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The impacts of global climate change on different aspects of
humanity’s diverse life-support systems are complex and often
difficult to predict. To facilitate policy decisions on mitigation
and adaptation strategies, it is necessary to understand, quantify,
and synthesize these climate-change impacts, taking into account
their uncertainties. Crucial to these decisions is an understanding
of how impacts in different sectors overlap, as overlapping
impacts increase exposure, lead to interactions of impacts, and
are likely to raise adaptation pressure. As a first step we develop
herein a framework to study coinciding impacts and identify re-
gional exposure hotspots. This framework can then be used as
a starting point for regional case studies on vulnerability and mul-
tifaceted adaptation strategies. We consider impacts related to
water, agriculture, ecosystems, and malaria at different levels of
global warming. Multisectoral overlap starts to be seen robustly at
a mean global warming of 3 °C above the 1980–2010 mean, with
11% of the world population subject to severe impacts in at least
two of the four impact sectors at 4 °C. Despite these general con-
clusions, we find that uncertainty arising from the impact models
is considerable, and larger than that from the climate models. In
a low probability-high impact worst-case assessment, almost the
whole inhabited world is at risk for multisectoral pressures. Hence,
there is a pressing need for an increased research effort to develop
a more comprehensive understanding of impacts, as well as for
the development of policy measures under existing uncertainty.

coinciding pressures | differential climate impacts | ISI-MIP

Over the coming decades, climate change is likely to signifi-
cantly alter human and biological systems, pushing the

boundaries of variability beyond historic values and leading to
significant changes to what are considered typical conditions.
Identifying the locations, timings, and features of these impacts
for a given level of global warming in advance allows the de-
velopment of appropriate adaptation strategies, or can motivate
decisions to mitigate climate change. Although climate-change
impacts are extensively studied in individual sectors, their over-
laps and interactions are rarely taken into account. However,
these impacts are likely to be of great consequence, as they can

amplify effects, restrict response options, and lead to indirect
impacts in other regions, thus strongly increasing the challenges
to adaptation (1). In this article we take an important first step
toward the analysis of these effects through a consistent assess-
ment of the geographical coincidence of impacts as multisectoral
exposure hotspots. The Intersectoral Impact Model Intercom-
parison Project (ISI-MIP, www.isi-mip.org) offers a unique op-
portunity for this analysis by providing multimodel ensembles of
climate-change impacts across different sectors in a consistent
scenario framework.
Through the investigation of biophysical impacts of climate

change, which form the linkage between climate and society (2,
3), this study moves beyond previous hotspot analyses that have
mostly used purely climatic indicators (4–7). In addition, the set-
up enables an assessment of uncertainty because of both multiple
Global Climate Models (GCMs) and multiple Global Impact
Models (GIMs) in each sector (8). Finally, impacts are analyzed
at different levels of global mean temperature (GMT) for a
comparison at different levels of global warming. This global
analysis serves two objectives. First, tangible adaptation strate-
gies require knowledge of local vulnerability, defined by expo-
sure, sensitivity, and adaptive capacity. The regional exposure
hotspots can therefore serve as a starting point for prioritized
case studies and studies of interactions as the basis for the de-
velopment of adaptation strategies that can be expanded to ad-
ditional regions as needed. Second, the focus on GMT change is
crucial when studying costs and benefits of mitigation policies,
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such as the 2 °C target set by the international community to
reduce risks from climate-change impacts and damages (9, 10).
The analysis comprises four key impact sectors: water, agri-

culture, ecosystems, and health. Health is represented by
malaria, which, albeit being only one example of health impacts
of climate change, does have potentially severe economic con-
sequences (11). As metrics for the four sectors, we select river
discharge as a measure of water availability, crop yields for four
major staple crops (wheat, rice, soy, and maize) on currently
rain-fed and irrigated cropland (12) (Fig. S1), the ecosystem
change metric Γ (13), and the length of transmission season
(LTS) for malaria. Although these four metrics do not cover the
full range of possible societally relevant climate-change impacts,
they do include crucial aspects of livelihoods and natural
resources, especially for developing countries: water availability,
food security, ecosystem stability, and a key health threat.
We aim to define levels of change in each sector that can be

considered severe as basis for multisectoral hotspots. “Severe” is
taken to mean a shift of average conditions across selected
thresholds representing significant changes relative to the his-
torical norm. A multisectoral perspective is thus possible through
the simultaneous occurrence of above-threshold changes in
multiple sectors. Although climate change can have both positive
and negative impacts, for the purpose of vulnerability analysis we
identify hotspots of changes that put additional stresses on hu-
man and biological systems. Average conditions are measured as
the median over 31-y time periods. For the thresholds, we take
a statistical approach for water availability and crop yields,
whereas we use a more comprehensive metric for ecosystem
change, and resort to a relatively simple indicator for malaria
conditions. The thresholds in the water and agricultural sectors
are defined as the 10th percentile of the reference period dis-
tribution (1980–2010) of discharge and crop yields, respectively.
This threshold means a shift of average conditions into what is
considered today moderately extreme, happening in only 10% of
all years. Behavior is robust to the choice of a smaller threshold
(Fig. S2). This low end of the distribution excludes floods, as the
focus is on reduced water availability. Clearly, the chance to
cross the threshold depends on the level of variability in a given
region and may in fact mean relatively small absolute change;
however, it reflects the assumption that people in regions already
subject to highly variable conditions are better prepared to adapt
to more extreme average conditions (14).
The Γ-metric (13) represents the difference between future

states of ecosystems and present day conditions through an ag-
gregate measure of changes in stores and fluxes of carbon and
water, as well as vegetation structures. A large value of Γ indicates
significant changes in biogeochemical conditions or vegetation
structure, which would likely lead to considerable transformations
of the ecosystem. Based on differences between present day
ecosystems, Heyder et al. (13) define Γ > 0.3 as the threshold for
a risk of severe change, [see also SI Text and Warszawski et al.
(15)]. Such changes may reduce biodiversity, which is crucial for
the resilience of many ecosystem services (16). Furthermore, the
livelihoods of many vulnerable populations, along with cultural
values and traditions, are closely tied to existing ecosystems (17).
The threshold for changes in the prevalence of malaria is defined
as a shift in the LTS, from < 3 mo to >3 mo. This shift corresponds
approximately to a switch from epidemic to endemic malaria based
on climatic conditions (based on data from the Mapping Malaria
Risk in Africa project, www.mara.org.za) (Fig. S3).
All impacts are simulated with multiple, predominantly pro-

cess-based GIMs (agriculture and ecosystems, 7 models each;
water, 11 models; malaria, 4 models). These GIMs are driven by
three GCMs, simulating the highest representative concentration
pathway (RCP8.5) (18). Although current emissions are follow-
ing a similar trajectory, we choose RCP8.5 primarily to cover the
largest possible temperature range, not as a worst-case scenario

(19). For each GIM-GCM combination and at each grid point,
we define a “crossing temperature” that is the GMT change
(ΔGMT) at which the sectoral metric crosses the respective
impact threshold. Sectoral crossing temperatures are then taken
as the median over all GIM-GCM combinations of a given sector.
In our strict assessment, only robust results are taken into ac-
count, defined as an agreement of at least 50% of all GIM-GCM
combinations of a given sector at which the threshold is crossed.
Overlapping pressures at a given grid point are assumed to arise
when multiple sectors have crossed at a given ΔGMT. Results
are presented in terms of total area affected by the shift as a
function of ΔGMT. Note that GMT changes in this report are
with respect to the 1980–2010 period, which is ∼0.7 °C above
preindustrial levels (20).

