∞.
The dashed line indicates vr =

√
2 (d/τ). Inset: Finite-size

extrapolation for U/J = 4 and U/J = 10. The solid line uses
all data points, the dashed lines exclude either the smallest or
largest N from the fits. The difference between the fit results
of the solid line and the dashed lines determines the errors
bars shown in the main graph.

vr(N → ∞) in the vicinity of the minimum of vr. The
result of this extrapolation is included in Fig. S8(b) as
well and we conclude that the pronounced drop in the
expansion velocity for 0 < U/J < 10 is robust against
finite-size effects.

We stress that, in our case, the expansion velocity
vr is not simply a measure of the release energy E =
Ekin+Eint, which vanishes independently of U . This is in
contrast to previously studied expansions of interacting
bosons [29, 55] or fermions [37] from an initial state that
is in equilibrium. For instance, for the Tonks-Girardeau
gas or weakly interacting Bose gases in a free space ex-
pansion, in the asymptotic limit, vr ∝

√
E [29, 55].

3. Dynamical formation of multiply occupied lattice sites

We argue that the fast transient dynamics evident in
R̃(t) are due to local relaxation processes. It is instructive
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Figure S9. Fraction of atoms on multiply occupied sites. We
show both the exact fraction νh (solid lines) and the experi-
mentally accessible measure fh (dashed lines), both computed
with t-DMRG for the expansion from a state with ηi = 1
(Eq. (S1)), for U/J = 0, 4, 10, 20, N = 10, and Nb = N . (a)
Evolution during the expansion. (b) Evolution after a quench
in U/J , without opening the trap. These data suggest that
the transient time associated with the formation of higher oc-
cupancies is given by t ∼ 0.5 τ such that this initial relaxation
is purely local.

to consider two cases: (i) the sudden expansion under
some value of U/J realized in the experiment, and (ii)
the time evolution without opening the trap, but after
quenching to a finite value of U/J <∞. (for theoretical
studies on quantum quenches of the interaction strength
in the Bose-Hubbard model see, e.g., Refs. [56–64]).
Figure S9(a) and (b) show the time dependence of the

fraction of bosons on multiply occupied sites for U/J =
0, 4, 10, 20 for cases (i) and (ii), respectively. We present
both the total higher occupancy νh (solid lines) and the
experimentally accessible quantity fh (dashed lines). For
scenario (ii), the initial state Eq. (S1) with ηi = 1 is
not an eigenstate except for U = ∞, and therefore the
system explores phase space, resulting in a dynamical
formation of multiply occupied lattice sites, i.e. νh > 0.
The fraction of atoms on multiply occupied sites is similar
in cases (i) and (ii), corroborating the notion that the net
production of higher occupancies is a local process, and
therefore not a consequence of the expansion as such.
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in Eq. (S1) with ηi = 1 at U/J = 1 for N = 10 using Nb = N .

Furthermore, the figure demonstrates that, for any
U/J < ∞, the system forms higher occupancies on a
timescale of t ≈ 0.5τ . Both νh and fh saturate at U -
dependent values and, in the expanding case, slowly de-
cay at larger times with small oscillations. Moreover, for
U/J > 4, νh ≈ fh, indicating that in this regime only
double occupancies are formed while higher occupancies
are suppressed. Our t-DMRG results for fh are in qual-
itative agreement with the experimental data presented
in Fig. 2(b) of the main text concerning the timescales of
the formation and the decay of higher occupancies. We
ascribe quantitative differences to the presence of hole
defects in the experiment and the inhomogeneity due to
the harmonic trap in the experiment.

4. Time dependence of the quasimomentum distribution

The fast transient dynamics as opposed to the slower
dynamics during the expansion can further be elucidated
by considering the time dependence of the quasimomen-
tum distribution nk. In Fig. S10(a) and (b), we display
t-DMRG results for nk(t) for the two cases (i) and (ii),
respectively, with U/J = 1. In both scenarios, nk(t) de-
velops a maximum at k = 0 on transient timescales t ∼ τ .
This maximum remains stable in case (ii), while in case
(i), the central peak slowly dissolves at later times during
the expansion.

From such data for nk(t) and for various values of
U , we calculate the average expansion velocity vav at
time t = τ as a function of U/J and compare it to vr
(Fig. S11). Indeed, vav(t = τ) of the expanding gas
has a weak minimum at U/J ∼ 3 and increases for
larger U/J , eventually exceeding

√
2 (d/τ). The latter,

vav >
√

2 (d/τ), occurs because of the dynamical quasi-
condensation [21] at large U where predominantly the
quasimomenta at k = ±π/(2d) become occupied [19, 20].
The minimum of vav is present both for the actual ex-
pansion and the relaxation of the trapped gas without
opening the trap. Therefore, we conclude that the de-
crease of the expansion velocity, measured through ei-
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Figure S12. Sudden expansion in the presence of doublons
in the initial state. (a), (b) Radius R̃(t) for U/J = 10 and
U/J = 4. (c), (d) Time dependence of the HWHM for U/J =
10 and U/J = 4. The data for fh 6= 0 were obtained by
averaging over all distributions of doublons (ηi = 2) while
keeping all other occupied sites in the initial state at ηi = 1.
Dashed lines are linear fits to the last four data points that
are used to obtain vc (N = 10 in all simulations).

ther vc or vr, is partially due to the relaxation dynamics
of the quasimomentum distribution at short times with a
tendency of occupying small momenta with a small veloc-
ity vk � 2(d/τ) (vk = (1/~)∂εk/∂k = (2d/τ) sin (kd)).
However, as Fig. S11 clearly shows, vr � vav(t = τ) at
U/J . 10, indicating that interactions during the ex-
pansion lead to an additional substantial drop of vr and
vc.
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C. Expansion in the presence of doublons in the
initial state

In this section we investigate initial states that have a
finite concentration of sites with an occupancy of ηi = 2.
Fixing the particle number to N = 10, we generate all
possible realizations with such defects for a given fh 6= 0
and calculate the averaged time dependent density.

Figure S12 shows our results for the radius R̃(t) and
the HWHM at U/J = 10 and U/J = 4, comparing the
expansion from an initial state with ηi = 1 only (fh = 0)
to the ones with defects (fh 6= 0). Already for the clean
state there is a transient behavior in the HWHM before a
linear increase in time sets in, which is consistent with the
experimental observations discussed in Sec. I C (compare
Fig. S5(c)). A similar behavior of the HWHM was also
seen in a theoretical study of the sudden expansion of a
Tonks-Girardeau gas [28].

Upon adding doublons to the initial state, the slope
of the radius R̃(t) decreases, as shown in Fig. S12(a) for
U/J = 10. The effect is small since R̃(t) is dominated
by the fast moving ballistic tails, which are unaffected
by the presence of a few doublons (see Fig. S7). The
HWHM is, however, much more sensitive to the presence
of doublons in the initial state: already for fh = 0.2, its
slope, vc, is zero or slightly negative. We observe this
dramatic dependence of vc on fh for both U/J = 4 and
U/J = 10. These numerical results agree well with the
experimental data for vc = vc(fh) shown in Fig. 4 of the
main text.
At smaller U/J ∼ 1, our t-DMRG results do not show

any strong effect of the presence of doublons in the initial
state on either vc or vr, in contrast to the experimental
results. We attribute this deviation to the different par-
ticle numbers (N ∼ 10 in t-DMRG simulations versus
N ∼ 80 per tube in the experiment).
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