Results and Discussion
Sectoral Analysis. The basis for the study of multisectoral overlap
is the ΔGMT level at which the thresholds for severe change are
crossed (if at all) in each of the four sectors (Fig. 1 and Fig. S4).
Median 31-y water availability is projected to drop below the
reference distribution’s 10th percentile in the Mediterranean,
regions of South America, in particular the southern Amazon
basin, regions in coastal western and central Africa, and parts of
south-central Asia for a warming of up to 4.5 °C under RCP8.5.
This distribution includes some regions of large projected rela-
tive drop in discharge (21), although the relatively strict 10th
percentile criterion means that it does not capture all of them
(e.g., southern United States). The regions affected by crop yields
below the threshold are tropical regions dominated by rain-fed
agriculture; this is consistent with the expectation that rain-fed
systems are likely to see larger and more consistent yield losses
than irrigated areas that can adapt more successfully. No nega-
tive effects on yields are seen at higher latitudes, as these initially
benefit from higher temperatures and CO2 fertilization effects
and exhibit yield increases (22). For both discharge and yields,
thresholds start to be crossed at ΔGMT = 1 °C.
Significant risk of ecosystem change, as indicated by the

Γ-metric, has the largest geographical extent of all sectors, with
most regions exhibiting crossing temperatures of 3–4 °C. This
large extent occurs because it encompasses very different eco-
system responses, depending on the region and the model. There
is forest die-back because of less rainfall in the Amazon and heat
stress in boreal forest regions, but also increased greening in
Europe and Africa because of warmer, wetter conditions, as well
as replacement of some vegetation species with others better
adapted to the new conditions. Forest advances northward as
a result of higher temperatures and the trees’ increased water-
use efficiency in response to higher atmospheric CO2 concen-
trations. On the Tibetan Plateau, distinguished by the lowest
crossing temperature of ΔGMT = 2 °C, increased vegetation
growth because of longer growing seasons and warmer winters
puts the current grass and shrublands at risk. Although not all of
these changes will be negative per se, they would constitute
a disruption and possibly a need for adaptation of local societies
to the prevailing ecosystem conditions.
Finally, malaria prevalence is expected to increase in higher

latitudes, higher altitudes, and in regions on the fringes of cur-
rent malaria regions because of warmer and wetter climatic
conditions. However, when conditions become drier, prevalence
can also decrease. As a result of the very different parameter-
izations used in the four malaria models considered here,
agreement among models on the changes is poor, leaving very
few areas as robustly crossing the 3-mo LTS threshold. Never-
theless, in agreement with previous work, the Ethiopian High-
lands are one of these regions (23).

Multisectoral Hotspots. We define hotspots as regions of multi-
sectoral exposure where two or more of the sectoral metrics have
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crossed their respective thresholds of severe change in average
conditions under the strict assessment, which means with high
likelihood (Fig. 2). According to our results there is no overlap of
severe change in all four sectors. The most prominent hotspot is
the southern Amazon basin, with some parts projected to ex-
perience severe changes in three sectors (yields, ecosystems, and
discharge) and large areas affected by two pressures. The second
largest hotspot region is southern Europe, with overlapping
changes in discharge and ecosystems. These two areas, as well as
smaller tropical hotspot regions in Central America and Africa,
were also identified in other studies using different methods,
supporting our findings (5, 6). In addition, we identify the
Ethiopian highlands as a hotspot because of the overlap of
malaria extension, crop yield reduction, and ecosystem change;
northern regions of south Asia are affected by either reductions
in discharge and crop yields or crop yield reduction and eco-
system change. These multisectoral hotspots occur in both regions

with high population density (i.e., Europe, east Africa, south
Asia) and sparsely populated areas (i.e., Amazon). These hot-
spots cover developed, emerging, and developing economies,
each with different degrees of adaptive capacity and sensitivity to
the multisectoral pressures. Note that these factors are not taken
into account here. A weighting of the relative importance of the
sectoral pressures depends strongly on local factors, such as so-
cietal structures and values, economic base, and environmental
imperatives. Therefore, a more detailed interpretation of the
hotspots requires in-depth regional case studies, but is beyond
the scope of this study.
Regions typically expected as high-exposure regions, like Africa,

do not emerge strongly as hotspots here, which is partially be-
cause of the sectors used in the analysis and the individual
characteristics of the sectoral metrics, both influencing their
combination. In particular, the global area where three or four
regions can potentially overlap is limited to where the four staple
crops are currently cultivated and where malaria is not yet en-
demic (excluding gray areas in Fig. 1). Hence, a different picture
might arise if, for example, changes in the occurrence of extreme
events, like droughts and floods, were included as metrics, which
would likely increase the occurrence of hotspots in Africa and
south-east Asia (24).

The Role of Uncertainty. An additional factor limiting the overlap
of areas with severe change in different sectors is the large un-
certainty in projections, stemming mainly from the GCMs and
GIMs. When the results for the three GCMs are separated,
different multisectoral hotspot patterns emerge, with some re-
gions only appearing as hotspots with a single GCM (Fig. S5).
This appearance is because of different sectoral patterns asso-
ciated with each GCM as a result of variances in projections of
key climate variables influencing the impact models. Climate
model uncertainty is therefore an important cause of the limited
sectoral overlap in our analysis. Uncertainty from impact models,
however, is much larger (Fig. 3 and Fig. S2). This finding is in
agreement with previous literature and other analyses in this
Special Features issue of PNAS (21, 25). Agreement is highest
among the ecosystem models, whereas differences are largest
between the global crop models. In addition to uncertainty as to
whether the thresholds are crossed, there is also uncertainty on
the crossing temperature, with SDs of around 1 °C in most sectors
(Fig. S6). The details of the model differences are beyond the
scope of this report. However, we emphasize the importance of

A B

C D
crossing temperatures

ΔGMT<0.5°C 0.5<ΔGMT<1.5°C 1.5<ΔGMT<2.5°C 2.5<ΔGMT<3.5°C 3.5<ΔGMT<4.5°C

Fig. 1. Threshold crossing temperatures with respect to the reference period GMT for the four sectoral metrics: discharge (A), crop yields (B), risk of severe
ecosystem change (C), and LTS of malaria (D). Areas in white do not cross the respective threshold. The gray color indicates regions which are either masked
out [discharge, Γ, crop yields (only regions where the maize, wheat, soy, and rice are currently cultivated are considered)], or where malaria is already endemic
(D). An agreement of 50% of all GIM-GCM combinations on threshold crossing is required for consideration in the analysis.

2 overlapping sectors 3 overlapping sectors

Fig. 2. Multisectoral hotspots of impacts for two (orange) and three (red)
overlapping sectors in the strict assessment, with 50% of GIM-GCM combi-
nations agreeing on the threshold crossing in each sector, for a GMT change
of up to 4.5 °C. Which sectors overlap depends on the location and can be
discerned from the sectoral patterns in Fig.1. An overlap of all four sectors
does not occur in the strict assessment. Regions in light gray are regions
where no multisectoral overlap is possible at all because of sectoral restric-
tions as shown in Fig.1. The dark gray shows the additional regions affected
by multisectoral pressures under the worst-case assessment, where a mini-
mum of 10% of all sectoral GIM-GCM combinations have to agree on the
threshold crossing.
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accompanying this study with detailed sectoral understanding
and analysis, which can be found elsewhere in this issue (see also
SI Text) (15, 21, 22).
This high level of uncertainty warrants the strict robustness

limit of 50% agreement among GIM-GCM combinations used for
the identification of hotspots. At the same time, this uncertainty
may mask a remaining risk, given that models appearing at the
ends of the distribution cannot be disregarded because no per-
formance-weighting of models was carried out. Therefore, we
also provide a worst-case assessment of multisectoral hotspots,
with crossing temperatures determined as the 10th percentile of
all crossing temperatures in a given grid cell. This process means
that only 10% of all GIM-GCM combinations have to agree on

the threshold crossing (chosen to have at least two in a sector, to
avoid spurious effects of one outlier) and the resulting crossing
temperatures are lower limits. This worst-case assessment shows
a large additional extent of multisectoral overlap (Fig. 2, dark
gray areas) with almost all of the world’s inhabited areas affected.
The areas with highest exposure in this case have an overlap of all
four sectors (Fig. 3 and Fig. S7). This worst case is rather extreme,
but nonetheless it represents the upper end of the risk spectrum in
light of the large uncertainties.

Aggregate Effects with GMT. The total global area and population
that are projected to face average conditions that are considered
rare today in more than one sector increases with GMT (Fig. 4).
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The likelihood for multisectoral overlap increases with the area
affected in the individual sectors, one reason for the onset of
multisectoral pressures at relatively high levels of GMT change
only. For the strict assessment, multisectoral severe pressure
begins at ΔGMT = 3 °C above the 1980–2010 baseline; at 4 °C
roughly 6% of the global area (excluding Antarctica) and close to
11% of the global population are affected. Correspondingly, the
largest increases in the areas having crossed the thresholds in
each sector are seen between ΔGMT = 1 °C and 3 °C (Fig. 3),
with some indications for saturation after that. Further increases
in affected areas are possible at higher ΔGMT levels than
studied here. For example, a peak and possible later decline in
crop yields is expected as a result of heat stress overtaking the
initial benefits of the CO2 fertilization effect.
In the worst-case analysis, area and population affected is al-

ready much larger at lower levels of ΔGMT, with the largest
increase between 1 °C and 2 °C above the 1980–2010 baseline
and an inflection of the trend after that. Almost the entire global
population is exposed to multisectoral pressure at ΔGMT = 4 °C.
In addition, roughly 18% of the global population is projected to
experience severe pressure in all four sectors. The affected
regions are in Europe, North America, and south-east Asia (Fig.
S7), driven by the extension of malaria prevalence to higher
latitudes. This interpretation may give too much emphasis to this
pressure, as malaria distribution also depends strongly on so-
cioeconomic factors but is here only driven by climate suitability
(26). Nevertheless, the increased overlap of three or even four
sectors in the worst-case assessment indicates a strong adapta-
tion pressure, albeit at low probability.

Implications and Further Research
This identification of multisectoral hotspots of climate change
impacts is to our knowledge unique in its use of a consistent
framework with multiple impact models per sector and using
ΔGMT as a metric for climate change. Our global analysis
provides a starting point for more detailed understanding of the
extended implications of climate change for exposure and ad-
aptation actions. Although geographically overlapping impacts
only start at ΔGMT = 3 °C above the 1980–2010 baseline (almost
4 °C above preindustrial GMT levels), large increases in exposed
areas within the sectors start at around 2.2 °C above preindustrial
levels. In the worst-case analysis, the largest increase in affected
area and population occurs between roughly 2 °C and 3 °C above
preindustrial levels. This finding provides important insight for
mitigation strategies.
The identified multisectoral hotspots are geographically di-

verse, including the southern Amazon basin, southern Europe,
the Ethiopian highlands, and northern India, and are driven by
different combinations of coinciding sectors. Implications and
possible feedbacks between the overlapping sectors can be in-
vestigated in regional case studies. At the same time, these
hotspots could affect distant regions through indirect effects,
such as trade or migration. Appropriate adaptation planning that
considers coinciding (and also interacting) pressures facilitates
the development of strategies designed to address such multiple
challenges, and avoids creating solutions for one pressure that
possibly seriously exacerbates another (e.g., draining wetlands to
reduce malaria in an area prone to increases in flooding).
The set-up for our analysis explicitly includes uncertainty in

both climate and impact models. This format shows that uncer-
tainties from both GIMs and GCMs are large, limiting the ro-
bustness of the conclusions; however, it should not hamper
action at this point, as some level of uncertainty will always
be present. In particular the low probability-high impact worst-
case assessment, which shows a very large extent of multisectoral
pressures starting at lower temperature changes, provides a
strong motivation for more detailed impacts research.

Because it is unique, our analysis is a methodological experi-
ment, to be refined in the light of experience. Indeed, different
patterns may emerge if different sectors or absolute magnitudes
of change are included. A comparison of hotspots generated
with different methodologies will provide valuable insights into
impact dynamics. The identification of hotspots of positive
climate-change impacts would create a more balanced and
comprehensive picture, but requires different metrics to those
used here. In addition, although a simple overlap of the different
sectoral metrics is considered here, the challenge for future
analyses is also to integrate the interactions between the differ-
ent sectors and indirect effects over large distances, which may
alter the spatial pattern of hotspots. Examples are interactions
between water availability and irrigation or ecosystem services,
and irrigation and malaria occurrence (27). Furthermore, a more
comprehensive understanding of human vulnerability hotspots
requires a thorough analysis, combining highly resolved indica-
tors of adaptive capacity and sensitivity (which so far seem to be
lacking) with biophysical hotspot indicators as measures of ex-
posure (2, 3). Nevertheless, our study is an important step toward
a consistent integration of multiple sectors in impacts research,
and identifies the risk of sizable hotspots of multisectoral pressures
under highly plausible levels of global warming.

Materials and Methods
Models and Data. For this analysis, simulations were driven by the three ISI-
MIP GCMs that exhibit a ΔGMT= 4 °C by the end of the 21st century
(HadGEM2-ES, MIROC-ESM-CHEM, IPSL-CM5A-LR). To improve statistical
agreement with observations, a bias correction was applied to the climate
data. This bias constitutes an additional source of uncertainty and reduces
the spread of present-day GCM climatologies (28–31). The gridded year
2000 population data are based on United Nations World Populations
Prospects data, scaled to match the country totals of the new Shared Socio-
Economic Pathway population projections for the middle-of-the-road case
(SSP2; https://secure.iiasa.ac.at/web-apps/ene/SspDb) using the National
Aeronautics and Space Administration GPWv3 y-2010 (http://sedac.ciesin.
columbia.edu/data/collection/gpw-v3) gridded population dataset (32, 33).
Similar results for the percentage of affected global population are found
when the projected values for 2084 are used (Fig. S8). Impacts were simu-
lated on terrestrial pixels of a global 0.5° mesh (roughly 55 km wide at the
equator). For an overview of the GIMs used in the analysis, see Tables S1–S4,
accompanied by a brief discussion of model differences contributing to the
spread in results. The global gridded crop model intercomparison was co-
ordinated by the Agricultural Model Intercomparsion and Improvement
Project (34).

Impact Metrics. All metrics have annual temporal resolution, neglecting
seasonal patterns. To avoid spurious effects, values are set to zero below the
lower limits 0.01 km3·yr−1 and 2.5% natural vegetation cover, for discharge
and ecosystem change, respectively (15, 35). The four crops are combined by
converting to energy-weighted production per cell using the following
conversion factors for energy content (MJ kg−1 dry matter): wheat (spring/
winter), 15.88; rice (paddy), 13.47; maize, 16.93; soy, 15.4 (36, 37). The extent
of potential agricultural hotspots is limited; for example, millet and sor-
ghum, which are widely grown in Africa, are not included in the analysis.
The impact of climate change on malaria occurrence focuses on changes in
LTS. This simple metric represents an aggregated risk factor because it
neglects age-dependent immunity acquisition associated with transmission
intensity. Increases in impacts associated with transitions from malaria-free
to epidemic conditions are also not considered.

Hotspots Method. GMT is calculated from the GCM data and change is
measured with respect to the reference period 1980–2010. The GMT level in
the reference period is ∼0.7 °C above preindustrial, based on estimates for
1980–1999 of 0.51 °C and the average of the five GCMs in ISI-MIP (20).
Simulations are binned in temperature bins at ΔGMT = 1 °C, 2 °C, 3 °C, and
4 °C (±0.5 °C). For GIM-GCM combinations where the threshold has not been
crossed by ΔGMT = 4.5 °C (the highest temperature bin achieved by GCMs in
this study), a value of 5 is assigned. Consequently, cells with a median sec-
toral crossing temperature above 4.5 °C are not included in the analysis,
effectively excluding cells with less than 50% agreement of GIM-GCM
combinations on the crossing of the respective threshold. See SI Text for
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more details on the sensitivities and uncertainties of the method. If a grid
cell is identified as having crossed the threshold, the whole area of the grid-
cell is assumed to be affected. This process neglects, for example, the sep-
aration of agricultural and natural vegetation areas in a grid-cell, which is
below the resolution of the analysis. The spread across GIMs is calculated by
taking the median over all GCMs for each GIM. The corresponding pro-
cedure is used for GCMs.
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Characteristics of the Global Impact Models
Model Overview. Tables S1–S4 give an overview of the main
characteristics of the global impact models (GIMs) used in this
analysis. For more detailed descriptions and comparisons, see
the sectoral reports by Rosenzweig et al. (1), Schewe et al. (2)
and, Warszawski et al. (3).

Important Characteristics of Impact Models and Model Uncertainty.
For each sector, the set of impact models is rather diverse, leading
to a large spread of results. Here a few of the key responsible
features are discussed.
The crop model ensemble consists of models covering a broad

range of management assumptions (e.g., static vs. adaptive man-
agement, nutrient-limited vs. nonlimited systems), effectively
reflecting different degrees of autonomous adaptation. In this
analysis, focusing on negative effects (i.e., decreases in crop
yields) models with adaptive management provide a lower limit
for regions affected by crossing the threshold. The effect of CO2
fertilization is of great importance for crop models, biomes
models, and to a limited degree hydrological models (not all
hydrological models include it), but still subject to high un-
certainty (4, 5). Here, full CO2 fertilization is assumed as rep-
resented in the respective models, as an analysis of the influence
of this effect is beyond the scope of this report. For crop models,
this adds a further uncertainty because nitrogen fertilization has
not been standardized among the models but can possibly reduce
the CO2 effect, leading to optimistic crop yields projections. For
further details, see Rosenzweig et al. (1).
The main factors of uncertainty for global hydrological models

result from applying different snow schemes, as well as ap-
proaches to calculating potential evapotranspiration (6). Other
sources are soil parameters and vegetation cover, as well as the
rainfall-runoff response. For this analysis, the models are used
only in setups without human influence. For further details, see
Schewe et al. (2).
Of the four global malaria models included, only one is a

dynamic model running with a daily integration time step
(VECTRI). This model also explicitly attempts to model the
impact of climate on the vector and parasite life cycles. The other
three models use statistical relationships based on monthly cli-
mate data. The models also differ in their parameterizations in
terms of species of malaria parasites, restricting transmission in
some models (MARA, LMM) to the tropics and subtropics;
others also cover higher latitudes (VECTRI, MIASMA). The
former are better suited to study present day malaria dis-
tributions, while the latter better represent distributions without
human interventions aiming at eradicating malaria. This process
results in very limited agreement among models, both for present
day and future distribution of malaria. For more discussion on
advantages and disadvantages of different modeling types see
Rogers and Randolph (7).
Biomes models mainly fall into two categories: those that in-

clude dynamic vegetation and those that do not. Other differences
include the modeling of permafrost, fire, and the nitrogen cycle.
Two of the seven biomes models provided results on a coarser
resolution. For further details, see Warszawski et al. (3).

Characteristics of the Sectoral Metrics
The metrics used here capture only a subset of effects relevant to
the livelihoods of people and clearly, socioeconomic conditions,
livelihood strategies, and specific climate-change adaptation will
have a large influence on the vulnerability of societies to these four

areas of change. Adaptation options, as well as other relevant
characteristics for each sectoral metric, are briefly discussed below.
Changes in discharge as a measure of water availability affect

daily life, as well as industrial production, energy supply, and es-
pecially agriculture. However, temporal variability (floods and
droughts), as well as spatial distribution in river basins, are possibly
of even greater importance. Both could bemanaged to some extent
through efficient integrated water resource management (8).
The four crops used in this analysis do not cover the full breadth

of effects in agriculture, although they are among the most
commonly traded agricultural commodities. Furthermore, the
analysis is limited to regions where these crops are currently
cultivated, which limits regions of possible multisectoral overlap
(Fig. S1). Because only negative changes are considered, a pos-
sible expansion of cropland to higher latitudes, which is not
accounted for because of the masking, is not important. Fur-
thermore, drops in crop yields could be managed by a variety of
measures, including shifts in crop types, more productive culti-
vars, or optimizing fertilization or irrigation, options that are not
taken into account here (9, 10).
The threshold for both discharge and crop yields was chosen to

be the 10th percentile of the present day distribution in a given grid
cell. Although this choice signifies a moderately extreme shift of
average conditions, it is not a shift to very extreme conditions, like
droughts. To test the sensitivity of the method to this threshold, we
repeated the analysis for a fifth percentile threshold (a 16-y return
period). Although the total area experiencing a threshold crossing
is smaller, the pattern of increase with respect to global mean
temperature (GMT) is robust (Fig. S2).
The Γ-metric assumes changes in the biogeochemical state of

vegetated land surface to be a proxy for the risk of ecosystem
shifts. This includes the components change in vegetation
structure, relative changes to carbon and water fluxes, relative
changes in carbon and water fluxes and absolute changes and
fluxes in carbon and water stocks. Not all biomes models provide
all variables necessary for the metric, which were then left out of
the calculation. For models without dynamic vegetation com-
position the other components of the metric were scaled up
accordingly. The changes in the metric dimensions (running
means compared to the baseline period) are aggregated into the
Γ-metric as one normalized measure following Heyder et al. (11),
all with equal weighting after being normalized to a value be-
tween 0 and 1. The metric covers the range 0 to 1, where Γ = 0
means no change of vegetation states, while an extensive change
from one biome to a completely different one would mean a Γ of
very close to 1. Simultaneous change in multiple components
results in an increased risk of ecosystem shift compared to in-
dividual changes. The level of Γ > 0.3 defined as threshold for
risk of severe ecosystem change corresponds, for an illustration,
for example to a change between a warm wood- and shrubland
and a tropical seasonal forest, based on the LPJmL model (11).
Adaptation to ecosystem changes is of course possible, but ad-
aptation measures depend strongly on the region and societal
needs. Finally, malaria is only one example of health impacts of
climate change with particular relevance for tropical countries.
Malaria was eradicated in Europe and the United States only in
the first half of the last century through a combination of farming
measures, better living conditions, and medical care, and the
extension of climate conditions favorable for malaria toward
higher latitudes does not necessarily indicate existence of patho-
gens or large-scale outbreaks of malaria there. The inclusion of
malaria strongly limits opportunities for multisectoral overlap,
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because most regions where malaria is prevalent today already
have a transmission season larger than the sectoral threshold of 3
mo (Fig. S3). A crossing of this threshold can only happen in
fringe areas, higher altitudes, or higher latitudes. Because only
two of the four models consider spread to higher latitudes, this
leads to the very small total area robustly sensitive to this metric.
This result mirrors the limited importance climate change is
expected to have on global malaria prevalence [see also, for
example, Lafferty (12)].

Supporting Figures
Sectoral Threshold Crossings. Fig. S4 shows a larger version of Fig.
1, to help distinguish individual sectoral features.

Uncertainty. This section illustrates the discussion on uncertainty
with supporting figures, relating to multisectoral hotspot patterns
based on individual global climate models (GCMs) (Fig. S5),
uncertainty of crossing temperatures (Fig. S6), and sectoral as
well as multisectoral hotspots patterns for the worst-case as-
sessment (Fig. S7).

Population Growth
The affected population is calculated assuming constant population
based on the year 2000, which avoids an entanglement of effects
of population growth and increasing global warming. However,
population is expected to growth strongly over the century. In the

Shared Socio-Economic Pathway (SSP2) population scenario
(https://secure.iiasa.ac.at/web-apps/ene/SspDb) used as baseline in
the Intersectoral Impact Model Intercomparison Project (ISI-
MIP), an increase from 6 billion people in 2000 to 9.9 billion
people in 2084 is projected, a factor of 1.64. The highest increase
in population density is projected for regions already dense, such
as India, as well as for Sub-Saharan Africa. As the areas of high
population density do not shift much, the population increase does
not have a strong effect on the fraction of global population
projected to be affected by multisectoral pressure (Fig. S8).

Overview of the GCMs Considered in the Analysis
In this analysis three GCMs are considered:

The model from the Met Office Hadley Centre, with addi-
tional HadGEM2-ES realizations contributed by Instituto Na-
cional de Pesquisas Espaciais. The model version used is
HadGEM2-ES.

The model from Institut Pierre-Simon Laplace (IPSL), model
version IPSL-CM5A-LR.

The MIROC model of the Japan Agency for Marine-Earth
Science and Technology, the Atmosphere and Ocean Re-
search Institute at the University of Tokyo, and the National
Institute for Environmental Studies, model version MIROC-
ESM-CHEM.
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Wheat Soybeans

Maize Rice

all crops

Fig. S1. Present-day mask for areas growing the four crops considered on currently rain-fed and irrigated cropland (1). The combined map shows the total
resulting area relevant for hotspot analysis of crop yields in this analysis. This limits the area where all four metrics can cross the present-day thresholds.

1. Portmann FT, Siebert S, Döll P (2010) MIRCA2000-global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and
hydrological modeling. Global Biogeochem Cycles 24(1):GB1011.
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Fig. S2. Test applying a stricter threshold to be crossed for discharge (A) and crop yields (B); instead of the 10th percentile the 5th percentile is used. The
cumulative fraction of global relevant land area having crossed this threshold is shown. Black boxes show the uncertainty among impact models, and red boxes
indicate the uncertainty among GCMs. Each box indicates the interquartile range and the median (thick line). The whiskers show the whole range of the
distribution of all GIM-GCM combinations at that temperature bin.
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Fig. S3. Length of transmission season in months for the four malaria models: Liverpool Malaria Model (LMM) (A), Modeling Framework for the Health Impact
Assessment of Man-Induced Atmospheric Changes (MIASMA) (B), vector-borne disease community model of the International Centre for Theoretical Physics,
Trieste (VECTRI) (C), and Mapping Malaria Risk in Africa (MARA) (D). Median over the three GCMs for representative concentration pathways (RCP8.5) for the
reference period (1980–2010, Left A–D) and the end of the century (2069–2099, Right A–D).
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0.5< GMT<1.5 C
1.5< GMT<2.5 C
2.5< GMT<3.5 C
3.5< GMT<4.5 C

Fig. S4. Threshold crossing temperatures with respect to the reference period GMT for the four sectoral metrics: discharge (A), crop yields (B), risk of severe
ecosystem change (C), and length of transmission season of malaria (D). Areas in white do not cross the respective threshold. The gray color indicates regions
which are either masked out [discharge, Γ, crop yields (only regions where maize, what, soy, and rice are currently cultivated are considered)], or where malaria
is already endemic (D). An agreement of 50% of all GIM-GCM combinations on threshold crossing is required for consideration in the analysis.
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c

Fig. S5. Multisectoral hotspots of impacts for two (orange) and three (red) overlapping sectors, calculated separately for the three GCMs HadGEM2-ES (A),
IPSL-CM5A-LR (B), and MIROC-ESM-CHEM (C), in the strict assessment, with 50% of respective GIM-GCM combinations agreeing on the threshold crossing in
each sector. The emerging hotspot patterns are very different, especially in South America and the eastern United States, yet there is some consistency in the
results for Europe, Central America, and Africa. This finding underlines the effects of GCM uncertainty on the possible hotspots as discussed in the The Role of
Uncertainty in the main text. A similar plot for individual GIMs cannot be shown because they are different in each sector.
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Fig. S6. SD of crossing temperatures taken over those GIM-GCM combinations that do cross for discharge (A), crop yields (B), risk of severe ecosystem changes
(C), and length of malaria transmission season (D).
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e

multi−sectoral overlap
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Fig. S7. Sectoral distribution of worst-case analysis of threshold crossings (A–D) and multisectoral overlap colored by number of overlapping sectors (E). The
sectoral crossing temperature is taken as the 10th percentile of all GIM-GCM crossing temperatures, requiring an agreement of 10% on the crossing, to avoid
spurious results of one model only. The different color shadings represent agreement of impact models on the crossing of the threshold. This visualization style
is based on Kaye et al. (1). The multisectoral overlap is for the range of ΔGMT up to 4.5 °C. The light gray colored areas in E are regions where no overlap is
possible at all because of masking.

1. Kaye NR, Hartley A, Hemming D (2012) Mapping the climate: Guidance on appropriate techniques to map climate variables and their uncertainty. Geosci Model Dev 5(1):245–256.
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Fig. S8. Comparing the cumulative fraction of global population affected by multisectoral pressure under the strict assumptions when based on the year 2000
distribution (brightly tinted bars) and when based on the year 2084 distribution (lightly tinted bars).

Piontek et al. www.pnas.org/cgi/content/short/1222471110 8 of 12

www.pnas.org/cgi/content/short/1222471110


Table S1. Overview and main characteristics of global crop models

Model name

CO2

fertilization
affects

Nutrient
constraints
on CO2

fertilization Fertilizer use
Adaptation
measures

Starting conditions
(representation of

present day yields or
potential yields?)

EPIC (1, 2)
Environmental
Policy Integrated
Climate

RUE, TE No Flexible N application
rates (N stress free
days in 90% of crop
growing period
to an upper application
limit of 200 kg·ha-1)
Constant
P application rates.

Annual adjustment of
planting dates; total
heat units to reach
maturity remain
constant no adjustment of
cultivars

Present day
potential yields

GEPIC (3, 4)
GIS-based
agroecosystem
model integrating a
bio-physical EPIC model
(Environmental
Policy Integrated
Climate) with a GIS

RUE, TE No Flexible N application
based on N stress >10%
(limitation of potential
biomass increase because
of N stress) up to an
upper national
application limit
according to FertiStat,
fixed present day P
application
rates following FAO
FertiStat database*

Decadal adjustment
of planting dates,
total heat units to
reach maturity remain
constant.
Adjustment of
winter and
spring wheat sowing
areas based on
temperature

Present day
yields

GAEZ-IMAGE (5, 6)
Integrated Model to
Assess the Global
Environment

LLP No Soil nutrient limiting
factors are not
accounted for

Adjustment of
planting dates,
total heat
units to reach
maturity remain
constant. Adjustment
of summer and
winter varieties in case of
wheat and maize

Present day
yields

LPJ-GUESS (7) –
Lund-Potsdam-Jena
General Ecosystem
Simulator with
managed Land

LLP, CC No Soil nutrient
limiting
factors are not
accounted for

Adjustment of planting
dates, total
heat units to reach
maturity are
dynamically adapted
to the
prevailing climate

Potential
yields

LPJmL (8, 9) - Lund-
Potsdam-Jena
managed Land
Dynamic Global
Vegetation and Water
Balance Model

LLP, CC Not
directly
accounted
for

Soil nutrient
limiting factors
are not
accounted for

Fixed planting dates, total
heat
units to reach maturity
remain constant

Present day yields

PEGASUS (10)
Predicting Ecosystem
Goods And Services
Using Scenarios

RUE, TE No Fixed N, P, K
application
rates (IFA
national statistics)

Adjustment of planting
dates,
variable heat units to
reach
maturity

Present day yields

pDSSAT [11, for DSSAT]
– parallel Decision
Support System for
Agro-technology Transfer

RUE, LLP,
CC

Yes for
wheat,
rice,
maize;
no for soy

Fixed N
present day
application rates

No adjustment of planting
dates,
total heat units to reach
maturity remain constant

Present day yields

CC, canopy conductance; GIS, geographic Information system; K, potassium; IFA, International Fertilizer Industry Association; LLP, leaf level photosynthesis;
N, nitrogen; P, phosphorus; RUE, radiation use efficiency; TE, transpiration efficiency.
*FAO FertiSTAT: Fertilizer use statistics. Available at: http://www.fao.org/ag/agl/fertistat/index_en.htm.

1. Williams JR (1995) The EPIC Model. Computer Models of Watershed Hydrology, ed Singh VP (Water Resources Publications, Highlands Ranch, CO), pp 909–1000.
2. Izaurralde RC,Williams JR, McGill WB, Rosenberg NJ, JakasMCQ (2006) Simulating soil C dynamics with EPIC: Model description and testing against long-term data. Ecol Modell 192(3-4):362–384.
3. Williams JR, Jones CA, Kiniry JR, Spanel DA (1989) The EPIC crop growth model. Trans ASAE 32:497–511.
4. Liu JG, Zehnder AJB, Yang H (2009) Global crop water use and virtual water trade: the importance of green water. Water Resour Res 45:W05428.
5. MNP (2006) (Eds A.F.Bowman, T. Kram, and K. Klein Goldewijk), Integrated modelling of global environmental change. An overview of IMAGE 2.4. Netherlands Environmental As-

sessment Agency (MNP), Bilthoven, The Netherlands.
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6. Leemans R, Solomon AM (1993) Modeling the potential change in yield and distribution of the earth’s crops under a warmed climate. Clim Res 3(1-2):79–96.
7. Lindeskog M, et al. (2013) Implications of accounting for land use in simulations of ecosystem services and carbon cycling in Africa. Earth Syst Dynam Discuss 4:235–278.
8. Bondeau A, et al. (2007) Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob Change Biol 13(3):679–706.
9. Waha K, et al. (2012) Climate-driven simulation of global crop sowing dates. Glob Ecol Biogeogr 21(2):247–259.
10. Deryng D, Sacks WJ, Barford CC, Ramankutty N (2011) Simulating the effects of climate and agricultural management practices on global crop yield. Global Biogeochem Cycles 25(2):

GB2006.
11. Jones JW, et al. (2003) The DSSAT cropping system model. Eur J Agron 18(3-4):235–265.

Table S2. Overview and main characteristics of global hydrological models

Model name Energy balance Evaporation scheme Runoff scheme Snow scheme CO2 effect

DBH (1, 2) – Distributed
Biosphere-Hydrological Model

Yes Energy balance Infiltration excess Energy balance Constant

H08 (3, 4) Yes Bulk formula* Saturation excess,
nonlinear

Energy balance No

JULES (5, 6) - Joint UK Land
Environment Simulator

Yes Penman-Monteith Infiltration excess,
saturation excess,
groundwater

Energy balance Yes

LPJmL (7, 8) - Lund-Potsdam-Jena
managed Land Dynamic Global
Vegetation and Water Balance Model

No Priestley-Taylor Saturation excess Degree day Yes

Mac-PDM.09 (9, 10) – Macroscale Probability
Distributed Moisture model.09

No Penman-Monteith Saturation excess,
nonlinear

Degree day No

MATSIRO (11, 12) – Minimal Advanced
Treatments of Surface Interaction and
RunOff

Yes Bulk formula Infiltration excess,
saturation excess,
groundwater.

Energy balance Constant

MPI-HM (13, 14) – Max Planck Institute
Hydrology Model

No Penman-Monteith Saturation excess,
nonlinear

Degree day No

PCR-GLOBWB (15, 16) – PCRaster Global
Water Balance

No Hamon Saturation excess
β-function†

Degree day No

VIC (17, 18) – Variable Infiltration
Capacity Macroscale Hydrologic Model

Only for snow Penman-Monteith Saturation excess,
nonlinear

Energy balance No

WaterGAP (19, 20) – Water – Global
Analysis and Prognosis

No Priestley-Taylor β-Function Degree day No

WBM (21, 22) – Water Balance Model No Hamon Saturation excess Empirical temperature
and precipitation-based

formula

No

*Use of bulk transfer coefficients to calculate turbulent heat fluxes.
†Runoff is a nonlinear function of soil moisture.

1. Tang Q, Oki T, Kanae S, Hu H (2007) The influence of precipitation variability and partial irrigation within grid cells on a hydrological simulation. J Hydrometeorol 8(3):499–512.
2. Tang Q, Oki T, Kanae S, Hu H (2008) Hydrological cycles change in the Yellow River Basin during the last half of the 20th century. J Clim 21(8):1790–1806.
3. Hanasaki N, et al. (2008) An integrated model for the assessment of global water resources – Part 1: Model description and input meteorological forcing. Hydrol Earth Syst Sci 12(4):

1007–1025.
4. Hanasaki N, et al. (2008) An integrated model for the assessment of global water resources – Part 2: Applications and assessments. Hydrol Earth Syst Sci 12(4):1027–1037.
5. Best MJ, et al. (2011) The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes. Geosci Model Dev. 4(1):677–699.
6. Clark DB, et al. (2011) The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics. Geosci Model Dev 4(1):701–722.
7. Bondeau A, et al. (2007) Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob Change Biol 13(3-4):679–706.
8. Rost S, et al. (2008) Agricultural green and blue water consumption and its influence on the global water system. Water Resour Res 44(9):W09405.
9. Gosling SN, Arnell NW (2011) Simulating current global river runoff with a global hydrological model: Model revisions, validation and sensitivity analysis. Hydrol Processes 25(7):

1129–1145.
10. Arnell NW (1999) A simple water balance model for the simulation of streamflow over a large geographic domain. J Hydrol (Amst) 217(3-4):314–335.
11. Pokhrel Y, et al. (2012) Incorporating anthropogenic water regulation modules into a land surface model. J Hydrometeorol 13(1):255–269.
12. Kumiko T, et al. (2003) Development of the minimal advanced treatments of surface interaction and runoff. Global Planet Change 38(1-2):209–222.
13. Hagemann S, Dümenil Gates L (2003) Improving a subgrid runoff parameterization scheme for climate models by the use of high resolution data derived from satellite observations.

Clim Dyn 21(3-4):349–359.
14. Stacke T, Hagemann S (2012) Development and validation of a global dynamical wetlands extent scheme. Hydrol Earth Syst Sci 16(8):2915–2933.
15. Van Beek LPH, Wada Y, Bierkens MFP (2011) Global monthly water stress: I. Water balance and water availability. Water Resour Res 47(7):W07517.
16. Wada Y, et al. (2011) Global monthly water stress: II. Water demand and severity of water. Water Resour Res 47(7):W07518.
17. Lohmann D, Raschke E, Nijssen B, Lettenmaier DP (1998) Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrol Sci J 43(1):131–141.
18. Liang X, Lettennmaier DP, Wood EF, Burges SJ (1994) A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J Geophys Res 99

(D7):14415–14428.
19. Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol (Amst) 270(1-2):105–134.
20. Döll P, et al. (2012) Impact of water withdrawals from groundwater and surface water on continental water storage variations. J Geodyn 59–60:143–156.
21. Vörösmarty CJ, Peterson BJ, Lammers RB, Shiklomanov IA, Shiklomanov AI (1998) R-ArcticNET: A regional, electronic, hydrographic data network for the arctic region. University of

New Hampshire, Durham, NH.
22. Wisser D, Fekete BM, Vörösmarty CJ, Schumann AH (2010) Reconstructing 20th century global hydrography: A contribution to the Global Terrestrial Network-Hydrology (GTN-H).

Hydrol Earth Syst Sci 14(1):1–24.
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Table S3. Overview and main characteristics of bio-geochemical models

Model name Representation of dynamic vegetation Represented bio-geochemical cycles

Hybrid (1) Yes Representation of C and N cycles
(N provides constraints on photosynthesis,
growth, and affects allocation of C to leaf area)

JeDI (2) – Jena
Diversity Model

Yes Representation of water and C cycle, no limitation
of CO2 fertilization by nutrient supply

JULES (3, 4) – Joint UK
Land Environment Simulator

Yes Representation of C cycle (no limitation of CO2

fertilization by nutrient supply e.g., N or P)
LPJmL (5, 6) – Lund-Potsdam-Jena

managed Land Dynamic
Global Vegetation and Water
Balance Model

Yes Representation of a fully coupled water and carbon
cycle (assuming optimal leaf nitrogen allocation,
but no limitation of CO2 fertilization by nutrient supply)

ORCHIDEE (7, 8) Not in the
configuration used for ISI-MIP

Representation of C cycle (no limitation of CO2

fertilization by nutrient supply e.g., N or P) Land
surface model – calculates energy fluxes and surface
temperature on a 30-min time step

SDGVM (9, 10) – Sheffield
Dynamic Vegetation Model

No Fully coupled water and carbon cycle, below ground
nitrogen cycle

VISIT (11, 12) – Vegetation
Integrative Simulation for Trace gases

No Representation of C and N cycle (but no limitation of
CO2 fertilization by N supply in this simulation).
For vegetation processes, single vegetation-layer
carbon cycle model.

ORCHIDEE, ORganizing Carbon and Hydrology in Dynamic EcosystEms.

1. Friend AD, White A (2000) Evaluation and analysis of a dynamic terrestrial ecosystem model under preindustrial conditions at the global scale. Global Biogeochem Cycles 14(4):
1173–1190.

2. Pavlick R, Drewry D, Bohn K, Reu B, Kleidon A (2012) The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM): A diverse approach to representing terrestrial biogeography
and biogeochemistry based on plant functional trade-offs. Biogeosciences Discuss 9:4627–4726.

3. Best MJ, et al. (2011) The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes. Geosci Model Dev 4(1):677–699.
4. Clark DB, et al. (2011) The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics. Geosci Model Dev 4(1):701–722.
5. Sitch S, et al. (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Change Biol 9(2):161–185.
6. Gerten D, Schaphoff S, Haberlandt U, Lucht W, Sitch S (2004) Terrestrial vegetation and water balance—Hydrological evaluation of a dynamic global vegetation model. J Hydrol

(Amst) 286(1):249–270.
7. Krinner G, et al. (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem Cycles 19(1):GB1015.
8. Piao S, et al. (2007) Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc Natl Acad Sci USA 104(39):15242–15247.
9. Le Quere C, et al. (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2(12):831–836.
10. Woodward FI, Smith TM, Emanuel WR (1995) A global land primary productivity and phytogeography model. Global Biogeochem Cycles 9(4):471–490.
11. Inatomi M, Ito A, Ishijima K, Murayama S (2010) Greenhouse gas budget of a cool temperate deciduous broadleaved forest in Japan estimated with a process-based model. Ecosystems

(N Y) 13(3):472–483.
12. Ito A, Inatomi M (2012) Use of a process-based model for assessing the methane budgets of global terrestrial ecosystems and evaluation of uncertainty. Biogeosciences 9(2):759–773.
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Table S4. Overview and main characteristics of malarial models

Model name Input Effect of rainfall
Effect of

temperature Output Notes

LMM 205 (1, 2) –
Liverpool Malaria
Model

Monthly
temperature
and rainfall

Mosquito population
based on rainfall in
previous month

Biting rates, sporogonic cycle
length, survival probability

Transmission based
on reproduction
ratio R_0, R_0 > 1
for sustainable
disease
transmission

Based on vector
transmission
potential model

MARA (3, 4) –Mapping
Malaria Risk in
Africa

Monthly
temperature
and rainfall

3-mo rainfall above
minimum
threshold, catalyst
month with
rainfall above
a second threshold

Temperature above
a threshold + a seasonality
index based on SD of
monthly rainfall

Malaria season in
progress or not

Very simplified
seasonal model
of malaria transmission

MIASMA (5, 6) –
Modeling
Framework for the
Health Impact
Assessment of Man-
Induced
Atmospheric
Changes

Temperature Rainfall above
minimum
threshold

Effects on survival probability
and biting frequency of
mosquitoes

R_0 > 1 for
sustainable
disease
transmission

Model not constrained
by present day distribution
of malaria vectors

VECTRI (7) - vector-
borne disease
community model
of the International
Centre for
Theoretical Physics,
Trieste

Daily
temperature
and rainfall

Physical model of
surface pool
hydrology: low
rainfall increases
breeding sites,
high rainfall
flushes larva

Sporogonic and gonotrophic
cycle development rates,
mortality rates for adult
vectors, growth rate and
mortality of larvae (water
temperature)

Daily number of
infectious bites
by infectious
vectors,
transmission
probability per
person per day

Accounts for human
population density in the
calculation of biting rates,
full dynamic model with
daily timestep and
accounting for subseasonal
variations in climate

1. Hoshen MB, Morse AP (2004) A weather-driven model of malaria transmission. Malar J 3(32):32.
2. Jones AE, Morse AP (2010) Application and validation of a seasonal ensemble prediction system using a dynamic malaria model. J Clim 23(15):4202–4215.
3. Craig MH, Snow RW, Le Sueur D (1999) A climate based distribution model of malaria transmission in Sub-Saharan Africa. Parasitology Today 15(3):104.
4. Jones A (2007) Seasonal ensemble prediction of malaria in Africa. PhD thesis (University of Liverpool, Liverpool, UK).
5. Van Lieshout M, Kovats RS, Livermore MTJ, Martens P (2004) Climate change and malaria: Analysis of the SRES climate and socio-economic scenarios. Glob Environ Change 14(1):87–99.
6. Martens P (1999) MIASMA: Modelling framework for the health Impact Assessment of Man-induced Atmospheric changes. Electronic Series on Integrated Assessment Modeling

(ESIAM) 2.
7. Tompkins AM, Ermert V (2013) A regional-scale, high resolution dynamical malaria model that accounts for population density, climate and surface hydrology. Malar J 12:65.
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